
This is a pre-print of a copyrighted article in Proceedings of CASCON '94 (CD-ROM version), Toronto,
Canada, 1994.

Enterprise: Current Status and Future Directions
D. Szafron, J. Schaeffer, P. Iglinski,
I. Parsons, R. Kornelsen, C. Morrow

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

Abstract
Software development costs for parallel programs
can be considerably higher than for sequential
software. There are a variety of reasons for this,
but two of the major ones are the programming
model and the execution environment. Most
parallel programming models are very different
from sequential ones, so there is strong resistance
to change. In most parallel programming
systems, the user must be aware of the target
hardware configuration and must tailor programs
to match the execution environment. Ideally,
programming a parallel application should be no
more difficult than programming a sequential one.

Enterprise is a programming environment for
designing, coding, debugging, testing,
monitoring, profiling and executing parallel
programs in a distributed hardware environment.
The two major goals of the Enterprise project are
to provide an easy-to-use, familiar programming
model for writing parallel applications (the user's
interface to the system) and to remove
considerations of the target hardware from the user
(the system's interface to the hardware). This
paper discusses the current status and the future
directions of the project. Features of particular
note are sequential C for programming; an
analogical model for representing the parallelism;
transparent access to a variety of underlying
communications subsystems; and visual tools for
supporting program design, program animation,
forced replay and message level debugging.

By providing a familiar programming model,
utilizing a uniform graphical interface and
abstracting away all considerations of the
hardware, Enterprise can be used to reduce the
costs of parallel software development.

 The IBM contact for this paper is Jacob
Slonim, Centre for Advanced Studies, IBM Canada
Ltd., Dept. 21/894 844 Don Mills Road, North
York, Ontario M3C 1V7.

1 Introduction
Writing programs to exploit concurrency in
parallel and distributed architectures adds an extra
dimension of complexity to software development.
The programmer must deal with additional issues
while writing code (such as communication,
synchronization and process-processor mapping)
and at run-time (such as load balancing and fault
tolerance). Ideally, with the proper parallel
programming system, many of these
considerations can be abstracted from the user's
view. Unfortunately, despite a decade of active
research into tools for parallel and distributed
program development, there still exists a large gap
between what has been developed in the research
laboratory and what is used in practice.

Researchers have taken several diverse
approaches to extending the ideas of sequential
programming to parallel programming:

1) Design a new language that either explicitly
or implicitly supports parallel programming
constructs (for example, Orca [1]). However,
user communities are reluctant to change
languages, given that they have a substantial
investment in legacy software.

2) Extend an existing programming language
with new programming constructs (for
example, High Performance Fortran [6]).
This approach is popular with the scientific
community since the myriad of new features
added to Fortran allows users to modify their
code to maximize performance.
Unfortunately, if an application does not use
vectors, HPF has little to offer.

3) Provide a library of routines to augment a
programming language (for example, PVM
[3]). This approach is widely used, but it
forces the programmer to deal with low-level
issues. Users must write a substantial
number of complex code fragments that

2

contain explicit messages, increasing the
probability of programming errors.

4) Provide annotations for an existing
programming language that extend its
semantics to support concurrent execution of
program components. The advantage is that
parallel programming looks like sequential
programming; the disadvantage is that the
absence of user control over low-level details
might restrict the level of performance.

While each of the above approaches might serve a
particular community, the question is which
approach offers the best chance of gaining wide-
spread acceptance.

This paper describes the current status and
future directions of Enterprise, a parallel
programming system for developing applications
that run concurrently on a distributed network of
computers [10]. Enterprise embraces the fourth
approach, enhancing the semantics of the C
programming language to allow subroutines to be
executed concurrently. Enterprise is publicly
available (the ftp instructions are given at the end
of the paper) and is currently used in Canada, the
United States and Europe.

The Enterprise project has adopted the
following design goals:

1) Support a commonly used sequential
programming language (C in our case) with
no syntactic extensions to the language or
library calls to make.

2) Provide a programming environment that can
be used for the complete software engineering
life-cycle, including design, coding,
compi l ing, execut ing, debugging,
performance monitoring and performance
tuning.

3) Provide a uniform view in accessing all tools
in the environment. This reduces the learning
curve for users and the time for context
switches between tools.

4) Abstract as much of the run-time environment
as possible from the user, including hardware,
operating system, compiler and file system.

Clearly, these are ambitious goals. However, we
feel they must be achieved if parallel/distributed
computing is to move from the research laboratory
to commercial use.

This paper discusses the current
accomplishments and the future directions of the
Enterprise project in two areas: the programming
interface and the communications interface. The

programming interface provides a uniform
graphical interface to all tools in the system. Of
particular note are the use of sequential C for
programming, an analogical model used to
represent the parallelism and the visual tools for
supporting program design, program animation,
forced replay and message level debugging. The
communications interface provides transparent
access to a variety of underlying communications
subsystems (PVM or MPI [12] for example) so
the user is shielded from most considerations of
the hardware used. In effect, the computing
environment may be treated as a black box by the
user.

The combination of these two features allows
users to write distributed programs without
providing any explicit code for parallelism. The
users concentrate their efforts on the important
issue, identifying the potential parallelism in their
applications, without being sidetracked by
unnecessary details.

2 An Overview of Enterprise
In Enterprise, the interactions of processes in a
parallel computation are described using an
analogy based on the parallelism inherent in a
business organization. Since business enterprises
coordinate many asynchronous individuals and
groups, the analogy is beneficial to understanding
and reducing the complexity of parallel programs.
Inconsistent parallel terminology (such as master-
slave, pipelines or divide-and-conquer) is replaced
with more familiar business terms (assets called
individuals, lines, departments, divisions and
services). Every sequential procedure that will
execute concurrently is assigned an asset type that
determines its parallel behavior. The user code for
each of these procedures is sequential C, but a
procedure call to such an asset is automatically
translated into a message send by Enterprise.

Consider the following user C code, assuming
that func is an asset in the program:

result = func(x, y);
/* other C code */
a = result;

When Enterprise translates this code to run on a
network of workstations, the parameters x and y
are packed into a message and sent to the process
that executes the asset func . The caller
continues executing and only waits for the
function result when it accesses the result (a =

3

result). Results that allow such concurrent
execution are called futures [4].

Enterprise has three components: an object-
oriented graphical interface, a pre-compiler and a
run-time executive. The user specifies the
application parallelism by drawing a hierarchical
enterprise that consists of assets. At run-time,
each asset corresponds to one or more processes.
Sequential procedure calls in C are translated into
message send/receives across a network by the pre-
compiler. The execution of the program
(process/processor assignment, establishing
communication links and monitoring network
load) is done by the run-time executive.

For example, consider a Simulation program
that displays a group of fish swimming across a
display screen (this problem was contributed by a
research group in our Department and is more
complex than portrayed by the following
description). The main procedure, Model, consists
of a loop that, for each frame in the simulation,
performs some work on the frame and calls
PolyConv. PolyConv manipulates the image
received from Model and calls Split. Split
polishes the frame and writes it to disk. There
will be three assets: Model, PolyConv and Split.

The user could enter all of the code for Model,
PolyConv and Split into one individual asset and
run the program sequentially. However, there is
no reason why Model should wait until PolyConv
completes the first simulation frame to start
processing the second frame. Similarly,
PolyConv does not need to wait for Split. In the
parallel processing community this type of
parallelism is often called a pipeline. Using the
Enterprise analogy, these three routines act like an
assembly or production line and are represented by
a line. Therefore, the user can transform the
single individual into a line containing the
components Model, PolyConv and Split.

One of the strengths of the Enterprise model
is that it is easy to experiment with alternate
parallelization techniques without changing C
source code. Each asset represents at least one
process. If a call is made to the individual Split,
it is executed by a process; if a subsequent call is
made to Split before the first call is complete, the
second call must wait for the first call to finish.
However, if the Split asset is replicated, multiple
processes can be used to execute calls
concurrently. When PolyConv calls Split, a
process is activated, and if a subsequent call is
made to Split before the first call is done, then a

second process is activated if there is an available
machine. Replication can be dynamic in
Enterprise so that all available processors on the
network can be used, subject to a lower and upper
bound supplied by the user.

Figure 1 shows the structure of the
Simulation program. The double line rectangle
represents the enterprise. The dashed-line rectangle
represents the line asset and each inner icon
represents a component. The first component is a
receptionist that shares the name, Model, with the
line that contains it. All calls to a line are
received by the receptionist. The other two
components are subordinate individuals. The last
individual in the line, Split, is replicated with one
to five replicas.

When a user compiles a program, the
Enterprise pre-compiler automatically inserts code
to handle the distributed computation and compiles
the program. When a user executes a program, the
Enterprise run-time executive allocates the
necessary number of processors to start the
program, initiates processes on the processors and
dynamically allocates work to processes.

3 Current Status
In this section the current state of the publicly
available version of Enterprise is described.

3 . 1 Programming Model

The gcc compiler has been modified to support the
Enterprise programming model. No syntax
changes to the C programming language have
been made and the user is not required to make any
library calls. The compiler supports futures for
both simple and complex variable types, including
pointers.

3 . 2 Meta-Programming Model

As described in Section 2, Enterprise uses the
analogy of a business organization to represent
different parallelization techniques by assets. The
user expresses the parallelism in an application by
selecting an appropriate decomposition of assets.
At any time, an asset can be replicated so that
multiple identical copies are created. In this way,
when a replicated asset is called, the first replica
executes the call and if a second call is made to the
replicated asset before the first call is completed, a
second replica can immediately execute the second
call. Currently, five asset types are supported:

4

Figure 1: A program in the Enterprise programming environment.

• An individual asset is analogous to a person
in an organization. When an individual asset
is called, it executes its sequential code to
completion.

• A line asset is analogous to an assembly line.
It contains a fixed number of heterogeneous
assets in a specified order. Each component
asset contains a call to the next asset in the
line.

• A department asset is analogous to a
department in an organization where a
receptionist is responsible for directing all
incoming communications to the appropriate
place. It contains a fixed number of
heterogeneous assets.

• A division asset contains a hierarchical
collection of identical assets where work is
divided and distributed at each level. It can be
used to parallelize divide-and-conquer
computations. Divisions are the only
recursive assets in Enterprise.

• A service is analogous to any asset in an
organization that is not consumed by use and
whose order of use is not significant. For
example, a clock on the wall can be
considered a service. A service can be called
by any other asset except another service.

3 . 3 Programming Interface

The design view of the user interface is used to
edit asset diagrams that specify the parallel
structure of the program as shown in Figure 1 [5].
The user interface supports all asset types
described in the meta-programming model.
Program code can be edited by opening editor
windows on the code of any assets. Enterprise
programs are compiled and run from within the
Enterprise environment simply by pressing
buttons. An automatic make facility is used for
compilation and the user has the option of
generating event logs when programs are run.
Event logs can be used to animate programs so
that users can view the status of assets (idle, busy,
blocked or dead), watch messages travel between

5

assets and inspect message contents. Program
animation is useful in the testing, monitoring and
performance tuning of programs. Event logs can
also be used to force re-execution of a program in
the same event order to debug parallel programs.
The debugger also allows users to set message
level breakpoints during replay. These
breakpoints can be based on the identity of sending
or receiving assets or the values of logged
parameters when messages are sent or received.

3 . 4 Communication Interface

The communication interface supports clusters of
homogeneous machines running UNIX. Three
architectures are currently supported (IBM, Sun
and SGI workstations) with two more available
soon (HP and DEC). Enterprise can generate code
to interface with several communication kernels,
including full support for NMP [7] and PVM and
partial support for DCE [9] and ISIS [2].

4 Research Directions
Enterprise is being used as a test-bed for research
in a number of areas in distributed computing and
programming environments. This section
summarizes some of the major efforts.

4 . 1 Programming Model

Currently two extensions to the programming
model are being investigated. First, some of the
restrictions on futures can be relaxed. For
example, futures currently cannot be passed to
other routines. A future used as a function
parameter is treated as an access of that variable,
implying that program execution stops until the
future has returned. More concurrency in an
application is possible if blocking on futures can
be delayed as long as possible.

Second, using pointers to alias variables is a
problem in parallel as well as sequential code. In
the sequential world, the presence of pointers can
inhibit some types of code optimization.
However, in Enterprise, the use of pointers to
alias futures is currently not detected by the
compiler, possibly resulting in run-time errors.
Solving this is a difficult problem, since the
locations referenced by a pointer cannot be
statically detected at compile time. A solution is
to have all pointers checked at run-time, either
through software (expensive) or preferably with
hardware assistance (currently not supported by
most operating systems).

4 . 2 Meta-Programming Model

Enterprise assets attempt to create an abstraction
by which high-level process interactions can be
easily specified. The current suite of assets is
suitable for a wide range of applications. Using
Enterprise service assets can model any
communication structure, incurring only the
overhead of the intermediate service processes.
However, several high-level meta-programming
structures occur often enough that new assets
should be created to handle them.

The most important commonly occurring
communication structure not supported by an
Enterprise asset is peer-to-peer communication.
Consider a problem such as parallel sorting. N
processes each sort 1/N th of the data. Each
process then wants to send part of its sorted subset
of the data to the other N -1 processes. In
Enterprise, asset calls look like sequential
subroutine calls, but in reality are message sends
to concurrent processes. In the parallel sorting
example we need to send the data to a particular
instance of a collection of identical assets. One
way to specify this is to add an extra parameter to
each asset call that specifies the receiver. Another
is to create an array of assets and then index into
the array to identify the receiver. Clearly both
solutions are workable without changing the
syntax or semantics of the C programming
language. The two disadvantages of these schemes
are that the programmer must take a more active
role than in other Enterprise assets and they
introduce the possibility of deadlock.

We are also investigating the use of size-
independent reference schemes. For example,
references like up, down, left and right in mesh
assets. In this way, the size of a mesh does not
have to be determined at compile time. Instead,
the mesh can be created when a computation is
started, based on the available number of
processors, so that user code can be independent of
the size.

Interesting work has already begun on
preprocessing existing C programs (legacy
software) to identify the data and communication
structure with the goal of automatically
parallelizing the application or offering hints to
the user on how this might be achieved [8].
Although automatic parallelization is an
ambitious project, recent research has shown that
the simplicity of the Enterprise model allows
automatic parallelization of some applications.

6

4 . 3 The Programming Interface

Other than support for new asset types, few
changes are required to the user interface for
supporting design, coding, compiling or testing.
In the area of monitoring, the animation view is
being augmented to supply more performance
information in the form of gauges, dials and
graphs. In addition, we are studying the use of
sound to represent the changing state of assets and
their utilization.

 However, the biggest problem in
monitoring is neither a lack of information nor a
mechanism to report the information. The real
problem is how to filter and display selective
information. Parallel programming systems
should support user queries at a higher level of
abstraction. For example, the user should be able
to say: "show me a situation in which a single
asset is executed for a long time". Enterprise
should respond by searching through an event log
and displaying 10 seconds of an animation in
which only one asset is busy and all others are idle
or blocked and indicating where in the user's code
this situation occurs. Similarly the user should be
able to say: "show me a situation where I have
specified a replication factor that is too large so
that some replicated assets are idle" or "show me a
situation where I have specified a replication factor
that is too small so that there is a large input
queue for a replicated asset". In our first attempt
to support such filtering the user will be given a
menu which contains entries such as sequential
execution, replication too large and replication too
small.

4 . 4 Communications Interface

Support for heterogeneous computing
environments is currently being developed. The
problems of message passing between
heterogeneous processors are well understood and
have been dealt with by others. The current work
is on developing a mechanism for automatic
decomposition of arbitrary data structures into flat
byte streams (and their recovery) that is
independent of the communication system used.
This is particularly important in languages like C
that support untyped pointers.

The Enterprise compiler has been modified to
allow any asset to be executed either sequentially
or in parallel. This adds an interesting dimension
to optimizing the run-time performance of a
program, since Enterprise can dynamically
monitor program execution and toggle processes

between parallel and sequential modes as
conditions change.

I/O in a heterogeneous computing
environment is difficult to achieve in a transparent
manner. Two of the major problems are
concurrent read/write access to a shared file and
data file formats (different vendors use different
formats for data). Research has begun on creating
a virtual file system for an Enterprise program that
supports both parallel and sequential I/O
semantics.

5 Conclusions
It took many years before the computing
community finally moved from low-level
assembly languages to high-level compiled
languages; users were unwilling to sacrifice the
performance gains possible in assembler for the
reduced software design costs of using compiled
languages. These higher level tools abstracted out
the hardware considerations, making it possible to
write machine-independent programs. With
parallel/distributed computing, a similar scenario
is occurring. Users are unwilling to give up the
performance they can achieve using access to low-
level primitives in return for the reduced software
design costs that are possible using high-level
development tools. These higher level tools
abstract out many of the hardware considerations,
making it possible to build portable parallel
programs. Two considerations will cause the user
community to evolve towards the higher level
tools: retirement of the senior members of the
work force and the continued reduction in the cost
of parallel/distributed computing hardware reducing
the need for high performance.

Enterprise attempts to provide the user with a
familiar sequential programming model that hides
most of the hardware details. Experiments have
shown that this programming model increases
programmer productivity, though possibly at the
cost of reduced run-time performance [11]. Given
the high cost of sequential software development,
and the increased complexity of parallel software,
the parallel/distributed computing community
must eventually move towards higher level
programming models.

Enterprise is publicly available and can be
obtained through the World Wide Web (WWW)
from http://web.cs.ualberta.ca/labs/enterprise.html
or obtained be f t p from the directory
pub/Enterprise at ftp.cs.ualberta.ca.

7

Acknowledgments
This research has been funded by NSERC grants
OGP-8173, OGP-8191 and CRD-148317 and a
grant from the Centre for Advanced Studies, IBM
Canada Limited.

About the Authors
Duane Szafron is an Associate Professor of

computing science at the University of Alberta.
His research interests include object-oriented
computing, programming environments and user
interfaces. He received a Ph.D. from the
University of Waterloo and a B.Sc. and M.Sc.
from the University of Regina. His Internet
address is duane@cs.ualberta.ca.

Jonathan Schaeffer is a Professor of
computing science at the University of Alberta.
His research interests include parallel computing
(programming environments and algorithms) and
artificial intelligence (heuristic search). He
received a Ph.D. and M.Math. from the University
of Waterloo and a B.Sc. from the University of
Toronto. His Internet address is
jonathan@cs.ualberta.ca.

Paul Iglinski is finishing an M.Sc. at the
University of Alberta. The focus of his research is
distributed parallel debugging and object-oriented
user interfaces for parallel computing. He received
a B.A. (Math) from the University of South
Florida, an M.A. (Chinese) from Stanford
University, and a B.Sc. from the University of
Alberta. His Internet address is
iglinski@cs.ualberta.ca.

Ian Parsons is in the Ph.D. program at the
University of Alberta. His main interest is in
programming environments for distributed parallel
applications. He received a B.Sc. and M.Sc. from
the University of Alberta, and a B.Sc. (Chemistry)
from the University of Western Ontario. His
Internet address is ian@cs.ualberta.ca.

Randal Kornelsen is a programmer/analyst
at the University of Alberta. His areas of interest
include neural networks and distributed parallel
applications. He received a B.Sc. from the
University of Alberta. His Internet address is
rand@cs.ualberta.ca.

Chris Morrow is a programmer/analyst at
the University of Alberta. His research interests
include parallel and distributed computing. He

received a B.Sc. from the University of Alberta.
His Internet address is morrow@cs.ualberta.ca.

References
[1] H. Bal, M. Kaashoek and A. Tanenbaum.

"Orca: A Language for Parallel Programming
of Distributed Systems". IEEE Transactions
on Software Engineering, vol. 18, no. 3, pp.
190-205, 1992.

[2] K. Birman et al. "The ISIS System Manual,
Version 2.1". ISIS Project, Computer
Science Dept., Cornell University, 1991.

[3] G. Geist and V. Sunderam. "Network-Based
Concurrent Computing on the PVM
System". Concurrency: Practice and
Experience, vol. 4, no. 4, pp. 293-311,
1992.

[4] R. Halstead. "Multilisp: A Language for
Concurrent Symbolic Computation". ACM
Transactions of Programming Languages and
Systems, vol. 7, no. 4, pp. 501-538, 1985.

[5] G. Lobe, D. Szafron, and J. Schaeffer. "The
Enterprise User Interface". TOOLS
(Technology of Object-Oriented Languages
and Systems) 11, R. Ege, M. Singh and B.
Mayer (editors), pp. 215-229, 1993.

[6] D. Loveman. "High Performance Fortran".
IEEE Parallel and Distributed Technology,
vol. 1, no. 1, pp. 25-42, 1993.

[7] T.A. Marsland, T. Breitkreutz and S.
Sutphen. "A Network Multi-processor for
Experiments in Parallelism", Concurrency:
Practice and Experience, vol. 3, no. 1, pp.
203-219, 1991.

[8] S.N. McIntosh-Smith, B.M. Brown and S.
Hur l y . " I n te l l i gen t A lgo r i t hm
Decomposition For Parallelism with Afar".
IFIP WG10.3 Working Conference on
Programming Environments for Massively
Parallel Distributed Systems, Monte Verità,
Ascona, Switzerland, pp. 5.1-5.10, 1994 (to
appear).

[9] Open Software Foundation. "OSF DCE
Release 1.0 Application Development
Guide". OSF, Cambridge Mass., 1992.

[10] J. Schaeffer, D. Szafron, G. Lobe, and I.
Parsons. "The Enterprise Model for
Developing Distributed Applications". IEEE
Parallel & Distributed Technology, vol. 1,
no. 3, pp. 85-96, 1993.

8

[11] D. Szafron and J. Schaeffer. "Experimentally
Assessing the Usability of Parallel
Programming Systems". IFIP WG10.3
Working Conference on Programming
Environments for Massively Parallel
Distributed Systems, Monte Verità, Ascona,
Switzerland, pp. 19.1-19.7, 1994 (to appear).

[12] D.W. Walker. "The Design of a Standard
Message Passing Interface for Distributed
Memory Concurrent Computers". Parallel
Computing, vol. 20, no. 4, pp. 657-673,
1994.

