
This is a pre-print of a copyrighted article in Technology of Object-Oriented Languages and Systems Conference 11,
August, 1993, pp. 215-229.

The Object-Oriented Components of the Enterprise Parallel
Programming Environment

Greg Lobe, Duane Szafron, Jonathan Schaeffer
Department of Computing Science,

University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{greg, duane, jonathan}@cs.ualberta.ca

ABSTRACT

The Enterprise programming environment
supports the development of applications that
run concurrently on a network of workstations.
This paper describes the object-oriented
components of Enterprise, implemented in
Smalltalk-80, and their seamless integration
with the procedural components, implemented
in C. The object-oriented user-interface
supports a new anthropomorphic model for
parallel computation that eliminates much of the
perceived complexity of parallel programs. The
object-oriented animation component is a new
animation architecture that supports
synchronous and asynchronous events. This
allows a user to view the dynamic interactions
of the parallel components of a distributed
application to simplify performance monitoring
and debugging. The Enterprise experience
highlights the strengths of object-oriented
methodologies both for expressing user models
and for implementing related components.

1. Introduction
This paper describes how object-oriented

techniques were used to design and implement
components of the Enterprise programming
environment that supports the development of
distributed applications for networks of
workstations. Enterprise is a good example of
an embedded application where object-oriented
and traditional code co-exist. Object-orientation
was used in the design of the parallel
programming model and Smalltalk-80 (ST-80)
was used in the implementation of the user-
interface and program animation components.
The rest of the system was written in C.

Parallelism adds an extra dimension of
complexity to the design, implementation, and
debugging of programs. When multiple
processes run on multiple processors (dozens,
hundreds or more), the user often has difficulty
understanding a parallel computation using
conventional sequential tools. Visualization and
animation are needed to grasp the often intricate
and non-deterministic interactions between
processes. More importantly however, a
simple model is needed to bring order to an
often chaotic collection of asynchronous
processes.

In Enterprise, the interactions of processes
in a parallel computation are described using an
analogy based on the parallelism in a business
organization. Since business enterprises
efficiently coordinate many asynchronous
individuals and groups, the analogy is
beneficial to understanding and reducing the
complexity of parallel programs. Inconsistent
parallel terminology (master-slave, pipelines,
divide-and-conquer, etc.) is replaced with more
familiar business terms (asse ts called
departments , receptionists , individuals ,
divisions , representatives , etc.). Every
sequential procedure that will execute
concurrently is assigned an asset type that
determines its parallel behavior. The user code
for each of these procedures is sequential C, but
a procedure call to such an asset is automatically
translated to a message send by Enterprise.

Consider the following user C code,
assuming that func is an asset in the program:

result = func(x, y);
/* other C code */
a = result;

When Enterprise translates this code to run on a
network of workstations, the parameters x and
y are packed into a message and sent to the

2

process that executes the asset func. The
caller continues executing and only blocks and
waits for the function result when it accesses
the result(a = result). Enterprise also
supports passing parameters by reference.

Enterprise has three components: an object-
oriented graphical interface, a pre-compiler, and
a run-time executive. The user specifies the
application parallelism by drawing a hierarchical
enterprise that consists of assets. At run-time,
each asset corresponds to a process. Sequential
procedure calls in C are translated into message
send/receives across a network by the pre-
compiler. The execution of the program
(process/processor assignment, establishing
communication links, monitoring network load)
is done by the run-time executive. More
information about Enterprise including the
anthropomorphic programming model, the
system implementation and a user appraisal is in
[LMP92] and [Par93].

The graphical interface and the Enterprise
anthropomorphic model are used for program
design. However, they can also used be used
to monitor or replay an execution. The interface
animates the states of the assets (processes) and
the messages that are sent between them. These
facilities are currently being expanded to include
performance monitoring and debugging.

This paper describes the design of the
Enterpr ise interface and its animation
capabilities. Several object-oriented research
contributions and lessons were derived:
1. a new anthropomorphic model for parallel

computation,
2. an application-independent object-oriented

animation architecture,
3. a technique for integrating object-oriented

software with non-object-oriented software,
4. evidence that multiple inheritance is

essential for the proper representation of
those object-oriented applications that
depend on real-world models or analogies,

5. how object-oriented techniques can be used
in software development environments that
support non-object-oriented languages, and

6. how context-sensitive hierarchical direct
manipulation user-interfaces can simplify
user models, focus user attention and
prevent errors.

2. Using Enterprise
This section presents an example of how

Enterprise is used to construct a distributed
program. Consider a Simulation program that
displays a group of fish swimming across a
display screen. This problem was contributed
by a research group in our Department and is
more complex than portrayed by the following
description. The main procedure, Model,
consists of a loop that, for each frame in the
simulation, performs some work on the frame
and calls PolyConv. PolyConv manipulates the
image received from Model and calls Split.
Split polishes the frame and writes it to disk.

An Enterprise user manipulates icons that
represent high-level program components called
assets. An asset represents a single C function,
called an entry procedure, together with a
collection of support procedures used by the
entry procedure. A program will consist of
several assets. In this example, there will be
three assets: Model, PolyConv and Split.

Initially, the Enterprise window contains
one view called the Enterprise View. It
contains the icon for one enterprise asset that
represents a new program. Each asset has a
context-sensitive pop-up menu. For example,
if the user selects Name from the enterprise
menu and types the word Simulation into a
dialog box, the enterprise would be named
Simulation as shown in Figure 1.

Figure 1: The Simulation program

The user-interface is implemented in ST-80
which uses the host windowing system. The
figures in this report were generated on a
Macintosh and look similar with X windows.

If the user then selects Expand from the
asset menu, the enterprise icon will expand to
reveal the single individual that it contains. To
name this asset, the user selects Name from the

3

asset menu of the individual and types the word
Model into the dialog box that appears.

The user could enter all of the code for
Model, PolyConv and Split into this individual
and run the program sequentially. However,
there is no reason why Model should wait until
PolyConv completes the first simulation frame
to start processing the second frame. Similarly,
PolyConv does not need to wait for Split. In
the parallel processing community this type of
parallelism is often called a pipeline.

Using the Enterprise analogy, these three
routines act like an assembly or production line
and are represented by a line. Therefore, if the
user selects Line from the asset menu of Model,
it is re-classified as a l i ne . After re-
classification, the individual appears as a line
consisting of a receptionist and one subordinate
individual. Figure 2 shows the line where the
numeral 1 indicates the number of subordinate
assets.

If the user selects Expand from the asset
menu of Model, it is expanded to reveal its two
components. Since three components are
required, the user selects AddAfter from the last
component's menu to add a third asset and

names the new assets, PolyConv and Split.
The user then selects Code from each asset
menu in turn and enters C source code into text
editor windows, as shown in Figure 3.

Figure 2: A line in the Simulation program

The double line rectangle represents the
enterprise. The dashed-line rectangle represents
the line and each inner icon represents a
component. The first component is a
receptionist that shares the name, Model, with
the line that contains it. All calls to a line are
received by the receptionist. The other two
components are subordinate individuals.

Figure 3: Editing the C source code.

4

If the user selects Compile from the
Enterprise view menu then the Enterprise pre-
compiler automatically inserts code to handle
the distributed computation, compiles the
program and reports any errors in a window.
Once the program is compiled, the user selects
Execute and Enterprise finds as many
processors as are necessary to start the program
and initiates processes on the processors.

One of the strengths of the Enterprise model
is that it is easy to experiment with alternate
parallelization techniques without changing C
source code. Each asset represents at least one
process. If a call is made to the individual
Split, it is executed by a process and if a
subsequent call is made to Split before the first
call is complete, the second call must wait for
the first call to finish.

However, if the Split asset is replicated then
multiple processes can be used to execute calls
concurrently. For example, if the user selects
Replicate from the asset menu of Split and
enters 1 and 5 as minimum and maximum
replication factors in the dialog box that
appears, then Split is replicated as shown in
Figure 4.

Figure 4: A replicated asset.

When PolyConv calls Split, a process is
initiated and if a subsequent call is made to Split
before the first call is done then a second
process is initiated (if there is an available
machine). Replication can be dynamic in
Enterprise so that as many processors as are
available on the network may be used, subject
to a lower and upper bound supplied by the

user. Several other asset kinds are supported
by Enterprise and they can be combined in
arbitrary hierarchies.

3. The User-Interface
Implementation

The Enterprise user-interface has been
implemented in ST-80, version 4.0. It may be
used to construct programs on any machine that
supports ST-80 including a broad range of
Unix workstations as well as Macintoshes and
IBM X86 or compatible machines. However,
since the rest of the Enterprise programming
environment is Unix dependent, features such
as Compile and Execute only work on Unix
workstations where the ST-80 interpreter runs
as a single task under X windows.

The history of the Enterprise user-interface
is an interesting one and illustrates some of the
tradeoffs that can occur when deciding whether
or not to use object-oriented technology and
how to integrate it with an existing software
legacy. Enterprise is based on a predecessor
programming environment called Frameworks
[SSG91] that was completely implemented in
C. The Frameworks environment had a
primitive graphical user-interface that lacked the
anthropomorphic model and required the user to
do more drawing. When the Enterprise project
was started, a decision was made to create an
object-oriented graphical user-interface that
could more easily represent the new high-level
parallel programming model.

Since the researchers had some experience
with the object-oriented languages, Smalltalk
and C++, both were considered for
implementing the user-interface. C++ was
chosen for three reasons: it has faster run-time
performance than Smalltalk, it should be easier
to integrate a C++ user-interface with existing C
code since it is a superset of C and, unlike ST-
80, there are no licensing restrictions on the
distribution of a C++ user-interface.
Smalltalk/V was disqualified since it does not
currently run under Unix.

The Interviews [LVC89] user-interface
class library was used to reduce development
time. Unfortunately, 6 person-months were
spent trying to implement the user-interface
using Interviews without success. Although
individual widgets were relatively easy to build,
the complexity of Interviews resulted in a

5

learning curve that was too steep. Although an
experienced Interviews programmer may have
been able to complete the task in this time, our
programmer could not.

Since the user-interface was lagging behind
the pre-compiler and executive, we then decided
to try Motif [You92]. However, two person-
months of work on Motif (by a different
programmer) yielded results that were no better.

At this point, we decided to try ST-80 in
spite of its perceived problems. A graduate
student who had previously taken a one
semester course in object-oriented computing
that included ST-80 as a component then
produced a working prototype of the user-
interface in three weeks! Of course the final
user-interface (with animation) as described in
this paper took much longer (about four
months). The execution speed of the user-
interface is well within our performance
requirements and it was quite easy to integrate
the ST-80 user-interface with the C pre-
compiler and executive. The rest of this section
describes the way the user-interface was
implemented in ST-80.

3.1 The User-Interface Control Model
Since a program may display many ST-80

windows, the ST-80 interpreter polls the
windows, asking each in turn if it wants
control. The default behavior is that a window
takes control whenever the cursor is inside of it.
The Model View Controller (MVC) paradigm
[LP91] is used where the model is an instance
of class E n t e r p r i s e , the view is an
EnterpriseWindow and the controller is an
EnterpriseController. The EnterpriseController
behaves exactly the same as a default Controller
except when the program is animated and this
will be described in Section 4.

The model is responsible for knowing its
enterprise (program). The window is
responsible for displaying the enterprise using
the values stored by the model. Views are
composite objects that can contain sub-views,
but the location and size of a sub-view within
its parent view is maintained by a wrapper
object. That is, sub-views are contained in
wrappers, which are themselves contained in a
parent view. An instance of EnterpriseWindow
contains two wrapped sub-views, an Enterprise
view and a Service view. The Enterprise view

displays the enterprise (program) and the
Service view displays the service assets used by
the enterprise. The Service view can be
hidden when it is not used. Service assets are
described in [LMP92].

When a mouse button is pressed, the
window passes control to the view that contains
the cursor. The view then determines which
asset (if any) was selected. The selected asset
is one whose bounds (rectangle) contains the
cursor point. However, since assets may be
nested in a hierarchical structure, many assets
may contain the cursor point. The selected
asset is defined as the innermost one that
contains the cursor point. For example, in
Figure 4, the cursor is inside of the individual
Split, which is inside the line (dashed line)
Model, which is inside the enterprise (double
line) named Simulation. In this case the cursor
point is considered to be inside Split.

 If an asset is selected, a context-sensitive
menu is displayed that contains only the
operations that are valid for the selected asset.
For example, if an asset is expanded, then the
Collapse operation would appear in the menu,
but the Expand operation would not. This
makes it impossible for a user to select an
invalid operation. If no asset is selected, then
the menu for the Enterprise view is displayed.

This approach simplifies the user's mental
model of the programming environment since it
reduces the number of operations the user sees
[LSW87]. It is in stark contrast to pull-down
menus where the user is presented with a
plethora of choices some of which have subtle
differences and some of which do not even
apply to the user-interface component being
considered. For example, if the user chooses
Compile from an asset's menu, only the code
for the asset is compiled. If the user chooses
Compile from the Enterprise view menu, then
all assets are compiled. Furthermore, the
Execute command does not even appear in an
asset menu. In a pull-down system, Compile
Asset, Compile Program and Execute would all
appear in the menus.

How does a view determine which of its
assets is selected? A traditional non-object-
oriented approach would be for a view to
maintain a list of its assets and their locations
and to compute the selected asset based on this
information. However, since assets can be

6

nested, some other structural information would
be required as well. Assets can be expanded to
reveal their components or collapsed to hide
their internal details. As assets are expanded
and collapsed, their locations change and must
be updated. In the object-oriented world, each
asset should be responsible for knowing its
own location and its structure (its parent asset
and the other assets it contains). The view itself
only needs to know the enterprise.

When the enterprise or any other asset is
passed the cursor point and asked for the
selected asset, it behaves recursively as
follows. If the point is outside its bounds it
answers nil. If the point is inside its bounds
and it does not contain any component assets or
it contains component assets but they are not
currently displayed, then it returns itself.
Otherwise, the asset asks each of its component
assets in turn to identify the selected asset until
one answers an asset or all respond with nil.
The asset then returns this result. Before asking
each component asset, the asset asks the
wrapper of the component to change the
coordinates of the cursor point to the local
coordinates of the component.

3.2 Drawing Assets
When an asset receives a display message,

it draws itself. Any asset that contains
component assets can be either collapsed or
expanded. Assets that are collapsed or do not
have components are displayed in the same
way. The asset draws its icon and displays its
name in the lower left corner of the icon. If the
asset is replicated, lines are drawn above and to
the right of the icon to simulate a stack of icons
and the number of replications is displayed
outside of the top right corner of the icon.

An expanded asset first draws a rectangular
border. The size of the rectangle is computed
by asking each component for its size and
adding room for space between the
components. Next a display message is sent to
each component so that it draws itself. The
parent asset then draws the connections
between the components. Finally the
replication is indicated in the same way as it is
for collapsed assets.

The basic drawing behavior is implemented
in the Asset class and each Asset subclass
provides a method for drawing its own icon. In

addition, different line styles are used for the
borders of expanded assets. For example,
enterprise assets use two lines separated by one
pixel, line assets use a dashed double width
line, and division assets use a double width
wavy line. The method that draws the border is
overridden in these assets to use the appropriate
behavior. Similarly, the method that draws
connections is overridden to draw the correct
connections for the various Asset sub-classes.

3.3 The Other Enterprise Components
Although the user-interface is implemented

in ST-80, two other Enterprise components are
implemented in C. The user-interface
communicates with the pre-compiler and the
executive through Unix pipes and text files.
This section describes the technique for
connecting to the external Unix processes, the
organization of the directories containing C
source and object code files for a program, and
three other kinds of text files that are used to
communicate with the other components.

Graph, Event and Preference Files
A graph file describes a single Enterprise

program. It specifies the hierarchical structure
of the assets, replication factors, compile and
link options, and any user machine preferences.
The assets are listed in a depth-first order. For
each asset there is a line with its name, type,
replication factor and options for ordering,
debugging and optimization. If the asset has
internal components there is also a count of
components. Following this are four lines that
specify the compile, link and run options. If
the asset has components, these lines are
followed by the description of the components
in the same format.

Graph files are created and edited by the
user-interface. When the user selects Save,
Compile, or Run from the Enterprise view
menu, the enterprise stores a representation of
itself in a graph file whose name is the
enterprise name with a ".graph" appended.
Each asset type knows how to write a
description of itself and if it has components, it
asks its components to write themselves as
well. Alternately, when the user wants to load
a previously saved program, the graph file is
read and as it is parsed, assets are created and
displayed. The pre-compiler uses a program's
graph file to identify procedure/function calls to

7

assets and replaces them with message sends
and receives. The run-time executive uses the
graph file to determine how many processes to
launch, the execution role of each process and
the appropriate communication links between
these processes.

Event files are created by the run-time
executive's monitor process while a program is
running and are used later to animate the
program. The events they contain are described
in more detail in Section 4.

Enterprise maintains a preferences file.
When the user-interface first starts, it looks in
the current directory for a file named .entrc. If
the file exists, it is read and global preferences
are set from its contents. For example, the
user's text editor is specified by a line of the
form EDITOR= editor name.

Enterprise Directories for Source Code
When a new program is created, Enterprise

creates a new sub-directory with the same name
as the program. It then creates sub-directories
of this directory to organize the files used by the
program. The directories are: Assets (C source
code for assets), User (C source code for
internal asset procedures), Include (header
files), Out (input and output files), Obj (object
files for each asset), Bin (executables), Sys
(Enterprise generated files) and Src (pre-
compiler output).

External Processes
The user-interface launches external

processes for compiling code, running a
program and (possibly) for editing code. The
user may use a standard ST-80 editor or, under
Unix, a non-ST-80 editor may be selected.
Several editors can be active at the same time
(one for each asset). If the ST-80 editor is
used, no new process is launched. Instead, a
new ST-80 window is created and the window
is added to the list of active windows. It is
given control by the ST-80 interpreter whenever
its window has the cursor. If an external editor
is used, an X window is created. The editor
becomes an X window's task that executes
concurrently with the ST-80 interpreter.

The Compile and Run commands are only
usable with the Unix version of the user-
interface since the pre-compiler and executive

currently require Unix. Both commands launch
an external process and establish
communications with it. ST-80 simplifies this
task by providing a UnixProcess class. A
message is sent to this class specifying the
name of a Unix program, an array of arguments
for the command and a block. The block is
evaluated with the external process as an
argument. This provides a mechanism for
referencing the process from ST-80 after it has
been created. When the message is sent, the
process is created and two pipes are
established, one connected to the process'
standard input and the other connected to both
its standard output and standard error. These
pipes are represented as ST-80 streams that are
contained in the instance of ExternalConnection
that is returned by the message.

The user can elect to compile and link the
entire program or to compile part of the asset
hierarchy. In either case, if the program has
been changed, the user-interface first writes out
the graph file. The Enterprise pre-compiler
process is then started and a window is created
to display all text that is sent to the External
Connection's output stream. The Enterprise
view's controller monitors the stream.
Whenever new text is available, it is displayed
in this window. If there is no new text, the
polling loop just continues normally. The user
can interact with the system normally and may
even cancel the compile. When the compile is
finished, the window is left open so that the
user can review the compiler messages.
Programs are run in a similar manner except
output is displayed in another window.

3.4 The Asset Inheritance Hierarchy
Section 3.2 described the way that assets

are drawn and the approach relied heavily on
inheritance. In fact, inheritance is used
extensively throughout the user-interface, but
the asset hierarchy can be used to illustrate its
importance. The asset kinds form a natural
inheritance graph as shown in Figure 5.

 A solid triangle in the upper left corner of a
class denotes an abstract superclass as
described in [WWW90]. The abstract class
Asset is the root of the inheritance tree.
Universal responsibilities like naming are
defined and implemented in this class.

8

Asset

Codable
Asset

Replicable
Asset

Deletable
Asset

Expandable
Asset

Addable
Asset

Enterprise
Asset

Service
Asset

Representative
Asset

Receptionist
Asset

Individual
Asset

Division
Asset

Department
Asset

Line
Asset

Figure 5: The asset inheritance graph.

Below the Asset class is a level of abstract
superclasses that define several responsibilities
that are shared by several of the leaf asset
classes. A CodableAsset has an external file of
C source code associated with it which can be
edited and compiled. A ReplicableAsset can be
replicated and transformed to an asset of a
different type. A DeletableAsset can be deleted
from its parent asset. An ExpandableAsset has
component assets so it can be expanded or
collapsed. An AddableAsse t can have
components added to it after it has been created.

The rest of the asset classes are concrete
subclasses. A ReceptionistAsset has code, but
can't be replicated, deleted, or expanded. A
RepresentativeAsset has code and can be
replicated but can't be deleted or expanded. An
IndividualAsset is like a RepresentativeAsset,
except that it can be deleted. A DivisionAsset is
like an IndividualAsset, except that it can be
expanded. A ServiceAsset has code and can be
deleted, but it can't be replicated or expanded.
A LineAsset or DepartmentAsset can be
replicated, deleted, or expanded, but has no
user code. An EnterpriseAsset is expandable,
has no user code, can't be replicated and can't
be deleted.

 Unfortunately, ST-80 is restricted to tree
inheritance so several compromises were made
in transforming this inheritance structure to a
tree. The result is shown in Figure 6. A
comparison of Figures 5 and 6 illustrates clearly
that support for multiple inheritance is essential
for applications with real-world models. The
lack of multiple inheritance was the most
difficult obstacle that needed to be overcome in
using ST-80 for the Enterprise project.

ReplicableAsset and DeletableAsset were
merged with Asset. The rounded rectangles
contain the main messages defined by each
class and the symbol ~ means that a message
was overridden because it should not exist for a
class. For example, the ReceptionistAsset
class overrides the replicate, coerce, and delete
methods. The Division class was made a
subclass of ExpandableAsset instead of
IndividualAsset. The methods for editing code
were then re-implemented in DivisionAsset. In
addition to these changes, the Asset class itself
was made a subclass of the ST-80 pre-defined
class CompositeView so that all assets could
inherit the behavior of visual objects that have
sub-parts.

9

Asset

Codable
Asset

Expandable
Asset

Addable
Asset

Enterprise
Asset

Individual
Asset

Division
Asset

Department
Asset

Line
Asset

Representative
Asset

Service
Asset

name
compile
replicate
coerce
delete

edit

expand
collapse

addTo

edit

run
~delete
~replicate
~coerce

Receptionist
Asset

~replicate
~coerce

~delete

~delete
~replicate
~coerce

Figure 6: The asset inheritance tree.

4. Program Animation
Enterprise program animation is used to

monitor a program's performance and to
identify parallel programming and logic errors
at the message (asset) level. The user can
examine the amount of parallelism, when and
where synchronization occurs, which machines
are being used and their load, the lengths of
message queues, and the state of each process
during execution. Currently, there are no
debugging facilities for setting breakpoints or
examining the values of variables. Animation
consists of displaying asset states, displaying
messages as they move between assets and
displaying message queues.

Enterprise replays execution of a program
using an event file that was produced during
execution. The event file is produced by an
external Unix process that receives messages
from the Enterprise executive process and logs
events to the file. The interface assumes that
the events are partially ordered [Lam78] so it is
the responsibility of the executive process or a
post-processor to do this. To support real-time
animation, it is possible to replace this file by a
stream connection between the user-interface
and event-monitoring processes. However, in
this case, the animation system may be unable
to keep up with events. Therefore, replay is the
preferred approach to animation.

During animation, the time between
animation steps is proportional but not equal to
real time. The proportionality factor can be
adjusted by the user to adjust the speed of the
animation. The user can also step through the
animation one event at a time.

4.1 Animation View
When the user selects Animate from the

Enterprise view menu, the Enterprise view is
replaced by an Animation view. Each replica
from a replicated asset is displayed as a separate
icon and named by appending an id number to
the base asset name. For each asset, the id
numbers are generated in sequential order
starting at 1. Messages and message queues are
displayed as icons and animation commands
appear in the asset, message queue and
Animation view menus. For example, the user
can use an asset menu to open a monitoring
window that contains such information as the
machine name for the asset and performance
information for that machine. Similarly, the
user can use the message queue menu to
examine the details of messages that it contains.
Finally, the view menu can start the animation
from the beginning, pause or resume the
animation, single step through events, set the
speed of the animation and replace the
Animation view by the Enterprise view. The
Animation view of a recursive AlphaBeta tree
search program is shown in Figure 7.

10

Figure 7: The Animation view of the AlphaBeta program.

This example uses division assets in a
recursive divide-and-conquer application, but
the number of processes and the size of the
message queues have been reduced for brevity.
The enterprise contains a division with a
receptionist (AB.1) and subordinate division
that has a replication factor of three (AB.1.1,
AB.1.2 and AB.1.3). Each subordinate
division contains a receptionist with a replicated
representative. Note that for most assets,
replicas are numbered left to right. However,

the replicas in division assets are structured
hierarchically instead of linearly.

Collapsing and expanding assets in the
Animat ion view provides a clustering
mechanism [Tay92]. Clustering is useful
during debugging since it reduces the clutter
caused by displaying too much inappropriate
detail and allows the user to focus on the
important relationships. Two of the subordinate
divisions (AB.1.2 and AB.1.3) have been
collapsed, but the other (AB.1.1) is expanded.

11

The Animation view displays two message
queues. Incoming messages are in the input
queue above the asset, and replies to previously
sent messages are in the reply queue to the right
of the asset. These locations correspond to the
logical structure of the user's code where calls
are received at the start and replies are received
in the body. Replicated assets share a common
input queue that is displayed above and to the
left of the replicated assets. However, each
replica has its own reply queue. Messages are
represented by icons that move along the paths
between assets and into the message queues.

A message queue displays the number of
messages it contains. A message queue icon
shows zero (no visible icon), one (a single
message icon) or many (a message icon with
two others behind it) messages. The number
beside the queue icon indicates the exact count.
When a message arrives at a queue this count is
incremented and when a message is removed
from the queue to be processed by an asset, the
count is decremented.

When the animation is active but stopped,
the message queue menu can be used to select
any message it contains and to display its
sender, parameter values and any other
information that is placed in the message event
by the event logging process.

In Figure 7, each asset is either busy
(processing a task), idle (waiting for a message
to invoke a task) or blocked (waiting for a
specific reply). Asset AB.1 has just sent a
message to its replicated subordinate division.
The message appears below AB.1 and will
move to the input queue of the replicated
division as the animation proceeds. A message
icon looks like a memo with four lines and a
bent upper left corner. Currently, the replicated
division's input queue contains three messages.
Since asset AB.1.2 is idle, a message is moving
from the input queue to it. Similarly, a message
is moving from the input queue of the replicated
representatives (AB.1.1.1 and AB.1.1.2) to the
idle asset, AB.1.1.2.

Representative AB.1.1.2 has completed a
task and replied to its caller, AB.1.1. The reply
message is shown on its way to the reply queue
of AB.1.1.2. A reply icon looks like a memo
that has been stamped as received. Note that
the message path of a reply begins at the bottom
of the replying asset, corresponding to the

structure of an asset's code where the return
statement is usually at the end.

4.2 States
At run-time, Enterprise assets become

processes. A process communicates with other
processes by sending messages. As an asset
executes, it can be in one of four states: idle
(waiting to receive a message), busy
(executing), blocked (waiting for a reply), and
dead. An asset changes state in response to
events that affect it.

The state of a collapsed asset is determined
by the states of its components. If at least one
component is busy, the asset is busy. If no
component is busy and at least one is blocked,
the asset is blocked. If no component is busy
or blocked and at least one is idle, the asset is
idle. Otherwise all of the components must be
dead, so the asset is dead.

The state of an asset is indicated in the
Animation view by one of two (user-selectable)
mechanisms: color or state name display. Icons
for busy assets are green, icons for idle assets
are yellow, icons for blocked assets are red and
icons for dead assets are black.

4.3 Events
Assets change state in response to events

that occur when the program is running. The
event logging process monitors programs as
they run, identifies when important events
occur, and writes event records to an event file,
maintaining the original partial ordering
between the events. The animation system
reads the events from the event file and updates
the display. Seven events are supported:
SentMsg, RcvdMsg, Block, SentReply,
RcvdReply, DoneMsg and Die. Figure 8 is a
state-transition diagram that shows the
relationship between the asset states
(represented by circles) and the events
(represented by arrows).

The event file is an ASCII text file. Each
event starts on a new line that begins with a #
character and a space followed by an event type
and parameters separated by spaces. An
optional information string can follow on the
next line. The information string is displayed
by the user-interface when the user inspects
message contents.

12

Busy

Dead

RcvdReply SentMsg

Blocked
Block

RcvdReply

Idle
RcvdMsg

SentReply
Die

DieDie

DoneMsg

Figure 8: The asset state transition diagram.

Event parameters depend on event types.
They include asset names, message tags and
integers representing times. Asset names are
the names from the graph file with replica
numbers appended to them. Tags are integers
that are used to associate SentMsg events with
RcvdMsg events and SentReply events with
RcvdReply events. Times are measured from
some arbitrary start time in milliseconds and
refer to the time that the event was inserted into
the event file. The sequence of times must be
monotonically non-decreasing.

SentMsg
When the event logging process detects that

an asset has sent a message to another asset, it
inserts a SentMsg event in the event file. The
information string contains the names and
values of all message parameters. During
animation, a message moves from the sender to
the input queue of the receiver where the
message count is incremented. The sender
must be busy and it does not change state. The
receiver does not change state.

RcvdMsg
When the event logging process detects that

an asset has received a message and started
processing the task that the message invokes, it
inserts a RcvdMsg event in the event file.
During animation, the receiver decrements its
input queue counter. The receiver then changes
its state from idle to busy.

DoneMsg
When the event logging process detects that

an asset has finished executing a message, it
inserts a DoneMsg event in the event file.

During animation, the receiver changes its state
from busy to idle.

SentReply
When the event logging process detects that

an asset has has sent a reply message to its
caller, it inserts a SentReply event into the event
file. The information string contains the names
and values of all message parameters. During
animation, a message moves from the sender to
the reply queue of the receiver and the message
count is incremented. The sender asset must be
in the busy state but the receiver may either be
busy or blocked.

RcvdReply
When the event logging process detects that

an asset has accessed a message reply, it inserts
a RcvdReply event into the event file. During
animation, the message count in the reply queue
is decremented. The asset that receives a reply
may either be busy or blocked. If the asset was
blocked with the same tag as the RcvdReply it
becomes busy.

Block
When the event logging process detects that

an asset has tried to access a result computed by
another asset, and the result is not available, it
inserts a Block event into the event file. The
Block event includes a tag that indicates the
reply it is waiting for. During animation, the
asset state changes from Busy to Blocked.

Die
If the event logging process determines that

an asset is not responding for some reason, it
inserts a Die event into the event file. During
animation, the asset becomes dead, but the
message queues are not affected so that the user
can examine them, after the event. The asset
can be any state before this event.

4.4 The Animation Architecture
The object-oriented animation architecture

described in this section is new and application
independent. It has two main components, one
is asynchronous and the other is synchronous.
The asynchronous component has two
responsibilities. It must process the events at
the correct animation time. However, since we
want the user to be able to interact with the
system during animation, it is also responsible

13

for user events as well. The synchronous
component of the animation system is
responsible for animating messages.

The Asynchronous Component
Several new classes were added to the user-

interface to support animation and several
behaviors were added to the existing classes.
When the Animation view is displayed, the
asset graph is modified. Each replicated asset is
wrapped in an instance of ReplicatedAsset that
contains the original asset together with a list of
replicas that are constructed by copying the
original asset. The copies are identical, except
that each is given a different id number. As an
animation proceeds, the states of these replicas
may diverge. The ReplicatedAsset is
responsible for drawing the connections
between replicas, much like ExpandableAssets
do for their components.

Two new responsibilities are added in the
Asset class, knowing the input message queue
and knowing the reply message queue. Both
queues are instances of the subclasses of
MessageQueue, InputQueue and ReplyQueue.
A MessageQueue contains an ordered collection
of messages, which are instances of class
Message. The display method in Asset checks
to see if animation is active and if so, allocates
room for the message queues when it computes
its bounding rectangle. When an asset is told to
draw itself, it also tells its message queues to
draw themselves.

Message queue selection is implemented by
augmenting the message that is sent to an asset
to ask it for its sub-asset that contains the cursor
point. An asset now considers its two queues
as candidates in addition to its component
assets. A MessageQueue determines if it
contains the cursor point by testing if the point
is within its screen extent.

An instance of class Even tQueue is
responsible for knowing the start time for an
animation and the events from an event file. It
is created when the Animat ion view is
displayed. That is, to speed up event
processing, the event file is parsed and all
events are created before the animation begins.
The animation start time is set when the user
actually starts an animation.

 When the event file is parsed and instances
of class AnimationEvent are created, each event

time is translated to a time relative to the start
time for its event queue. When the animation is
active, the control loop for the window sends a
message to the program every time through the
loop. The program responds by telling the
animation event queue to process its animation
events. The event queue processes its events
in order until the event time plus the start time
catches up to the current time. Control is then
returned to the control loop which checks for
user input. In this way the animation system
only takes control periodically and, when it
does, only for a short time. This allows users
to interact with the system during an animation.
For example, the user could pause the
animation.

Each animation event represents one event
from the event file. In addition to the event
time, an animation event contains a collection
of animation messages. Each of the animation
messages consists of a receiver asset, a
message selector, and an array of arguments for
the message. One event may translate into
several animation messages. For example, a
SentReply event translates to two animation
messages: one to tell the sending asset it has
sent a reply and one to tell the receiving asset it
has been sent a reply. The set of messages for
one event is treated as a transaction; if one
message is sent they all are. There is a subclass
of the abstract superclass, AnimationEvent, for
each type of event. Each event sub-class need
only implement creation messages. All other
messages are implemented in AnimationEvent.
In addition, the asset classes implement
methods for each animation message sent by an
animation event. The responsibilities include
changing state, updating message queues, and
modifying the display.

Assets have input and reply message
queues. Each queue contains an ordered
collection of messages. They are displayed
either above or beside an asset. Messages
move along the paths between assets and into
the queues in response to SentMsg and
SentReply events. For a SentMsg event, a
message moves from below the sending asset to
just above the receiving asset and then into its
input queue. For a SentReply event, a message
moves from below the replying asset to just
below the receiving asset and into its reply
queue. Although messages must move
different distances on the display screen, these

14

distances are not necessarily indicative of the
actual communication distances. Therefore a
message moves from one asset to another in
(user adjustable) constant time. For example,
with replicated assets, the replicas will be
different distances from the calling asset due to
the way that Enterprise displays assets
hierarchically. To compensate, messages with
longer screen travel distances move faster to
maintain a constant time interval.

Because the destination queue is part of the
receiver, animating the message is actually done
by the receiver. When a SentMsg or a
SentReply event occurs, the receiver is
informed. The receiver creates a message,
inserts it into its message queue and marks it as
pending, determines the path it must follow to
move from the sender into its queue, and asks
the message to animate itself. When the
message reaches the message queue, the
receiver removes the pending mark and
increments the counter for its message queue.
The user can examine any message in a
message queue even if it is pending (the
animation has not yet shown it reaching the
queue).

A message is received when the receiver
gets a RcvdMsg or a RcvdReply event for the
message. When this occurs, the receiving asset
will remove the message from its message
queue. If the message is marked as pending, the
receiver will remove the message from the
animation queue so it disappears at the next
animation step. If the message is not pending
then the receiver decrements its message queue
counter.

The Synchronous Component
Animation of messages and busy assets are

done synchronously. The program maintains
an instance of AnimationQueue that holds
objects to be animated. When the program tells
its event queue to process events, it also tells its
animation queue to animate its objects. The
animation queue checks to see if it is time to
perform the next step of the animation and, if it
is, sends an animate message to every object in
its queue. If it isn't time, the queue does
nothing. The time between steps is a constant.
The class of each object in the queue must
support the animate message to perform one
step of the animation.

A message in the animation queue animates
itself by moving along a pre-computed path in
steps. The path was computed by the asset that
created the message. This asset computed the
location of the sender and receiver and
computed a set of points along the path
between them. The path was stored in the
message before the message was added to the
animation queue. Whenever a message receives
an animate message, the message moves itself
to the next point on its path, then deletes the
point from its path. If a message reaches the
end of its path, it removes itself from the
animation queue, tells the receiver to mark it as
not pending and tells the receiver to increment
its message queue counter.

5. Conclusions
This paper described the object-oriented

component of the Enterprise programming
environment for developing distributed
applications that execute concurrently on a
network of workstations. The object-oriented
components provide a new anthropomorphic
model for parallel computation. The simplicity
of this model:
1. makes it easier to learn than other models of

parallel computation,
2. has allowed programmers to write parallel

programs more quickly than with other
models and

3. has reduced the complexity of the user-
interface and the other E n t e r p r i s e
components so they could be designed and
implemented quickly.

Enterprise includes an animation component
that:
1. has a new architecture that supports

asynchronous and synchronous events,
2. is a valuable tool for understanding the

complexity of parallel computations and
3. is independent of Enterprise so that it can

used for other applications.
Our experience with the object-oriented
components of Enterprise have also provided
some insights into the use of object-oriented
computing in general and ST-80 in particular.
1. The advantages obtained by using the

extensive user-interface libraries of ST-80
outweigh the perceived disadvantages. The

15

efforts required to combine object-oriented
user-interface code with traditional C code
were minimal. The execution time
performance problems of ST-80 are
insignificant in user-interfaces, even though
in this application the user-interface is fairly
CPU intensive during animation.

2. Although Smalltalk has not been used
extensively to construct user-interfaces
where object motion is an important factor,
the Enterprise experience illustrates its
power for such applications.

3. The lack of support for multiple inheritance
is a significant problem in Smalltalk when
the application depends on a real-world
analogy.
The success of the Enterprise project is

largely due to its object-oriented components.
In fact, several members of the research group
who had severe doubts about the utility of the
object-oriented approach are now firmly
committed to the use of object-oriented
technology for user-interfaces in particular and
for embedded applications in general.

Acknowledgements
The Enterprise project has benefitted from

the efforts of many people, including: Paul
Iglinski, Paul Lu, Ron Meleshko, Ian Parsons,
Carol Smith and Zhonghua Yang. This
research was supported in part by research
grants from the Central Research Fund,
University of Alberta, the Natural Sciences and
Engineering Research Council of Canada,
grants OGP-8173 and 107880 and a grant from
IBM Canada.

References
[Lam78] L. Lamport. Time, Clocks and the

Ordering of Events in a
Distributed System. CACM, Vol.
21, No. 7, pp. 558-565, 1978.

[LMP92] G. Lobe, P. Lu, S. Melax, I.
Parsons, J. Schaeffer, C. Smith
and D. Szafron. The Enterprise
Model for Developing Distributed
Applications. Technical Report TR
92-20, Dept. of Computing
Science, University of Alberta,
1992.

[LP91] W. LaLonde and J. Pugh. Inside
Smalltalk Volume II. Prentice-
Hall, Englewood Cliffs N.J.,
1991.

[LSW86] D. Lanovaz, D. Szafron and B.
Wilkerson. The Synergism of
Logic-Based Programming and
Software Engineering: A
Programming Environment
Approach. CIPS Edmonton '87
I n t e l l i g e n c e I n t e g r a t i o n
Conference Proceedings, pp. 43-
53, November, 1987.

[LVC89] M.A. Linton, J.M. Vlissides and
P.R. Calder. Composing User
Interfaces with InterViews. IEEE
Computer, Vol. 22, No. 2, pp. 8-
22, 1989.

[Par93] I. Parsons. An Appraisal of the
Enterprise Model. M.Sc. thesis,
Dept. of Computing Science,
University of Alberta, 1992.

[SSG91] A. Singh, J. Schaeffer and M.
Green. A Template-Based
Approach to the Generation of
Distributed Applications Using a
Network of Workstations. IEEE
Transactions on Parallel and
Distributed Systems, Vol. 2, No.
1, pp. 52-67, 1991.

[Tay92] D. Taylor. A Prototype Debugger
for Hermes. Cascon '92, IBM
Canada Ltd, Toronto, pp. 29 - 42,
November, 1992.

[WWW90] R. Wirfs-Brock, B. Wilkerson
and L. Wiener. Designing Object-
Oriented Software. Prentice Hall,
1990.

[You92] D. Young. Objec t -Or ien ted
Programming with C++ and
O S F / M o t i f . Prentice-Hall,
Englewood Cliffs N.J., 1992.

