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This article describes an object-oriented inference engine for PROLOG.  The inference engine

is part of the Graphically Oriented Development Environment for Logic (Gödel) programming.

Gödel incrementally translates source clauses to a persistent clause base in which each clause is an

object. The inference engine is a distributed one in which each clause object knows how to unify

and execute itself.  This means that Gödel supports multiple queries at various points of execution.

That is, although multiple queries cannot actually execute concurrently, they can be suspended at

any point in their execution and reactivated at any time.  This is a major advantage during

debugging and exploratory programming.  In addition, the inference engine supports primitive

clauses written in the implementation language, SMALLTALK-80.  This provides a simple

interface between PROLOG clauses and SMALLTALK objects that puts the entire SMALLTALK-

80 class hierarchy in the hands of PROLOG programmers.  Despite these advantages, an object-

oriented interface engine has one drawback.  In its most general form, the object granularity is too

small, so that too many objects must be created and destroyed during program execution.  This

reduces execution speed.  For this reason, several optimizations have been performed in the

implementation to consolidate objects to a more reasonable size.  With these optimizations, Gödel's

interpreter has execution speeds that are still significantly slower than compiled PROLOG but

acceptable for exploration, development, and debugging.  In exchange, this approach provides

integration with the object-oriented paradigm, including all the power that comes from object-

oriented programming environments, including browsers, incremental translation, inspectors,

debuggers, and multiple query execution, as well as the ability to easily experiment with both the

environment and the PROLOG language itself.
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INTRODUCTION

The basic interpreting algorithm for PROLOG was invented by Colmerauer and Roussel.  It

was a slow and memory-intensive ALOGL-W implementation which was later improved and

rewritten in FORTRAN by Battani and Meloni [1].  Since then, many articles have described

various forms of procedural PROLOG implementations and more specifically, interpreting
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algorithms.  As far as object-oriented approaches are concerned, we are aware of two other object-

oriented approaches besides the one described here.  SMALLTALK/V contains a very simple

PROLOG interpreter in its distribution [2], and Levy and Horspool [3] have developed an object-

oriented PROLOG-to-C++ translator.

We begin by giving a general description of the main components needed for interpreting

PROLOG programs and outlining several key optimizations that have emerged during the evolution

of these algorithms.  This will provide the background necessary to understand the object-oriented

inference engine, its advantages and its disadvantages.  Not all PROLOG interpreters are

implemented in the manner described in this section; however, there are certain similarities among

implementations.  It is our goal to summarize these similarities in order to paint a clear picture of

the interpretation process.  For a more detailed account of PROLOG interpretation and compilation,

see Warren [4] or Hogger [5].

The variables and terms in the head of a clause are subject to unification during the execution

of PROLOG programs.  Unification enables procedures (collections of clauses of which the heads

have the same predicate and arity) to provide input and output parameters for answer extraction. It

also provides clause selection capabilities based on a powerful pattern matching mechanism.  The

rules for unifying two objects are:

1. If both objects are atomic (numbers, strings, etc), they are compared for equality

2. If one object is an unbound variable, it is changed to reference the other object.

3. If both objects are unbound variables, the younger one references the older one.

4. If either object is a bound variable, it is dereferenced repeatedly.

5. If both objects are compound, the functors are compared, and each of the terms are unified

recursively (for lists, the head and tail are unified).

If any of these tests fail, the unification is said to fail, otherwise a most general unifier (MGU) is

returned consisting of a set of variables and the objects with which they were unified.

The workhorse of an interpreter is the resolution inferencing mechanism that acts on the

clause database.  PROLOG 's inference engine is significantly less complicated than a general

resolution theorem prover because of the strict use of Horn clauses and the execution order.

Because of this, a description of the interpreting algorithm is straightforward.  Given a query to a

PROLOG system, the PROLOG inference engine finds a refutation using the steps of Algorithm 1.

Algorithm 1: Pseudo interpreter

1. Try a goal:  Search the clause data base for a matching clause head (procedure).
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1.1 If found: the goal is unified with the head of a clause and recursively each goal in the

body is tried (left to right).  If all the body's goals succeed, the goal has succeeded.  This

position in the data base is noted.

1.2 Not found: the search failed, so backtracking to a previous goal with untried candidates

for that procedure is done.

2. Re-try a goal: reset any variables set by unification and search the clause database from the

previously noted position.

For each procedure call, an interpreter's stack contains a frame consisting of three parts: a

binding environment for variables, an invariant control component, and, in the case of a non-

deterministic call (a procedure with more than one untried candidate clause), a nondeterministic

control component.

Binding
Envrionment

Parent Context

Previous Backtrack

Return Address

Trail Pointer

Next Candidate

Invariant Control
Component

Non-deterministic
Control Component

Local Variable

Local Variable

Global Environment Ptr.

Figure 1 A procedural interpreter context

When a frame is created for a procedure call, a binding environment is created for all

variables appearing in the clause containing that procedure.  The binding environment has two

parts, a local part which is usually part of the frame itself and a global part which is not part of the

frame.  The global part is for variables which may be referenced after the frame is deleted.

For example, given the clause p(X) <- q(X,Y), r(Y, Z), when the procedure p(X) is called, a

context will be created which contains the binding environment for the variables X, Y and Z.

These variables are said to be introduced in that context.  Given two variables, A and B, A is said

to be more recent than B if the context in which A was introduced was created before the context in

which B was introduced.  Given two unbound variables to be unified, the value pointer of the most

recent variable is always bound to the less recent variable so that value pointers always point

upwards in the stack.  This prevents dangling pointers both during optimization and during

backtracking.

In interpreters which use structure copying for term representation, each variable in a binding

environment is simply a pointer to a structure or constant.  In interpreters that use structure sharing
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for term representation, each variable is represented by a molecule which consists of two pointers.

The first pointer is a value pointer which points to the value to which the variable is bound (either

to another molecule or to a structure in the code).  In the case where the value is a structure in the

code, the second pointer is an environment pointer which points to the binding environment of the

variables appearing in the structure.  In the case where the value is not a structured term, the

second pointer is not used.  For example, if X is bound to the structured term f(Y,Z), then the

value pointer of the molecule of X would point to the code for f(Y,Z) and the environment pointer

would point to the binding environment for Y and Z.

In fact, the global environment pointer in Figure 1 is only needed when structure sharing is

used.  When structure copying is used, a copy stack is used to store explicit copies of terms, and

the global stack is not required.  Some believe that structure copying gives a better locality of

reference while structure sharing has the potential of severe thrashing in a paged virtual memory

system.  However, although Bruynooghe [6] and Mellish [7] have compared the relative merits of

each of these approaches and no convincing results have emerged.

The invariant control component contains a pointer to the parent frame and a return address.

For example, consider the clauses:

p(X) <- q(X), r(X), s(X).
r(X) <- t(X).

When a frame, F', is created for the call to r(X), its parent frame will be the frame, F, which was

created when p(X) was called.  Notice that several other frames were placed on the stack between

the frames F and F', since a frame was created for the call q(X) and this call may have resulted in

other frames being created as well.  The return address for frame F' is the call s(X) since if the call

r(X) is successful then s(X) will be the next call executed.

In addition to frames on the run-time stack and global variables in a global stack or heap, a

variable trail (V-Trail) stack is also required.  A V-Trail stack is used to record the variables

introduced before the most recent backtrack frame, but bound in the most recent backtrack frame or

in a frame after it.  When a backtrack occurs, the V-trail is used to undo the bindings of these

variables.  For example, consider the clauses:

p(X,Y) <- q(X), r(X).
q(a).
q(b).
r(b).

When the call q(X) is made, X is bound to the constant a in a frame, Q.  However, Q is non-

deterministic so it becomes the most recent backtrack frame.  Since X is introduced in a frame

before Q, the variable X is trailed on Q's portion of the V-trail.  Later, when the call r(X) fails and
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a backtrack is made to frame Q, the binding of X is removed since it is on Q's portion of the V-

trail.

Optimizations to reduce memory requirements include last-call optimization, deterministic call

optimization (DCO), and deterministic/non-deterministic frame distinctions.  Last call optimization

is performed when trying to prove the last goal in a clause.  If that goal is deterministic (only has

one candidate clause), then after unification the newly created node can be copied over the

deterministic node on top of the execution stack.  The elimination of the extra frame transforms an

otherwise recursive call into a memory-efficient iterative loop.  In some situations this saves

considerable amounts of memory.

A deterministic computation is a situation in which a PROLOG goal has only one possible

unifying clause head.  Here the interpreter can perform deterministic call optimization, releasing

stack frame storage at computation completion.  However, this can only be done if there are no

backtrack points (alternate clauses) between the start and finish of the computation.

Another common optimization for PROLOG interpreters is indexing.  When the candidate

clauses for a goal are being determined by unifying the goal with each clause head in the candidate

list, extra information must be recorded if future candidate clauses exist.  Naive interpreters do not

check to see if the subsequent clauses are permissible future candidates.  Indexing determines this

by matching the first term of the goal with the first term of each remaining clause head in the

candidate list.  If future candidates are not possible, there is no need to create a backtrack point.

This  reduces memory consumption and execution time.

AN OVERVIEW OF GÖDEL

The object-oriented inference engine described in this paper is part of Gödel [8, 9]

(Graphically Oriented Development Environment for Logic programming).  To understand the

interpreter, it is first necessary to understand the overall structure and clause representation in

Gödel. From the user's point of view, PROLOG program development can be decomposed into

clause editing, interpretation, and debugging.  Gödel's architecture is designed so that a highly

integrated set of operators (tools) acts on a clause data base so that a uniform view of the system

persists throughout these three activities.  Our design centers around the concept of a clause data

base (persistent heap) that is accessible by all environment components, not just the inference

engine.  The architecture of Gödel is represented in Figure 2.
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User Interface
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Figure 2: The Architecture of Gödel.

Since we have at our disposal a central repository of program clauses, there is no reason to

restrict the number of queries that can be executed at one time.  One window may contain a

refutation at midpoint, while a second window may contain a completed query.  Also, there is no

need to reconsult text files when source changes are made because modifications affect the shared

repository.  For PROLOG , the ability to have multiple queries executing concurrently allows a

more natural communication pattern between user and environment.  This means that while there is

one clause data base, modulizer and typer in Gödel, there can in fact be multiple editors, debuggers

and inference engines active at the same time.  Although Gödel contains a modulization and typing

system, they are not directly related to the discussions in this paper.

In Gödel, access to the inference engine is through a workspace.  Since Gödel superimposes

a modulization structure on PROLOG , each module has its own workspace.  A workspace is a

conventional text edit window.  Commands are entered, executed, and the results from the

execution are displayed within this window.  This replaces the usual screen prompt mode of

conventional interpreters.  In addition, Gödel provides access to its inference engine though its

debugger.  Figure 3 shows a debugging browser.  Additional resources are required in the

inference engine to support the debugging features.
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Figure 3: The debugger window

THE CLAUSE DATA BASE

Conventional PROLOG systems maintained the clause data base in a set of files, consulting

each file as clauses were needed.  Our approach is to view the clause data base as an entity to aid in

the development of multiple programs.  That is, the data base is shared among programs.  There

are three major advantages to a central view of persistent clauses:

1) Separate programs and projects can reuse components.

2) There is no need to recompile clauses before they are used.  This affects the design of the

editor and inference engine, since they not only operate on a clause base that is continually

evolving, but they also manipulate compiled clauses instead of the clauses' textual

counterparts.

3) A persistent clause data base can be organized to quickly answer questions such as "Find all

locations where <anObject> is used?" to make development easier.

To understand how the clause data base is represented, it is necessary to understand how the

components of clauses are represented.

Atom Representation

In PROLOG, there are two kinds of atomic formula:  atoms representing the heads of clauses

and atoms appearing in the bodies of clauses.  We represent these two kinds of atoms by two

separate classes: GodelLiteralAssertionNode and GodelAtomNode respectively, as shown in

Figure 4.  Since these atoms share common behavior, we also use a common abstract superclass,

GodelLiteralNode to implement this common behavior.  Each kind of atom includes a predicate

symbol and a list of terms which are represented in SMALLTALK by indexed instance variables.
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In addition, GodelAtomNodes include a reference to the next GodelAtomNode in the clause body.

In addition to other behavior, each GodelLiteralNode contains the behavior necessary to unify itself

with another object and to execute itself.

GodelAtomNode

predicate

1

2

terms

nextCall

etc.

GodelLiteral
AssertionlNode

predicate

1

2

terms

etc.

Figure 4: Atom representation

Each term in the term list of an atom is either a function application, a constant or a variable

and each of these has its own representation as a SMALLTALK-80 class.  Notice that all of these

classes are called Nodes.  This is because they are actually nodes in a parse tree that are created by

a PROLOG parser controlled by the editor.  In fact, these nodes form an intermediate

representation of clauses, since our final goal is to produce bytecode sequences (similar to

SMALLTALK bytecodes) that represent Warren Abstract Machine (WAM) instructions.

However, Gödel does not currently support the final translation to bytecodes.

In addition to the components shown in the figures, each object described in this article has

other components which are used for editing, displaying and updating them.  However, since these

components are not germane to this article they have been excluded to simplify the presentation.

Clause Representation

PROLOG clauses can be grouped into four categories based on run-time behavior: standard

clauses, primitive clauses, assertions and queries.  A standard clause contains a head and a body

and is represented by an instance of the SMALLTALK class, GodelHornClauseNode.  If its head

can unify with the current goal atom, it must execute each goal in its body.

A primitive clause is a clause whose body contains source code from a different language and

is represented by an instance of the class GodelPrimitveHornClauseNode.  The different language

is usually the implementation language of the PROLOG interpreter, in this case SMALLTALK-80.

An assertion is a clause with no body that denotes a fact in the clause data base and is represented

by an instance of the SMALLTALK class, GodelAssertionNode.  Once the unification succeeds,

the next goal in the unifying procedure must be attempted.  A query contains a body, but no head.

Queries are not stored permanently in the clause data base so they will not be discussed here.
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GodelStandardHorn
ClauseNode

head

symbolTable

nextClause

firstCall

body

GodelPrimitiveHorn
ClauselNode

head

symbolTable

nextClause

body

GodelAssertionNode

head

symbolTable

nextClause

Figure 5: Clause representation

Figure 5 shows the three SMALLTALK classes that are used to represent clauses.  In

addition, two abstract superclasses are used for abstracting common behavior. GodelClauseNode

is a superclass of all clause classes and GodelHornClauseNode is a superclass of the two non-

assertion clause classes.  Each clause has a head which is an instance of class

GodelLiteralAssertionNode, a symbol table which contains all PROLOG variables introduced in

the clause and a reference to the next clause in the data base.  Assertions require no further

information.  Nonassertions have a body.  In the case of a primitive clause, the body is an instance

of the class GodelPrimitiveNode which contains the name of a SMALLTALK message.  In the

case of a standard clause, the body is an instance of the class GodelFunctionNode (with predicate

∧)  containing the atoms of the body.  Standard clauses also cache a direct reference to their first

atom for efficiency reasons.
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For example, the standard clause:

p(X,Y) ⇐  q(X) ∧ r(Y,X)

would be represented by the objects shown in Figure 6.  Note that Gödel introduces a typing

system so that each variable symbol references a type object.  However, in the interests of brevity

we will not discuss Gödel's typing system here.

GodelStandardHorn
ClauseNode

head

symbolTable

nextClause

firstCall

body

GodelLiteral
AssertionlNode

predicate

1

2

terms

GodelPredicate
Symbol

name: #p

unificationList

arity: 2

firstCandidate

GodelType
ListNode

1

2

types
GodelVariable
Symbol

type

index: 1

name: #X

Array

1

2

symbols

GodelVariable
Symbol

type

index: 2

name: #YGodelAtomNode

predicate

1terms

nextCall
GodelAtomNode

predicate

1

2

terms

nextCall: nilGodelPredicate
Symbol

name: #q

unificationList

arity:1

firstCandidate

GodelPredicate
Symbol

name: #r

unificationList

arity: 2

firstCandidate

GodelFunction
Node

1

2

predicate

GodelPredicate
Symbol

name: #^

unificationList

arity: 2

firstCandidate

Figure 6: Representation of a standard clause
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Optimizations

Several optimizations can be made to the intermediate code.  For example, the class

GodelAtomicLiteralNode could be eliminated.  This class is used to encapsulate non-Gödel (i.e.

SMALLTALK-80) objects.  However, if we wish to completely integrate SMALLTALK-80 with

Gödel, we should remove all distinctions between Gödel objects and SMALLTALK-80 objects.  If

this change is made then unification methods (and some printing methods) would have to be

moved to the class Object.  However, one major benefit would be a clean unification algorithm for

arbitrary objects (i.e. a general object pattern-matching algorithm).

Compilation to Byte Codes

Currently, Gödel transforms input clauses into its object representation and interprets them.

Compiling the Gödel language into WAM byte-codes would provide two advantages—increased

performance and the ability to integrate the SMALLTALK-80 and PROLOG languages at the

virtual machine level.  Figure 7 shows the similarity between Gödel compiled clauses and

SMALLTALK-80 compiled methods.  Much more work needs to be done to cleanly integrate the

two virtual machines.  However, public domain PROLOG WAM compilers are available that can

be used in the development of the Gödel compiler.

GodelCompiledClause

RemoteString

Literals

ByteCodes
(Array of Byte)

Index into external disk file for source code text

Array of literals (Similar to Smalltalk-80 literals)
for quick unification of symbols, etc.

Array of byte codes that represent WAM instructions

Figure 7: A comparison of Gödel compiled clauses and Smalltalk compiled methods

INTERPRETER OBJECTS

In Gödel, several refutations can exist at the same time in different windows.  Typically, the

stacks of standard PROLOG interpreters are allocated fixed amounts of storage.  When allocated

storage is exhausted, a stack overflow error is issued. Therefore, to have more than one refutation

executing at a time, each refutation must be allocated an address space and a set of stacks.  On a

virtual memory system, it is possible to allocate different stacks for each refutation is possible, but

preallocation of stacks is inefficient.
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To support multiple queries, Gödel adopts the memory management strategy of

SMALLTALK-80 so that each interpreter object is allocated space dynamically.  Each query

interpretation is initiated and supervised by an instance of the class GodelInterpreter.  That is,

multiple queries are simply interpreted by multiple instances of the interpreter class.  However,

unlike procedural interpreters which implement a central algorithm for interpreting clauses, Gödel

distributes the interpretation algorithm among the clauses to be executed and other supporting

objects which it uses.

Three classes and their subclasses are used to define the supporting objects used in Gödel's

interpreter.  The classes are GodelParseNode, GodelBindingEnvironment and GodelFrame.  The

GodelParseNode class and its subclasses are used to represent clauses and the objects they contain

as described in the previous section.

A GodelBindingEnvironment is an object that encapsulates a list of molecules.  Molecules are

binding-context pairs representing run-time variable bindings; they are needed for Gödel's

structure sharing term representation.  A binding environment responds to messages that retrieve or

set a variable's binding.  Some PROLOG interpreters categorize variables as local and global.  A

local variable is allocated space on the run-time stack, while a global variable is allocated space on

the global stack.  In this way, more variable space can be retrieved during a success exit.  At the

present time, Gödel makes no such distinction.  All variables are allocated in the binding

environment local to each stack frame.  However, it is straightforward to incorporate this space-

saving mechanism.  A GodelBindingEnvironment is implemented as a subclass of Array and each

of its indexed instance variables references a molecule.

Gödel divides frames into three distinct classes: GodelFrame, GodelDeterministicFrame, and

GodelNonDeterministicFrame.  A GodelDeterministicFrame is added to the run-time stack when a

goal successfully unifies with the head of a deterministic clause (no other choice points exist).  A

GodelNonDeterministicFrame is created when a goal unifies with the head of a clause and other

candidates exist.  In this case, backtrack information must be stored to remember those candidates.

The superclass, GodelFrame, is used only by the procedural debugger.  Instances of GodelFrame

act as placeholders for the representation of the run-time stack within the debugger window.

Figure 8 shows the structure of objects from these three classes.  In fact, with the exception

of information required for the debugger and the variable level, it should not be surprising that the

frames contain exactly the same information as for procedural interpreters.  These frames serve the

same purpose as those in a procedural debugger.

The only difference between Gödel and a procedural interpreter with respect to the frames is

that in Gödel they are manipulated as distinct objects with an independent protocol as opposed to

being implicit parts of a run-time stack directly manipulated by the interpreter.  The variable, level,
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is bound to an integer that defines the nesting level of the current frame.  In a stack based

PROLOG interpreter, absolute frame addresses are compared to determine if one frame is lower in

the stack than another.  To allow for an object-based memory architecture that allows multiple

executing queries, each frame must contain a level (or frame depth).  Level comparisons occur

when determining which variables to push onto the trail stack (i.e. variables whose bindings need

resetting during a backtrack operation).  The advantage of this approach is that the interpreter can

continue executing until all memory is exhausted.  Also, this allows the memory manager to

compact memory by moving frame objects.  An obvious disadvantage is the extra word of memory

needed for each frame object.  Another disadvantage will be discussed in the Object Granularity

section of this article.

GodelDeterministic
Frame

parentFrame

previousFrame

globalVariables

scope

return

GodelNon
DeterministicFrame

parentFrame

previousFrame

globalVariables

scope

return

nextCandidate

previousBacktrack

resetVariables

parentFrame

previousFrame

globalVariables

scope

GodelFrame

Figure 8: Representation of Gödel frames

The parent frame is the frame of the goal that will be reactivated when the body of the current

goal is satisfied.  It corresponds to the parent context in the procedural interpreter of Figure 1.  The

return is the GodelAtomNode, which should be called if the current goal is satisfied.  It

corresponds to the return address of the procedural interpreter.  GlobalVariables represents a

GodelBindingEnvironment  containing all of the variables for the stack frame.  It corresponds to

the global environment pointer of the procedural interpreter.  The fields nextCandidate,

previousBacktrack and resetVariables are also similar to the equivalent variables in the procedural

interpreter.

The Gödel frame fields previousFrame and scope have no counterparts in the procedural

interpreter since they are not used by the Gödel interpreter.  The previous frame is the frame for the

previous atom in the current goal and is used only by the debugger to display the run-time stack.

The scope of a frame is the GodelAtomNode that created the frame.  It is used by the debugger for

clause highlighting.

For example, if the active frame is for the call r(Y,X) in the clause:
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p(X,Y) ⇐  q(X) ∧ r(Y,X)

then the parent frame would be the frame for the call p(X,Y) and the previous call would be the

frame for the call q(X).  In addition, if p(X,Y) was called from the clause:

u(X,Y) ⇐  p(X,Y) ∧ v(Y)

then return would be the GodelAtomNode for v(Y).

As stated earlier, each query interpretation is initiated and supervised by an instance of the

class GodelInterpreter.  Each instance of GodelInterpreter contains four instance variables:

currentFrame, currentCall, nextCandidate, and mostRecentBacktrack.  The variable currentFrame

is bound to the instance of class GodelFrame which represents the top frame of the execution

stack.  The variable currentCall is bound to the instance of GodelAtomNode that is the currently

executing goal in the refutation. The variable nextCandidate is bound to the instance of

GodelClauseNode  representing the next clause in the procedure whose head predicate matches the

current goal.  The variable mostRecentBacktrack  is bound to the instance of GodelFrame which is

the most recent nondeterministic stack frame.

The variableCurrentCall is the pivot point when searching for possible unifying clause heads.

The list of clauses that can possibly unify with the current goal (the candidate list) is searched

sequentially until a clause head successfully unifies with currentCall.  At this point, the variable

nextCandidate is bound to the clause immediately following the matched clause.  If there is a next

candidate, mostRecentBacktrack is set  to currentFrame before it is updated to the newly created

stack frame for the new call.  This enables the interpreter to return to this state during backtracking.

UNIFICATION

The unification process described earlier finds the most general unifier (MGU) between two

lists of terms.  For example, the term f(g(X), X) unifies with f(Y, 1) producing the MGU

{Y/g(X), X/1}.  In Gödel, each term is represented by a distinct object.  Given the representation

of variables in a clause as molecules in a binding environment, each term object must respond to

the message #in: Frame unifierFor: anObject in: anObjectsFrame, where aFrame is the message

receiver's environment, and anObjectsFrame is the environment anObject  is defined in.

For example, consider the assertion father(denis, daniel), along with the query father(X, Y).
When executing this query, the interpreter creates an environment frame f1.  The interpreter then

pushes a temporary frame f2 onto the execution stack and tries to unify father(X, Y) with the

candidate clause father(denis, daniel).  To do this, the interpreter sends the message [in: f1

unifierFor: [father(denis,daniel)] in: f2] to the atom [father(X, Y)].  If the unification fails the
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object False is returned; otherwise, True is returned and a global unifier (an instance of class

Unifier) is set to the collection of bound variables.  In this case, {X/denis, Y/daniel}.Note that

Gödel does not currently perform an occurs check.  For example, some of the unification methods

are:

<GodelClauseNode> in: aFrame unifierFor: anObject in: anObjectsFrame
"Answer true if my head can unify with anObject, otherwise answer false."

^head in: aFrame unifierFor: anObject in: anObjectsFrame

<GodelAtomNode> in: aFrame unifierFor: anObject in: anObjectsFrame
"Answer true if I can unify with anObject, otherwise answer false.
  I can unify with anObject if we have the same predicate name and
if our terms can unify"

(anObject isKindOf: GodelAtomNode)
ifTrue:

[(predicate unifiesWith: anObject)
ifTrue:

[termList isNil
ifTrue: [^true].

^termList
in: aFrame
unifierFor: anObject terms
in: anObjectsFrame]].

^false

There are three advantages to the object-oriented approach to unification:

1. The distribution of code among term objects supports the abstraction of each object's

behavior (a constant object unifies with another object differently then a variable would).

2. New object types can be investigated without changing the existing interpreter.  For example,

if a new object (like an array) is added to the language, a unification method that defines how

the array unifies with other objects is simply added to the class that describes the behavior of

the new object.

3. The existing SMALLTALK object pool can be used.  SMALLTALK is equipped with many

pre-defined classes.  The classes are structured in a tree rooted at the class Object.  By adding

unification methods to the class Object and its subclasses, each SMALLTALK object can

respond to unification messages from PROLOG structures.  Also, since we have defined

primitive clauses, whose bodies are SMALLTALK-80 source, the user can write clauses that

manipulate SMALLTALK objects.

For example, SMALLTALK's Collection classes encapsulate sequences of objects.  It is

possible to write a predicate addToList(AnObject, AList) where AList is an instance of a Collection

instead of a PROLOG list structure.  Similarly, the class View can be used to create windows that

PROLOG code writes (or draws) in, providing a graphical interface for the PROLOG language.

Overall, the combination of SMALLTALK classes and primitive clauses enables Gödel to inherit a

sophisticated and powerful environment.
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One reason for implementing Gödel in SMALLTALK-80 was to provide a development

regime that permitted experimenting with environment and interpreter changes.  As an example, we

added type inheritance into Gödel's unification mechanism.  This allowed us to experiment with

modifications to both Gödel's interpreter and the PROLOG language.

The addition of type inheritance was chosen for one major reason.  Since we have type

definitions of the form TYPE A IS B and TYPE B IS C, it seemed natural that we modify the

unification algorithm so that objects of type A can unify with objects of type C.  The change to the

interpreter was simple.  Each variable instance maintains an extra type field.  When a variable

unifies with an object, the two types are coerced to the least upper bound of those types.  The

variable's type is then set to this upper bound.

Adding type inheritance to Gödel required subtle changes to the parser.  To declare the type

of a variable we extended the syntax of a variable in the terms of a Horn clause so that variables

can be followed by an identifier representing their type.  For example, if we have a clause

father(X, Y) such that the variable X is of type Man and the variable Y is of type Person, we can

express this fact by father(X : Man, Y : Person).

One example of type inheritance that considerably reduced execution time was a PROLOG

solution to Schubert's Steamroller problem [10].  A speed-up factor of 10 in execution time (for

this particular problem) resulted from the addition of inheritance to the unification algorithm.  We

will not go into further detail on the benefits of type inheritance in PROLOG, as this has been

discussed elsewhere [11].

CLAUSE EXECUTION

Recall that PROLOG clauses are represented by instances of the classGodelClauseNode and

its subclasses.  By separating PROLOG language constructs into classes that model the construct's

behavior, we were able to distribute the inference engine among these classes.

Each clause class can respond to the message #stepIn: anInterpreter.  The single argument,

anInterpreter, is an instance of a GodelInterpreter.  When a Horn clause receives the #stepIn:

message, it performs all necessary operations to execute itself in the context determined by the

single argument, anInterpreter.  The value it returns indicates whether it failed, succeeded, or

succeeded and results are to be displayed.

For example, suppose we have the standard definitions of the predicates grandfather and

father, along with the query grandfather(X, Y).  The interpreter's currentCall  is the

GodelAtomNode, grandfather(X, Y).  The message #stepIn is sent to the node grandfather(X, Y).

Upon receiving this message, a GodelAtomNode's searches for a procedure whose predicate and

arity matches its predicate and arity.  When a clause is found, that clause's head must be unified
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with the current goal atom.  If this succeeds, the interpreter updates the run-time stack and sets the

currentCall to be the new clause's first call (the first atom in its body).  The #stepIn: message is

again sent to the new currentCall, father(X, Y).  This process continues until the refutation's

success or failure.

Primitive clauses are special clauses whose bodies are not a conjunct of atoms, but code

written in a different language (usually the interpreter's implementation language).  In Gödel's

case, this is SMALLTALK-80 code.  Figure 9 shows an example of a primitive clause in Gödel.

Figure 9: A primitive clause

Associated with primitive clauses are a collection of methods used to retrieve and set the

values of the primitive clause's instance variables.  For example, the notEqual primitive sends the

message #variableValue: with argument #X to the currentFrame of the interpreter to retrieve the

value of the variable X.  Similarly, the message #variable:value: binds the variable that is the first

argument to the value that is the second argument.  These messages, along with the specification of

PROLOG term structures as distinct classes with well-defined message interfaces, provides the

developer with the necessary tools for manipulating arbitrary PROLOG terms.

There are two advantages to readily accessible and modifiable primitive clause code:

1) existing primitive methods can be specifically tailored by Gödel's users;

2) by using SMALLTALK-80's incremental compilation facility, primitive clauses can be freely

added to a PROLOG application.
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OBJECT GRANULARITY

The usefulness of a logic programming environment is limited unless multiple independent

queries are allowed to coexist.  As described previously, Gödel permits many refutations to exist

simultaneously, each refutation being allocated its own address space (or stack set).  To achieve

this, Gödel adopts the memory management strategy of SMALLTALK-80 whereby each

interpreter object is allocated space dynamically.  However, there are certain problems with

creating an efficient implementation for these dynamically allocated objects from within the

SMALLTALK-80 environment itself.  This section briefly describes the problems associated with

creating dynamic stack structures.  Emphasis is placed on the tradeoffs between object size, object

numbers, and execution efficiency.

All components of the SMALLTALK-80 system are represented by objects: numbers,

strings, queues, dictionaries, text editors, programs, computational processes, and many other

entities.  However, a fundamental design problem emerges regarding Gödel's run-time stack

structures.  At what scope (or granularity) should inference engine (stack) objects be created so as

to gain the greatest advantage in terms of object pointer allocation, execution efficiency, and

exploratory programming flexibility?  We claim that the consistent SMALLTALK-80 object-based

approach to information representation provides the greatest flexibility in terms of exploratory

programming, but the conventional machine word-oriented stack structure provides the best avenue

for execution efficiency.  Therefore, the problem lies in finding a way to combine the preallocated

machine-word stack structure with dynamically allocated stack objects.

Three implementations were considered for Gödel's run-time stacks: a machine-word/object

stack, a segmented stack, and a linked object stack.  The machine-word stack is equivalent to a

contiguously preallocated array of machine words.  Collections of logically related word-size

objects are pushed and popped from the stack.  The onus is on the stack user to logically define

object boundaries.  Two disadvantages to this approach are that the logically connected machine

words cannot be manipulated as a single object and the stacks are fixed in size during initialization.

However, three advantages to this approach are a significant decrease in the number of object

pointers the SMALLTALK-80 system must allocate for each logical object placed on the stack,

several optimization techniques such as overlapping object boundaries may be more easily

implemented, the ability to randomly access any stack location.

For example, recall Figure 1.  It displays the individual components of a typical Gödel non-

deterministic frame.  Each frame contains the following fields: a local variable list, a global

environment pointer, a nondeterministic control component, and an invariant control component.

These fields are placed on the machine-word stack by the interpreting algorithm when creating a

nondeterministic frame.  The following code shows a simplified implementation of this operation:
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localStack push: parentContext; push: returnAddress;
push: globalEnvironmentPtr; push: previousBacktrack;
push: trailPointer; push: nextCandidate;
push: localVariable1; push: localVariable2; ... push: localVariableN

In contrast, an object stack is an implementation that defines the logical object boundaries in

the Smalltalk-80 system by the class of the objects.  Each object placed on the stack is an instance

of this defining class and therefore can only be manipulated as a logical group.  The advantage of

this approach is that system code (such as the debugger) can more easily manipulate the stacked

data.  A disadvantage is the increased number of objects and object pointers that are created (see

figure 10).  The following code is a simplified implementation of pushing a nondeterministic frame

object onto the stack:

aNonDetFrame := NonDeterministicFrame new: lengthLocalVars.
aNonDetFrame parent: parentContext; return: returnAddress;
globalVariables: globalEnvironmentPtr;
previousBacktrack: previousBacktrack;
trailPointer: trailPointer; nextCandidate: nextCandidate.

localStack push: nonDeterministicFrame

parent
return
globenv

prevback
t ra i l

nextcandidate
locals

locals
nextcandidate

t ra i l
prevback
globenv
return
parent

Machine-word stack

logical
grouping

Object Stack Stack Objects

Figure 10: Machine-word/Object stack structures.

As we mentioned previously, Gödel permits multiple execution threads to exist

simultaneously.  This reveals two serious problems in the previous stack implementation: the

requirement that a suitably sized contiguous stack segment be preallocated, and the inability for the

stack to expand/shrink past its originally allocated size.  An alternative implementation is a

segmented stack.  This stack organization is shown in Figure 11.  The stack is not contiguous in

memory, but consists of several segments linked together to form a sequential "super-segment".

The topmost segment is owned by the stack object itself.  Each segment contains four instance

variables.  They are used to determine segment address ranges.  The following algorithm is used to

push/pop information:

1. When an object is pushed onto the stack, if the top segment overflows, a new one is

allocated.
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2. When an object is popped, if the top segment underflows, it is released (and subsequently

garbage collected).  If the previousSegment of the top segment is null, an error occurs.

The main drawback to this approach is the multiple pointer indirection required for each stack

access.

Stack

stackSegment
• • •

Segment Segment

startIndex

currentIndex
previousSegment

segmentSize

startIndex

currentIndex
previousSegment

segmentSize

Figure 11: Segmented Stack

The final approach, and the one implemented in the current Gödel system, is to dynamically

link stack objects (see Figure 12).  Each stack object contains a nextObject instance variable in

addition to application-dependent information.  As the stack grows, new stack objects are allocated

and linked within the stack.

Unfortunately, due to Gödel's heavy use of the run-time stack, it was found that a

considerable amount of time was being spent within the SMALLTALK-80 memory allocator and

garbage collector.  This reason for this is as follows: as a refutation proceeds, nondeterministic and

deterministic frames are allocated and pushed on the stack.  Each time a subgoal fails, the

interpreter must backtrack, freeing all frame objects from the stack top to the most recent backtrack

point.  This process requires a considerable number of objects to be allocated and subsequently

freed for garbage collection.

StackObject

nextObject

• • •Stack Top

Free Object Pool

StackObject

nextObject

• • •

.

.

.
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Figure 12: Linked Stack With Free Object Pool

Since object allocation and garbage collection are relatively expensive operations, the

following optimizations were performed:

1. For each query, preallocate an object pool for each stack object class.  In this case, pre-

allocate an object pool for deterministic frames, non-deterministic frames, and binding

environments.

2. When allocating a new stack object, extract an unused object from the object pool, if there are

no more objects in the pool, allocate more.

3. When freeing a stack object, do not release it for garbage collection, return it to the free object

pool.  Only after the average stack usage size has stabilized are the extra stack objects (from

the stack top to the object pool top; see Figure 12) freed for garbage collection.

The above implementation is necessary because access to the SMALLTALK-80 virtual

machine is restricted.  Ideally, each active process (query) would be associated with a set of stacks.

As with the SMALLTALK-80 virtual machine, these stack objects would be allocated in a special

stack zone.  Also, each stack object would come in two formats: standard object format and frame

format.  The frame format would be a highly optimized version of the standard frame object

format.  If an object tries to send a message to a frame format object (for example, the debugger), it

would be converted to standard object format and moved from the stack zone to object memory

transparent to the user [12].

In conclusion, several tradeoffs were considered when implementing Godel's run-time stack

structures: object count, object size, execution efficiency, and exploratory programming flexibility.

It was discovered that object pooling reduced the amount of memory allocation and garbage

collection, subsequently decreasing execution time.  Unfortunately, the linked object stack

introduced memory overheads.

In the end, the execution speed of Gödel is about 40% of the speed of the procedural stack-

based Waterloo UNIX PROLOG [13] on small benchmarking programs [14] such as concat, naive

reverse, queens, etc.

CONCLUSION

We have described an object-oriented inferencing engine for PROLOG in which each clause

object knows how to unify and execute itself.  We have shown how this distribution makes it easy

to support multiple queries in various states of execution and indicated how to extend PROLOG to

include new objects.  For example, arrays may be added by defining unification methods in an

Array class.
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In addition, we have shown how to support primitive clauses written in the implementation

language, SMALLTALK-80, thus creating a simple interface between PROLOG clauses and

SMALLTALK objects. This interface puts the entire SMALLTALK-80 class hierarchy in the hands

of PROLOG programmers.  Finally we have described the major efficiency problem with object-

oriented interpreters—object granularity—and we have provided a solution to this problem.
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