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ABSTRACT
This paper describes SPECTalk, an

object-oriented language for specifying data.
SPECTalk uses (hierarchical) object
encapsulation, instantiation, inheritance and
constraints to specify both the definitions of
data formats and the representation of data
instances.  In addition, because SPECTalk is
an executable specification language,
specifications can be executed to check their
validity.  In addition to its object-oriented
features, SPECTalk also provides full support
for the specification of relational databases.

The SPECTalk language rests on top of
Smalltalk.   In turn, SPECTalk is intended as a
base layer for more specialized data
specification languages.  For example,
SPECTalk serves as the base layer for SAIF, a
specification language for geographic
information systems that is being used by the
government of British Columbia.

KEY WORDS:  Object-oriented, Specification,
Inheritance, Geographic Information Systems

1.0 Introduction
How do we specify a large collection of

dependent data formats in a simple compact,
readable and extensible way?  How do we
ensure that a data stream that is supposed to be
in one of these formats is valid?

There are hundreds of existing specification
languages designed for everything from
program specification to protocol specification.
Is a new specification language really
necessary?  A component of most program
specification languages like Z [Pott91], Object-
Z [Carr89], CLEAR [Burs81] , GYPSY
[Ambl77] or VDM [Jone86] could be used for
data specification, since the programs that they
specify must manipulate data.  Alternately, a
protocol specification language like ASN.1
[Vand89] or LOTOS [Blac89] could be
modified to specify data since data can be
viewed as a stream of information whose
format is a protocol.  Finally, a database data
model like GemStone [Serv89] could be used
to specify data formats [Ullm88].

To understand the language requirements for
data specification, it is useful to look at an
example.  The domain of geographic
information systems (GIS) will be used in this
paper, but the principles are domain
independent.  Our experience with data
specification in geographic information systems
can provide general guidelines for data
specification in general.  Section 2 derives
requirements that any specification language
must satisfy to define geographic data.  Section
3 discusses the inability of existing protocol
specification languages and databases to meet
these requirement  and argues for the use of
objects and inheritance.  Section 4 describes a
solution to the problem of data specification by
presenting the executable object-oriented data
specification language, SPECTalk.  The
SPECTalk model is described by using
examples from the GIS domain.
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SPECTalk has been completely implemented
in Smalltalk V/PM [Smal89] and is currently
being used by the British Columbia Ministry of
Crown Lands.  They have used it to define and
implement their geographic information
systems (GIS) data format language called
Spatial Archive and Interchange Format (SAIF)
[Spat91B].  However, SPECTalk is
independent of GIS concepts.

2.0 Language Requirements for
Geographic Data

There are a growing number of independent
GIS, each with its own representational scheme
and hardware implementation.  However, there
is an increasing cost associated with
maintaining these isolated repositories of
geographic data and with integrating
information that is obtained from them.  The
problem is to develop a simple and powerful
specification language that can be used to
specify a common archival format, user-
defined extensions and to transfer, integrate
and validate information from these disparate
sources [Spat91A].

In GIS, the data can be grouped into three
categories: geographic feature concepts (roads,
rivers, etc.), geometric concepts (lines,
polygons, etc.) and descriptive concepts
(names, capacities, locations, etc.).  Any data
specification language must be able to specify
concepts from all three diverse areas.  This
section derives requirements for such a
specification language.

2.1 Geographic Features

Two examples should serve to convey the
fundamental nature of geographic feature
specification.  The first example describes a
detailed specification of roads and trails.  The
second example is more general and describes
the specification of a group of topographic
features with varying levels of detail depending
on the feature type.

Road/Trail Example

A road is described by six features:  1)
divided or not, 2) hard, loose, improved,
unimproved or winter, 3) a number of lanes
from one to eight or possibly more than eight,
4) one-way or two-way, 5) operational, under
construction or proposed and 6) elevated, not
elevated or depressed.

A trail is described by three features:  1)
portage, ski, snowmobile, bicycle, equestrian
or pedestrian/hiking, 2) paved, boardwalk,
improved or unimproved and 3) operational or
under construction.

A GIS specification language must be
capable of specifying geographic features to a
high level of detail.  Notice however, that there
is some similarity between the specifications of
road and trail.  That is, they have some
common features.  A GIS specification
language must be able to abstract similar
features so that they need only be specified
once.

General Topographic Example

A topographic feature may either be
described no further, or may be further
described as one of a hydrographic feature, a
transportation feature, a landmark feature or a
land cover feature.  A hydrographic feature is
either man-made, natural or neither.  It may
either be described no further or it may be
described as one of a watercourse, a waterbody
or a structure.  A natural watercourse may
either be described no further or may be
described as a river/stream.  A man-made
watercourse may either be described no further
or may be described as either a canal or a
flume.  If a watercourse is neither natural nor
man-made, it may not be described further.  A
river/stream is either definite, intermittent,
indefinite, right bank left bank, dry or nothing.

A GIS specification language must be
capable of specifying information to varying
degrees of detail.  Notice that the degree of
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detail sometimes depends on the specific value
of a feature, like whether the feature is natural,
man-made or neither.  A GIS specification
language must be able to specify variants based
on feature values.

2.2 Geometric Concepts

A handful of geometric concepts are used
extensively in GIS.  These concepts include
points, lines, arcs and polygons.  However,
since these concepts are used in a geographic
context to represent the geometry of features,
the concept of topology plays an important
part.  Consider  a river system consisting of a
collection of arcs that represent the position of
rivers.  A specification of a river system must
include topological information describing
which arcs are upstream from which other arcs.
For example, consider the river system whose
position is represented by Figure 1.  It consists
of  four arcs labelled: A, B, C and D.  A
specification language must be able to indicate
that Arcs A and B are upstream of arcs D and
E, while arcs C and D are upstream of arc E.

Figure 1. Topology is important

  A GIS specification language must be able
to represent the topological relationships
between geometric concepts.

2.3 Descriptive Concepts

Database relations provide a general
mechanism  for representing information and
are often used for defining descriptive concepts
in GIS.  For example, a relation can  describe

the mineral deposits shown in Figure 2.  The
first two columns represent attribute names and
domains for the features.  Each of the other
columns (tuples) represents a single mineral
deposit with values for the features (attributes).

Mineral Deposits

Attributes Domains Values Values

minfileNo String06 '82M988' '82M999'

latitude String02 '56 ' '58 '

longitude String02 '65 ' '75 '

producer Boolean true false

pastProd Boolean false false

Figure 2. A relation table for GIS

A GIS specification language must be
capable of representing database relations.
However, in GIS applications, it would be
useful to let the attribute values themselves be
features that are described in other relations.

Mineral Deposits

Attributes Domains Values Values

minfileNo String06 '82M988' '82M999'

latitude String02 '56 ' '58 '

longitude String02 '65 ' '75 '

producer Boolean true false

pastProd Boolean false false

names Names n1 n2

Names (n1)

Attributes Domains Values Values

name String14 'Wyndy
Craggy'

'Fictional
Name'

Names (n2)

Attributes Domains Values

name String14 'Mother
Load'

Figure 3. Complex relation tables for GIS
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A relation that contains other relations is
called a complex relation (they are called nested
relations in database terminology but are the
pre-cursors of complex objects in object-
oriented databases).  For example,  Figure 3
shows three relations. A revised form of the
Mineral Deposits relation is shown which
contains a Names relation for each of its two
tuples.

While it is true that such complex relations
can be rewritten in terms of simple relations,
their abundance in GIS makes such rewriting
inconvenient.  Although support for complex
relations is not essential for a GIS specification
language it is recommended.  Therefore,  a GIS
specification language should be able to
represent complex relations.

2.4 Definition versus Instantiation

To this point, there are seven requirements
for GIS specification languages together with
one recommendation.  Before summarizing
these requirements it is useful to take a closer
look at the specification process to identify
several more requirements.  The specification
process can be decomposed into two parts:
definition of structures and instantiation (or
creation) of structures.

For example, a road is first defined by
specifying its features.  Here is an informal
definition of a road:

Road: (divided or not divided),
(hard, loose, improved, unimproved
or winter), (lanes from one to eight
or possibly more than eight) , (one-
way or two-way), (operational, under
construction or proposed),
(elevated, not elevated or
depressed).

Several roads may be instantiated by assigning

particular values for each feature in the

specification.  For example, here are the

informal instantiations of two particular roads:

road1: (divided), (improved), (four
lanes), (two-way), (under
construction), (depressed)

road2: (not divided), (hard), (two
lanes), (two-way), (operational),
(not elevated)

A GIS specification language must be able to

specify definitions and specify instantiations.

2.5 Validation

During instantiation, it is possible to list
illegal values for features, to add non-existing
features or to omit required features.
Therefore, each instantiation should be
validated to ensure that it satisfies the
definition.  For example, here are invalid
informal instantiations of three roads:

road3: (separated), (hard) , (two
lanes) , (two-way), (operational),
(not elevated)

road4: (improved) , (four lanes) ,
(two-way), (under construction),
(depressed)

road5: (Victoria) (Nanaimo) (not
divided), (hard) , (two lanes) ,
(two-way), (operational), (not
elevated)

Road3 is invalid since 'separated' is not a valid

feature value.  Road4 is invalid since the first

feature, (divided or not divided) is missing.

Road5 in invalid since it has two extra features,

'Victoria' and 'Nanaimo'.

This kind of validation can only be
performed if the specification language is
executable.  That is, if both the definitions and
instantiations are executed as language
commands so that the instantiations can be
compared to the definitions.  Although it can be
argued that validation is not necessary, it is
certainly recommended.  Therefore, a GIS
specification language should be able to
validate instantiations against definitions and
report errors.
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2.6 Syntactic versus Semantic
Constraints

During the definition phase of specification it
is often useful to specify constraints.  For
example,  the values of features are constrained
by listing the valid values.  This kind of
constraint is called a syntactic constraint since
during instantiation, a feature value can simply
be compared to the allowable values to
determine correctness.  A GIS specification
language should support syntactic constraints.

However, other constraints are often useful
that are not syntactic.  For example, given a
definition of Line as a list of Line Segments, it
is possible to define a Connected Line as a Line
subject to the constraint that the end point of
each of its line segments is the start point of its
next line segment.  Such a constraint is called a
semantic constraint since during instantiation, a
computation must be performed to determine
whether the constraint is satisfied.

It is not absolutely necessary for a GIS
specification language to support semantic
constraints.  However, a GIS specification
language that supports semantic constraints
provides a powerful abstraction mechanism.

2.7 Summary of Requirements for a
GIS Data Specification Language

A GIS specification language:

#1 must be able to represent concepts from
three categories: geographic features,
cartographic concepts and database
concepts.

#2 must be capable of specifying geographic
features to a high level of detail.

#3 must be able to abstract similar features
so that they need only be specified once.

#4 must be capable of specifying information
to varying degrees of detail.

#5 must be able to specify variants based on
feature values.

#6 must be able to represent the topological
relationships between cartographic
concepts.

#7 must be capable of representing database
relations.

#8 should be able to represent complex
database relations.

#9 must be able to specify definitions and
specify instantiations.

#10 should be able to validate instantiations
against definitions.

#11 should support syntactic constraints.

#12 should support semantic constraints.

3.0 Choosing A Specification
Language

There are three approaches to choosing a
GIS specification language.  The first approach
is to use an existing (protocol or programming)
specification language for GIS specifications.
The second approach is to use an existing
database language for GIS specifications.  The
third approach is to create a new specification
language that meets the requirements and
recommendations for a GIS specification
language.

3.1 Using Existing Specification
Languages

A protocol specification language like
ASN.1 can be used to specify Geographic
features and Cartographic concepts.  ASN.1
can be evaluated as a GIS specification
language using the requirements that were
listed in section 2 of this paper.  It meets or
partially meets the requirements: #1
(geographic and cartographic concepts only),
#2, #4 and #9.

If an interpreter is constructed to execute the
ASN.1 specifications then recommendations
#10 and #11 can be met.  However, even with
an executing interpreter, ASN.1 fails to meet
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the requirements #1 (database concepts), #3,
#5, #6, #7 and the recommendations  #8 and
#12.

Other existing protocol and program
specification languages also fail to meet the
majority of requirements and recommendations
listed in this report.

3.2 Using Databases

It is possible to take an existing database
system and use it as a GIS specification
language.  This approach makes it easy to
satisfy the database requirements.  It is also
possible to satisfy several other requirements as
well.  However this approach is inadequate or
very tedious for several of the requirements #3,
#5 and #9, and recommendations #8 and #12.

3.3 New Specification Languages

Since existing languages cannot meet the
requirements and recommendations for a GIS
specification language, a new language should
be constructed.  However, unless a new
technology is used, it is doubtful that the
problems with existing languages can be
overcome.  For example, constructing a new
executable specification language based on
ASN.1 with additional facilities to meet  the
requirements of variants, better abstraction,
database facilities and semantic constraints
would change the character of ASN.1 so much
that it would be unrecognizable.  In addition, it
would be difficult to add such disparate
capabilities and maintain the simple model of
ASN.1

3.4 Using Objects

An executable object-oriented GIS
specification language has several inherent
advantages over traditional specification
languages and databases.  Besides the
component based capabilities (hasA) provided
by traditional languages, object-oriented
languages provide a powerful abstraction
mechanism called inheritance (isA) that can
easily be used to directly meet several of the

requirements #2, #3, #4, #5 and #9.  In
addition, the message passing paradigm can be
combined with inheritance to meet the
additional recommendations #10, #11 and #12.

The only remaining challenge that must be
faced in using an executable object-oriented
specification language is the provision for
database support.   This challenge has been
faced and met by the SPECTalk layer in the
layered specification system described in the
next section.

3.5 A Layered Object-Oriented
Specification System

To meet the requirements of a GIS data
specification language as outlined in this paper,
an object-oriented specification system has
been constructed.  However, to ensure domain
independence, the system consists of four
layers as shown in Figure 4.  The first (base)
layer is Smalltalk.  This layer provides an
object-oriented language complete with
semantics for objects, classes and messages
and a syntax for expressions, message sending
and methods.  It also provides several basic
pre-defined classes: Character, Boolean,
String, Symbol, SmallInteger (Integer), Float,
Array, Object and UndefinedObject that can be
used in all other layers.

User Layer
SAIF
SPECTalk
Smalltalk

Figure 4. A layered object-oriented
specification system

The second layer is SPECTalk.  This layer
provides static typing, constraints and the
syntax for definitions and instantiation of
objects and classes.  It provides the class
SPECObject,  the common superclass for all
other SPECTalk, and Application specific class
definitions and common messages that can be
sent to all SPECTalk objects.  It also provides
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the class Enumeration, the superclass of user
defined scalar definitions and associated
messages.  In addition, it provides seven
classes:  Relat ion,  BinaryRelat ion,
AntiSymmetricRelation, SymmetricRelation,
TransitiveRelation, List and Tuple that serve as
a basis for database concepts and many
powerful messages that can be applied to
objects of this type, including messages that
implement the complete relational algebra.
SPECTalk is completely independent of GIS
concepts.

The third layer is SAIF.  This layer provides
a set of standard definitions of geographic and
cartographic objects and messages that can be
sent to them  [Spat91B].  The fourth layer is
the user layer.  This layer consists of all user
defined objects and messages.  The remainder
of this paper gives a detailed description of
SPECTalk.

4.0 The SPECTalk Model
SPECTalk is an executable object-oriented

specification language that can be viewed as a
specification layer that resides on top of a
Smalltalk/V object-oriented programming
layer.  A user layer of domain-specific
definitions can be created as a third layer (like
SAIF was).  Alternately, two layers may be
added where the third layer is a set of general
domain-specific definitions and the fourth layer
is a set of specialized domain-specific
definitions.

Smalltalk was used for two reasons.  First,
it is a "pure" object oriented language so it
produced a specification language where every
construct was a first-class object.  Second, it
was very easy to produce a working system in
a short period of time, complete with
SPECTalk specific browsers that were used to
construct SAIF.  Despite these reasons for
choosing Smalltalk, there is no fundamental
reason why a different object-oriented language
could not be used instead.

Following the requirements, the
specification task is decomposed into two
phases, definition and instantiation.
Definitions are realized by defining a new
SPECTalk class (domain) for each definition.
For example, Road would be a class.  The
classes serve as templates for the objects that
are to be created during the instantiation phase.
Instantiation is realized by sending specific
creation messages to the classes so that instance
objects are returned.  In addition, messages can
also be sent to these instantiated objects to
solicit information from them or to modify
them.

There are three groups of classes in
SPECTalk.  The first group consists of those
classes that are pre-defined by Smalltalk and
used in SPECTalk.  They are called Smalltalk
classes: Character, Boolean, String, Symbol,
Smal l In teger ,  F loa t ,  Array  and
UndefinedObject.

The second group consists of those classes
that are not pre-defined by Smalltalk, but are
pre-defined by SPECTalk.  They are called
SPECTalk classes: SPECObject, Enumeration,
Tuple ,  Re la t ion ,  BinaryRela t ion ,
AntiSymmetricRelation, SymmetricRelation,
TransitiveRelation and List.

The third group consists of those classes that
are defined using SPECTalk but are not pre-
defined.  They are called Application classes.
SPECTalk commands are used to define
Application classes as sub-classes of
SPECTalk classes.

4.1 Smalltalk Classes

SPECTalk uses eight pre-defined Smalltalk
classes that have literal representations.  These
classes and some example literals are shown in
Figure 5.  These classes are not part of the
SPECTalk Class hierarchy since they are
defined in Smalltalk.  Notice that symbols
cannot contain blanks and that arrays can
contain elements from different classes.
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Class Example Literals

SmallInteger 5 35231  -18
Float 3.45  -2.03  0.2
Character $a  $A  $5  $?
String '82M998'
Symbol #improved
Array #('82M998' 56 65 true

false)
Boolean true  false
UndefinedObject nil

Figure 5. Pre-defined Smalltalk classes with
literal instances

4.2 SPECTalk and Application Class
Structure

All SPECTalk classes are organized into a
tree structure that provides inheritance of
behavior as shown in Figure 6.  Every new

class is defined as a leaf node in this tree.  Of
course a leaf node will become a non-leaf
(interior) node if a new class is subsequently
defined as a subclass of it.

This tree defines an 'isA' hierarchy.  For
example, every instance of Relation is a
SPECObject and every instance of
BinaryRelation is a Relation.  This means that
every message that can be sent to an instance of
SPECObject can also be sent to any other
SPECTalk object.  However, as one moves
down the tree, new messages can be added that
are not understood by objects higher in the tree.
For example, there are messages that instances
of Relation understand that are not understood
by instances of SPECObject.  In fact, all
SPECTalk classes are abstract superclasses for
domain-specific Application classes defined by
users.

SPECObject

Relation TupleList

BinaryRelation

Enumeration

AntiSymmetric
Relation

Symmetric
Relation

Transitive
Relation

Figure 6. The Class Hierarchy of SPECTalk
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4.3 SPECObjects

SPECObject is the root class for all
SPECTalk classes.  That is, all SPECTalk
classes (and therefore all Application classes as
well) are sub-classes of it.  SPECObject
defines the behavior that is common to all
SPECTalk and Application classes:

#1 Every SPECTalk and Application class
has a comment that describes its purpose.
Application class comments can be
edited.

#2 Every SPECTalk class has a set of
instance methods and a set of class
methods.  Every Application class has a
set of instance methods.  Application
methods may be defined and undefined.

#3 Every Application class has a set of
constraints that each instance of that class
must satisfy.  Each constraint is
represented by an instance message.  An
instance of a class satisfies a constraint if
it responds to the message by answering
true.  An instance violates the constraint if
it answers any other value than true.
Whenever an instance is created or
modified, its constraints are automatically
checked and all violations are reported.
Each Application class inherits the
constraints of all of its superclasses.
Each SPECTalk or Application class can
be used to define an Application sub-class
of itself with additional constraints.
SPECTalk classes have no constraints.

#4 Each SPECTalk or Application class can
be used to un-define (delete the definition
of) any of its Application sub-classes.

4.4 Enumerations

The class Enumeration is the root class for
all Application Enumeration classes.  That is,
all Enumeration classes are sub-classes of it.
Enumeration defines the behavior that is
common to all Enumeration classes:

#1 Every Enumeration class defines a set of
possible values that are instances of class
Symbol.  Each instance can have one of
the specified values or a special value
denoted nil that represents an unspecified
value.  The value nil is not an instance of
class Symbol.  It is the only instance of
the class UndefinedObject.  However, to
avoid confusion, the symbol #nil is not
allowed as a valid value for Enumeration
classes.

For example, an Enumeration class called

Surface may be defined with the values:

#improved, and #unimproved.  Each instance

of Surface has one of the values: #improved,

#unimproved or the unspecified value nil.

#2 Each Enumeration class inherits the
values of all of its Enumeration
superclasses, although the class
Enumeration itself has no values.

For example, an Enumeration class called

RoadSurface may be defined as a sub-class of

Surface.   The additional values: #hard, #loose

and #winter may be specified in addition to the

inherited values #improved and #unimproved.

#3 Each Enumeration class has a default
value that is used when an instance is
created without specifying a value.  The
default value is specified when the
Enumeration class is defined.  If no
default value is specified, then the new
class inherits the default value from its
superclass. The default value of the class
Enumeration is nil.

#4 Instances of Enumeration classes can be
created in several ways.  The message
#create: can be used to create a new
instance of an Enumeration class whose
value is the message argument.  The
message #create can be used to create a
new instance of an Enumeration class
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with the default value.  The message #nil
can be used to create a new instance of an
Enumeration class with a nil value.  In
addition, when an Enumeration class is
created, a message is created for each of
the new values.  The names of these
messages are the values themselves.
Each message creates a new instance
whose value is the name of the message.

For example, when the Enumeration class

Surface is created, two messages with names:

#improved and #unimproved are created

automatically.  An instance of Surface with the

value #improved can be created by sending the

message #improved to the class Surface.

4.5 Tuples

The class Tuple is the root class for all
Application Tuple classes.  That is, all Tuple
classes are sub-classes of it.  Tuple defines the
behavior that is common to all Tuple classes:

#1 Every Tuple class defines a list of
attributes.  The attributes are the names of
components that instances of the Tuple
class contain.  Each attribute is a Symbol.

For example, a Tuple subclass called

MineralDeposit may be defined with the

attributes: #minfileNo, #latitude, #longitude,

#producer and #pastProducer.  Each instance

of MineralDeposit would contain a number of

tuples.  Each tuple would contain five

components, with names: #minfileNo,

#latitude, #longitude, #producer and

#pastProducer, in order.

#2 Associated with each attribute is a
domain.  Each domain must be an
existing Smalltalk, SPECTalk or
Application class.  The components of
each instance of each Tuple class must be
elements from the appropriate domain.

For example, the Tuple subclass

MineralDeposit could have the domains String,

SmallInteger, SmallInteger, Boolean and

Boolean, in order.  The components:

'82M998', 56, 65, true and false would be a

valid tuple components while the components:

998, 56, 65, true and false would not.

#3 Each Tuple class inherits the attributes
and domains of all of its Tuple
superclasses, although the class Tuple
has no attributes or domains.

For  example ,  a  c l a s s  ca l l ed

PrivateMineralDeposit may be defined as a sub-

class of MineralDeposit.   When it is defined,

the additional attribute #owner with domain

SmallInteger may be specified in addition to the

inherited attributes #minfileNo, #latitude,

#longitude, #producer and #pastProducer.

#4 When a Tuple class is created an instance
message is created for each new attribute
and the selectors for these messages are
the attributes themselves.  When an
attribute message is sent to an instance of
the tuple, the value of that attribute is
returned.

#5 When a Tuple class is created another
instance message is also created for each
attribute.   The selectors for these
messages are the attributes followed by a
colon.  When such a message is sent to
an instance of the tuple, with a value as
an argument, the value of the attribute in
the tuple is set to the argument of the
message.

For example, if the message #latitude is sent to

the instance of MineralDeposit:

MineralDeposit ('82M998' 56 65 true
false)
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then the value 56 would be returned.  If the

message #latitude:55 was sent to this instance

then the instance would change to:

MineralDeposit ('82M998' 55 65 true
false).

#6 Instances of Tuple classes can be created
in three ways.  The message #create: can
be used to create a new instance of a
Tuple class.  The components of the
argument array are used to initialize the
tuple components.   There are two ways
the argument may be used to initialize the
tuple.  The array may contain component
values, in order, that are used to set the
attributes.  Alternately, the array may
contain some attribute names where each
attribute name is followed by the
character < and a value.  If this format is
used, then only the attributes whose
names appear are set to the corresponding
values and the other attributes are set to
nil (UndefinedObject).

The third way to create a tuple uses a
different creation message.  Whenever a
new Tuple class is defined, a creation
message is created whose selectors are
the attributes of the tuple followed by
colons.  When this message is sent to the
Tuple class, a new instance is created
with components sent to the arguments of
the message.

For example, the following creation messages

could be sent to MineralDeposit to create the

instances shown.  SPECTalk output is shown

in bold font.

MineralDeposits create: #('82M998'
56 65 true false)

MineralDeposit('82M998' 56
65 true false)

MineralDeposits create:
#(latitude<56 longitude<65
minfileNo<'82M998' producer<true
pastProducer<false)

MineralDeposit('82M998' 56
65 true false)

MineralDeposits create:
#(latitude<56 minfileNo<'82M998'
producer<true)

MineralDeposit('82M998' 56
nil true nil)

MineralDeposits minfileNo: #'82M998'
latitude: 56 longitude: 65 producer:
true pastProducer: false

MineralDeposit('82M998' 56
65 true false)

4.6 Relations

The class Relation is the root class for all
Application Relation classes.  That is, all
Relation classes are sub-classes of it.  Relation
defines the behavior that is common to all
Relation classes:

#1 Every Relation class has a domain that is
an existing Tuple class.  An instance of a
Relation class is a set of tuples from the
Tuple domain class.

For example, a Relation class called

MineralDeposits may be defined with the

domain MineralDeposit (defined in the last

section).  Each instance of MineralDeposits

would contain a number of tuples.  Each tuple

would be an instance of MineralDeposit.

#2 Furthermore, the domain must be a
subclass of the domain of the Relation
class which is the superclass of the
Relation class being defined.  The root
class, Relation has as its domain the
abstract class Tuple.

For example, a subclass of the Relation class

M i n e r a l D e p o s i t s ,  c a l l e d

PrivateMineralDeposits, may be defined with

the domain PrivateMineralDeposits (defined in

the last section) since PrivateMineralDeposit is

a Tuple subclass of MineralDeposit.
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#3 Each Relation class has a list of keys.
Each key is a set of attributes from the
attributes from the domain Tuple.  Each
tuple added to a relation must be unique
on all keys.  Keys are not inherited from
superclasses and if no key is specified
then the default key consists of the set of
all attributes.

For example, if the Relation class

MineralDeposits had two keys (minfileNo) and

(latitude longitude), and an instance contained

the tuples:

{MineralDeposit('82M998' 56 65 true
false)
MineralDeposit('83M515' 58 64 false
true)
MineralDeposit('84M612' 56 64 true
false)}

then it would be invalid to add any tuple with

minfileNo value '82M998', '83M515' or

'84M612' because of the minfileNo key.  It

would also be invalid to add any tuple with

latitude 56 and longitude 65 or with latitude 58

and longitude 63 or with latitude 56 and

longitude 64 because of the (latitude longitude)

key. On the other hand, if no key was specified

when the MineralDeposits class was defined

then there would be a single key: (minfileNo

latitude longitude producer pastProducer).

#4 For each relation class, the first key
specified is called the primary key.  The
message #at: can be used to access the
tuple in any Relation whose key value is
the argument to the message.

For example, if the key (minfileNo) in the
MineralDeposits Relation class is the primary
key and an instance contained the tuples:

{MineralDeposit('82M998' 56 65 true
false)
MineralDeposit('83M515' 58 64 false
true)

MineralDeposit('84M612' 56 64 true
false)}

this instance would respond to the message,

at:'083M 515' by returning the tuple:

MineralDeposit('83M515' 58 64
false true).

#5 Instances of Relation classes can be
created in several ways.  The message
#create can be used to create a new
instance of a Relation class that contains
no tuples.  The message #create: can be
used to create a new instance of a
Relation class containing tuples specified
by the argument.  The message #with:
can be used to create a new Relation
containing a single tuple specified by the
argument.

For example, the following creation messages

could be sent to MineralDeposits to create the

instances shown:

MineralDeposits create
MineralDeposits{}

MineralDeposits create:#(('82M998'
56 65 false false) ('83M515' 58 64
false true))

MineralDeposits{('82M998' 56
65 false false) ('83M515' 58
64 false true)}

MineralDeposits with:#('82M998' 56
65 false false)

MineralDeposits {('82M998'
56 65 false false)}

The standard relational operators are defined
for instances of class Relation and any defined
subclasses.

4.7 Lists

The class List is the root class for all
Application List classes.  That is, all List
classes are sub-classes of it.  List defines the
behavior that is common to all List classes:

#1 Every List class has a domain that is an
existing Smalltalk, SPECTalk or
Application class.  An instance of a List
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class is a list of values from the domain
class.  Furthermore, the domain must be
a subclass of the domain of the List class
which is the superclass of the List class
being defined.  The root class, List has as
its domain the class Object.

For example, a List class called StringList may

be defined with domain String.

#2 All instances of List classes understand
the message #at: which returns the
component corresponding to the index.
In addition,  all instances of List classes
understand the message, #at:put: that
replaces the component whose index is
the first argument, by the value that is the
second component.

For example, given a StringList with

components

('082M 998' '083M 515' '084M 612')

the message at:2 would return the value '083M

515' and the message at:2 put:'083M 677'

would change the components of the instance

to

('082M 998' '083M 677' '084M 612').

4.8 Complex Relations

In SPECTalk, tuple domains can be tuple
classes.  That is, SPECTalk supports complex
relations.  Here is an example definition of a
Tuple class called LineSegment that has two
attributes, each of which is an instance of the
Tuple class Point2D.  Since LineSegment is a
direct subclass of Tuple, it inherits no other
attributes or domains.  LineSegment is a
complex relation.  LineSegment is one of the
fundamental building blocks that has been
defined in SAIF for representing cartographic
concepts in GIS.

Tuple
subclass: #LineSegment
attributes: #(start end)
domains: #(Point2D Point2D)

Here is an example creation message that
creates a LineSegment and binds the temporary
name s to it.  The creation message is followed
by a message that returns the start component
of the line segment.  In both cases the display
representation follows the messages.

s := LineSegment create:#((1.0 2.0)
(3.0 4.0))

LineSegment(Point2D(1.0 2.0)
Point2D(3.0 4.0)

s start
Point2D(1.0 2.0)

4.9 User-Defined Messages

Some messages are pre-defined for the
SPECTalk classes and are inherited by
Application subclasses.  Some messages are
automatically created when a new Application
class is created.  For example, when a Tuple
class is created, messages with the names of
the attributes are automatically created.
However, in addition to these messages, users
can define their own messages that can be sent
to instances of Application classes.  Each user-
defined message must be defined by a method.
Smalltalk syntax is used for the methods and
the full power of Smalltalk is available in
writing the methods.

For example, a method can be defined to
return the length of any instance of
LineSegment:

LineSegment method:
'length

"Answer the distance between my
endpoints."
^((self end x - self start x)
squared + (self end y - self start
y) squared) sqrt'

Here is an example that illustrates how this
message can be used.  An instance of
LineSegment is created and then the length
message is sent to this instance.

s := LineSegment create:#((1.0 2.0)
(3.0 4.0)).

s length
2.82843



14

4.10 Constraints

As was described in the SPECObject section
of this paper, every SPECTalk and Application
class can have a set of constraints.  A constraint
is a user defined message that is used in a class
definition.  For example, consider the
following message that is defined for instances
of class Line.

Line
method: 'connected

"Answer true if my line segments are
connected sequentially.  That is,
the end point of each of my line
segments is the start point of my
next line segment."
(1 to: self size - 1)

do:[:index|
((self at:index) end ~= (self

at:index+1) start)
ifTrue:[^false]].

^true'

This method can be used as a constraint in
defining a subclass of Line called
ConnectedLine.  Whenever a new instance of
ConnectedLine is created, the constraint,
connected, will be applied to the new instance
and an error will be reported if the new instance
does not return the value true.  Here is the
definition of the new class:

Line
subclass:#ConnectedLine
constraints:#(connected)

For example, the following creation message

violates the constraint:

ConnectedLine create:#(((1.0 2.0)
(3.0 4.0)) ((5.0 6.0) (7.0 8.0)))

ERROR notconnected

5.0 Conclusion
The SPECTalk language is an object-

oriented language for data specification.  It
provides mechanisms for defining formats
(classes or intensions) and data instances
(objects or extensions).  Since SPECTalk is
implemented in Smalltalk, user specifications

are executable so they can be validated.
SPECTalk also provides a powerful
mechanism for defining operations on data and
these operations can be used to define
constraints.  The constraints can then be used
in other data format specifications.  SPECTalk
uses inheritance not only to abstract common
data formats but to abstract common operations
and constraints as well so that true
responsibility-driven designs can be achieved
[Wirf90].  All three kinds of inheritance reduce
the size and complexity of data format
specifications.

SPECTalk is a domain-independent data
specification language that includes classes that
support the entire relational algebra.  SPECTalk
can be used to define a domain-specific class
library that can be used as the basis for
domain-specific data specification.  For
example, SPECTalk currently serves as the
basis for SAIF, a language for specifying GIS
data that is being used by the government of
British Columbia.  SAIF includes more than
150 GIS specific subclasses of the SPECTalk
classes
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