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Abstract

We study a set of linear transformations on the Fourier
series representation of a sequence that can be used as
the basis for similarity queries on time-series data. We
show that our set of transformations is rich enough to
formulate operations such as moving average and time
warping. We present a query processing algorithm that
uses the underlying R-tree index of a multidimensional
data set to answer similarity queries efficiently. Our
experiments show that the performance of this algo-
rithm is competitive to that of processing ordinary (ex-
act match) queries using the index, and much faster
than sequential scanning. We relate our transforma-
tions to the general framework for similarity queries of
Jagadish et al.

1 Introduction

Time-series data are of growing importance in many
new database applications, such as data mining or ware-
housing. A time series is a sequence of real numbers,
each number representing a value at a time point. For
example, the sequence could represent stock or com-
modity prices, sales, exchange rates, weather data, bio-
medical measurements, etc. We are often interested in
similarity queries on time-series data [APWZ95, AL.SS95].
For example, we may want to find stocks that behave
in approximately the same way (or approximately the
opposite way, for hedging); or stocks that increased lin-
early up to October 1987, and then crashed; or years
when the temperature patterns in two regions of the
world were similar. In this type of queries, approximate
rather than exact matching is required.

A naive approach is to compute the Euclidean dis-
tance (or any other distance, such as the city-block dis-
tance) between two objects (in general) or two time
sequences (in particular), and call two sequences sim-
ilar if their distance is less than a user-defined thresh-
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old. Time sequences are usually long, so the distance
computation can be time consuming. A solution is to
map time sequences into the frequency domain using the
Fourier transform, and use the first few coefficients to
filter out non-similar data. This has the advantage that
spatial indexing techniques can be used to index time
sequences by viewing them as tuples of Fourier series
coefficients, that is, points in a low-dimensional space
[AFS93, FRM9Y4].

A problem with this approach is that the user has no
control over the meaning of similarity other than pro-
viding a threshold. There are many similarity queries
that such a fixed predefined notion of similarity fails to
capture; for example, one may consider two stocks simi-
lar if they have almost the same price fluctuations, even
though one stock might sell twice as much as the other.
Consider the following motivating examples:
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Figure 1: (a) Time sequence 1 = (36,38,40,38,42,38,36,
36,37,38,39,38,40,38,37), (b) time sequence $3 =
(40,37,37,42,41,35,40,35,34,42,38,35,45,36,34), (c) the 3-
day moving average of §i, and (d) the 3-day moving
average of $3

Example 1.1 Suppose §i = (36,38,40,38,42,38,36,36,
37,38,39,38,40,38,37) and §} = (40,37,37,42,41,35,40,35,
34,42,38,35,45,36,34) are two time sequences that cor-
respond to the closing prices of two stocks. Looking at
Figure 1(a),(b), the sequences do not appear very sim-
ilar. This is justified by the high Euclidean distance



D(s1,$2) = 11.92 between them. However, if we look
at the three-day moving averages of the two sequences
(Figure 1 (c),(d)), they do look quite similar. The Eu-
clidean distance between the three-day moving averages
of two sequences is 0.47.

Moving averages are widely used in stock data anal-
ysis (for example, see [EM69]). Their primary use is to
smooth out short term fluctuations and depict the un-
derlying trend of a stock. The computation is simple;
the I-day moving average of a sequence § = (v1,...,vn)
is computed as follows: the mean is computed for an
I-day-wide window placed over the end of the sequence;
this will give the moving average for day n — [1/2]; the
subsequent values are obtained by stepping the window
through the beginning of the sequence, one day at a
time. This will produce a moving average of length
n — 14+ 1. We use a slightly different version of moving
average which is easier to compute in our framework.
We circulate the window to the end of the sequence
when it reaches the beginning. This gives us a moving
average of length n. It turns out when the length of
the window is small enough compared to the length of
the sequence, which is usually the case in practice, both
averages are almost the same.
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Figure
2: (a)Time sequence § = (20,20, 21, 21, 20, 20, 23, 23)
(b)time sequence = (20, 21, 20, 23)

Example 1.2 Consider two time sequences § = (20,21
,21,21,20,21,23,23) and ' = (20, 21, 20, 23) that are sam-
pled with different frequencies (Figure 2). For example,
§ could be the closing price of a stock taken every day,
and §F could be the closing price of another stock taken
every other day. A typical query is “is g similar to §
?”. The sequence § is twice as long as p, so they cannot
be compared directly. The Euclidean distance between
7 and any subsequence of length four of §is more than
1.41. If the time dimension of jis scaled by 2, i.e., every
value “v;” is replaced by “v;, v;”, the resulting sequence
will be identical to 5. This operation is usually called
time warping (for example, see [SK83]).

We propose a class of transformations that can be
used in a query language to express similarity in a fairly
general way, handling cases like the two examples above.
Given an R-tree index [Gut84] constructed on a data set,
we describe a fast query processing algorithm that uses
the index to filter out unrelated data from the answer
set of a similarity query. For example, we demonstrate

that an index structure for moving average can be con-
structed on the fly from the existing index, and it can
be used to speed up the query processing. We show
that this approach not only is faster than sequential
scanning, but also introduces no extra disk overhead.
To the best of our knowledge, this is the first index-
ing method that can handle moving average and time
warping in the context of similarity queries.

The organization of the rest of the paper is as fol-
lows: The rest of the current section provides some basic
material on the discrete Fourier transform and a survey
of related work. Section 2 motivates the work by dis-
cussing possible applications to stock data analysis. Our
definition of similarity queries is discussed in Section 3.
In section 4 we develop an indexing method for these
similarity queries. Section 5 presents experimental per-
formance results. We conclude in Section 6.

1.1 The Discrete Fourier Transform

In this section, we briefly review the Discrete Fourier
Transform (DFT) and its properties. Let a time se-
quence be a finite duration signal ¥ = [z;] for ¢ =
0,1,---,n — 1. The DFT of %, denoted by X, is given
by
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where j = +/—1 is the imaginary unit. Throughout this
paper, unless it is stated otherwise, we use small letters
for sequences in the time domain and capital letters for
sequences in the frequency domain. The inverse Fourier
transform of X gives the original signal, 1i.e.,
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Following the convention of [AFS93, FRM94], we have
1/4/m in the front of both Equations 1 and 2. The energy
of signal ¥ is given by the expression

E@) =) |z [ (3)

The convolution of two signals # and ¥ is given by

n—1

Conv(Z,§)i = Z TrYi—k 1=0,1,---

k=0

n—1 (4)

where 7 — k is computed modulo n. This convolution is
usually called circular convolution. Equations 3 and 4
are unchanged in the frequency domain.

The following properties of DFT can be found in any
signal processing textbook (for example, see [OS75]).
The symbol & denotes a DFT pair.

Linearity
af + b7 & aX +bY (5)

for arbitrary constants a and b,



Convolution-Multiplication

conv(Z, §) & XY (6)
where X Y is the element-to-element vector mul-
tiplication of two vectors X and Y , and

Parseval’s Relation

E(7) = BE(X). (7)

Using Parseval’s relation, it is easy to show that the Fu-
clidean distance between two signals in the time domain
is the same as their distance in the frequency domain.

D) = (B =)'/ = (BT = V) = DY)

A nice property of the DFT is that for a large family
of sequences it concentrates the energy in the first few
coefficients. Thus using the first few coefficients for in-
dexing introduces few false hits, and no false dismissals.

1.2 Related Work

There has been some work on access methods for sim-
ilarity queries. For example, Agrawal et al. [AFS93]
propose an efficient index structure to retrieve time se-
quences similar to a given one. They map time se-
quences into the frequency domain using the Fourier
transform and keep the first few coefficients in the in-
dex. Two sequences are considered similar if their Eu-
clidean distance is less than a user-defined threshold.
One difficulty with this approach is that the user has
no control over the meaning of similarity.

Jagadish et al.[JMM95] develop a domain-independent
framework to pose similarity queries on a database. The
framework has three components: a pattern language P,
a transformation rule language T, and a query language
L. An expression in P specifies a set of data objects. An
object A is considered similar to an object B, if B can be
reduced to it by a sequence of transformations defined
in 7. The query language proposed in the paper is an
extension of relational calculus with predicates that test
whether an object A can be transformed into a member
of the set of objects described by expression e using the
transformation ¢, at a cost bounded by c. A special-
ization of this work to real-valued sequences where the
search is performed over sequence signatures instead of
the original sequences is described in [FJMM95].

In this paper, we describe an efficient implementa-
tion of a special case of [JMMO95] for time-series data.
We only study the trivial pattern language where a pat-
tern expression specifies either a given constant data ob-
ject, or every object in the database. Given an object o,
a pattern expression e that denotes a set of objects, and
a transformation ¢, the expression t(e:)1 denotes the set
of all objects that can be obtained by applying ¢ to every
member of the set defined by e. We consider three kinds
of queries: range queries, all-pair queries, and nearest
neighbor queries, and we allow our transformations to
be used in those queries.

We show how to use the indexing method in [AFS93]
to test for similarity under a general class of transfor-
mations.

I This is called e & t in [JMM95].

Our work generalizes Goldin et al. [GK95] where
transformations are limited to shifts and positive scales.
Our extension allows shifts and scales in every dimen-
sion of a multidimensional feature space, as well as more
complex transformations such as moving average. In ad-
dition, we drop the restriction to positive scales. Some
advantages of these extensions are shown within the
next section.

There are other related works on time series data.
Agrawal et al. [APWZ95] describe a pattern language
called SDL to encode queries about “shapes” found in
time series. The language allows a kind of blurry match-
ing where the user specifies the overall shape instead of
the specific details, but it does not support any oper-
ations or transformations on the time series. A query
language for time series data in the stock market do-
main is described in [Rot93]. The language is built on
top of CORAL [RS92], and every query is translated
into a sequence of CORAL rules.

2 Examples from Stock Data Analysis

In this section we demonstrate how our transformations
can be used to eliminate noise or short-term fluctua-
tions and shift or scale the data before computing Eu-
clidean distances. We use three examples from real
stock data. The data was obtained from the FTP site
“ftp.ai.mit.edu/pub/stocks/results/”.

Example 2.1 Figure 3 shows the daily closing price for
The Bombay Co. (BBA) starting from October 25th,
1994 for 128 days, and that for Zweig Total Return Fund
Inc. (ZTR) starting from July 20th, 1995 for 128 days.
The Euclidean distance between two series is 16.16. The
mean for BBA is 9.51, and the mean for ZTR is 8.64.
If we shift the mean of both series to zero, 1.e, subtract
the mean of each series from everyday closing price, the
Fuclidean distance reduces to 12.78. The closing price of
Z'TR fluctuates in a smaller range than that of BBA; the
standard deviation for ZTR is 0.10 while the standard
deviation for BBA is 1.18. We scale both series by the
inverse of their standard deviation. The resulting series
in [GK95] are called normal forms of the original series.

S
Thus given any sequence §, sequence s’ is the normal
form of 3 if

, _ 8;i — mean(§)

5T T sd(s)

Figure 3 shows that the Fuclidean distance between the
normal forms of two series is still 11.10; time series ZTR
is more volatile than BBA. To smooth out short term
fluctuations, we take the 20-day moving average of the
two series. The Fuclidean distance drops to 2.75.

fori=1,---,length(3) (9)

Example 2.2 This example shows how we can iden-
tify series that have opposite price movements. Fig-
ure 4 shows the daily closing price for Circuit City Stores
Inc. (CC) (marked by dotted lines) and the daily clos-
ing price for Varian Associates Inc. (VAR) (marked by
solid lines) both starting from August 30, 1993 for 128
days. As Figure 4 shows, the two series have a reverse
movement; when the price for CC goes up, the price for
VAR goes down and vice versa. The Fuclidean distance
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Figure 3: From left to right, top to bottom: the daily closing price for The Bombay Co. (BBA) starting from
“94/10/25” for 128 days, the daily closing price for Zweig Total Return Fund Inc. (ZTR) starting from “95/07/20”
for 128 days, the two stocks put together, both shifted, both scaled, and the 20-day moving average (D denotes the
Euclidean distance)
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Figure 4: From left to right, top to bottom: the daily closing prices for Circuit City Stores Inc. (CC) (marked by
dotted lines) and Varian Associates Inc. (VAR) (marked by solid lines) both starting from “93/08/30” for 128 days,
their normal forms, VAR reversed, and the 20-day moving averages of both series (D denotes the Euclidean distance)



between two series is 119.59. We transform both series
to their normal form, and the Euclidean distance be-
comes 21.81. If we reverse the time series of VAR, i.e.,
multiply everyday closing price by -1, and then take
the 20-day moving average of both series, the Fuclidean
distance will be 3.81.

One might think that applying these transforma-
tions, any two series can be made similar. The next
example shows this is not the case. Given three op-
erations: shift, scale, and 20-day moving average, we
can use shift and scale to transform two series to their
normal forms. We can smooth the normal form series
using 20-day moving average. Each one of these oper-
ations may reduce the distance between two series, but
two series that have dissimilar trends still look different.
It is obvious that if we keep taking the moving aver-
age, two series eventually will be the same, i.e., two flat
straight lines. However, we assume, following [JMMO95],
that each operation has a cost, and we are limited by
an upper bound on the total cost. This upper bound,
for example, could be proportional to the Euclidean dis-
tance between the two original series.

Example 2.3 Figure 5 shows the daily closing prices
of Digital Microwave Corp. (DMIC) and The Mezico
Fund Inc. (MXF)both starting from August 30,1993 for
128 days. The Euclidean distance between the normal
forms of two series is 11.06. The Euclidean distance
after taking the 20-day moving average becomes 10.09.
The Euclidean distances after taking the second and the
third 20-day moving average are respectively 9.63 and
9.22. The Euclidean distance even after taking the 10th
moving average 1s still 6.57.

In the next section we encode the transformations
discussed here in a query language.

3 Similarity Queries

We consider an object to be a point in a multidimen-
sional space (md-space). For non-point objects, we as-
sume there is a mapping function that maps every ob-
ject to a point in the md-space. Such a function is
developed in many domains where multidimensional in-
dexing has been used. For example, Fourier transform
for time-series [AFS93], and minimum bounding rectan-
gle for shapes [Jag91] are some instances of the mapping
function.

A transformation in an n-dimensional space, denoted
by (@, g), is a pair of n x 1 vectors where d specifies a
stretch and b represents a translation (Figure 6). The
transformation (d, E) applied to a point Z In some space,

maps & to d@ * £ + b which is a point in the same space.
Transformations may be associated with costs. Given a
set of transformations ¢, and the cost of applying each
transformation, a measure of distance (dissimilarity) be-
tween two objects can be defined as follows:

Do((i“, g)

minte(cost(T) + D(T(Z), §))

minre(cost(T) + D(Z,T(y)))

mint, ,et(cost(T1) + cost(Tz)
LD (), 12(9))

D(Z,§) = min

(10)

(a) atrandation

] ]

(b) astretch

Figure 6:

where Do (Z, §) is the Euclidean distance between £ and
g. We use T(Z) to denote “transformation 7' applied
to a point £” and T'(r) to denote “transformation T
applied to a relation r”. The former returns a point
while the latter returns a relation. We assume relations
are unary, that is, they are simply sets of sequences; in
practice of course they may have other attributes, such
as source of the data, time period covered, etc.

In the domain of time series data, both objects and
transformations can be vectors of complex numbers, so
we need to extend transformations to complex numbers.
On the other hand, we want to make sure that this ex-
tension still keeps the main properties we are interested
in. The following definition describes these properties.

Definition 1 A iransformationT in a multidimensional
space S is safe if T maps every rectangle R in S to a
rectangle R' in S, every point inside R to a point inside
R', and every point outside R to a point outside R'.

Theorem 1 Transformation T' = (d, E) is safe if d and

i
b are chosen to be vectors of real numbers.

Proof (sketch): Transformation T here is the compo-
sition of a stretch and a translation in every dimension.
Thus T is safe. g

In the next section, we study the safety condition for
complex numbers in more detail.

3.1 Transformations on Time Series

We consider a time series to be a point in a multidi-
mensional feature space. We have chosen the first &
Fourier coefficient of a time series as our features. The
reason for choosing DFT is mainly because: (a) DFT
concentrates the energy in the first few coefficients, so
those coefficients can make a key for indexing purposes;
(b) as we remarked in Section 1.1, it is known that the
Fuclidean distance is unchanged under the DFT. Since
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Figure 5: From left to right, top to bottom: the daily closing price of Digital Microwave Corp. (DMIC) starting from
“93/08/30” for 128 days, the daily closing price of The Mezico Fund Inc. (MXF) for the same period, their normal
forms, and the 20-day moving averages of both series (D denotes the Euclidean distance)

a Fourier coefficient, in general, is a complex number,
we need a representation for complex numbers in our
feature space. One possibility is to decompose a com-
plex number into its real and imaginary components,
and map each component to a dimension. For a given
set of k features, we represent it with a point in a 2k-
dimensional space. We denote the space built using this
representation by Sr..:. An alternative representation is
to decompose a complex number into its components in
the polar coordinate system. A complex number in the
polar coordinate system is represented by a magnitude
and a phase angle. We denote the space built using this
representation by Spo. We use Re(x), Im(z), Abs(x),
and Angle(z) to denote respectively the real, the imag-
inary, the magnitude, and the phase angle of a complex
number z. Now we need to show that the transforma-
tions described for time series data in previous sections
are safe.

Theorem 2 Let d be a vector of real numbers, and b be
a vector of complex numbers; the transformation T =

(@, l_;) is safe with respect to Srect.

Proof: We need to prove that T' maps every rectangle
R in the space to a rectangle R’, all interior points of
R to interior points of R', and all exterior points of
R to exterior points of R’. Without loss of generality,
we assume dimensions 2i — 1 and 21 (for ¢ = 1,---, k)
are respectively used for real and imaginary components
of feature 1. Suppose zt is a k-dimensional vector of
complex numbers and #, a 2k-dimensional vector, is its
representation in Sy..:. We have xc; = x2,_1 + x2,7 for
t=1,---,k. If we apply transformation 7' to zt, we get

re! = T(zc) = Ei*x_'c—l—l_)’. We can rewrite this as follows:

(L‘ci = Qa; * ($2i—1 + $2z]) + (Re(bl) + Im(bl)])
(Cli * T2i—1 + Re(bi)) + (a¢ * T2i + ]m(bz))]

for: =1,.--, k. If we map the resulting vector to a point
2" in Srect, We get Th;_, = ai ¥ Tai—1 + Re(b;) and Th; =
a; * £2; + Im(b;) for ¢ = 1,-.- k. This transformation
can be rewritten as T' = (&,d) where c2;_1 = c2; = aj,

dzi—1 = Re(b;), and d2; = Im(b;) fort =1,--- k. Since

&and d are vectors of real numbers, the rest follows from
Theorem 1. g

On the other hand, Theorem 2 does not hold if @
is chosen to be a vector of complex numbers. For ex-
ample consider a two dimensional rectangle with point
p = —5—>57 as its lower left corner and point g = 5+57
as its upper right corner, and r = —2 4 25 as a point
inside the rectangle. If we multiply the complex num-
bers representing the three points by s = 2 — 33, the
transformed rectangle built on points p ¥ s = —25 4+ 53
and q * s = 25 — 53 does not have point r x s = 2 + 10y
inside!

Theorem 3 Let d be a vector of compler numbers, and

b be a zero vector (l_; = 6), the transformation T = (d, E)
is safe with respect to Spor.

Proof: Without loss of generality, we assume dimen-
sions 2i—1 and 21 (fori =1, - -, k) are respectively used
for magnitude and phase angle of feature i. Suppose zt
is a k-dimensional vector of complex numbers and 7 is
its coordinate in Spo. We have zc; = x2;,_1€"2 for
1=1,---,k. If we apply transformation T to zt, we get

ze! = T(gt) = a2t —1—5. We can rewrite this as follows:

! \  Angl
zC; Abs(a;)e™™ eIy i€ 40

= (Abs(a;)* $2i_1)6(E2L+Angle(al))]

for: =1,.--, k. If we map the resulting vector to a point
z' in Spor, we get x5;,_; = Abs(ai) * r2i—1 and z3; =
z2i + Angle(a;) for 1 = 1,--- k. This transformation
can be rewritten as 7' = (E',cf) where cz;_1 = Abs(a;),
dzi—1 =0, c2; =1, and dz; = Angle(a;)fori =1, - k.
Since &and d are vectors of real numbers, the rest follows
from Theorem 1. g

Given a query point ¢ in a 2k dimensional space
and a threshold €, we need to build a search rectangle.
A search rectangle is the minimum bounding rectangle
that contains all points within the Fuclidean distance
€ from §. It is straightforward in the rectangular co-
ordinate system; the minimum bounding rectangle is
(¢i—€,qi+¢€)fori =1,---,2k. The minimum bounding



8= asin(e/ m)

Figure 7: Minimum bounding rectangle in the polar
coordinate system

rectangle for a complex number me®’ in the polar coor-
dinate system is demonstrated in Figure 7. The magni-
tude is in the range from m —e to m+e¢, and the angle is
in the range from a—asin(5) to a+asin(5) where asin
denotes the arc sinus of an angle. If we again assume di-
mensions 2i—1 and 2i (for ¢ = 1, - -, k) are respectively
used for magnitude and phase angle of feature z, then
the minimum bounding rectangle for §'in the polar coor-
dinate will be (¢i —e,qi+€) fori =1,3,5,---,2k—1 and
(qi — asin(ﬁ), qi + asin(ﬁ)) for 1 =2,4,6,---,2k.

3.2 Using Transformations to Express Similarities

To gain some insight into the transformations, we for-
malize the notion of similarity expressed in Example 1.1.
Time series $1 is considered similar to s3 because their
3-day moving averages look the same, so we need to
formulate the 3-day moving average in our transfor-
mation language. For simplicity, in our examples we
assign a cost of zero to all transformations. Let us
denote the Fourier transform of s7 by 5;’1, the Fourier
transform of s3 by §2, and the Fourier transform of

nis = (1,1,10,0,0,0,0,0,0,0,0,0,0,0) by Ms. Now
consider the transformation Trmavgs = (]\23,6) where 0
is a zero vector of the same size as Ms. If we apply the

transformation Tmavgs to 5;‘1, i.e.,
Tmang(kS;’l) = 5:'1 * AZS + 6 = 5;’1 * AZS

we get the 3-day moving average of $7 in the frequency
domain. If we transform the right hand side back to the
time domain using the convolution-multiplication rela-
tion (Equation 6), we get Trmavga($1) = conv(s’i,n{é)
which is the 3-day moving average of §7 in the time do-
main. The same transformation can be applied to s3 to
compute its 3-day moving average.

The notion of similarity can be expressed in a query
by the proper choice of transformations. For example,
the m-day moving average of a series of length n gener-

ally can be expressed by Tinavg = (4, 6) where

Ei:(wl :1/m7w2:1/m7...7wm:l/m’0707...70)

m

n

(11)
and 0 is a zero vector of size n. Transformation Travg
may be applied several times to get successive moving
averages. The weights wi, -, wm are not necessarily
equal. For trend prediction purposes, for example, the
weights at the end are usually chosen to be higher than
those at the beginning. Whereas for normal smoothing
purposes, weights are equal, or those at the center are
larger than those at the endpoints.

To give another example of the transformations, we
formulate the transformation used to reverse a time se-
ries in Example 2.2. Let Tr.., = (@, 6) where a; = —1
for 1 = 1,---,128 and 0 is a zero vector of size 128.
Now consider a time series 5 and its Fourier transform
S. Transformation 7T,., applied to S gives

Treo(S)=d@*S+0=-5.

If we transform both sides into the time domain using
Equation 5, we get Ty (§) = —3§. That is, the daily
closing price is multiplied by —1.

Transformation 7T,., can be used to obtain all the
pairs of series that move in opposite directions. This
can be formulated in our query language for a given
relation r as a spatial join between r and Tre,(r).

Transformations can also be defined to stretch the
time dimension (Example 1.2). Details of this transfor-
mation are given in Appendix A. In the next section,
we discuss an indexing technique for similarity queries.

4 Indexing of Similarity Queries

In this section we describe a fast query processing method
for similarity queries. We assume a multidimensional in-
dex is available, and we take an advantage of that in our
query processing. Because of the dominant use of the
R-tree family in multidimensional indexing, we describe
our approach for R-tree indexes.

Given an R-tree index [ in a multidimensional space
S over a data set D, and any safe transformation 7' in
S, we give an algorithm to construct an R-tree index I’

for T(D).
Algorithm 1 : For every node n

n = ((MBR,, pointeri), --,(MBR,, pointery,))
in I, we construct a node n’
n' = T(n)
= ((MBRy, pointery),---,(MBR.,, pointer,,))

in I’ such that MBR; = T(MBR;), and pointer; is a
pointer to T'(n;) where n; is the child node (or the data
tuple when n is a leaf node) pointed by pointer; (for
i=1,---,m). We assumed T is a safe transformation,
therefore M BR! is a bounding rectangle for all rectan-
gles of the child node (or the data tuple) T(n;). The
construction stops when every node in [ is mapped to
anode in I’



There are many possible R-tree indexes on T(D),
each with a different performance. Our experiments
show that the index we build here has a similar perfor-
mance to that of the original index. The main observa-
tion here is that for a given index I and transformation
T, index I’ can be built on the fly without having much
impact on the performance of the search. This allows
us to use one index for many transformations.

An indexing method for time series data is described
in [AFS93]. This method requires a cut-off point for the
number of Fourier coefficients kept in the index. We
denote this cut-off point by & and call the index built
on the first k& Fourier coefficients ‘k-index’.

To demonstrate the query processing algorithm, we
use a more general form of Example 1.1 throughout
this section. We have seen in Section 3 that the m-
day moving average of a series can be expressed by
Tmavg = (@, 6) where @ is a vector of complex num-
bers. Due to Theorem 3, T)qv4 1s safe if we represent
complex numbers in the polar coordinate.

Query: Given a pattern expression e, a safe
transformation 7', an object ¢, and a thresh-
old ¢, find all objects & € T'(e) such that the
Euclidean distance D(J,q) < e.

If the pattern expression e denotes only one object
01, we simply apply T to 61. Object o1 is in the an-
swer set if D(c1,4) < e. Now suppose the expression
e denotes all objects in the relation. A naive evalu-
ation requires reading the whole relation, applying T
to every object, and choosing every object & such that
D(3,d) < e. This is a costly process. A better approach
is to use Algorithm 1 to construct a new index for trans-
formed objects, and this new index can be built on the
fly during the search operation. The search algorithm
for the given range query is as follows:

Algorithm 2 : Given a k-index whose root is N, a
transformation 7, a threshold €, and a search point ¢,
apply T to all points in the index and find those whose
distance from ¢ becomes less than e.

1. Preprocessing:

(a) Transform T and §into the frequency domain
if they are in the time domain. Let us denote
the first k& Fourier coefficients of T' and § by
Tx and Gx respectively.

(b) build a search rectangle grec; for gr as de-
scribed in Section 3.1.

2. Search:

(a) If N is not aleaf, apply T to every (rectangle)
entry of N and check if the resulting rectan-
gle overlaps grec:. For all overlapping entries,
call Search on the index whose root node is
pointed to by the overlapping entry.

(b) If N is a leaf, apply T to every (point) entry
of N and check if the resulting point overlaps
Grect. If so, the entry is a candidate.

3. Postprocessing:

(a) For every candidate point, check its full database
record to determine if its Euclidean distance
is at most € from §. If so, the entry is in the
answer set.

Similarly all-pairs queries and nearest neighbor queries
can be processed efficiently using the index. For an all-
pairs query, we do a spatial join using the index. The
only difference here is that we transform all objects used
in the join predicate before we compute the predicate.
For example, the join predicate a; Nb; # O may be
changed to T'(a;) N T(b;) # O where T is a transfor-
mation and a; and b; are members of two spatial sets.
For a nearest neighbor query, the search starts from the
root and proceeds down the tree. As we go down the
tree, we apply T to all entries of the node we visit. We
can then use any kind of metric (such as MINDIST or
MINMAXDIST discussed in [RKV95]) for pruning the
search.

The only thing left to show is that this search scheme
used with a k-index misses no object from the answer
set.

Lemma 1 The k-index approach enhanced with trans-
formations always returns a superset of the answer set.

Proof: Suppose we want to find all objects £ in a
relation that are similar to a query object ¢. Since
transformations are applied to series in the frequency
domain, this can be written in the frequency domain as
follows:

D(I(X),Q) <e (12)

where T' = (/Y, B) is a transformation, € is a user-defined
threshold, and X and (j are DFT's of respectively # and
q. Applying T to X, we get

n—1

=,

DAxX+B,0) = | AsX;+ B —Q )7 <e
f=0

If we keep only the first & < n coefficients, we have

k—1 n—1
1 L1
O 1 AX+B,=Qs )2 < (O | ArXs+Br=Q; )2
f=0 f=0
(13)

On the other hand, the equation

n—1

L1 .
O 1AX +Br—Qr )7 <e (14)
f=0

holds for all objects in the answer set. Equations (13,14)
imply that

k—1

O 14X, +B - Qp ) < (15)
f=0

Therefore, keeping the first & coefficients introduces no
false dismissals. g

This is a generalization of the result of [AFS93] for
k-index enhanced with transformations.



5 Experiments

We implemented our method on top of Norbert Beck-

mann’s Version 2 implementation of the R*-tree [BKSS90].

We ran experiments on both stock prices data obtained
from the FTP site “ftp.ai.mit.edu/pub/stocks/results/”
and synthetic sequences. Each synthetic sequence & =
[z:] was a random sequence produced as follows:

ro =Y

1 = X0 + 21

ri = Ti—1+ zi

where y was a normally distributed random number in
the range [20,99], and z; (¢ = 1,2,---) was a random
number in the range [—4, 4].

We used the polar representation of complex num-
bers because vector multiplication for time series data
seemed to be more important than vector addition, and
due to Theorem 3 vector multiplication is safe with re-
spect to Spor. For every time series, we first transformed
it to the normal form, and then we found its Fourier co-
efficients. The reason for choosing the normal form was
because both the average and the standard deviation
of a series could be stored in the index as two separate
dimensions, and despite using the polar representation,
we could still have simple shifts. Since the mean of a
normal form series is zero by definition, the first Fourier
coefficient is always zero, so we can throw it away. We
mapped the mean and the standard deviation of the
original time series respectively to the first and the sec-
ond dimensions of the index. We also mapped the mag-
nitude and the phase angle of the second DFT term
(computed for the normal form series) respectively to
the third and the fourth dimensions of the index, and
the magnitude and the phase angle of the third DFT
term respectively to the fifth and the sixth dimensions.
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Figure 8: time per query varying the sequence length

Figure 8 compares the execution time for two kinds
of queries: (a) a range query using transformations and
(b) a range query that uses no transformations. We var-
ied the length of the sequences from 64 to 1024 while we
kept the number of sequences fixed to 1,000. In order to
have a precise comparison, the identity transformation

T = (f, 6) was chosen such that 7;(5) = & for all objects

o (fis a vector of 1’s and 0 is a vector of 0’s). This made
the two queries produce the same results. As Figure 8
shows the difference between the two curves is only a
constant. This constant is the CPU time spent for vec-
tor multiplication which is unavoidable. The number of
disk accesses is the same in both cases.
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Figure 9: time per query varying the number of se-
quences

In the next experiment, we kept the sequence length
fixed to 128 while we varied the number of sequences
from 500 to 12,000. We used the identity transforma-
tion again for the same reason described in the previous
experiment. As demonstrated in Figure 9, the result
was the same. Thus the index traversal for similarity
queries does not deteriorate the performance of the in-
dex.
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Figure 10: time per query varying the sequence length

Figures 10 and 11 compare the execution time of our
approach to sequential scanning. To have a good imple-
mentation for the sequential scan, we stop the distance
computation process as soon as the distance exceeds e.
In addition, we do the sequential scanning on the rela-
tion that stores the series in the frequency domain, not
the time domain. Because each series in the frequency
domain has its larger coefficients at the beginning, the
distance computation process can skip many sequences
within the first few coefficients. Both graphs show the
superiority of our approach.
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Figure 12: time per query varying the size of the answer
set

In another experiment, we kept the number of se-
quences fixed to 1067, and we also kept the sequence
length fixed to 128. The experiment ran on the real
stock data. We varied the threshold so that the query
gave us different numbers of time series in the answer
set. Figure 12 shows that the index performs better un-
til the size of the answer set gets larger than 300 which
is almost one third of the size of the relation.

Our last experiment was on a spatial self-join. In
fact, all the time series used as examples in Section 2
were the results of this spatial join. We did the test
using the following methods:

a scan the relation of Fourier coefficients sequentially,
and compare every sequence s to all the sequences
that are after s in the relation; the transformation
Trmavg2o 1s applied to every sequence during the
comparison;

b do the sequential scanning as instructed in a, but stop
the distance computation as soon as the distance
exceeds €.

¢ scan the relation of Fourier coefficients sequentially,
and for every sequence build a search rectangle
and pose it to the index as a range query;

d do the spatial join as described in ¢, but in every
index retrieval apply Timavg20 to both the index
and the search rectangles.

The experiment ran on a relation of stock prices data
that had 1067 time sequences, and the length of each
sequence was 128. The result of the test is shown in
table 1. Because of the implementation, b is 10 times

algorithm | time size of the
(min:sec.milisec) | answer set

a 20:36.323 12

b 2:31.217 12

[¢ 0:10.139 3x2=6

d 0:17.698 12 x2 =24

Table 1: The result of the join

faster than a. Methods ¢ and d are 9 to 15 times faster
than b because of using the index, and d is a bit slower
than ¢ because of the use of a transformation and the
size of the answer set. The answer set of d contains
every pair twice, so it is twice the size of a and b. The
size of the answer set for ¢ is smaller because it does not
use the transformation.

6 Conclusions

We have proposed a class of transformations that can
be used in a query language to express similarity among
objects. This class allows the expression of several prac-
tically important notions of similarity, and queries using
this class can be efficiently implemented on top of any
R-tree index. One potential application which is empha-
sized in the paper is stock data analysis, but we believe
other domains can also benefit. Our contributions can
be summarized as follows:



e Formulation of moving average, time warping, and
reversing in our transformation language.

e [Implementation of similarity matching under these
transformations on top of an R-tree index.

The experiments show that execution time of our
method is almost the same as that of accessing the index
with no transformations; our method has much better
performance than sequential scanning, and the perfor-
mance gets better by increasing both the number and
the length of sequences.

We think the normal form of [GK95] is a useful repre-
sentation for time series data, but it allows only a small
fraction of similarity queries. Our similarity transforma-
tions allow more general queries, but for simple shifting
and scaling, the indexing method in [GK95] is faster be-
cause no transformation needs to be performed on the
index. Our indexing technique can be easily built on
top of [GK95] as we did in our experiments, allowing
both simple shifts and scales and more general transfor-
mations to be applied efficiently.
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A Time Warping

Given the first & < n Fourier coefficients of a time series
§ of length n and an integer m > 1, we can construct
the first & Fourier coefficients of time series s’ of length
m X n using a transformation T' = (&, 0) such that

S;ni = S;ni-l-l == S;n(i-{-l)—l =S¢ (16)

fort =0,---,n

Let §=(s1, 2, -+, 8n) be a time sequence, and S =
(S1,82,-++,Sn) be its DFT. Using Equation 1, we can
write

n—1
1 —j2rtf X
Sf:ﬁ;_oste—]n f=01,-n—1. (17)

We want to find a vector @ such that
af+xSf=25% for f=0,--- k-1 (18)

where S} is the fth Fourier coefficient of s Using Equa-
tion 1, we can write S} as follows:

mn—1
—j2wtf
f \/_ E ste mno,

This can be rewritten as

m—1 2m—1
’ 1 —jentf —jemtf
Sf = T( E ste mn + E ste mn
n
t=0

nm—1

, —i2mtf
+ E s mn )
t=(n—1)m

If we rewrite all summations as Zz;l and also use
Equation 16, we get

m—1
i 1 Z —j2mtf —g2n(ttm)f
bf = ﬁ( Sp€e mn + E S81€ mn +
t=0

m—1
—j2n(i4(n—1)m)f
+ E Sn—1€ mn )
t=0

m—1 —Ji2wtf .
We can take ) ,,_ " e == out of the parenthesis; that
gives
—]27l"tf —j2nf —j2m(n—1)f
S; = \/_E m (so+sie m 4. e w ).

Using Equation 17, we can rewrite this equation as fol-

lows:
m—1

—j2ntf
Sp=> e w5y,
t=0

Therefore, if we choose vector @ as follows:

m—1

—jonif .
af:Ze 0 for f=0,---,k—1, (19)

t=0

then the Equation 18 holds.
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