
This is a pre-print of a copyrighted article in Software-Practice and Experience, vol. 20, no. 5, May 1990.

LexAGen: An Interactive Incremental Scanner Generator

Duane Szafron
Randy Ng

Department of Computing Science, University of Alberta, Edmonton,
AB, T6G 2H1 CANADA

SUMMARY
This paper describes LexAGen, an interactive scanner generator which is the first component

of an interactive compiler generation environment.  LexAGen can generate fast scanners for
languages whose tokens can be specified by regular grammars.  However, LexAGen also supports
several context sensitive programming language constructs like nested comments and the
interaction between floating point numbers and the range operator in Modula-2.  In addition,
LexAGen includes a fast new algorithm for keyword identification.  However, the most important
and novel aspects of LexAGen are that it constructs scanners incrementally and that specifications
can be executed anytime for validation testing.

LexAGen specifications are expressed and entered interactively in a restricted BNF format
(no left recursion).  All syntactic errors and token conflicts are detected and reported immediately
as LexAGen incrementally constructs a deterministic finite automaton to represent the scanner.  At
any time, the user can test the scanner fragment which has been entered by supplying text to be
scanned.  Alternatively, the user can generate a C-code scanner from the automaton.  The generated
automaton uses a direct execution approach and is quite fast.

LexAGen is implemented in Smalltalk-80.  Its extensive use of interactive graphics makes it
very easy to use.  In addition, the object-oriented paradigm of Smalltalk-80 is the basis for the
incremental analysis, error detection scheme and an intermediate representation which can be easily
modified to generate scanners in other target languages like Pascal,  Modula-2 and Ada.

KEY WORDS:  Scanner Generation, Compiler Generation, Smalltalk-80,  Incremental, Interactive

INTRODUCTION

The scanning process is so well understood that scanners can be generated automatically

from token specifications.  Many scanner generators exist, especially as parts of compiler writing

systems, like the scanner generator Lex1 which can be used with the parser generator Yacc2 in

most UNIX systems.  Other representative scanner generators include GLA3 and Mkscan4.

There are three important facets to scanner generation: the ease of use of the scanner

generator, the generality of the scanner which can be generated and the speed of the generated

scanner.  Most current scanner generators are deficient in one of these facets.  For example, some

generators are capable of generating fast specialized lexical analyzers while others are capable of

generating slow but general ones.  Most have poor user interfaces and error reporting facilities.

This paper describes a new lexical-analyzer generator called LexAGen5 which alleviates these three

deficiencies.  LexAGen was developed as a stand-alone tool for general use, but it is especially

well suited for the recognition of common programming languages.  LexAGen is not a batch-

oriented generator in which a specification is translated into a lexical analyzer after the specification



LexAGen  2

is complete.  Instead, LexAGen incorporates the philosophy of integrated programming

environments which incrementally create software while reporting errors as they occur.

LexAGen uses its graphical user interface to guide this incremental process.  The user

specifies a lexical analyzer using restricted BNF productions (no left recursion), and LexAGen

incrementally implements this specification as a deterministic finite automaton.  At any time, the

user can modify and test the scanner or transform the internal representation into a stand alone C-

Code program.  The most important and original aspects of LexAGen are that it constructs

scanners incrementally and that specifications can be executed anytime for validation testing.

Finite automata (FA) serve as a good model for the scanning process where each input

character represents a transition and each state corresponds to a partial token.  Each FA is either

deterministic (DFA), in that there is at most one transition from a state for each input symbol or a

non-deterministic (NFA), in that more than one transition from a state can be labelled by the same

input symbol.  Although the same set of languages can be recognized by DFA and NFA, DFA are

typically faster than equivalent NFA, but they are much bigger.  LexAGen uses DFA since in most

applications speed of generated scanners is more important than size.

There are two general approaches that are taken when FA are used for lexical analysis.  They

are called interpretation, and direct execution.  In the interpretation approach, all transitions are

grouped together and represented by a single matrix, table[state, symbol], which is interpreted

during lexical analysis by a driving program.  In the direct execution approach, an FA is directly

implemented as a high-level language program where states are represented as different locations in

the code and transitions are represented by case statements.  There are two major advantages to this

approach.  Only the non-error entries in the transition table need to be programmed and enhanced

performance in terms of speed6, 7.  LexAGen uses direct execution.

TOKEN SPECIFICATION

In LexAGen, the user interactively edits BNF productions to specify the context free

constructs of a scanner.  However, special mechanisms are provided for specifying context-

sensitive constructs that are common in programming languages.

In BNF notation there are two kinds of symbols, terminal symbols which are strings of

characters, and non-terminal symbols which are symbols that represent a named string of non-

terminal symbols.  Non-terminal symbols are enclosed in angle brackets, <>, so they can be

differentiated from the terminal symbols.  Besides the angle brackets, two other meta-symbols are

used.  The vertical bar, |, is used to represent alternation and  ::= is used to define non-terminals

using productions.  For example, five productions can be used to define Modula-2 identifiers:



LexAGen  3

<identifier> ::= <letter> | <letter> <identifier body>
<identifier body> ::= <alphanumeric> | <alphanumeric> <identifier body>
<alphanumeric> ::= <letter> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<letter> ::= a | b .  .  .

The use of BNF notation does not overly restrict the expressive power of the lexical-analyzer

generator.  BNF offers a good notational framework for context-free grammars and since context-

free grammars are a superset of regular grammars, BNF is actually more general than regular

expressions.  In LexAGen however, the BNF productions are restricted in that recursive non-

terminals can only appear as the rightmost symbol in a production.  This means that the context-

free grammars are restricted to be right-linear and are therefore equivalent to regular grammars8.

The restriction of right linearity serves to eliminate cycles in the DFA representation of the

specification.  There are two reasons we have used BNF instead of regular expressions: BNF

clauses map more directly into the internal format we have used and we plan to design a parser

generator companion for LexAGen which uses BNF and we would like to maintain a common

notation between them.

When BNF is used to specify tokens, one additional pair of metacharacters is needed.  While

some non-terminals represent tokens, others are used to make the definitions more readable or to

give names to commonly occurring sub-expressions.  For example, the name digit may be used to

represent the set of characters from zero to nine, even though digits are not usually tokens. The

two types of non-terminals must be differentiated since the generated scanner must only return

tokens.  The metacharacters, << and >>, are used to identify those non-terminals that are tokens.

LexAGen has been designed to cope with the lexical structure of programming languages.

Unfortunately, neither restricted BNF notation nor regular expressions are capable of representing

all of the tokens which are commonly found in programming languages.  For this reason,

LexAGen supports three kinds of special tokens.

The first kind of special token is used to specify identifiers and keywords.  Although an

identifier is a general token which may be specified using BNF, keywords often have to satisfy the

specification for identifiers and yet must be differentiated as different tokens.  LexAGen provides a

special mechanism for specifying those identifiers which are keywords.

The second kind of special token is used to specify strings and comments.  Sometimes, it is

necessary to exclude some characters from the semantic value of a token.  For example, string

delimiters are not part of the string token.  Sometimes it is necessary to ignore some text altogether,

like a comment.  Although simple comments can be specified using restricted BNF notation, nested

comments cannot.  Since some programming languages allow nested comments, a special

mechanism must be used to specify them.  LexAGen allows both strings and nested comments to

be specified.  The key to recognizing nested comments is to keep track of the nesting level.



LexAGen  4

The third kind of special token is one in which simple look-ahead is required to resolve

ambiguity.  For example, the sequence ">=" may be interpreted either as a single token or as two

tokens, ">" and "=".  LexAGen, like most lexical-analyzer generators, resolves this ambiguity by

choosing the longest match to recognize the token ">=" in this example.  However in some other

cases this method is not appropriate or adequate.  In Modula-2 for instance, the sequence "123.."

would be recognized as the real constant, "123.", and the decimal constructor ".".  The correct

interpretation is the cardinal constant "123" and the range operator "..".  This problem has been

addressed and solved in the Alex scanner generator9.

In LexAGen, the user can force this the correct interpretation by attaching two character look-

ahead to the end of an alternative.  When the second look-ahead character is found, both look-

ahead characters are left in the input stream (as untouched) and the production's token value is

returned.  For example, the Modula-2 range operator problem can be solved using the production:

<cardinal> ::= <unsigned integer><..

where the metacharacter, <, has been used to indicate that the next two characters are the look-

ahead characters.  When the first dot is found, the next character is examined in the usual manner.

If it is a dot, then the look-ahead is successful and the first dot becomes the current character.  The

contents of the token buffer consist of the string "123", and the token value, CARDINAL, are

returned to the client application.  The next token found will then be the range operator "..".  This

mechanism is really a two-character look-ahead since both dots are examined in capturing the

token, "123", while the mechanism of longest match essentially involves one-character look-ahead.

LexAGen is currently restricted to a two-character look-ahead scheme since two-character

look-ahead is sufficient for most modern common programming constructs.  However, it is easy to

modify LexAGen to support an alternative fixed number of look-ahead characters.

THE ENVIRONMENT

The most important innovation in LexAGen is the assistance it provides to guide the user

through the process of design and testing.  This assistance is based on a graphical user interface,

and this section describes the special features of LexAGen which are based on that interface.  A

more complete description of the LexAGen environment appears in the LexAGen User's manual10.

LexAGen is the first component of an envisioned integrated compiler generation

environment.  Integrated programming environments are usually described as those that support

software creation, modification, execution, and debugging.  One goal of integrated programming

environments is to build tools that share a common internal representation of the underlying

software structure.  A second goal is to present a consistent user interface across tool boundaries.

However, there is a third goal which is just as important.  An integrated programming environment



LexAGen  5

should encapsulate the mechanisms used to implement the environment's functionality (not just the

internal structure) so that they can be re-used throughout different parts of the environment.  For

example, the same syntax checking mechanism can be used throughout the environment.

LexAGen accomplishes all three of these goals.

In general, graphical user interfaces can have many positive effects on programming

environments: error reduction, simplified incremental analysis and efficient debugging11.

LexAGen is unique in applying these benefits to scanner generators.  LexAGen is implemented in

Smalltalk-8012, and the user interface is based on the Smalltalk-80 interface.  The user interacts

with LexAGen using special windows, pop-up menus13, and dialog boxes.

The User Interface

The user interface uses windows to capture and display information and menus to capture

commands.  There are five main windows: the scanner window, the alternatives collector

(window), the state diagram window, the execution window and dialog boxes (entry windows).

In addition, there are several less frequently used windows which will not be described in this

paper.  Each window has one or more panes with context sensitive hierarchical pop-up menus.

The menus are context sensitive in two ways.  They are sensitive to which pane contains the cursor

when the menu pops up, but they are also sensitive to the current internal state represented by the

pane.  This allows LexAGen to display those menu operations that are applicable at a given time

for a given context and reduces the number of errors which the user can make.

The scanner window is divided into the left and right panes.  The names of non-terminals

appear in the left pane.  A non-terminal from the left pane can be highlighted by selecting it so that

its alternatives appear in the right pane.  Figure 1 shows the scanner window at some point during

the specification of a scanner for a language called Mini .

Figure 1 The LexAGen scanner window

Some non-terminals are tokens and others are not.  When the user declares that a non-

terminal to be a token, the single angle brackets in the left pane of the scanner window are replaced

by a pair of double angle brackets.  For example, <<identifier>> in figure 2 is a token while

<alphanumeric> is a non-terminal which is not a token.  Note that the user can also "un-declare" a

token at any time by choosing the appropriate menu command.  For each token, the user can also



LexAGen  6

specify a token number to be returned by the final lexical analyzer.  If no token number is assigned

by the user, then a unique default value is generated.

Each LexAGen command takes a fixed number of arguments.  If a command has several

fixed options then LexAGen presents a hierarchical menu with the appropriate options.  However,

if a command requires input from the user, LexAGen presents a dialog box requesting the

necessary input.  An alternatives window is used to enter production alternatives.  For example,

figure 2 shows the alternatives window which was used to enter the alternative, <letter> for the

non-terminal, <<identifier>> which is highlighted in figure 1.  The syntax error shown in figure 2

will be discussed later.

Figure 2 An alternatives window, showing a syntax error

LexAGen currently allows the user to designate one (and only one) production as the rule for

keywords.  Usually this production is the single production for identifiers.  After this production

has been chosen, the user can enter keywords which are lexically equivalent to identifiers.  Each

keyword entered is checked to ensure that it satisfies the rule but a unique token value is returned

for each keyword.  The new keyword identification algorithm described in the fifth section of this

paper is used for this.  On the other hand, keywords which are not lexically the same as identifiers

(like Algol's) can be specified as separate tokens.

To specify strings, the user choses a string specification command.  LexAGen then queries

the user for a string delimiter.  In addition, the user is queried as to which approach to use for

embedded string delimiters.  The user has a choice of doubling the delimiter or specifying an

escape character.  Note that the user can chose the string specification command more than once to

specify multiple string delimiters like the apostrophe and double quote of Modula-2.

  To specify comments, the user choses a comment command and is then asked for opening

and closing delimiters. The command can be chosen more than once to specify multiple comment

delimiter pairs like the pairs, {} and (* *), which are supported in many Pascal compilers.

Two-character look-ahead for an alternative is specified by choosing a command from the

right pane menu, and the look-ahead characters are entered in a dialog window.  The look-ahead

characters are then attached to the end of the alternative with the metacharacter, <, prefixing them.



LexAGen  7

Incrementality

The major goal of incremental analysis is to avoid re-analyzing an entire structure whenever

small changes are made to it.  The simplest approach to this problem is to determine the smallest

separate unit of incrementality.  In LexAGen, the smallest unit of incrementality is the production

alternative which is represented by a DFA.  In fact, the DFA is the single underlying internal

structure in LexAGen.  Each production and the scanner itself are also represented by DFA. When

the user adds an alternative to a production, syntactic analysis is performed to check for the

alternative's correctness and semantic analysis is performed to update the production and other

productions dependent on the production being re-defined.  The latter analysis is necessary to

ensure that all affected DFAs remain deterministic through updating.  Furthermore, if the affected

DFAs include the DFA representing the entire scanner, then the updating process must also ensure

the overall correctness of the scanner.

For example, a token becomes ambiguous if it will accept a string which is accepted by

another token.  Consider the non-terminals, A and C defined by:

<<A>> ::= ab | <B>b
<<C>> ::= cb

Note that both A and C are tokens.  Suppose that the user wants to define <B> ::= c.  Since A is

dependent on B, it is necessary to update the DFA representing A and check for the correctness of

the DFA representing the scanner with the new definition of B.  There is a conflict resulting from

the fact that when B is expanded in the definition of A, there are two tokens, A and C, which

match the ambiguous string, "cb".  This prohibits the token definition of B.

Graphical user interfaces have an immediate impact on the issue of incrementality in

programming environments.  They can simplify incremental analysis by requiring the user to enter

information in special dialog boxes.  As correct information is accepted, it can be transferred to

other windows which maintain a representation of correct structures.  Incorrect information can

simply be left in the entry windows until other changes result in its final correctness14.

For example, re-consider the previous token definitions of <<A>> and <<B>>, where the

addition of the alternative <B> ::= c would result in a token conflict between the two tokens, A and

C.  If this alternative was entered into the alternatives window, the incremental analysis would

result in an error report and the offending alternative would be left in the alternatives window

instead of being moved to the scanner window.  If the user discovered that the alternative for A

should have been: <B>a instead of <B>b and corrected this alternative, then the contents of the

alternatives window representing <B> ::= c could be accepted without having to be re-typed.

This approach helps the underlying environment cope with incorrect information easily, by

ensuring that a correct representation of the internal structure is always maintained.  An additional



LexAGen  8

advantage is that the user receives immediate feedback as to the correctness of a specification.  For

example, if a syntax error occurs when an alternative is being added, it is reported immediately as

shown in figure 2, and the alternative is not added to the scanner window.

Alert boxes are used to report static semantic errors whenever they occur as the result of

information entered in dialog boxes.  For example, figure 3 shows an alert box which reports a

semantic error when the user tries to add a non-terminal whose name is already used as a non-

terminal (appears in the left pane of the scanner window).

Figure 3 A static semantic error caused by information entered in a dialog box.

The only static semantic error which LexAGen allows is the use of undeclared non-terminals

in alternatives.  For example, the non-terminal, <binary digit>, may be used in an alternative, even

though the name, "binary digit", does not appear as a non-terminal in the left pane of the scanner

window.  This behavior has been allowed for user convenience.  In fact, declared and undeclared

references share the same internal representation, but they are kept separately.  Their existence does

not harm the process of incremental analysis, nor the final recognition of expressions.  At any time

the user may list the names of all non-terminals which have been used but not declared.

Debugging

Graphical interfaces can also have a significant impact on the run-time features of

programming environments, especially debugging (see reference 14).  Debugging consists of three

major activities: selection, viewing, and modification of the software's internal state.  Even though

LexAGen is a special-purpose programming environment, debugging is a necessary part of the

process of generating a scanner.  The graphical user interface is used to enhance the productivity of

the user and, therefore, speeds up the process of scanner generation.  This is especially true in the

situation where the scanner specification is not fixed or known as with the generation of scanners

for languages being designed.   However, even in the case of fixed specifications, LexAGen

eliminates the need for context switches between editing, compiling and executing and eliminates

the need to write driver programs.

In general, a mouse and a bit-mapped display can be used to select and edit arbitrary

programming structures.  In LexAGen, the user can select a DFA for viewing or executing by

chosing an alternative in the right pane of the browser or the definition of a non-terminal in the left

pane.  The DFA can either be viewed in a state diagram window or executed in an execution

window.  At present, LexAGen displays a textual representation as shown in the left box of figure



LexAGen  9

4, instead of a graphical one as shown in the right box.  Nevertheless, this display has proven to

be useful for software testing, especially during the development stages of LexAGen itself.

Figure 4 The state diagram for <identifier>, text format and graphical format

LexAGen currently prohibits the direct modification of the states and transitions of a

displayed DFA since the smallest unit of incrementality is a DFA alternative.  However, it may be

possible to relax this restriction by employing the graphics-mode display and extending the

smallest incremental unit from an alternative to arbitrary finite states internal to the DFA's structure.

If a DFA is selected and the DFA execution command is chosen, then an execution window

is presented.  After the user enters an input string into the top pane, the DFA is applied to the input

to produce output in the bottom pane as shown in figure 5.  Alternately, the DFA representing the

entire scanner can be executed.  That is, the scanner and its component parts (productions) can be

tested and edited incrementally without generating the scanner or leaving the environment!

  
Figure 5  Executing the DFA for <identifier>

IMPLEMENTATION

There were two specific design goals that influenced both the functionality of LexAGen and

its implementation.  The first goal was to design an integrated software environment.  The second

goal was to represent a specification by a general, uniform, and incrementally editable data

structure which could be translated in a straightforward manner to a compact, efficient scanner.



LexAGen  10

The first design goal was realized by basing LexAGen on the Smalltalk-80 environment and

user interface paradigm.  The second design goal was realized by using DFAs to represent the

specification, implementing the DFAs in Smalltalk-80 and generating a C-code scanner.

The Influence of Smalltalk

Since LexAGen is implemented in Smalltalk-80, it is necessary to understand something

about the Smalltalk-80 environment and language in order to understand the implementation of

LexAGen.  The most profound influence that Smalltalk-80 had on the LexAGen environment came

from the structure of the Smalltalk-80 user interface.  This structure is referred to as the model-

view-controller (MVC) paradigm15.  Although a Smalltalk-80 user is not strictly forced to use this

scheme, the support provided makes user interface construction relatively straightforward.

As the terminology suggests, each component of the user interface is divided into three parts.

The first part is the model which represents the application in the traditional scheme of UIMS (User

Interface Management Systems).  The model contains all of the application dependent information

and code.  The view and controller compose what is traditionally referred to as the user interface.

The view component is responsible for displaying information on the screen.  The controller is

responsible for accepting user input including: the display of pop-up menus, cursor tracking, and

the mapping of user inputs into messages for the application.

The two-pane scanner window shown in figure 1 is an example of the application of the

MVC paradigm in LexAGen.  The model, AutomataBrowser, is a data structure which contains

production information.  There is one view for each pane where the left view displays production

names and the right view displays production alternatives.  The controller displays the context-

sensitive menus by querying the browser for information about the selected structures.  It also

translates menu selections into messages to the model, some of which result in the manipulation of

individual productions.

Smalltalk-80 is an object-oriented language16.  An object is an abstract entity that consists of

two parts: its state and its behavior (the set of messages to which it can respond).  The state of an

object is represented by instance variables whose values are other objects.  Behavior is specified

using the concept of classes.  That is, every object is an instance of a class and the behavior of the

object is determined by that class.  Finally, Smalltalk-80 organizes its classes using a tree-

structured inheritance mechanism, where classes inherit behavior from their parent classes.

Classed objects which inherit behavior have been used throughout LexAGen.  Although

objects are used for the user interface and code generation, the most important classes are those

representing DFAs.  Instances of automata are used to represent components of scanner

specifications.  Incremental editing of DFAs is achieved by defining a set of operations which are



LexAGen  11

implemented as messages.  Although the DFAs represent components of the specification, they

also represent the scanner as well since in the end, they are used to generate C-code.

In LexAGen, there are three levels of data representation.  The first level represents the user

interface.  The second level represents the scanner specification and ultimately the scanner itself.

Finally, the third level is responsible for code generation.

The Automata Browser

Recall that the AutomataBrowser is the model component from the MVC paradigm.  This

browser is the link between the user and the internal representation of the scanner specification.  It

stores information in a number of internal tables as well as a single "grand" automaton which

represents the complete scanner.  Two of the tables are used for the user interface (one for the each

pane) and the other auxiliary tables are used to represent properties of the scanner.

The left pane table is essentially a symbol table implemented as a Smalltalk-80 Dictionary (see

reference 12 for the definition of a Dictionary).  It maintains all information associated with user-

defined production names.  Each key is a production name and each value is a named automaton

representing all the alternatives for that name.  The view for the left pane of the browser simply

displays the keys of the table.

The right pane table is basically a memory cache implemented as a dictionary, where each key

is a literal expression representing the right hand side of a single alternative and each value is a

simple automaton representing that alternative.  Whenever a name is selected in the left pane, the

browser consults the corresponding production for all of its alternatives and records all information

about the alternatives (i.e.  literal and internal forms) in this table.  Whenever a literal expression is

selected in the right pane, this memory cache table is used to access the corresponding automaton.

For example, if the name <A> had an alternative b<B>, then the literal "b<B>" would be a key in

the memory cache table and its value would be the automaton representing b<B>.  Alternately, the

browser could consult the selected production for the alternatives each time the user makes a

selection in the right pane of the browser.  However, due to the high frequency of activities in the

right pane, the increased look-up speed is worth the extra space taken by the memory cache.

One of the auxiliary tables is used to record the names of undeclared productions.  That is, it

records non-terminals which have been referenced in productions but do not appear in the left

pane.  The second auxiliary table is a dictionary used to store information about the values to be

returned upon successful recognition of tokens.  The keys are token names and the values are the

numeric token values to be returned by the generated scanner.

The final two auxiliary tables serve as specification libraries.  The first library contains a

collection of productions that are commonly used in programming languages.  Some examples are:



LexAGen  12

<digit>, <lowercase letter>, <uppercase letter>, <letter>, and <white space>.  This library is read-

only, and it provides a quick access to common productions that require extensive enumerations.

The second library is a save area for user-defined productions which are general enough that they

may be used in more than one scanner.  Both of these libraries are implemented as dictionaries with

the same structure as the production-name symbol table described previously.

Finally, the browser stores information about the generated scanner in the form of a single

grand automaton and maintains a number of special data structures which are used in this scanner.

As mentioned previously, LexAGen has incorporated certain special programming language

constructs.  Specifically, the following information is maintained: the production which defines

identifiers, the set of keywords, comment delimiters, and string delimiters.

The Scanner

The second level of representation uses a collection of specialized classes to implement DFAs

to represent scanner productions.  There are two classes: Automata and AutomataState, along with

subclasses of these classes (NamedAutomata and LookaheadState respectively).  Each instance of

the class Automata denotes a DFA that can represent  a single alternative of a production or the

entire scanner.  Each automaton has two instance variables: lexics and startState.  The variable,

lexics, is a string referring to the literal form of the underlying automaton.  The instance variable,

startState, contains an instance of AutomataState.

Instances of the class NamedAutomata are used to represent complete productions that are

named.  That is, an instance of NamedAutomata is a structured object which contains many

individual automata as alternatives.  Instances of NamedAutomata contain four additional instance

variables: subAutomata, dependents, priority, and selfReferenced.  The most important instance

variable is subAutomata, which is a collection of all alternative automata making up the named

automaton.  Note that the inherited instance variable, startState, has as its value the start state of a

single automaton, which represents the alternation of all of the sub-automata.

An instance of the class AutomataState represents a single state in a deterministic finite

automaton and has two instance variables: transitionsTable and tokenValue.  The instance variable,

transitionsTable, is a dictionary of transitions leading out of the state.  The keys of the dictionary

are the labels of the directed arcs in the transition diagram and the values are the states to which

these transitions lead.

The second instance variable, tokenValue, contains the value of the token which is returned

by the generated scanner when the next input character does not correspond to a legal transition or

when there is no more input.  If the state is not an accepting state, then the tokenValue is the

Smalltalk constant, nil.



LexAGen  13

A subclass of AutomataState called, LookaheadState, is used to implement the two-character

look-ahead.  The behavior of this state differs from the class AutomataState in that an input

character is examined without being read, and the previously read character is re-inserted into the

input stream.

In LexAGen, DFA construction consists of two operations: concatenation and alternation.

Concatenation is a straightforward operation which is performed on the components of each single

alternative.  As an example of concatenation, consider the addition of the alternative, "abc" to a

production.  A start state and three other states with transitions representing the symbols, a, b, and

c, are concatenated to form the topmost automaton shown in figure 6.

Concatenation of a single alternative is invoked by the browser iteratively after checking for

input correctness.  The browser parses the input expression into a sequence of syntactically correct

labels, either terminals (single-character symbols like a and b) or non-terminals (like <letter> and

<digit>).  If a syntax error is found, then it is reported immediately.  For example, the string

"ab<C" contains a syntax error.  If a string is syntactically correct, then a start state is created as the

current state.  For each label, a new state is created and the current state is connected to the new

state using the label as the transition.

Alternation is the process of combining alternatives, and it is the core of the construction

process.  The alternation operation merges two DFAs and optimizes the resulting DFA to collapse

common states.  Usually, one DFA is a production and the other is a new alternative.  First, the

start states of the two DFAs are merged.  Then, the transitions from the start state of the second

DFA are added to the start state of the first DFA.  If there were transitions whose labels were

common to the start states of the two DFAs, then these states must be merged as well and this

process continues until the two DFAs have been merged.  After merging, the result is optimized.

For example, consider the production A which has been defined as <A> ::= abc.  Suppose

the user wants to define an alternative for A which is the expression "aad".  After the alternative

has been converted into a DFA, it is merged with the DFA of the production.  A successful

merging results in a new start state of the production's DFA, while leaving the start state of the

alternative's DFA unchanged.  Figure 6 shows the two DFAs, the merged result and the result of

optimizing the merged DFA.  Since the start states of both DFAs contained a transition on the

common terminal "a", the two states with input "a" were merged.  Since the labels of the

transitions leaving this newly merged state were "a" and "b", the next two states were not merged.

Finally, since the merged DFA contained two identical states (two accepting states with token value

A and no transitions), the optimizer merged these two states.



LexAGen  14

Start  a  c    b
<A> ::= abc

Start  a da
aad

Start  a

 c   
 b

d
a

<A> ::= abc | aad

Start  a
 c    b

a d

<A> ::= abc | aad
optimized

Figure 6 Alternation through merging

When the two DFAs being merged consist only of terminals, the merging operation is quite

simple.  However if some of the transitions are non-terminals, it is possible that some of the non-

terminals may need to be expanded to prevent the merging process from resulting in an NFA.  For

example, consider the productions <A> ::= ca and <B> ::= cb.  If the alternative <A> ::= <B>d is

added to production <A> without expanding it, then the NFA shown in figure 7 results.

Start c  b
<B> ::= cb

Start
c

<B>

a

d

<A> ::= ca | <B>d

Figure 7 An NFA due to non-expansion of a non-terminal in a merge

This automaton is non-deterministic since the start state of the merged automaton has

transitions on c and <B>, but <B> has c as its first transition.  However, if the non-terminal, <B>,

is expanded during the merge, then the resulting automaton is the DFA shown in  figure 8.

Start c d b <A> ::= ca | <B>d 
where <B> ::= cb

a

Figure 8 A merge where a non-terminal must be expanded

On the other hand, not all of the non-terminals should be expanded when merging automata,

since the expansions reduce the efficiency of editing.  For example, consider the production <A>

::= <B>a, where the production <B> is a complex automaton with many alternatives.  If <A> was



LexAGen  15

stored in expanded form, then any change to <B> would have to be re-created in <A>.  Therefore,

in LexAGen, non-terminals are only expanded when necessary.

There is one other consideration when merging two DFAs.  If two DFA states represent

accepting states but have different token values, they cannot be merged.  The interface ensures that

different alternatives for the same production share a common token value.  That is, if the user

wants to add an alternative to a production whose name is A, then the token value of A is

automatically used for the accepting state generated by the alternative.  However, the scanner itself

is represented by a DFA, and can contain accepting states with different token values, like integers

and identifiers.  When merging two states in the grand automaton, conflicts must be prevented.

For example, consider a production <A> ::= ca with a token value of A and a production

<B> ::= cb with a token value of B.  If the user tries to add the alternative, <B> ::= ca, then there is

no problem in merging the two alternatives for <B>.  However, the grand automaton would

contain two conflicting states since the string "ca" would be accepted with two token values, A and

B.  LexAGen detects conflicts during the merging process when the grand automaton is updated as

the result of an editing process.  If a potential conflict exists, then an error is reported to the user

and the editing operation is disallowed.

Based on these considerations, algorithm Merge is used for merging the states of two DFAs.

The set FIRST(X) is defined17 as the set of terminals that begin strings which are derived from X.

Algorithm Merge

Given two states, S1 and S2:
(1) If S1 and S2 have different token values, then a conflict would exist and so an error is 
reported.  Otherwise, apply step (2).
(2) Add all the transitions of S2 to S1, one at a time, according to:

Let T be a transition of S2 consisting of a label, L (terminal or non-terminal), and a state, S.
(a) If S1 contains L, then merge S with the state in S1 connected to L.
(b) If S1 contains a label, M (terminal or non-terminal), such that

FIRST(M) ∩ FIRST(L) ≠ φ
then:

(i) If M is a dependent of L (i.e.  M is defined in terms of L), then expand M in S1 and 
try to add T to S1 again.

(ii) Otherwise, create a new state, R (so that S2 is not affected), and add T to R.
Then expand L in R and merge R with S1.

(c) Otherwise add T to S1 since S1 does not contain L either explicitly or implicitly in a
non-terminal.

The Strategy for Incremental Analysis

In LexAGen, incremental analysis is the process by which affected DFAs are updated after

changes have been made to the specification.  Specifically, incremental analysis involves re-

analysis of all dependent DFAs when some DFA is changed.  For example, suppose that the non-



LexAGen  16

terminal, A, is defined in terms of the non-terminals, B, C, and D, where B and C have been

defined in terms of the non-terminal, D.  If the user tries to add an alternative to D, all the

productions that depend on it directly or indirectly (A, B and C) must be updated.  Figure 9 shows

the dependency graph for A, B, C, and D.  In addition, if at any point an update would result in a

conflict in the grand automaton for the scanner, then LexAGen would disallow the addition of the

alternative to D and report an error.  Cycles will not exist in the dependency graph used for

updating DFAs since left-recursion is disallowed in the BNF.

A

D

B C

Figure 9 A dependency graph for automata

The implementation of incremental analysis is based on dependencies in Smalltalk-80, where

objects can be made dependent of other objects.  When an object changes, it sends itself a

"changed" message which causes "update" messages to be broadcast to all of its dependents.

Since dependents may have dependents, a graph structure of "update" messages exists.

It is possible for an object to receive many "update" messages.  For example, consider the

situation of figure 9.  If node D changes, then it will send "update" messages to A, B, and C.

Nodes B and C will subsequently send two more "update" messages to their dependent, A.  As a

result, A receives three such messages.  Such redundant dependencies are common in scanner

specifications and can result in slow updating.  To solve this problem, LexAGen replaces the

standard dependency graph by an ordered dependency graph.

LexAGen uses a two-pass approach to implement the ordering of the dependency graph.

Each named DFA maintains an internal priority flag which is initialized to negative one.  A changed

DFA sets its internal priority flag to zero and then broadcasts a "pre-update" message to all of its

dependents.  This "pre-update" message contains a priority parameter which is one greater than the

internal priority flag of the sending DFA.  When a DFA receives a "pre-update" message, it

compares its internal priority flag to the priority parameter.  If the priority parameter is higher, then

it resets its internal priority flag to the value of the priority parameter and broadcasts a "pre-update"

message to its dependents with a priority parameter equal to its internal priority flag plus one.

This algorithm orders the dependency graph by assigning to each node, a priority value equal

to its level in the graph.  For example, in the case of the DFAs shown in Figure 9, the priorities

would be: zero for D, one for C, one for B, and two for A.  That is, every DFA has a priority flag

whose value is greater than the values of the priority flags of all of the DFAs on which it depends.



LexAGen  17

Once the first pass has been completed, the DFAs are updated in a breadth-first order.  That

is, the root DFA broadcasts an "update" message which asks its dependents to update themselves

from lowest to highest priority count.  The root DFA broadcasts an "update" message with priority

one.  All dependents with internal priority flag values of one, update themselves and broadcast an

"update" message with priority two and so on.  Notice that each dependent is only updated once

and that the update occurs after all of the productions on which it depends.

The Code Generator

The third level of representation is the code generator.  When the user requests code for a

specification, LexAGen expands the scanner DFA and translates it into intermediate code.  The

intermediate code is then translated into the target language.  For example, figure 10 shows the un-

expanded transition diagrams for DFAs A and B, where A is defined as <A> ::= a | a<A> | <B>d

and B is defined as <B> ::= b | bc, as well as the expanded form of the DFA for A.

Start b c <B> ::= b | bc

Start
a

<B> d

<A>
<A> ::= a | a<A> | <B>d

Start a

c
b

b

d

d
<A> expanded

a

Figure 10 The expansion of a DFA

The code generator is implemented by the class AutomataCode and its nine subclasses:

AutomataAdvance, AutomataBreak, AutomataBackup, AutomataCase, AutomataDefault,

AutomataGoTo, AutomataLabel, AutomataSwitch and AutomataToken.  Instances of the class

AutomataCode have one instance variable, operations, which represents a stack of operations to be

performed.  Each subclass represents a single kind of operation to be translated into the target

language.  Instances of these subclasses represent the intermediate code.

Currently the target language is C, but other languages can be supported easily.  This can be

done by changing the behavior of the subclasses which represent the intermediate code, so that

they are translated into a different target language.  The generated code is composed of nested case

statements which resemble the exact structure of the automaton being generated.  Figure 11 shows

part of the executable C-code program produced by the coder for the automaton of Figure 10.



LexAGen  18

switch (*p) { /* examine current character */
case 'a' :

LABEL0:
switch (*++p) { /* examine next character */

case 'a' :
goto LABEL0;

case 'b' :
switch (*++p) { /* examine next character*/

case 'c' :
switch (*++p) { /* examine next character */

case 'd' :
++p; /* advance to next character */
return(A); /* accept token */

} --p; break; /* backup by one character */
{* code removed for brevity *}
default : ++p; /* advance to next character */

}
return(NIL); /* accept no token */

Figure 11 Excerpt of generated C-code

In fact, the coder generates a complete module for this program with its own program

interface, where the name is given by the user.  In addition, the coder produces a file of token

values as an include file which may be used by other application programs (for instance, a parser).

A library that incorporates a specialized buffering technique for reading input characters and

maintains a token buffer to store the token characters is also provided.

KEYWORD IDENTIFICATION

Keyword identification is the process of searching a list of pre-defined keywords to

determine if a general identifier is really a language keyword.  LexAGen generates a scanner which

distinguishes keywords from general identifiers.  Given the set of keywords for a language, a data

structure called a pruned O-trie forest is constructed.  The forest is used to generate code which

identifies the keywords for that specific language.  LexAGen uses this approach to produce

keyword identification code for the last phase of its generated scanners.

The Trie-Based Method

A trie-based method, generally speaking, is an indexing scheme that views an alphabetic key

as composed of a sequence of characters.  In essence, a trie-based method closely resembles a key-

comparison based method or a B-tree search scheme18.  However, trie-based methods do not rely

on the notion of comparing whole keys in constant time.  As a consequence, comparison of keys is

no longer the elementary operation for standard measures of complexity.

The k-ary tree structure created by successively dividing keys into smaller sets using different

attributes is called a trie (pronounced as try)19, 20.  Given a set of data items, where k is the

maximum of the lengths of the data items, a full trie is a tree of depth no more than k such that all



LexAGen  19

paths from the root to the leaves are distinct and there is a unique path from the root to each leaf

node corresponding to an item in the set.

A full trie for the Ada reserved words, delay, delta, end, and entry is shown in figure 12.  A

pruned trie is a full trie with no redundant non-leaf nodes along any leaf chain.  Redundant non-

leaf nodes are those consecutive single-successor nodes that lead to a leaf.  The left sub-figure in

figure 12 is not a pruned trie while the middle sub-figure is  pruned.

1

2

3

4

5 5

2

3

4

5

d e

ne

tdl

a t

y a

r

y

delay delta entry

end

1

2

3

4

2

3

d e

ne

tdl

a t

delay delta

entryend

1

4 3

d e

tda t

delay delta entryend

Figure 12 A full trie, a pruned trie and a pruned O-trie

A pruned O-trie is a generalization of a pruned trie where different paths from the root may

use different attributes.  The right sub-figure in figure 12 shows a pruned O-trie in which the path

from the root to the leaf labeled "delay" uses character positions 1 and 4, while the path from the

root to the leaf labeled "end" uses character positions 1 and 3.

In the LexAGen environment, the length-of-key attribute is used to divide the keys into sets

of equal lengths and then character positions are used for the rest of the attributes.  To increase

efficiency, different paths use different positions.  To support this algorithm, a pruned O-trie forest

is defined as a collection of pruned O-tries with the property that each pruned O-trie represents a

subset of equal-length data items.

For example, consider the following reserved words from Ada: delay, delta, entry, if, in, of,

raise, range.  These keys can be divided into two subsets, consisting of keys of length two and

keys of length five.  As shown in figure 13, length-two keys using the attributes "character

position one" and then "character position two" produce a pruned O-trie.  The pruned O-trie

composed of length-five keys uses the attributes "character position one" and then either "character

position three" or "character position four", depending on the path chosen.



LexAGen  20

1

2

i o

f n

if in

of

1

4 3

d r

nia t

delay delta rangeraise

Figure 13 A pruned O-trie forest

Instead of testing all characters or attributes in a string, the search follows along a pruned

chain that leads to a leaf node21.  An additional string comparison is then done to verify that the

string matches the contents of the leaf node.  Notice that in the example of figure 13  a tree of

smaller depth (depth one) could have been constructed for the keywords of length five if "character

position four" had been used instead of "character position one".  The heuristic algorithm presented

in this paper finds a tree of minimal depth and this algorithm is incorporated into LexAGen.

Looking for an identifier in a pruned O-trie forest consists of identifying the pruned O-trie

corresponding to the length of the identifier and searching the trie on a path from the root to a leaf.

If it is assumed that the correct pruned O-trie can be located in the forest in constant time (say,

using a jump table implementation of a case), then it is straightforward to show that the worst-case

searching time for a pruned O-trie forest is of the order of the maximum length of the

keywords(see reference 5).

Trie Index Construction

A branch-and-bound algorithm has been devised to construct a pruned O-trie forest for an

arbitrary collection of keywords.  The algorithm is used as the last phase of lexical analysis.  Since

the trie-index construction problem is NP-complete (see reference 23), the algorithm may take

exponential time to return a minimal-depth pruned O-trie forest.  If it is assumed that the

probabilities of all keywords are equal, then the probabilities of all leaf nodes in the forest are equal

so that this algorithm yields an optimal forest which generates the most efficient search.  The cost

of a pruned O-trie is defined as the sum of the depths of each of its leaves.

Algorithm O-Trie Construction

(1) Split the set of keywords into subsets of equal-length data items.

(2) For each of these subsets, apply step (3) with depth equal to 1.

(3) Given a set of n, m-length data items at depth d, create a decision table with m entries
corresponding to the characters in positions 1 to m.  The decision-table entry at location i is a
dictionary whose keys are all of the ith characters from all of the n data items.  The value of each
key at location i is the subset of data items which contain the key character at location i.  If the



LexAGen  21

number of entries in any one dictionary is equal to n, then return to the calling step with a three-
component record containing: the value of i, a cost which is the product of n and d, and the
ith dictionary.  Otherwise, go on to steps (4) and (5), and return the results to the calling step.

(4) From the decision table, create two control stacks, A and E, which store records of the
form defined in (3), where the cost is either an actual minimum cost or an expected minimum cost.
Both stacks are sorted by cost in ascending order (i.e.  the top-of-stack record corresponds to the
pruned O-trie with the least cost value among all the tries in the stack).  The cost of the ith
dictionary is defined to be the sum of the individual costs associated with the data items in its value
sets.  If the size of a value set is equal to one, then its cost is equal to the depth, d; otherwise, its
cost is equal to the product of its size and (d + 1).  If the size of any value sets is greater than two,
then the cost is an expected minimum cost; otherwise, the cost is an actual minimum cost.  Records
which contain actual costs are pushed onto the A stack, and records which contain expected costs
are pushed onto the E stack.  As the algorithm proceeds and expected costs are refined into actual
costs, the E stack will shrink and the A stack will grow.  Go to step (5).

(5) (a) If (Stack E is empty) or (Stack A is non-empty and the top-of-stack record in Stack A
has a cost which is less than the cost in the top-of-stack record in Stack E), then return the top-of-
stack record from A to step (3).

(b) Otherwise, pop Stack E, and replace its cost and dictionary components using (6).
Push the resulting record onto the A stack since the cost will now be actual.  Repeat step (5).

(6) Reset the cost component of the current record to zero.  Apply step (3) to each value set of
the current record whose cardinality is greater than one using a depth of d + 1.  Remove the cost
component of the record returned by step (3) and add it to the cost component of the current
record.  Replace all value sets of size greater than one in the current record by the record returned
by step (3) with the cost component removed.  However, add d to the cost component of the
current record for each value set of size one.  Return the modified record to step (5).

Example O-trie Construction

Consider a language, H which contains the keywords: {and, end, mod, eot, any}.

Steps (1) and (2) identify the set { and, end, mod, eot, any } and assign (d = 1).

Step (3) produces a decision table with (n = 5, m = 3, d = 1):
<i=1, [(a, {and, any}), (e, {end, eot}), (m, {mod})]>
<i=2, [(n, {and, any, end}), (o, {eot, mod})]>
<i=3, [(d, {and, end, mod}), (t, {eot}), (y, {any})]>
Since none of the dictionaries contains a five-element value set, go on to step (4).

Step (4) creates two control stacks.  The A stack contains one record with contents:
<i=1, C=2*2+2*2+1=9, [(a, {and, any}), (e, {end, eot}), (m, {mod})]>
The E stack contains two records with contents:
<i=3, C=3*2+1+1=8, [(d, {and, end, mod}), (t, {eot}), (y, {any})]>
<i=2, C=3*2+2*2=10, [(n, {and, any, end}), (o, {eot, mod})]>
Go on to step (5).

In step (5), condition (a) does not apply since the top-of-stack record for Stack A has cost 9 and
the top-of-stack record for Stack E has cost 8; so use condition (b) and call step (6).



LexAGen  22

In step (6), reset the cost component of the current record to zero:
<i=3, C=0, [(d, {and, end, mod}), (t, {eot}), (y, {any})]>
The current record contains one value set of size greater than one: {and, end, mod}.  So, apply
step (3) to this set with a depth of 1 + 1 = 2.  The record for this set returned by step (3) is:
<i=1, C=3*2=6, [(a, {and}), (e, {end}), (m, {mod})]>
Remove the cost component from the above record and add to the cost component of the current
record; also, replace the value set by the record returned by step (3) with the cost component
removed:
<i=3, C=6, [(d, <i=1, [(a, {and}), (e, {end}), (m, {mod})]>), (e, {eot}), (y, {any})]>.
The current record contains two value sets of size one: {eot} and {any}.  So, add 2*1 = 2 to the
cost component of the current record and return the modified record to step (5)

Returning to step (5) we have:
<i=3, C=8, [(d, <i=1, [(a, {and}), (e, {end}), (m, {mod})]>), (e, {eot}), (y, {any})]>.
Therefore, Stack A contains the records:
<i=3, C=8, [(d, <i=1, [(a, {and}), (e, {end}), (m, {mod})]>), (e, {eot}), (y, {any})]>.
<i=1, C=9, [(a, {and, any}), (e, {end, eot}), (m, {mod})]>
The E stack contains one record with contents:
<i=2, C=10, [(n, {and, any, end}), (o, {eot, mod})]>
Now, condition (a) applies since the top-of-stack record for Stack A has cost 8 and the top-of-stack
record for Stack E has cost 10; so return the top-of-stack record from A to step (3).

Since the record:
<i=3, C=8, [(d, <i=1, [(a, {and}), (e, {end}), (m, {mod})]>), (e, {eot}), (y, {any})]>,
was returned to step (3), this record is also returned as the result of step (3).

That is, the O-trie for length three keywords is created by first considering the third character

to divide the keywords into three sets: {and, end, mod}, {eot} and {any} and the first set is

further subdivided by considering the first character as shown in figure 14.

1

4

t y
d

a em

and end mod

eot any

Figure 14 An O-trie produced by Algorithm O-trie Construct

The LexAGen environment produces C code which implements the optimal pruned O-trie

forest produced by the algorithm.  Each non-leaf node is represented by a case statement of

character labels, where the labels are those characters which identify the branches in the trie.  Leaf

nodes are represented by case statements which correspond to those character labels not previously

appearing in the non-leaf nodes along any leaf chain.

In theory, the access time of the minimal-depth pruned O-trie forest is independent of the

number of keywords and depends linearly on the maximum length of the keywords.  In practice,



LexAGen  23

the average depth of a minimal-depth pruned O-trie forest is considerably smaller than the

maximum length of the keywords, especially given a large length, and the depth is usually one or

two as shown in figure 15.

Pascal Modula-2 Ada
length size depth size depth size depth
2 6 2 7 2 7 2
3 9 2 8 1 12 2
4 7 2 8 1 12 2
5 6 1 6 1 10 2
6 4 1 6 2 8 2
7 2 1 1 0 8 2
8 1 0 - - 3 1
9 1 0 2 1 3 1
10, 11, 12, 14 - - 1 0 - -

Figure 15 Keyword O-trie characteristics for common languages

AN ASSESMENT OF LEXAGEN

For the sake of efficiency, lexical analyzers for production compilers are often hand-coded.

However, lexical-analyzer generators can produce efficient scanners (see references 9 and 17).  In

addition, generated scanners have certain advantages.  Generated scanners can be produced quickly

and easily.  For example, although scanner generators utilize the best pattern-matching algorithms,

the individual who uses one, needs to know nothing about pattern matching.  Automatically

generated scanners also have fewer programming bugs.  Furthermore, the lexical description used

to produce a generated scanner is not only a specification, but also serves as valuable

documentation for the generated lexical analyzer.

The most important criteria in evaluating scanners is usually speed of execution and to some

extent code size.  However, two other criteria should also be considered: the generality of scanners

which can be produced and the user interface of the generator.  Of course, the relative weights

which are placed on these criteria must depend on the user and the application.  The generation of a

scanner for a prototype language which is under development is a different process than the

generation of a production scanner for a stable language.  Generality and ease of use are far more

important in the first case than in the second.  Unfortunately, these three criteria are usually in

competition.  That is, speed is gained by restricting generality and ease of use or generality is

maintained at the expense of speed.

In this section LexAGen is assessed by comparing it to three other scanner generators: Lex

(see reference 1), GLA (see reference 3) and Mkscan (see reference 4).  Although many other

scanner generators are in use today, these three generators are a representative cross-section.  They

are compared on the basis of: execution speed (and code size), generality and ease of use.  Figure



LexAGen  24

16 contains a summary of the results of this section, ordered by speed which is usually the most

important criteria.

Name Speed Generality Ease of Use
GLA ++ - -
LexAGen + + ++
Mkscan + - +
Lex - ++ -

Figure 16 A summary of four scanner generators

Scanner Execution Speed

As far as relative sizes and speeds of generated scanners are concerned, LexAGen has

achieved its goal to produce general and efficient scanners.  In an experiment, four scanners for

Pascal were created using LexAGen, GLA, Mkscan, and Lex.  The four scanners were compiled

on a SUN 2/50 under the 4.2BSD UNIX system.  When compiled, the object code sizes for the

four scanners were 9.07K, 24.98K, 4.68K, and 10.74K bytes, respectively.

The large size of the GLA-generated scanner is attributed to the existence of the supporting

modules.  It should also be noted that both LexAGen and Lex include the keyword identification

algorithm mentioned in section 6 as part of the generated scanners, and this accounts for the extra

size when compared to the Mkscan scanner which uses a hashing technique to distinguish

keywords from identifiers.  The Lex scanner was constructed in such a way that all keywords are

recognized as identifiers and handled separately by the module for keyword identification.

Scanner timings were obtained by tokenizing one large Standard Pascal program (see

reference 5 for the characteristics of the input data).  All tests were made under the 4.2BSD UNIX

system on the same machine where the scanners were compiled.  Each test was run 10 times, and

the mean of these samples was used.  The time was the sum of the total amount of time spent

executing in user mode and system mode (executing system calls for the scanners).

GLA generated the fastest scanner.  The ratios of the speeds of the other generated scanners

to the speed of the GLA scanner are: 1.04 (LexAGen), 1.10 (Mkscan), and 2.69 (Lex).  Of course

different results occur if different input characteristics are used, but these results are representative.

Generality

Superficially, the generality of LexAGen and Lex are identical in that they both support the

full set of regular languages.  However, their support for context sensitive language features differ

slightly.  Lex has multiple character look-ahead while LexAGen has only two character look-

ahead.  On the other hand, LexAGen directly supports nested comments while Lex does not.



LexAGen  25

The generality difference between LexAGen and Lex are insignificant compared to the

generality differences between these two generators and the other two.  Neither GLA nor Mkscan

support the full set of regular languages.

GLA has obtained its increase speed by imposing constraints on the allowable symbol sets

for its specifications.  Unfortunately, GLA is too restrictive to specify several of the tokens in

standard programming languages.  For example, consider floating numbers.  GLA allows the user

some freedom in specifying a floating point number (the initial character set, the continuation

character set, and so on).  Surprisingly however, GLA does not provide enough freedom to

correctly specify floating point numbers in Pascal or Modula-2.  GLA requires that the decimal

point for floating numbers be preceded by an initial or continuation character and that it be followed

by a continuation character.

For example, GLA does not allow the user to specify that "12e5" is a legal Pascal floating

point number.  In addition, GLA requires that "12.12e" is a legal floating point number in all

languages, if the character 'e' has been designated as the exponent character.  But this is not a legal

floating point number in Pascal or Modula-2.  Finally, GLA is incapable of specifying that "12." is

a legal floating point number, even though this is the case in Modula-2.

As a second example, GLA does not allow C-style hexadecimal constants like "0x123" to be

specified.  As a third example, GLA does not support the nested comments in Modula-2.  Even

though GLA could be modified to support all of the tokens in all existing programming languages,

there is nothing to prevent future languages from using reasonable constructs which GLA could

not support.  The problem is that a scanner generator needs a mechanism for specifying general

tokens.

Mkscan guides the user through a series of choices in an interactive manner.  However, this

interactive style was developed by sacrificing generality.  In particular, Mkscan classifies tokens

according to their common use in programming languages and groups them into four categories:

identifiers, keywords, constants, and special symbols.

Mkscan was designed to produce scanners for programming languages and seems especially

biased towards the family of Pascal-like languages.  However, nested comments are not

supported, so a correct Modula-2 scanner cannot be generated.

Ease of Use

There are two important factors regarding ease of use: the specification language and the

interaction style.  In all four scanners the specification language is quite complex since the

specification of a scanner is a non-trivial exercise.  Therefore, the differences are slight and there

are some problems with each.



LexAGen  26

In Lex, users who want to specify only simple patterns have to learn the full, general

expression notation used by Lex.  Similarly the generality of LexAGen requires that the users be

familiar with BNF grammar notation.

GLA has the extra requirement that along with the specification language, users must also

learn the functions of a collection of supporting modules which are incorporated with the generated

scanner.  The symbol table module is an example of such a supporting module.  This is

satisfactory for users who are generating scanners which are to be used with parsers generated by

traditional parser generators.  However, it may be too complicated for users who are generating

stand-alone scanners or scanners to be used with non-traditional parsers (say, incremental parsers)

where the supporting modules may be redundant or simply not required.

Mkscan advocates that the notion of a regular expression is just one particular way of

conceptualizing tokens and therefore is more than a part of the implementation than of the

specification.  However, Mkscan employs certain metacharacters and a pattern notation that is

equivalent to regular expressions.

Although the complexity of the specification languages are comparable, the interaction styles

of the four generators vary widely.  Lex and GLA have virtually no user interaction, while

LexAGen and Mkscan are very interactive.  There are four major interaction points: error reporting,

changes to the specification, specification testing and scanner generation.

  For Lex and GLA, the user must supply the entire scanner specification before the generator

is invoked to look for errors.  On the other hand, Mkscan has limited interactive error reporting and

LexAGen has completely interactive error reporting.

For Lex and GLA, any changes to the specification must be made using a text editor and the

entire scanner must be regenerated.  However, Mkscan makes it relatively easy to modify

previously generated scanners.  It does this by storing information about the scanner as comments

at the beginning of the file which contains the scanner.  If a user wishes to modify a scanner, the

scanner's file is read by Mkscan and the comments are used as the specification.  Notice that when

a scanner is generated, the user gets the specification along with the scanner.  In LexAGen,

changes are recorded incrementally and are immediately visible to the user.

As far as specification testing, Lex, GLA and Mkscan require the user to generate a scanner

and write a driver  program to test the specification.  LexAGen is unique in allowing the user to test

the scanner before it is generated.  Like any programming environment, this reduces the context

switches necessary to complete the task.  That is, editing, compiling and testing are done in a

common environment.



LexAGen  27

CONCLUSION

LexAGen is the result of an attempt to provide a scanner generator which is easy to use and

which generates fast scanners for general specifications.  The generality of LexAGen comes from

its ability to support the full set of regular languages plus some general extensions which are

sufficient for most modern programming constructs.  LexAGen is also unique among scanner

generators in applying many benefits of graphical user interfaces to scanner generation.  For

instance, LexAGen is the first (and only) scanner generator that incorporates incremental

development.  Furthermore, LexAGen provides full-scale user interaction ranging from immediate

error reporting to specification execution.

ACKNOWLEDGEMENT

This research was supported in part by research grant #OGP8191 from the National Sciences

and Engineering Research Council of Canada.

REFERENCES

1. M. E. Lesk and E. Schmidt, "Lex - A Lexical Analyzer Generator," Computing

Science Technical Report 39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Computing Science

Technical Report 32,  Bell Telephone Laboratories, Murray Hill, NJ (1975).

3. W. M. Waite, V.P. Heuring, and R.W. Gray, "GLA - A Generator for Lexical

Analyzers," Software Engineering Group Report No. 86-1-1, Department of

Electrical and Computer Engineering, University of Colorado, Boulder, CO (1986).

4. R. N. Horspool and M.R. Levy, "Mkscan - An Interactive Scanner Generator,"

Software - Practice & Experience, 17(6), 369-378 (1987).

5. R. W. G. Ng, "LexAGen - A Lexical-Analyzer Generator", Master of Science

Thesis, University of Alberta, Canada (1988).

6. V. P. Heuring, "Automatic Generation of Fast Lexical Analyzers," Software -

Practice & Experience, 16(9), 801-808 (1986).

7. Waite, W.M., "The Cost of Lexical Analysis," Software - Practice & Experience,

16(5), 473-488 (1986).

8. G. E. Révész,, Introduction to Formal Languages, McGraw-Hill, NY (1983).

9. H. Mössenböck, "Alex - A Simple and Efficient Scanner Generator," A C M

SIGPLAN Notices, 21(5), 69-78 (1986).

10. D. Szafron and R. Ng, "LexAGen Users Manual," Technical Report TR 89-8,

Department of Computing Science, University of Alberta, Edmonton, AB (1989).



LexAGen  28

11. N.M. Delisle and D.E. Menicosy, and M.D. Schwartz, "Viewing a Programming

Environment as a Single Tool," ACM SIGPLAN Notices, 19(5), 49-56 (1984).

12. A. Golderg and D. Robson, Smalltalk-80: The Language and Its Implementation,

Addison-Wesley, Reading, MA (1985).

13. A. Golderg, Smalltalk-80: The Interactive Programming Environment, Addison-

Wesley, Reading, MA (1984).

14. D. Szafron and B. Wilkerson, "Some Effects of Graphical User Interfaces on

Programming Environments," Proceedings of the CIPS/ACI Congress '86, (1986).

15. D. Szafron and B. Wilkerson, "The Smalltalk-80 MVC Paradigm with Plugable

Views," Technical Report TR 88-8, Department of Computing Science, University of

Alberta, Edmonton, AB (1988).

16. P. Wegner, "Dimensions of Object-Based Language Design," OOPSLA '87

Proceeding 168-182 (October 1987).

17. A. V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques, and

Tools, Addison-Wesley, Reading, MA (1986).

18. R. Bayer and E. McCreight, "Organisation and Maintenance of Large Ordered

Indexes,"Acta Informatica, 1, 173-189 (1972).

19. R. de la Briandais, "File Searching Using Variable Length Keys," Proc. WJCC, 295-

298 (1959).

20. Fredkin, E., "Trie Memory," Communications of the ACM, 3(9), 490-499 (1960).

21. D. Comer and R. Sethi, "Complexity of Trie Index Construction (extended

abstract)," Proc. 17th Ann. Symp. on Foundations of Computer Science, IEEE

Computer Society, Long Beach, CA, 197-207 (1976).


