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ABSTRACT

We study the problem of visualizing large networks and develop
techniques for effectively abstracting a network and reducing the
size to a level that can be clearly viewed. Our size reduction tech-
niques are based on sampling, where only a sample instead of the
full network is visualized. We propose a randomized notion of “fo-
cus” that specifies a part of the network and the degree to which it
needs to be magnified. Visualizing a sample allows our method to
overcome the scalability issues inherent in visualizing massive net-
works. We report some characteristics that frequently occur in large
networks and the conditions under which they are preserved when
sampling from a network. This can be useful in selecting a proper
sampling scheme that yields a sample with similar characteristics
as the original network. Our method is built on top of a relational
database, thus it can be easily and efficiently implemented using
any off-the-shelf database software. As a proof of concept, we im-
plement our methods and report some of our experiments over the
movie database and the connectivity graph of the Web.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques H3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

Keywords: visualizing the Web, large network visualization, net-
work sampling

1 INTRODUCTION

The extensive growth of the Internet within the past few years has
led to a proliferation of very large networks; examples include bib-
liographic collections, biological networks, market basket data, the
Internet (both in the router and the inter-domain layers), and the
World Wide Web. Although the collection and the storage of such
data has become relatively straightforward, effectively analyzing
data has proven to be more difficult. Visual display of networks, in
particular, can lead to both better understanding and clear presen-
tation of patterns that can often be hidden [20]. Alfred Crosby, the
historian, lists “visualization” as one of the two processes that has
led to the explosive growth of modern science; the other process is
“measurement” [8]. Visualizing “large” networks, however, can be
quite challenging if not impossible. This is due to the limitations
of the screen, the complexity of layout algorithms and the limita-
tions of human visual perception. Assuming that the network fits
in memory, a good layout algorithm (eg. Force directed layout) can
easily take quadratic time (in the number of nodes) for a single it-
eration. Often you need multiple iterations, which may depend on
the number of nodes in the graph, to achieve a good result. The
graph structure of the Web, for instance, is far too large to hold in
the memory of most desktops let alone visualize it.

To gain insight into the complexity of the problem, consider the
graph structure of the Web at the domain level as shown in Fig-
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ure 1-a using the GEM layout algorithm [12], Figure 1-b using
the GEM3D layout algorithm, and Figure 1-c using a force directed
layout algorithm [10] 1. This network is relatively small, having
only 224 nodes and 8790 edges, but it is still not easy to find any
interesting patterns. This is by no means a limitation of a layout
algorithm but illustrates the complexity of visualizing large general
graphs. Scaling up the visualization to a graph of the Web with mil-
lions of nodes at the site level or hundreds of millions of nodes at
the page level is quite challenging if not impossible.

Our proposed alternative is to refrain from visualizing the entire
network. At the core of our methods is sampling. We sample the
network and only visualize the sample. Even though the network
can be quite large, the size of the sample can be adjusted to match
the limitations of the visualization environment. We study some of
the topological properties of a network that are preserved in a sam-
ple and show that a relatively small sample, if collected carefully,
can still show some of the patterns that are inherent in the entire
network.

As our second contribution, we develop a notion of “focus”, one
can set, to bring into focus only part of the network that needs to
be explored in greater detail. This is done in the context of the full
network. If no focal point is set, the network is sampled uniformly.
In the presence of a focal point, the sampling is biased toward that
focal point, thus the visualization emphasizes the focal point and its
neighbourhood in the network.

In this paper, we propose several sampling-based schemes for
both focusing the search and visualizing networks which are too
big to be fully visualized. We formalize a notion of focus for both
networks with directed and undirected graph structures. We further
extend this formulation to the case where edges in the underlying
graph structure are weighted.

We build a prototype, named ALVIN 2, that implements the ideas
described in this paper, and run it over the connectivity graph of
the Web. We abstract the Web graph into three layers: domain,
site and page, and run experiments over these layers. Some of our
experimental results and other anecdotal evidence are provided to
show that our proposed schemes can be quite useful.

The rest of the paper is organized as follows: we discuss issues
related to sampling a network in Section 2. Our proposed scheme
for visualizing and expanding a network is discussed in Section 3,
and our notion of focus is presented in Section 4. Section 5 presents
some implementation details and our experimental results. Sec-
tion 6 reviews the related work, and Section 7 concludes the paper.

2 SIMPLE RANDOM SAMPLING OF A NETWORK

In this section, we discuss several ways of sampling a network and
some of the characteristics of the original network that can be ob-
served in the sample. In the next section, we formalize these sam-
pling schemes in the form of some growth processes and develop a
general model for visualizing a network.

1The GEM and GEM3D algorithms were implemented in Tulip [32]. For
a force-directed layout, we used the spring layout algorithm, implemented
in LEDA [22].

2The name ALVIN stands for Alberta system for Visualizing Large Net-
works.
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Figure 1: The connectivity network of the World Wide Web at the domain level. (a) Frick’s GEM layout algorithm is used, (b) GEM3D is used as the layout
algorithm, and (c) a spring layout algorithm is used.

Given a network G(VG,EG), any subgraph of G can be treated as
a sample of the network. Clearly, there are different ways of taking
a subgraph and as a result there are many different sampling strate-
gies. We use the following three methods for obtaining a simple
random sample of a network. Independent of the strategy used, we
let S(VS,ES) denote a simple random sample of G.

SRS1: Take a simple random sample of the nodes, VS, and let
S(VS,ES) be the subgraph of G induced by VS (i.e. the subset of
the vertices, VS, and edges with both endpoints in this subset).

SRS2: Take a simple random sample of the edges, ES, and let VS ⊂
VG be the set of nodes that are incident to at least one edge in ES.

SRS3: Take a simple random sample S′(V ′
S,E

′
S) using SRS2 and let

S(VS,ES) be the subgraph of G induced by the nodes in V ′
S.

Given a network of N nodes, SRS1 randomly selects n nodes and
includes all the edges between the selected nodes. Thus a node of
degree k is expected to have a degree of k n

N in the sample. The
caveat is that this number is expected to be almost zero unless the
sample includes a large fraction of the nodes, k is large or both.

SRS2 may be more desirable when the sample size is small or the
network is not well-connected. This sampling is unbiased toward
edges but not toward nodes. Nodes with large in- or out-degrees
are more likely to be in the sample, and paths of length greater than
one are likely to form between them. This is not as problematic as
it may look since those nodes are likely to form the backbone of the
network and it is good to have them in the sample.

SRS3 bears similarities to both SRS1 and SRS2. As in SRS2,
nodes with large degrees are more likely to be included in the sam-
ple. However, like SRS1, there is a direct relationship between the
degree of a node in the sample and its actual degree.

Other strategies for sampling a network are also feasible (e.g.
see [21]) and can be used with our framework.

2.1 Using Sampling to Visualize Network Topology

There are a number of traits which are found in every network,
and can be useful in describing the general topology of a network.
These include degree distribution, connected component size dis-
tribution, average path length, clustering coefficient, etc. Some of
these traits can be preserved when sampling from a network. The
degree distribution of the Web graph, in particular, provides strati-
fied counts of the degrees, differentiating hubs and authorities from

other pages [6]. This property in turn can be useful in a visualiza-
tion, as evidenced by some of our examples. The component size
distribution is another important visual feature of a network (e.g.
see the results reported for the Web graph [9]), and we often want it
to be preserved in a sample. We discuss these features in the context
of the movie database from IMDb 3, where each actor is represented
by a vertex and there is an undirected edge between two actors if
the actors are cast together in the same movie.

2.1.1 Path Length and Clustering Coefficient

A class of networks, known as small-world networks, are character-
ized by a short average path length and high clustering coefficient4.
It is not clear if the average path length and the clustering coeffi-
cients can be predicted from a sample. Consider G1 as a complete
graph and G2 as a complete bipartite graph. The clustering coef-
ficients of G1 is 1 and G2 is 0. For a small sample of both graphs
taken using SRS2, the clustering coefficient may not be well-defined
if the selected edges or nodes are not connected. After increasing
the sample size, the clustering coefficient for G1 can be either un-
defined, if the sample is not connected, or any number in the range
[0,1]. In the latter case, the clustering coefficient is dependent on
the selected edges and does not monotonically change with the sam-
ple size. Similarly, the clustering coefficient for a sample of G2 will
be either undefined or zero again depending on the edges that are se-
lected but not the sample size. Finding a sampling strategy that can
provide an estimate of the clustering coefficient for a general graph
is an open problem. The average path length, on the other hand,
is only defined between nodes that are connected. Two nodes that
have a path between them in a parent graph may not be connected
in a sample. This makes it difficult to infer a correlation between
the average path length of a sample and that of its parent graph in
general, but there are more specific cases where a correlation exists
(e.g. when SRS1 is used for sampling).

2.1.2 Degree Distribution

Figures 2, 3 and 4 show the degree distributions respectively using
SRS1, SRS2 and SRS3 for sampling from the movie database; the
sample size is varied from 5% to 100%. For SRS1 and SRS3, there is

3IMDb - Internet Movie Database (www.imdb.com)
4The clustering coefficient gives the average degree to which vertices

adjacent to a node are adjacent to each other. See Watts[33] for definitions.
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Figure 2: Degree distribution using SRS1 for sampling.
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Figure 3: Degree distribution using SRS2 for sampling.
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Figure 4: Degree distribution using SRS3 for sampling.

a direct relationship between the actual degree of a node and its de-
gree in a sample. This is shown by a relatively constant gap between
the actual and estimated distributions; the gap becomes smaller for
larger samples. For SRS2, our samples overestimate the real distri-
bution for smaller degrees and underestimate the real distribution
for larger degrees. This is consistent among all samples. As a re-
sult, the degree distribution of even a 5% sample for degrees 4, 5
and 6 is very close if not the same as the actual distribution. Over-
all, the gap between the actual and the estimated distributions using
SRS2 is smaller than that of SRS1, and the gap between the actual
and estimated distributions using SRS3 is smaller than that of SRS2.
Our estimates using SRS3 must be treated with care. The depicted
sample sizes show the fraction of edges selected in the first step of
the sample only. The size of the sample after adding all edges be-
tween the selected nodes in the second step can be larger and can
vary from one network to another. For instance, a 5% sample in
one case includes over 50% of the edges. This explains why the
estimated and the actual distributions are very close.

2.1.3 Component Size Distribution
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Figure 5: Connected component size distribution for SRS1
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Figure 6: Connected component size distribution for SRS2

Figures 5, 6 and7 show the component size distributions of the
movie database, respectively using strategies SRS1, SRS2 and SRS3
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Figure 7: Connected component size distribution for SRS3

for sampling. The sample size in both graphs is varied from 5%
to 100%. A small and a consistent gap between the distributions
of a sample and the entire graph indicate that the sample closely
resembles the original data.

There have been some attempts to find a relationship between
the distribution of component sizes in a sample and the number
of components in the entire network. For transitive graphs 5, in
particular, Frank has shown that if the network is sampled using
SRS1, the resulting network can be used to find an unbiased estimate
of the number of connected components of the entire network [11].

Theorem 1. Let the parent graph be transitive, and suppose
S(VS,ES), a simple random sample taken using SRS1. Let v = |VS|.
If Kr(S) denotes the number of connected components of size r in
the sample, then an unbiased estimate of the number of connected
components in the parent graph is given by

M

∑
r=1

(1−Cr)Kr(S)

where

Cr = (−1)r
(

N − v+ r−1
r

)(
v
r

)−1

,

N is the number of nodes in the parent graph, M ≤ v is a constant
and the parent graph has no connected component of size larger
than M.

Both the proof and the variance of this estimate is given by
Frank [11]. In practice, we are often interested in visualizing graphs
which are not transitive, hence this theorem is not directly applica-
ble. However, there are some indications that the estimates may
still be a useful approximation for other graphs. Abusing the theo-
rem, we tried using SRS2 with Frank’s estimate on synthetic data.
Our synthetic data included graphs consisting of both complete con-
nected and complete bipartite components. The component sizes
were generated randomly and varied from 4 to 80. The results
showed that Frank’s estimate used with SRS2, sampling only 25%
of the edges, could accurately estimate the number of components
with an average error of less than 8%.

5A graph is transitive if there is an edge between every connected pair
of vertices.

3 NETWORK GROWTH

If the network that is being visualized is too large, it may not be fea-
sible to preserve some of the desired topological properties of the
network in a small sample. To address this problem and to provide
a navigation scheme, we develop several growth processes, collec-
tively referred to as network growth, that allows one to interactively
visualize a network.

In an interactive fashion to some degree similar to Web browsers,
a visualization may start with a small subset of the network which
may include a set of hand-picked nodes and edges or the result of a
query. This is useful for narrowing down the visualization to some
of the interesting elements when the network is too large to be fully
visualized. The visualization may proceed towards the goal by iter-
atively growing the initial set. A novelty of our method is that some
user-controllable parameters describe how and to what degree the
network must be expanded. The expanded network often has more
detail about the elements being studied yet is small enough to be
visualized and internalized. After a few layers of expansion, the
network may become too large; this may be an indication that the
browsing should switch to another small subset.

Let G(VG,EG) be the network that needs to be visualized and
C(VC,EC), a subgraph of G, be the network that is currently dis-
played on canvas. We want to select nodes from VG −VC and edges
from EG −EC and add them to C, thus expanding the network on
canvas with respect to G. Next, we discuss several ways of expand-
ing a a network, formalizing our earlier sampling schemes in the
form of some growth processes.
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Figure 8: A network instance.

3.1 Global Growth

Sometimes we want to gain some insight into the general connectiv-
ity structure of the network without specifying a pivotal point; or we
might be interested in only part of the network but want to browse
this part in the context of the entire network. We may achieve this
by taking a simple random sample of the network and visualize
the sample. One such sample can provide the general connectivity
structure of the network and maybe some common patterns with-
out emphasizing one specific part. Clearly, the larger the sample,
the more accurate the estimates; though a detailed sample may not
always be clearly visualized.

Definition 1. Let C be a subgraph of a parent network G. A global
growth of C with respect to G adds to C a simple random sample of
G taken using one of the sampling strategies from Section 2.

Example 3.1. Figure 8 shows an instance of a network with 45
nodes and 55 edges. A simple random sample obtained using SRS2,
with only six edges picked from the random ordering shown in the
appendix is displayed in Figure 9-a. This sample, consisting of
11% of the edges, shows some of the components of the parent
network; it has the same number of connected components as the
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Figure 9: (a) a global growth, (b) a local growth with initial edges (a1,a5),
(b1,b10) and (c) a local growth with initial edge (c3,c9).

parent network even though the components are not necessarily the
same.

3.2 Local Growth

We often know some of the nodes and maybe some of the edges of
a network and wish to find more nodes and edges that are some-
how related to our starting set, or we may want to find out how
our starting set is perceived within the general structure of the en-
tire network. This can be done through sampling from the network
surrounding C and adding the sample to the canvas. The sample
includes some of the edges that glue C to the rest of the network G.

Definition 2. Let C be a subgraph of a parent network G, and let
I(VI ,EI) be the subgraph of G such that EI is the set of edges with
one endpoint in VC and the other endpoint in VG −VC and VI is the
set of nodes incident to any edge in EI . A local growth of C with
respect to G adds to C a simple random sample of I taken using one
of the strategies from Section 2.

Our local growth generalizes a sampling method, often referred
to as snowball sampling, which is typical of a link-tracing design
where a simple random sample or stratified random sample of units
is selected and all other units linked to the initial sample are in-
cluded or observed [31]. Unlike a snowball sample, the initial set
in a local growth is not necessarily picked randomly; instead, it can
be the result of a user query. Furthermore, a local growth does not
necessarily include all edges linked to the initial set since this can
be too large.

Example 3.2. Figure 9-b shows the result of a local growth af-
ter hand-picking the edges (a1,a5) and (b1,b10) from the network
in Fig 8 and adding 6 more edges selected using SRS2 through a
local growth. For our edge selection, we again use the random or-
dering in the appendix but only add edges with one endpoint in
{a1,a5,b1,b10}. As another example, Figure 9-c shows the result
after hand-picking (c3,c9), doing a local growth using SRS3 which
adds 6 more edges (these edges are coloured blue) and further ex-
tending the graph to include edges with both endpoints already
selected (these edges are coloured black). Compared to a global
growth that shows more of the structure of the entire network with
less resolution, a local growth depicts a specific part of the network
in greater detail but with less information about the network as a
whole.

3.3 Mixed Growth

A local growth can be combined with a global growth at a user-
specified rate to provide a more balanced mixture of the two. Un-
der this scheme, called a mixed growth, the network is sampled as
follows: with some probability we perform a local growth and with
the remaining probability we perform a global growth. A mixed
growth provides a spectrum of sampling schemes with local and
global growths at the two ends of the spectrum.

3.4 Wiring and Rewiring

Sometimes we have our desired nodes on canvas and wish to visual-
ize the interconnections between them in greater detail. A solution
is to add more edges between the nodes on canvas. This is a spe-
cial case of SRS2 where the sample is taken from the graph induced
by the nodes on canvas; we call this process wiring. In the ex-
treme case, a wiring can add all the edges between nodes on canvas.
However, this may clutter the visualization, hence a user-specified
parameter may be used control the degree of wiring.

Since selecting edges is a random event, there are many possible
wirings, and we may wish to view more than one possible wiring of
the nodes on canvas. Through the process of rewiring, all edges on
canvas can be removed and the nodes on canvas can be wired again.
This may reveal properties that may not have been displayed by the
original wiring.

4 FOCUSED BROWSING

A network growth already provides a way to focus on a specific
part of the network, but the part of the network we can focus on
is always fixed to I in a local growth and to G in a global growth.
In general, we may want to focus on a part of the network other
than I and G. We introduce a more general notion of focus that can
be used to narrow the visualization to a desired part of the network,
reducing both the size and the complexity of the visualized network.
Our notion of “focus”, referred to here as focal point, formulates to
some extent our interest in the network. Without loss of generality,
our browsing goal is to visualize the focal point in the context of
the entire network.

The following scenario shows how a focused browsing can be
useful. Consider the connectivity graph of the Web where nodes
represent Web pages and edges describe the hyperlinks between
pages. Suppose we are interested in the connectivity of pages on a
specific topic, say surfing. We can set the focal point to include all
pages that mention the term ‘surfing’ in their contents. There can
be many more pages on this topic than what we can fit on canvas,
thus we may visualize only a subset of these pages. If we expand the
visualized set by adding pages that either link to a page in the initial
set or are linked by a page in the initial set, the resulting set is shown
to include the most prominent sources of primary content known
as authorities and high-quality guides and resource lists known as
hubs on the search topic[19].

It is not hard to integrate this notion of “focus” into our visual-
ization scheme. Since our visualization is based on sampling, in the
presence of a focal point, the sampling is biased toward this focal
point.

4.1 Formal Model

Given a network G(V,E), a focal point is a subgraph F(Vf ,E f )
where Vf ⊆ V and E f ⊆ E. In the absence of a focal point, F is
naturally G, meaning that we are interested in the entire network.

A focused growth describes how the network on canvas can be
expanded using a sample of the parent network and with respect to
a focal point F . Next, we define a focused growth which takes two
real number parameters that control the degree of bias towards the
focal point, and can be used with either SRS2 or SRS3. A similar
definition can be formalized for SRS1 which is not discussed here.

Definition 3. Let C denote the graph on canvas and F denote the fo-
cal point; both are subgraphs of a parent network G. Denote with EI
the set of edges that have one endpoint in F and the other endpoint
not in F . Let the input parameter r ∈ [0,1] denote the probability
that one endpoint of a selected edge should be sampled from the
focal point and the input parameter s ∈ [0,1] denote the probability
that the other endpoint should also be sampled from the focal point.



A focused growth at rate (r,s) of the network on canvas C with re-
spect to the focal point F and the parent graph G adds to C simple
random samples of EI , EG and EF with sample sizes respectively
proportional to s(1− r)+ r(1− s), (1− r)(1− s) and rs (the nodes
incident on sampled edges are obviously selected).

A focused growth combines two simple random samples with a
snowball sample at a user-specified rate. If we set the focal point
to the network on canvas and r = 1 and s = 0, a focused growth
simulates the local growth of Section 3.2. A focused growth also
simulates the global growth of Section 3.1 if we set the focal point
again to the network on canvas and r = 0 and s = 0. Varying the
values of the parameters r and s, we can obtain other variations of
a network growth.

4.2 Directed and Weighted Networks

It is not hard to extend our proposed schemes to both directed and
weighted networks. For a directed network, we may fix in advance
the fractions at which a source and a destination must be selected
from VF . One simple setting, for instance, is to set the ratios to
50/50 or some other constant. An alternative is to allow the ratios
to be set during browsing using additional parameters.

In a weighted network, often the weight of an edge describes the
strength of the relationship between the two endpoints. In a com-
muting network, for instance, each edge may be weighted to indi-
cate the frequency of travels made in a day. If the network consists
of more than one level of abstraction, each node or each edge in a
more general layer may be weighted and the weight may aggregate
multiple nodes or edges from a more specific layer. For instance,
the connectivity graphs of the Web on the domain and site levels can
be seen as aggregations of the Web graph on the page level. If the
weight of a node or an edge is treated as an indication of its impor-
tance, we want to bias the visualization towards highly-weighted
edges. This is again possible within our sampling framework by
replacing a simple random sample with a weighted sample.

5 EXPERIMENTS

ALVIN, our current prototype implementing these ideas, has the
following highlights:

• It uses the DB2 relational database as its back-end data stor-
age and querying engine. It makes no assumption on the size
of the network and the back-end relational database can effi-
ciently handle very large data sets.

• It provides an interface for both focusing and expanding the
network on canvas. It allows the user to interactively expand
the graph on canvas using parameters r, s and the size of the
sample. Requests that arise from user interactions are mapped
to SQL statements and are directed to the back-end SQL en-
gine for an efficient evaluation.

• It is developed in C++ using the LEDA class library [22] and
makes use of the layout and graph algorithms that are avail-
able in this library.

• Network abstraction and hierarchical views are supported by
creating tables and views in the relational database.

We ran ALVIN over the linkage structure of a snapshot of the
Web from Internet Archive 6. Each vertex in the dataset denoted a

6The Internet Archive is a public nonprofit organization that offers access
to historical collections that exist in digital format, including the snapshots
of the Web (www.archive.org)

Web page and each directed edge denoted a hyperlink, and the net-
work was stored as relational tables. We also constructed two hier-
archical views of the data in the site and the domain levels. These
graphs were weighted with the weight of an edge representing the
number of links from one site (domain) to another. For efficiency
reasons, these views were pre-computed and physically stored. Our
Web graph was a snapshot taken in 1999 and included 178 million
nodes and 800 million edges. Next, we report some of our results
with this data set.

5.1 Bow-Tie Shapes

The Web has been shown to be made up of a few distinct compo-
nents: (1) a core in which every node can be reached from every
other node, (2) an ‘IN’ that includes the nodes that link to the core
but are not linked back, (3) an ‘OUT’ that contains the nodes that
can be reached from the core but do not link to the core, and (4)
the remaining set of nodes which cannot reach or be reached from
the core but are connected to ‘IN’, ‘OUT’, both or neither. These
components are best represented using a bow-tie shape [6].

One question is if we can enumerate some of the instances of
these components, in particular those that are relevant to our search.
For instance, given a set of nodes, we may want to find other
nodes which can form a bow-tie shape with our initial set. The
result can give more details on the nature of the nodes in each
component and the connections within and between the compo-
nents. In an attempt to enumerate some of the members of these
components, we started with three nodes which were believed to
be in the core; these included dir.yahoo.com, yahoo.com and
yahoo.ca. We did 10 local growths, each time adding 50 edges,
followed by a focused growth, adding 100 edges with p = q = 1
and the focal point set to the network on canvas. SRS2 was
used for sampling. The result as shown in Figure 10 included
more nodes in the core such as sec.yahoo.com, anglefire.com
and ncsa.uiuc.edu interconnected with nodes in OUT such as
cfa-www.harvard.edu and newscientist.com and nodes in IN
such as internetcollege.net and chess-space.com.

Figure 10: Instances of the bow-tie shape in the Web graph

5.2 Natural Clusters

Related pages on the Web often form clusters, for instance,
if they are on the same topic. To visualize these clusters
within our scheme, we started with a few nodes as our seed
set. The seed set in one experiment included two news sites
(news.bbc.co.uk and www.foxnews.com), two CS department



home pages (www.cs.wisc.edu and www.cs.cornell.edu) and
the Science Magazine home page (www.sciencemag.org). We
did a global growth, taking a 0.1% sample using SRS1 and adding
168,000 nodes to our initial set. We expected that a dense connec-
tion between related pages will yield a high probability that these
pages are part of the same connected component. For clarity, Fig-
ure 11-a shows only the components that include the pages in our
seed set. Three clusters are formed around our seed set: one cluster
includes the two CS departments with other CS departments such
as www.lcs.mit.edu added through the sampling. Another cluster
includes the two news sites, and the third cluster includes the Sci-
ence Magazine. Comparing the degrees of the nodes in our seed set,
the Science Magazine has a larger degree than the two news sites
which in turn have larger degrees than the two CS departments.
This is consistent with their actual degrees in the parent network.

To add more details of the interconnections and within a global
growth, we took another 0.1% sample of the nodes using SRS1.
This combined with our earlier sample gave a 0.2% sample of the
nodes. As shown in Figure 11-b, the nodes in our initial seed set
now form a single connected component. It is easy to see that the
average path between the news sites and the Science magazine page
is shorter than the average path between the CS department home
pages and the Science magazine page. Compared to the Fox News,
the British Broadcasting Co. (BBC) has a shorter path to the Sci-
ence magazine, possibly due to its coverage of the science articles.

Our results in this section provide a few instances where
a visualization based on our sampling methods can lead to a
better understanding of the network. They are not compre-
hensive; they rather show how a combination of our sampling
schemes and growth processes can provide a tool for analyzing
and mining large networks. More results can be found online at
www.cs.ualberta.ca/∼database/ALVIN. A demo of ALVIN is
also presented in the World Wide Web Conference [30].

6 RELATED WORK

It has been noted that layout, abstraction, focus and interaction
form the basis of visualizing large networks [23]. Our work ad-
dresses the issues of focus, interaction and partly abstraction for
large graphs through the use of sampling; any general graph layout
algorithm can be used with our scheme.

There has been past work on layout and encoding schemes that
trade off the generality for scalability and clarity and can scale-
up to large trees or more specific graphs. In particular, Mun-
zner [24] constructs spanning trees to represent the structure of a
class of graphs with more tree-like structures, referred to as quasi-
hierarchical graphs. The resulting tree is drawn inside a ball with
fisheye distortion used to provide a focus-context view. Abello et al.
[1] propose a hierarchical partitioning of the nodes based on char-
acteristics such as the geographical locations that the nodes may
represent. Using these partitions, different navigation and visual-
ization schemes can be constructed [2]. Our work is different from
these in that we don’t make any assumption on the structure of the
network or the characteristics of the nodes. It shouldn’t be hard to
integrate our work with these methods to allow the visualization to
scale up to either larger or more general networks.

The work on general multiscale abstraction methods allows one
to visualize either the global structure or the smaller components of
a large network (e.g. [4, 18]). These methods usually do a cluster-
ing of the network and provide a coarser visualization between the
clusters and a finer visualization within each cluster but not both at
the same time. Gansner et al. [14] propose a notion of a hybrid
graph which allows the region of interest to be viewed in a finer
level and within the coarser graph. Other abstraction techniques
include, but are not limited to, the work of Noik [25], Plaisant et
al. [29] and Herman et al. [17]. Our work is orthogonal and com-

pliments these abstraction methods. Our methods can be applied
to a coarser view of a network when the coarser view is still too
large to be fully visualized. Our use of biased sampling for focus-
ing makes our work different from standard fisheye focusing tech-
niques [13]. Our sampling strategies can also be applied as a pre-
or post-processing step, allowing the integration of our method with
other abstraction and focusing techniques.

Related to sampling from a large database, a number of algo-
rithms have been proposed for efficiently sampling from a sin-
gle table and also from the results of set union, intersection and
join [26, 7]. A survey of these techniques before 1994 is given
by Olken [27]. Sampling is now supported in major commercial
databases and is also part of the recent SQL standard [15].

Related to our work is also the more general work on analyzing
social networks (e.g. [33], [3]), mining graphs [28], URL sam-
pling [16, 5] and analyzing the graph structure of the Web [6].

7 CONCLUSIONS

A new probabilistic approach for effectively searching and visualiz-
ing large networks is proposed, where only a sample instead of the
entire network is visualized. There is no concept of a unique visu-
alization in this scheme; instead there are many possible visualiza-
tions, each corresponding to some random sample of the network.
The effectiveness of a sample and, as a result, a visualization that is
based on that sample depends on the presence of the desirable pat-
terns of the parent network in the sample. We have provided some
evidence to show that indeed such patterns are preserved in a sam-
ple. Given the limitations of the screen and the size of a sample, our
proposed scheme allows the search to be localized, thus increasing
the ratio of sample size to the size of the desired network and re-
moving possible biases due to the sample size.

Our work touches some of the problems related to visualizing a
sample of a network. There are a number of issues that are open to
further research. First, sampling has been largely used to approx-
imately answer aggregation queries on large data sets, but there is
not much work on finding sampling strategies that can preserve ei-
ther the local or global properties of a network. Further studies on
the subject can lead to more effective visualization schemes. Sec-
ond, our work treats visualization as an incremental process that
may lead to the goal after a number of growths. After each growth,
a layout algorithm must be invoked to properly place the network
on the canvas. A new layout may not be coherent with the old one
and the elements in both layouts can be placed in different loca-
tions of the screen. Further research may look into algorithms that
can preserve the locality of the nodes and still generate an effective
layout after each growth.
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A A RANDOM ORDERING OF THE EDGES IN THE RUNNING
EXAMPLE OF SECTION 4

Our examples in Section 3 use the following random ordering of
the edges shown in Figure 8: (b1,b10), (a1,a5), (c1,c3), (b1,b9),
(d1,d2), (d3,d4), (a7,b11), (c2,c6), (c11,c7), (c11,c6), (a1,a7),
(a5,a13), (c3,c8), (b1,b7), (a5,a14), (c3,c7), (a5,a12), (a7,a16),
(a2,a9), (c1,c4), (c2,c9), (c4,c9), (d4,d1), (a2,a10), (c2,c8), (b1,b4),
(c1,c5), (a1,a4), (b1,b3), (a4,a11), (b1,b5), (c3,c6), (a1,a2), (d2,d3),
(c1,c2), (b1,b6), (c2,c7), (c11,c9), (c5,c9), (a1,a3), (b1,b11),
(a7,a15), (c11,c10), (a1,a6), (b1,b8), (c4,c6), (e2,e3), (e1,e2),
(c4,c8), (b1,b2), (c11,c8), (c5,c10), (a2,a8), (c4,c7), (c3,c9).


