
Finding Syntactic Similarities Between XML Documents

Davood Rafiei
University of Alberta
drafiei@cs.ualberta.ca

Daniel L. Moise
University of Alberta
moise@cs.ualberta.ca

Dabo Sun
University of Alberta
dabo@cs.ualberta.ca

Abstract

Detecting structural similarities between XML docu-
ments has been the subject of several recent work, and the
proposed algorithms mostly use tree edit distance between
the corresponding trees of XML documents. However, eval-
uating a tree edit distance is computationally expensive and
does not easily scale up to large collections. We show in this
paper that a tree edit distance computation often is not nec-
essary and can be avoided. In particular, we propose a con-
cise structural summary of XML documents and show that
a comparison based on this summary is both fast and effec-
tive. Our experimental evaluation shows that this method
does an excellent job of grouping documents generated by
the same DTD, outperforming some of the previously pro-
posed solutions based on a tree comparison. Furthermore,
the time complexity of the algorithm is linear on the size of
the structural description.

1 Introduction

There is a large and still growing number of applications
that use the eXtensible Markup Language (XML) for data
exchange. Storing documents generated by two or more
applications in a database can be challenging as data may
not conform to a non-trivial unifying DTD 1 or the unify-
ing DTD may be too complicated. Under these conditions,
it may not be efficient to construct a single DTD or to use
one specific relational mapping to store all documents. This
more of an issue for documents found on the Web due to
the heterogeneous nature of the environment and the appli-
cations that generate the documents. A possible solution
is to group documents that conform to the same or similar
DTDs together before storing them.

Grouping similar XML files together can lead to a better
storage mapping and indexing [9, 13, 15]. This in turn can
improve the efficiency of the retrievals; for two elements

1It is always possible to construct a unifying DTD for a set of XML
documents, but a trivial DTD that accept many possible documents would
not be much useful.

that are under structurally similar paths, it is more likely
that either both elements or none satisfy a given query, com-
pared to the case where the elements are selected arbitrar-
ily. Without a proper grouping, elements under structurally
similar paths can be scattered at different locations in the
storage device, thus making the retrievals inefficient.

Another application that can benefit from clustering
XML documents is effective DTD extraction [11]. If struc-
turally similar XML documents are clustered before a DTD
extraction, more specific and accurate DTDs can be con-
structed for documents in each cluster. A more accurate
DTD can be useful in query evaluation and can limit the ac-
cess to only the relevant portions of data; this will in turn
increase the efficiency.

The problem to be addressed is how to define the simi-
larity between XML files, i.e. what kind of metric should be
used, such that two documents generated by the same DTD
are grouped together. In this paper, we take a data-centric
view of an XML document and do not make use of the order
in which the elements appear in the document. This view of
data is quite useful in query processing and has contributed
much to the success of relational database systems.

We evaluate the effectiveness of our method and our pa-
rameter settings by running experiments over both real and
synthetic data. The results show that our method outper-
forms previously proposed alternatives based on tree com-
parison, doing a better job of grouping documents gener-
ated by the same DTD. We also outline possible limitations
of our approach and suggest some solutions to overcome
those limitations.

The paper is organized as follows. Related work is re-
viewed in Section 2. Our notion of structural summary and
our approach for comparing two XML documents are pre-
sented in Section 3. Section 4 presents our experimental
evaluations. Section 5 discusses the results and concludes
the paper.

2 Related Work

Since the structure of an XML document can be de-
scribed as a tree or as a graph (in general), related work

1

includes the past work on matching trees and graphs. If
trees can be treated as ordered, i.e. changing the order of
the elements changes the structure of a document, there is
considerable work on finding the edit distance between or-
dered trees which are applicable [14, 21, 3, 16].

There has been recently more specific work on finding
the structural similarity between XML documents, based on
the general assumption that the structure of an XML docu-
ment is described as an ordered tree [11, 5, 23, 20]. In par-
ticular, Nierman and Jagadish propose a few tree edit op-
erations and a dynamic programming algorithm to find the
structural similarity between XML documents [11]. They
run experiments to show that using the edit distance with
the new set of operations does a better job of clustering the
documents generated by the same DTD, compared to some
earlier approaches [21, 3]. Improvements are reported over
Zhang and Shasha’s tree edit distance [21] when the weights
of the edit operations are learned from a training dataset
[23]. In the presence of a training dataset, Zaki and Ag-
garwal propose a rule-based classifier that relates frequent
ordered tree structures in an XML document to class labels
[20].

Again making use of the order of the elements, Flesca
et al. propose an interesting approach for detecting the
structural similarity between XML documents [5]. Their
approach is based on the idea of encoding the structure of
an XML document as a time series in which an impulse
represents the occurrence of a tag. They use the Euclidean
distance between some of the Fourier descriptions of these
series to find out if two documents are similar.

There is past work that adopt a data centric view of XML
documents and use parent-child tags and twigs for cluster-
ing or classification. In particular, Theobald et al. [18] use
parent-child tags, pairs of tags and content terms, twigs and
the semantic relationships between terms (defined by Word-
net [19]) to classify each XML document into one of a few
known classes. A hierarchical clustering algorithm based
on common parent-child tags between documents is pro-
posed by Lian et al. [10]. Consider this algorithm applied
to two paper elements shown in Figure 1. Despite the struc-
tural similarity that exists, the elements have no common
parent-child tags and will be considered non-similar.

Bertino et al. propose a metric for finding the similarity
between the structure of an XML document and a DTD,
taking into account both the tag names and the structural
descriptions [1]. Based on the same idea, they develop a
notion of similarity between two XML documents, but they
report no experimental results.

Finally, the problem of finding the edit distance between
two unordered trees is shown to be NP-complete [22], so is
the problem of subgraph isomorphism [6]. No polynomial-
time algorithm is known for graph isomorphism, and neither
is it known to be NP-complete.

<paper>
<journal>

<author>...</author>
<title>...</title>
<year>...</year>

</journal>
</paper>
<paper>

<conference>
<author>...</author>
<title>...</title>
<year>...</year>

</conference>
</paper>

Figure 1. Two XML documents

3 Structural Sketch and Similarity

An XML document can be modeled as a node-labeled
directed tree 2 where each node in the tree represents ei-
ther an element or an attribute in the corresponding XML
document. When a node represents an element, the node is
labeled with the tag name of the element and when a node
represents an attribute, it is labeled with the name of the
attribute. Each edge of the tree represents a hierarchical
inclusion relationship between either two elements or an el-
ement and an attribute. Since we are only interested in the
structure of an XML document, we ignore other possible
node types such as data values, comments and processing
instructions. Furthermore, to make our description more
concise, we require that each path starting from the root and
ending at a leaf appears at most once. We refer to this tree
description of an XML document as structure tree 3.

Definition 1 A structure tree for an XML document d is a
tree t such that for every path in d there is a corresponding
path in t and vice versa and t is minimal, meaning that no
edges or nodes in t can be removed while still preserving
the same relationship.

As an example, an XML document and a structure tree of
the document are shown in Figure 2.

Given two XML documents, we want to find out if the
two documents are structurally similar irrespective of the
order in which the elements appear in each document. Since
the structure of an XML document can be described as a
structure tree, a solution is to compare the respective struc-
ture trees of the two XML documents. However, an XML

2Two special attributes ID and IDREF, when present, may not be prop-
erly represented in a tree.

3Our definition of structure tree is very similar to the concept of
dataguide in the OEM model [7].

2

<people>
<person>

<name>Tom</name>
<address>UofA</address>

</person>
<person>

<name>Cat</name>
<age>18</age>

</person>
</people>

person

people

name address age

Figure 2. An XML document and a structure
tree of the document

document can have multiple structure trees and it is not clear
which one should be used for a comparison. Furthermore,
the problem of finding the edit distance between two un-
ordered trees is not easy.

Our proposed solution is to describe the structure of an
XML document as a set of paths and to avoid a tree match-
ing problem. Even though an XML document can have
more than one structure tree, they all have the same set of
paths in common with the document (this is directly inferred
from the definition of a structure tree). Given an XML doc-
ument, all paths can be extracted within one scan of the
document. To make our description more concise, we are
interested in every path that starts from the root and ends at
a leaf. These paths here are referred to as the root paths.

Definition 2 A root path for an XML document is a path
���� � � � �� in its respective structure tree where �� is the
root node, �� is a leaf and for every ������ in the path there
is a direct parent/child relationship.

For instance, people/person/name, people/ person/address,
and people/person/age are the root paths of the XML docu-
ment shown in Figure 2.

To account for similar but not identical paths between
two XML documents, we use in our comparisons not only
the root paths but also all subpaths of the root paths (i.e. a
consecutive sequence of tag names).

Definition 3 The path set of an XML document is the
union of all of its root paths and all subpaths of the root
paths.

The path set of the document shown in Figure 2, for in-
stance, is: � people/person/name, people/ person/address,
people/person/age, people/person, person/name, per-
son/address, person/age, people, person, name, address,
age �.

Furthermore, to count for paths that appear more fre-
quently, we further retrieve from each XML document the
frequency of each path.

Given the features of an XML document as a set of (path,
frequency), we can use standard set comparison techniques
to find out if two documents are similar; the equality op-
eration between two paths is the standard case-insensitive
comparison of two strings. Informally, we call two XML
documents similar if a large fraction of the paths in their
path sets are the same. There are a number of ways of com-
puting such an overlap including the Jaccard Coefficient or
its extensions, the Dice Coefficient and the well-known Co-
sine measure (see an information retrieval text such as [12]
for more details). Given the pair-wise similarity between
all documents in the collection, a clustering algorithm can
be applied to group similar XML documents into clusters,
where every cluster should ideally represent a set of XML
documents that share the same DTD.

Given a document with � root paths, each of length �,
there are ���� � ���� possible subpaths. A similarity com-
parison between two documents can be done within one
scan of their path sets 4. With the path set size set to
���� � ����, the time complexity in terms of the number
of string comparisons for our approach is expected to be
������, compared to ������� or higher node comparisons
reported for a tree edit distance computation.

4 Experiments

In order to evaluate the effectiveness of our approach
we ran experiments against both real and synthetic data.
Our real data, referred to here as RE, was the online
XML version of the ACM Sigmod Record from March
1999 [17]. This collection contained XML files shared
among four DTDs: ProceedingsPage, IndexTermsPage, Or-
dinaryIssuePage and SigmodRecord. The collection had
989 XML files with a total size of 3.35 MB. The break-
down of the number of XML files per each DTD was as
follows:

17 XML files for ProceedingsPage
920 XML files for IndexTermsPage
51 XML files for OrdinaryIssuePage
1 XML file for SigmodRecord

4The exact algorithm may vary depending on the similarity function
used, but one can use hashing to identify the matching pairs of paths be-
tween two sets. Assuming that the data is distributed evenly by the hash,
each path needs to be compared to not more than a few of other paths

3

We used the Oracle parser [4] to extract paths from XML
documents. We observed that the XML parser found some
errors for three of the XML files from the Sigmod collec-
tion: “00969.xml”, “01200.xml” and “01446.xml”. When
we checked the XML files for the source of the error, we
found out that the character “&” appeared as text. But, the
XML processors interpreted the character “&” as the start
of an entity reference. We modified these three files by re-
placing the character “&” with “&”.

For synthetic data, we selected all DTDs reported by
Nierman and Jagadish [11] except one called HealthProd-
uct.dtd which we couldn’t obtain. This set of DTDs here
are referred to as DTD set A. To further test our method, we
also used an extended set of DTDs which included DTD set
A and 5 additional DTDs. We refer to this set of DTDs as
DTD set B5 Using the IBM XML generator [8], we gener-
ated 100 XML files for each DTD and each setting of the
parameters M (the maximum repeat of an element marked
with a ‘+’ or ‘*’) and P (the probability that an optional
attribute appears). We grouped the files into eight data sets:

DS1: M=4, P=0.75, DTD set A
DS2: M=4, P=1, DTD set A
DS3: M=8, P=0.75, DTD set A
DS4: M=8, P=1, DTD set A
DS5: M=4, P=0.75, DTD set B
DS6: M=4, P=1, DTD set B
DS7: M=8, P=0.75, DTD set B
DS8: M=8, P=1, DTD set B

Our dataset was deliberately chosen as a superset of the
datasets used by Nierman and Jagadish [11] so that we
could compare our results not only with those of Nierman
and Jagadish but also with the results of the algorithms sug-
gested by Chawathe [2] and Shasha et al. [16] without im-
plementing these algorithms. Note that our synthetic data
is generated randomly but using the same parameters as in
[11], so the two datasets may not be identical.

4.1 Evaluation

Ideally, we want to have all documents conforming to
the same DTD be clustered together, but in practice this
may not be the case. To measure the effectiveness of each
method, we use the same notion of mis-clustering intro-
duced by Nierman and Jagadish, i.e. the minimum number
of the documents that can be moved in order to obtain all
documents conforming to the same DTD in the same clus-
ter. The hierarchical agglomerative clustering algorithm in
the R project for statistical computing6 was used to cluster

5All these DTDs are available online at http://www.cs.
ualberta.ca/˜drafiei/dtds.html.

6http://www.r-project.org

our data sets. The result of the clustering is a dendrogram,
showing the clusters that collapse in each step.

We use the number of mis-clusterings reported by Nier-
man and Jagadish (as shown in Table 1) over data sets 1-4
and the Sigmod collection as a base line to compare the
performance of our approach against theirs and those of
Chawathe [2], Shasha [16] and Tag Frequency [11].

RE DS1 DS2 DS3 DS4
Nierman 0 10 2 11 9
Chawathe 3 16 8 30 25

Shasha 3 16 9 32 39
Tag Frequency 3 22 21 35 40

Table 1. Number of mis-clusterings reported
by Nierman and Jagadish

Table 2 shows the number of mis-clusterings obtained
using our approach when each document is represented as
a binary vector (BV), a frequency vector (FV) and a nor-
malized frequency vector (NFV) of the path occurrences.
The Cosine measure used to final the similarity between
two documents. Using the path frequencies improves the
clustering accuracy. We also did similar experiments using
both the Jaccard and the Dice Coefficients. The results were
either comparable or worse than the Cosine measure, thus it
was not reported.

One question is if we really need to extract paths and
if we can obtain similar results by only using the tag fre-
quencies and perhaps with some variations of the similarity
measure. Since the Cosine measure performs the best in our
experiments, we choose this measure for tag frequencies.
We also pick two additional distance functions, namely the
city-block distance because it is previously used [11] as re-
ported in Table 1 and the Euclidean distance. Table 3 shows
that the tag frequency is not enough to compare the struc-
tural similarity between XML documents.

We found some inconsistencies between our results for
the tag frequency and the results reported earlier using the
city-block distance [11]. One possible explanation is that
we may be counting the number of mis-clusterings dif-
ferently. In our case, the number of mis-clusterings are
counted manually, but we are not sure how this is done in

RE DS1-DS4 DS5 DS6 DS7 DS8
BV 0 0 33 30 25 29
FV 0 0 0 0 0 0
NFV 0 0 0 0 0 0

Table 2. Number of mis-clusterings using our
approach

4

RE DS1 DS2 DS3 DS4
City block 24 208 200 211 240
Euclidean 24 0 62 0 0
Cosine 68 38 33 39 35

Table 3. Number of mis-clusterings using the
tag frequency

the earlier reporting. Since our counts of the mis-clusterings
are higher than those reported by Nierman and Jagadish, we
feel justified to say that we are over-estimating the num-
ber of mis-clusterings. Thus, our approach outperforms
previously-proposed methods.

5 Discussions

We have proposed a simple and yet efficient approach
to find the structural similarity between XML documents.
We have also evaluated our approach with various data sets.
On a modest hardware (Pentium 4, 2.8GHz CPU and 1GB
RAM), the path extraction (in Java) for the Sigmod collec-
tion with 989 documents took 20 seconds. Computing the
pair-wise distances (in C++) between all these documents
took only 98 seconds.

A limitation of our approach is when we want to detect a
similarity between documents with the same structures but
different tag names. We expect this to be less problem with
an increasing use of namespaces and also the tendency to
use the same tag name to refer to the same concept. How-
ever, one solution is to allow users to specify some relabel-
ing rules. For instance, if the tag names in one document
are in French and the tag names in another document are in
English, a possible relabeling can be a word-to-word trans-
lation of the tag names.

Acknowledgments

This work is supported by Natural Sciences and Engi-
neering Research Council of Canada.

References

[1] E. Bertino, G. Guerrini, and M. Mesiti. Matching an XML
document against a set of DTDs. In Proceedings of the IS-
MIS Symposium, pages 412–422, 2002.

[2] S. S. Chawathe. Comparing hierarchical data in external
memory. In Proceedings of the VLDB Conference, pages
90–101, Edinburgh, 1999.

[3] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. In Proceedings of the SIGMOD Conference,
pages 493–504. ACM Press, 1996.

[4] O. Co. Oracle xdk for java. http://otn.oracle.
com/tech/xml/xdk/software/prod/xdk_
java.html.

[5] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and
A. Pugliese. Detecting structural similarities between XML
documents. In Proceedings of the WebDB Workshop, Madi-
son, June 2002.

[6] M. Garey and D. Johnson. Computers and interactability:
a guide to the theory of NP-Completeness. Freeman and
Company, 1979.

[7] R. Goldman and J. Widom. Dataguides: enabling query for-
mulation and optimization in semistructured databases. In
Proceedings of the VLDB Conference, pages 436–445, 1997.

[8] IBM XML Generator. http://www.alphaworks.
ibm.com/tech/xmlgenerator.

[9] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploit-
ing local similarity for indexing paths in graph-structured
data. In Proceedings of the ICDE Conference, pages 129–
140, 2002.

[10] W. Lian, D. W. Cheung, N. Mamoulis, and S. M. Yiu. An ef-
ficient and scalable algorithm for clustering xml documents
by structure. IEEE Transactions on Knowledge and Data
Engineering, 16(1):82–96, 2004.

[11] A. Nierman and H. V. Jagadish. Evaluating structural sim-
ilarity in XML documents. In Proceedings of the WebDB
Workshop, Madison, June 2002.

[12] G. Salton. Introduction to Modern Information Retrieval.
MacGraw Hill, 1983.

[13] H. Schöning. Tamino - a DBMS designed for XML. In
Proceedings of the ICDE Conference, pages 149–154, 2001.

[14] S. M. Selkow. The tree-to-tree editing problem. In In Infor-
mation Processing Letters, 6(6), pages 184–186, 1977.

[15] T. X. Server. Frequently asked questions. http://www.
xmlstarterkit.com/tamino/faq.htm#FAQ34.

[16] D. Shasha and K. Zhang. Approximate tree pattern match-
ing. In Pattern Matching Algorithms, pages 341–371. Ox-
ford University Press, 1997.

[17] Sigmod Record in XML. http://www.acm.org/
sigmod/record/xml/index.html.

[18] M. Theobald, R. Schenkel, and G. Weikum. Exploiting
structure, annotation and ontological knowledge for auto-
matic classification of xml data. In Proceedings of the
WebDB Workshop, 2003.

[19] Wordnet:. a lexical database for the english language.
www.cogsci.princeton.edu/ wn.

[20] M. J. Zaki and C. C. Aggarwal. Xrules: an effective struc-
tural classifier for xml data. In Proceedings of the KDD
Conference, pages 316–325, 2003.

[21] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM
J. Comput., 18(6):1245–1262, 1989.

[22] K. Zhang, R. Statman, and D. Shasha. On the editing dis-
tance between unordered labeled trees. Information Process-
ing Letters, 42(3):133–139, 1992.

[23] Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity metric for
xml documents. In FGWM Workshop on Knowledge and
Experience Management, 2003.

5

