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Abstract

We address the problem of finding ‘surprising’ patterns of

variable length in sequence data, where a surprising pattern

is defined as a subsequence of a longer sequence, whose ob-

served frequency is statistically significant with respect to

a given distribution. Finding statistically significant pat-

terns in sequence data is the core task in some interesting

applications such as Biological motif discovery and anomaly

detection. We show that the presence of few ‘true’ surprising

patterns in the data could cause a large number of highly-

correlated patterns to stand statistically significant just be-

cause of those few significant patterns. Our approach to

solving the ‘redundant patterns’ problem is based on cap-

turing the dependencies between patterns through an ‘ex-

plain’ relationship where a set of patterns can explain the

statistical significance of another pattern. This allows us to

address the problem of redundancy by choosing a few ‘core’

patterns which explain the significance of all other signifi-

cant patterns. We propose a greedy algorithm for efficiently

finding an approximate core pattern set of minimum size.

Using both synthetic and real-world sequential data, chosen

from different domains including Medicine and Bioinformat-

ics, we show that the proposed notion of core patterns very

closely matches the notion of ‘true’ surprising patterns in

data.

1 Introduction

Finding “surprising” patterns in sequence data is a key
problem in many data mining applications in domains
as diverse as Bioinformatics, Computer security and
medicine. In Bioinformatics, the surprising patterns,
often referred to as “motifs”, are believed to have some
important biological significance and regulate gene ex-
pressions [9]. Motif discovery in this domain is the prob-
lem of finding subsequences in a DNA sequence that are
overrepresented relative to a background distribution.
In computer security, anomalies may correspond to a
sequence of commands or system calls executed by an
attacker or a malicious program [12]. For time series
data, “discords” have been defined as subsequences in a
longer time series that are of maximal distance to their
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nearest neighbour(s) and are shown to capture anoma-
lies in ECG data and space telemetry [19].

Finding surprising patterns without knowing their
lengths poses several challenges. The length parameter
is not intuitive and difficult to set, in many applications.
Without knowing the true length(s), one should run the
particular algorithm exhaustively, each time for a spe-
cific length. Our study shows that running a length-
dependent method with different lengths of patterns will
result in a large number of “highly-correlated” patterns,
making it difficult to find ‘true’ surprising patterns. We
refer to such presence of highly correlated patterns as
the “redundant patterns” problem. The ineffective re-
sults produced by length-dependent methods motivate
the development of a technique that generates a con-
cise, redundancy-free set of statistically significant pat-
terns. Another drawback of previous methods is the
robustness of their results. The definition of surprising
patterns and the required parameters have a large im-
pact on the convenience of use and the robustness. For
instance, a true surprising pattern might be observed
a few times in a sequence. A definition that compares
the observed frequency of a pattern with a fixed thresh-
old might or might not capture the pattern based on
a selected threshold value. Our experiments show that
different parameter settings produce largely deviating
results, making these methods less reliable in a real set-
ting where the best parameter settings are unknown.

This paper addresses the aforementioned problems
by eliminating the need for non-intuitive input param-
eters (such as length, frequency, etc.) and producing
robust results represented by a concise, non-redundant
set of relevant patterns. Another important factor in
the utility of a surprising pattern technique is the vari-
ation allowed in the surprising patterns. In many ap-
plications, such as motif discovery, a surprising pattern
(e.g. motif ) is characterized by a group of subse-
quences which look ‘similar’ to each other noticeably,
with a degree of ‘variation’. Most traditional meth-
ods (e.g. HMM, KNN[7]) which are based on a sim-
ple string representation of patterns allow no variations
among pattern occurrences.

The contributions of the paper are as follows: first,
we provide a domain-independent formulation of the



problem of finding surprising patterns based on statisti-
cal hypothesis testing. Second, we investigate the prob-
lem that a few embedded significant patterns can lead
to a large number of “redundant” patterns. Third, we
propose a statistical method that captures an “explain”
relationship where a set of patterns can explain the sta-
tistical significance of another pattern. Fourth, using
this “explain” relationship, we address the problem of
redundancy by choosing a few ‘core’ patterns which ex-
plain the significance of all other significant patterns.
Fifth, we extend the proposed model to capture a de-
gree of variation in patterns, and propose approximation
techniques to find the new patterns. Finally, we evalu-
ate our methodology on both synthetic and real-world
data, and compare it with anomaly detection and motif
discovery methods.

2 Related Work

Chandola et al. perform a comparative evaluation of
three types of anomaly detection techniques on sequence
data [7], including the Kernel-based, Windows-based,
and Markovian techniques. The Kernel-based cate-
gory includes the Nearest Neighbour-based technique,
in which a model is trained using normal sequences in
a training phase, and each test sequence is compared
against the trained model, where an anomaly score is
computed from the closest ‘distance‘ (or Kth nearest
distance, in general) with the model. In the Window-
based techniques (e.g. t-STIDE [36]), a normal profile
is created from a dataset of normal sequences by ex-
tracting all windows of a fixed length w. In the test
phase, all subsequences of length w are extracted from
each test sequence and an ‘anomaly score’ is computed
by comparing the frequencies of observed subsequences
with those of existing subsequences in the normal pro-
file. The main idea behind Markovian techniques is
computing the probability of observing each symbol a
in the test sequence conditioned on a limited number of
symbols preceding the symbol a. The Markovian tech-
niques used in Chandola’s study are chosen from dif-
ferent models including Hidden Markov Model (HMM)
[36], Probabilistic Suffix Tree (PST) [32], Finite State
Automaton (FSA) [24], and FSAz (a variant of FSA
[7]), and often use parameters such as length, proba-
bility threshold and K, which may not be easy to set.
Moreover, all the methods used in this study consider
a definition of a pattern with exact matching, which
means that all occurrences of a pattern must exactly
match with the subsequence represented by the pattern.

A more generalized notion of patterns has been
targeted in some research works, in which the patterns
approximately describe subsequences. Floratou et al.
[11] have proposed a motif model that depends on four

parameters (L,M, s, k), where L denotes the length of
the pattern, M denotes the distance matrix (which
is used to compute the similarity between a given
string and the reference motif), s denotes the maximum
distance threshold, and k denotes the minimum support
required for a pattern to qualify as a motif. The
model proposed in this work depends on parameters
that cannot be determined intuitively.

The problem of motif discovery in the field of Bioin-
formatics is also related to our work. Many computa-
tional tools have been proposed for finding motifs of a
specific length. Examples include AlignACE [18], ANN-
Spec [38], Consensus [16], GLAM [13], Improbizer [4],
MEME [5],, MotifSampler [34], QuickScore [30], SeS-
iMCMC [10], Weeder [28], and YMF [31]. While these
computational tools have been developed particularly
for finding motifs in DNA sequences, our work presented
here proposes a general framework for finding surprising
patterns in sequence data (not limited to Bioinformatics
data). Also, the motif discovery methods use biology-
motivated heuristics for finding the length of binding
sites from a large number of statistically significant pat-
terns. Furthermore, there are some evidences [28] that
the patterns with highest scores do not necessarily cor-
respond to true binding sites, leaving the problem open
for more sound formulations such as ours.

Detecting anomalies in time series data is also
related to our work [20, 19]. Keogh et al. introduce the
problem of finding ‘discords’, which are subsequences of
a longer time series that are maximally different from
all other subsequences of the time series [19]. In this
work, every subsequence is compared with its nearest
neighbour (or Kth nearest neighbour, in general), and
the one with the largest distance is returned as the top
discord. The work in this category targets time series
data (instead of symbolic data), and is also dependent
on the input parameters K (nearest neighbour rank)
and length (of subequences which are investigated as
potential anomalies). Another line of research related
to our work is ‘motif’ discovery in time series data.
Motifs are defined as similar subsequences in time series
data that are observed frequently [27], and different
variations of motifs are studied by Yankov [8] and
Castro [6]. These works are different from our work
in the definition of patterns, the type of the data, and
also the required input parameters.

Subsequence mining is a close research area to find-
ing statistically significant patterns in sequence data.
This topic has been addressed in numerous publications,
including the seminal work by Agrawal et al. [1] and im-
provements proposed over Agrawal’s work in algorithms
such as SPADE [41] and BIDE [35]. The primary fo-
cus in this line of research is on mining a sequence of



symbols with arbitrary gaps between them, whereas our
work is focused on finding contiguous patterns. Some
algorithms such as cSPADE [40], CloSpan [39], Pre-
fixSpan [29], Gap-BIDE [21], and Gap-Connect [21] al-
low certain constraints on the maximum gap between
two consecutive symbols, and as such can be adapted
to mine for contiguous subsequences, as defined in our
work. However, the applications of these algorithms are
limited to finding exactly matching subsequences due
to the fact that no notion of noise or approximation is
allowed in the pattern definition.

Gwadera et al. address the problem of finding sig-
nificant episodes in an event sequence [14], where the
definition of episodes is limited to subsequences occur-
ring in a time window of fixed size. Tatti et al. address
the problem of summarizing a data sequence with the
“best” set of serial episodes based on the MDL princi-
ple [33]. There is no notion of deviation from a model
in these types of patterns, making them different from
statistically significant patterns in our work. Webb et
al. propose a method for finding statistically significant
association rules [37], and Gwadera et al. propose a
method for evaluating and ranking the significance of
sequential patterns [15]. These methods are proposed
for transaction-based data, which is different from the
continuous sequence data model assumed in our work.

3 Problem Statement & Proposed Method

Intuitively, our goal is to find subsequences in a symbolic
data sequence S that occur more frequently than ex-
pected — based on some model of how sequences like S
would look like under “normal conditions”. To formal-
ize this notion, we can conceptually model the sequence
S, consisting of symbols of a finite alphabet set Σ, as
being generated by some random process Θ, in which,
at certain positions, subsequences may occur that are
generated by a process different from Θ. We can think
of Θ as describing the normal behaviour of the process,
and we refer to Θ in the rest of the paper as the “back-
ground” distribution. We can think of the set of the
subsequences of S that are not generated by Θ as de-
viations in the process modelled by Θ, and we refer to
these subsequences, which we want to identify, as devi-
ating patterns (e.g., anomalies, biological motifs, etc.).

It is necessary to distinguish between a subsequence
u as a pattern and its occurrences (or instances) in a se-
quence S. For instance, given the alphabet {1, 2, ..., 9},
u =“123” is a pattern occurring in S =“123764123913”
at positions 0 and 6.

We assume that the anomalies are generated by pro-
cesses, which are sufficiently different from the back-
ground distribution. Under this condition, i.e., it is ex-
pected that the characteristics of a sequence produced

by the background distribution will, in general, have
changed in a way that allows us to detect those anoma-
lies as deviating patterns. However, we can also expect
that, in addition to the embedded deviating patterns,
many other subsequences of S, which are partly gener-
ated by the background distribution but partly overlap
with deviating patterns, may also look deviating. Such
patterns are a form of redundant deviating patterns. In
fact, this phenomenon poses a challenge when trying to
identify the truly embedded, deviating patterns.

General Problem Statement: Given a symbolic
data sequence S and a model Θ from which sequences
can be generated, find a set of patterns O so that:

1. the patterns in O have instances in S;

2. the patterns in O are (with high probability) not
generated by Θ;

3. every part of S that does not belong to the in-
stances of O is generated with high probability by
Θ;

4. among all sets that have properties 1 to 3, O is a
smallest set with these properties.

We assume that we have access to some “training”
sequences like S, which can be considered to represent
“normal behaviour” of the process, and from which
we can learn a model Θ̂. To represent an unknown
background distribution for a sequence, we use a Markov
chain model of some order m, represented by Θm.

The approach we propose to detect deviating pat-
terns is based on statistical hypothesis testing. Our Null
Hypothesis H0 is that a given data sequence S is gen-
erated only by a background distribution, described by
a stationary Markov chain model Θm. We can then es-
timate a p-value for a given subsequence u that occurs
in S t times, which is the probability that u occurs at
least t times in S under the Null Hypothesis. The p-
value is then compared with a significance level α(e.g.
0.01 or even lower); if the p-value is less than α, the
null hypothesis is rejected and the results is said to be
statistically significant. A subsequence that has a lower
p-value than a given significance level threshold is sim-
ply refereed to as a significant pattern.

In this approach, many patterns may pass the sig-
nificance test only because they overlap with one of the
truly embedded, deviating patterns, and determining
which of all the significant patterns constitute the true
deviating patterns is a challenge. To illustrate the prob-
lem, consider a time series sequence of length 10,000
generated by a random walk model given by the for-
mula y(t) = y(t−1)+λ, where y(1) = 0, and λ is drawn
from a random distribution with mean µ = 0 and stan-
dard deviation σ = 2. Suppose the time series data is



discretized using SAX [22] with input parameters seg-
ment size and alphabet size set to 8 and 6, respectively.
The result is a sequence of size 1250 with symbols in
the set {1, 2, ..., 6}. Suppose the Markov model param-
eters are learned from the discretized data. Now sup-
pose two subsequences of lengths 4 and 6 are inserted
(implanted) at random locations in the sequence. Let
“6545”, and “112233” be the implanted subsequences
that are inserted at different locations into S with fre-
quencies 5 and 4, respectively. Consider extracting
all subsequences in S of lengths 2 to 10 and comput-
ing the p-value for each subsequence (details of the p-
value calculation are described in supplementary docu-
ment). Figure 1 shows the number of statistically sig-
nificant patterns of lengths 2 to 10, at a significance
level α = 0.001. We can observe that (1) the number of
distinct, statistically significant patterns increases when
the length of subsequences increases, (2) the bins corre-
sponding to lengths of the implanted patterns (4 and 6)
do not stand out in any way from the overall trend, and
(3) the number of significant patterns overall is consid-
erably larger than 2, the number of implanted patterns.
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Figure 1: Number of significant patterns vs. length.

If we would know the set of embedded patterns E,
we could try to “explain” the statistical significance of
a pattern u in S by this set E. The main intuition
behind this idea of an explain relationship is to devise
a statistical test for the frequency of u with respect to
a different Null Hypothesis; the new Null Hypothesis
assumes that sequences are mostly generated by Θm,
except with the additional constraint that each sequence
must contain the patterns in a set E at the exact same
locations as they occur in S.

Definition 3.1. Given a set of patterns E and their
instances in a sequence S, let the total number of the
instances be K, and suppose each instance has a start
index ij and a length lj, 1 ≤ j ≤ K. The constraint

set CE,S on an arbitrary sequence S
′

of length |S| is the

conjunction of constraints
∧

1≤j≤K(
∧

0≤x≤lj (S
′
[ij+x] =

S[ij+x])) (i.e. the sequence S
′

has the same symbols as

S at locations of instances in E
(
S

′
[i1] = S[i1]∧S′

[i1 +

1] = S[i1 + 1] ∧ . . . ∧ S′
[i1 + l1] = S[i1 + l1]

)
∧
(
S

′
[i2] =

S[i2] ∧ . . . ∧ S′
[i2 + l2] = S[i2 + l2]

)
∧ . . . ∧

(
S

′
[iK ] =

S[iK ] ∧ . . . ∧ S′
[ik + lk] = S[ik + lk]

)
).

To illustrate this concept, assume an alphabet
set {1, . . . , 9}, a model Θm, and a data sequence
S =“12135443512132351” of length 17. When comput-
ing the p-value of a subsequence u with frequency t in S
(e.g., u=“12”, t = 2) with respect to Θm we consider the
probability of having at least 2 occurrences of u in all se-
quences that can be generated by Θm and that have the
form S′ = , , , , , , , , , , , , , , , , (i.e., the only con-
straint is the length of the sequence). In contrast, given
a set of patterns E = {121, 44} with their instances oc-
curring at positions {0, 5, 9}, and with the constraint
set CE,S , we consider all sequences of length 17 of the
form S′′ =121 , ,44 , ,121 , , , , , where the symbols at
“open” positions are generated by Θm. The constraint
set CE,S is specified by (S′′[0] = S[0])∧ (S′′[1] = S[1])∧
(S′′[2] = S[2])∧(S′′[5] = S[5])∧(S′′[6] = S[6])∧(S′′[9] =
S[9]) ∧ (S′′[10] = S[10]) ∧ (S′′[11] = S[11]).

The p-value of a pattern u with frequency t under a
Null Hypothesis with constraint set E, is the probability
P = Prob(frequency(u) ≥ t|CE,S) that the pattern u
occurs at least t times in a sequence that satisfies the
constraint set CE,S , and is otherwise generated by Θm.
Now, we define an explain relationship � as follows:

Definition 3.2. Given a model Θm and a sequence S,
we say that a set E explains (the significance of) a
pattern u with frequency t in S, formally E � u, iff
Prob(frequency(u) ≥ t|CE,S) is higher than the given
significance level α. When E explains all patterns u in
a set of patterns U , i.e., if ∀u ∈ U : E � u, we also say
that E explains U and write E � U .

This explain relationship allows us to define a non-
redundant set of significant patterns of possibly variable
lengths as a subset of significant patterns in S that
explains the statistical significance of all significant
patterns in S. It is easy to verify that E � E, and
it is clear that there may be several sets of patterns
E that can then explain all significant patterns. We
are interested in explaining sets E that satisfy the
minimality condition.

Definition 3.3. Given a model Θm and a sequence S,
a core pattern set is a set E that explains all significant
patterns in S, and that has the minimum cardinality
among all such sets.

Specific Problem Statement: Given a symbolic
data sequence S and a Markov model Θm, find a set of
subsequence patterns O with the following properties:

1. the patterns in O have instances in S;



2. the patterns in O are statistically significant assum-
ing Θm as the generating model;

3. every statistically significant subsequence of S with
respect to Θm is either in O, or is not statistically
significant with respect to (Θm, CO,S), i.e., when
given the occurrences of patterns from O in S as
additional constraints on the sequences generated
by Θm;

4. O is a smallest set that has properties 1 to 4.

The overall method that we propose to solve this
problem, after estimating the parameters of a Markov
model of orderm from a ‘training ’ sequence is as follows:

1. Extract all subsequences in a desired range of
lengths from the data sequence S, using a sliding
window, and determine their frequencies in S.

2. For every extracted subsequence u with frequency
t, calculate the p-value Prob(frequency(u) ≥ t),
i.e., the probability that the pattern u occurs in a
sequence of length length(S), generated by model
Θm, at least t times.

3. Add all subsequences whose p-value is smaller
than the significance level α (after multiple testing
correction) to the set of significant patterns Psig.

4. Find a core pattern set E ⊆ Psig.

3.1 Computing a Core Pattern Set Finding all
significant patterns based on a significance level α
involves multiple statistical tests. The significance level
α represents the probability of the null-hypothesis being
rejected when in fact it is true (i.e. the probability
of a “false positive” or Type I error). However, the
probability of false positives is not equal to α when
multiple tests are performed. In statistics, this problem
is referred to as multiple testing [25] and we adopt the
method by Holm [17] for adjusting the significance level.

A naive, exhaustive search for a core pattern set is
computationally expensive (exponential in the number
of significant patterns). We present an algorithm for
constructing an approximate solution based on a greedy
forward selection strategy. The approximate solution
Psol is constructed by adding one pattern at a time from
P . At each step, let Prest be the set of patterns that
cannot be explained by the current solution Psol. We
choose a pattern from Prest that explains the largest
number of remaining patterns. In other words, we select
a pattern q∗ so that {q∗}∪Psol explains at least as many
of the remaining patterns Prest than any other choice.
In case of a tie, a pattern whose length is not longer
than any other candidate is selected (If several patterns

satisfy this condition, one pattern is selected randomly)
The process continues by removing the newly selected
pattern q from Prest and adding it to Psol. Initially,
Psol = ∅ and Prest = P ; The algorithm terminates when
Prest becomes empty. The Pseudocode of the algorithm
is presented in the supplementary document.

3.2 Model Extension for Approximate Pattern
Matching In many applications, ‘surprising’ patterns
occur in data sequences with variations. Well-known
examples are DNA binding sites of transcription factors
(motifs). The model we are proposing for capturing
generalized surprising patterns is a ‘mismatch model ’,
represented by Qs,d, where s represents a string of
symbols and d is the maximum number of allowed
mismatches, w.r.t the string s. In other words, Qs,d
represents the set of all subsequences that deviate from s
by at most d mismatches. All instances of the mismatch
pattern Qs,d are assumed to be of the same length
|s|. The definitions presented in Section 3 can be
adapted to mismatch patterns as well when taking into
account that the instances of a mismatch pattern Qs,d
are allowed to have up to d mismatches w.r.t. string s.

For a mismatch pattern Qs,d, the probability of its
occurrence at any location is the sum of probabilities of
the occurrences of all the strings s

′
of length |s| which

have at most d mismatches w.r.t. string s:

µ = Prob(Qs,d|θm) =
∑

s′∈Σ|s|,dis(s′ ,s)≤d

Prob(s
′
|Θm)

where Σ is the alphabet (set of symbols), dist is the edit
distance between two strings, and θm is the background
distribution of the data sequence. Calculating the
exact p-values becomes computationally intensive for
mismatch patterns. The practical alternatives to exact
p-value calculation are approximation methods, which
will be discussed in the supplementary document.

4 Experimental Evaluation

Our synthetic data is generated using a Markov model
of order 1, where we first generate a transition proba-
bility matrix that describes the background and other
transition probability matrices that model anomalies.
The transition probability matrix has most of its tran-
sition probability mass in the diagonal, describing the
behaviour of a random walk process where with high
probability the walk stays in the same state and with
small probability it moves to a different state. Formally,
we use the following conditions in generating the tran-
sition probabilities out of a state si: (1) P (si|si) >∑
i 6=j P (sj |si), i.e. it is more likely to stay in the same

sate rather than changing the state, and (2)
P (sj |si)
P (sk|si) =



|j−i|
|k−i| , i.e. the chance of a move from a state si to any

other state is proportional to its distance from si, as-
suming an order for states based on their indices.

For real data, we use two publicly-available
datasets; the first one is an ECG recording [2], showing
the electrical impulses of a heart during electrocardio-
gram tests, and we want to detect anomalies in the form
of arrhythmias. The second dataset is a motif discovery
benchmark [3] that we use it to evaluate our extended
model for approximate pattern matching.

On synthetic and ECG datasets, we run our method
based on the simple model (with exact matching defi-
nition of patterns). In these experiments, the Matthews
Correlation Coefficient (MCC) [23] is used as a mea-
sure of matching between the true positions of anomalies
in the data with those positions predicted by our test
methods. We chose the five best methods from the com-
parative study performed by Chandola et al. [7], includ-
ing the KNN, STIDE, FSA, FSAz, and HMM (discussed
in Section 2). All of these methods require a length pa-
rameter and a probability threshold parameter, which
are used for extracting subsequences in a test sequence,
estimating their probability of occurrence, and labeling
those subsequences as ‘anomaly’ or ‘normal’. The KNN
method requires an additional parameter K. For our
method, the significance level and Markov model order
are set to 0.01, and 3, respectively.

4.1 Results on the Synthetic Data We ran several
experiments, keeping the background distribution fixed
and varying the distributions of the anomalies, where a
parameter β is used to control the amount of deviation
from the background distribution. This is achieved by
defining the self-transition probability as P (si|si) =
1+β(n−1)

n , where n is the number of states of the
Markov model and 0 ≤ β ≤ 1. Using values 0.7,
0.5, 0.3 and 0.1 of β gave us four different anomaly
models in increasing deviation. For each experiment,
we generated a sequence of a fixed length (set at
400) using the background distribution and implanted
shorter sequences that were generated by the anomaly
models. The implanted sequences in each test sequence
varied in length from 4 to 10. We generated 10
datasets under each setting and measured the average
performance of methods on these 10 datasets.

The values of the parameters for the comparison
methods usually are not known in a real setting and
our method doesn’t require these parameters. For
our comparison, we explore a reasonable part of the
parameter space and report their ‘best’ and ‘average’
performances. To that end, we ran these methods
with all lengths in the range [4 : 10], and all possible
probability thresholds (which can be limited to the set

of scores calculated for all extracted subsequences). For
KNN, we considered the range [1 : 10] for K.

Figures 2(a) and 2(b) compare the performance
of CPS (our proposed method) with the ‘best’ and
‘average’ performance of other methods. respectively.
One can clearly see that our method outperforms all
the other methods, even when giving them the “unfair”
advantage of providing the ‘best’ parameter setting.
Comparing with the expected performance, our method
dominates the comparison methods to an even larger
extent. The results of the experiments also demonstrate
that as the deviation between the background model
and anomaly models increases (i.e. as the β value
decreases), it becomes easier to detect anomalies.
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(a) CPS vs. best results of other methods.
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(b) CPS vs. average results of other methods.

Figure 2: Performance comparison between methods on
synthetic data, varying the β of anomaly models.

4.2 Results on the ECG Dataset We randomly
selected 4 patient records from MIT-BIH dataset [26],
and for each record, we used part of the data that
does not include any arrhythmia for training. The test
data consists of both normal and arrhythmia intervals.
For our competitors, the parameter space was explored
similar to what described in the synthetic dataset,
to compute the ‘best’ and ‘average’ performance of
comparison methods. Figure 3(a) compares the results
of our method and the ‘best’ possible performance of our
competitors on sample records. The results reveal that



our method outperforms or performs close to the best
results achieved by other methods when giving them the
advantage of knowing best parameter settings. When
comparing to a more realistic expected performance of
our competitors in Figure 3(b), our method achieves
significantly higher MCCs in all cases, except for the
record 231, on which most methods perform well.
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(a) CPS vs. best results of other

methods.
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(b) CPS vs. average results of other

methods.

Figure 3: Performance comparison on ECG dataset.

Table 1 shows the patterns found by our method
(column 2) and true arrhythmias in the data (column
3). The results show that the notion of a core pattern
set in our method closely matches with the definition
of arrhythmias. For instance, the pattern VNNV in
record 201 precisely corresponds to the definition of a
“T” (Ventricular trigeminy) arrhythmia, which happens
when two normal beats are observed between two V
beats. Also, the pattern V V V in record 124 precisely
specifies the definition of an “IVR” (Idioventricular
rhythm) arrhythmia, which happens when three (or
more) V beats are observed consecutively.

Table 1: Found patterns vs. true Arrhythmia in MIT-
BIH records

Rec Found patterns True arrhythmias

201
1)VNNV 1) T : VNNVNNV...
2) jNjAj 2) NOD: jNjAj

223
1) VVV 1) IVR : VVV...
2) VNV 2) B : NVNVNV...

3) T : VNNVNNV...

124
1)VVV 1) IVR : VVV...
2) NNV 2) T : VNNVNNV...

231
1)MRM 1) BII : MRMRMRM...
2) MNM 2) BII : MNMNMN

3) BII : MRMRM...MNMNMN...
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Figure 4: Combined correlation coefficient (nCC) over all
56 datasets.

4.3 Results on Motif Discovery benchmark In
this section, we evaluate the performance of the ex-
tended model on a widely used motif discovery bench-
mark [3]. The goal of a motif discovery method is to
identify regulatory elements, notably the binding sites
in DNA sequences, for transcription factors. The tran-
scription factors in this benchmark are selected from 4
species, including yeast, fly, mouse, and human. For
each dataset in the benchmark (totally 56), a predic-
tion tool is supposed to select the single best motif and
report the positions of that motif’s binding sites, or to
report that the dataset contains no significant motif.

Figure 4 compares the overall performance of CPS
with all 15 competitors on the given benchmark, based
on a combined correlation coefficient measure (com-
bined nCC) computed on all the 52 datasets. As it
is shown in Figure 4, our proposed method achieves a
performance close to Weeder [28], which performs the
best among the other competitors overall.

As discussed by providers of the benchmark [3],
the low value of combined correlation coefficient should
not be taken as indictment of computational methods
for motif discovery. One of the reasons is that each
method is supposed to return the best motif in each
dataset (or none). This makes the selection process a
very challenging task. In practice, it might be useful to
return a list of top K motifs, which can later be verified
by domain experts. This could potentially increase the
number of ‘true’ binding sites which can be found by
a motif discovery method. To pursue this scenario, we
designed a new experiment using the same benchmark
where we evaluated the performance of the ‘best’ motif
among the top 32 motifs returned by a discovery tool.
As comparison partner, we selected Weeder [28] which
achieved the best performance on this benchmark.

The result of the comparison between Weeder and
CPS is shown in Figure 5. As can be observed in this
figure, our proposed CPS algorithm performs better
than Weeder on all species, except on the human
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Figure 5: Combined correlation coefficient (nCC) on top 32
motifs.
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Figure 6: Combined site-level sensitivity (sSn) on top 32
motifs.

datasets in which both techniques are comparable. We
also observed that the performance of Weeder in the
top-K experiment is weaker than in the ‘best’ motif
selection settings used in the original competition.

In previous experiments, we evaluated the perfor-
mance of methods based on the nucleotide-level Correla-
tion Coefficient (nCC) because it provides a comparison
at a finer granularity. We can look at other measures
to evaluate the performance of a motif discovery tool in
terms of its ability to match (even partially) with true
binding sites. One of these measures is Site-level Sen-
sitivity (sSn) [3], which is defined to be the proportion
of true binding sites that overlap with predicted sites to
the total number of true binding sites. Figure 6 shows
the performance of the top 32 motifs chosen by the CPS
and Weeder algorithms based on the site-level sensitiv-
ity. Despite a very low measure on the nucleotide-level
correlation coefficient, these two motif discovery meth-
ods perform fairly good in (partial) matching with true
binding sites. The achieved statistics show that we are
able to partially match with around half of the true
binding sites of transcription factors if we just look at
the top 32 motifs returned by these two methods.

5 Conclusions

We investigated the problem of finding surprising pat-
terns in sequences. The notion of ‘surprise’ was formal-
ized by the statistical significance of observed frequency
of a pattern compared to its ‘expected’ frequency. We
demonstrated the drawbacks of doing multiple statisti-
cal tests on subsequences of all possible lengths, which is

an alternative when the lengths of ‘true’ surprising pat-
terns are unknown. We developed statistical methods to
capture the dependencies between patterns through an
“explain” relationship, and introduced the new notion
of core pattern set as a non-redundant set of patterns
that can explain the statistical significance of all subse-
quences in the data.

Our experimental study demonstrates the effective-
ness of our method for capturing anomalies in synthetic
and real-world data, in which our method clearly dom-
inates the ‘expected’ performance of our competitors.
We also showed that the extended mismatch model pro-
vides support for a broader class of applications in which
an approximate representation of surprising patterns are
required, including the interesting problem of finding
transcription factor binding sites in DNA sequences.
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