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Abstract

We study similarity queries for time series data where
similarity is defined in terms of a set of linear transforma-
tions on the Fourier series representation of a sequence. We
have shown in an earlier work that this set of transforma-
tions is rich enough to formulate operations such as moving
average and time scaling.

In this paper, we present a new algorithm for process-
ing queries that define similarity in terms of multiple trans-
formations instead of a single one. The idea is, instead
of searching the index multiple times and each time apply-
ing a single transformation, to search the index only once
and apply a collection of transformations simultaneously to
the index. Our experimental results on both synthetic and
real data show that the new algorithm for simultaneously
processing multiple transformations is much faster than se-
quential scanning or index traversal using one transforma-
tion at a time. We also examine the possibility of composing
transformations in a query or of rewriting a query expres-
sion such that the resulting query can be efficiently evalu-
ated.

1. Introduction

Time-series data are of growing importance in many new
database applications, such as data mining or data warehous-
ing. A time series is a sequence of real numbers, each num-
ber representing a value at a time point. For example, the se-
quence could represent stock or commodity prices, sales, ex-
change rates, weather data, biomedical measurements, etc.
We are often interested in similarity queries on time-series
data [3, 2]. For example, we may want to find stocks that be-
have in approximately the same way (or approximately the
opposite way, for hedging); or products that had similar sell-
ing patterns during the last year; or years when the temper-
ature patterns in two regions of the world were similar. In
queries of this type, approximate, rather than exact, match-
ing is required.

A simple approach to determine a possible similarity be-

tween two time sequences is to compute the Euclidean dis-
tance (or any other distance, such as the city-block distance)
between the two sequences, and call the two sequences sim-
ilar if their distance is less than some user-defined thresh-
old. However, there are many similarity queries that such
a simple notion of similarity fails to capture; for example,
one may consider two stocks similar if they have almost the
same price fluctuations, even though one stock might sell for
twice as much as the other. Consider the following motivat-
ing examples.
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Figure 1. On the top from left to right,
daily closings of Dow Jones 65 Composite Volume
(COMPV) index, NYSE Volume (NYV) index and
both put together, normalized and smoothed
using 9-day moving average. On the bot-
tom from left to right, again daily closings of
COMPV index, NYSE Declining Issues (DECL) in-
dex and both put together, normalized and
smoothed using 19-day moving average.

Example 1.1 Figure 1 shows daily closings of three in-
dices: Dow Jones 65 Composite Volume (COMPV), NYSE
Volume (NYV) and NYSE DecliningIssues (DECL). It is dif-
ficult to see any similarity between these sequences. The
Euclidean distance between closes of COMPV and NYV is
2873 and that between COMPV and DECL is 12939. On the
other hand, if we normalize 1 closes of COMPV and NYV

1This operation is described in Section 3.



and compare their 9-day moving averages, they look similar.
The Euclidean distance between 9-day moving averages of
normalized closes of COMPV and NYV is less than 3. Sim-
ilarly, if we normalize the closes of COMPV and DECL and
compare their 19-day moving averages, they also look simi-
lar. In fact, ‘19-day moving average’ is the shortest moving
average that reduces the Euclidean distance between nor-
malized closes of COMPV and DECL to less than 3.

Moving averages are widely used in stock data analysis
(for example, see [5]). Their primary use is to smooth out
short term fluctuations and depict the underlying trend of
a stock. Given two sequences to be compared, we usually
do not know what moving average can make them similar.
There can be several moving averages that reduce the dis-
tance between two sequences to less than a threshold. We
are often interested in the shortest moving average mainly
because it leaves more details to the distance computation
process 2. Moving averages can be formulated as linear
transformations over the Fourier representation of a time se-
quence [12].
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Figure 2. The daily closing price of Pacific Gas
and Electric Co. (PCG) and that of Plum Creek Tim-
ber Co. (PCL), both starting from 94/11/02 for
128 days, represented in normal forms and
their momentums.

Example 1.2 Figure 2 shows in normal form the daily clos-
ing prices of stocks of Pacific Gas and Electric Co. (PCG)
and Plum Creek Timber Co. (PCL) both starting from
November 2nd, 1994 for 128 days. One way to compare the
change rates of two stocks is to compare their “momenta”,
which are obtained for every stock by subtracting the price
at time t from the price at time t+1 (or, in general, t+n for
some � ). The Euclidean distance between the two momenta
is 13.01. The series representing the price of PCG has a
spike on February 3rd while the series of PCL has a spike

2Although it seems if two sequences are similar w.r.t. � -day moving
average, they should be similar w.r.t.

� ������� -day moving average, this is
not true in general; a counter example can be found in the extendedversion
of this paper [10].

on February 8th. No value is recorded for February 4th, 5th
and 6th. If we shift the momentum of PCG two days to the
right, the spikes will overlap and the Euclidean distance will
reduce to 5.65.

The momentum of a sequence describes the rate at which
its value (such as the price in the preceding example) is ris-
ing or falling and it is seen as a measure of strength be-
hind upward or downward movements. On the other hand,
shifting a sequence horizontally before comparing it to an-
other sequence removes any possible delay between the two
sequences which can arise, for example in the stock mar-
ket domain because of different reactions of two stocks to
the same piece of news or recording errors. Both momen-
tum and shiftingcan be formulated as linear transformations
over the Fourier representation of a sequence (see the ex-
tended version of this paper for details [10]). In general,
there can be several possible linear transformations (or time
shifts, as an example) to be applied to sequences and each
transformation can either reduce or increase the distance be-
tween sequences. However, for every pair of sequences we
are usually interested in finding transformations that reduce
the distance between them to a minimum.

In this paper, we propose a fast algorithm to process
queries that specify more than one transformation as the ba-
sis for similarity. The idea is, instead of processing a single
transformation at a time, to process a collection of them at
once. To achieve this goal, we construct a minimum bound-
ing rectangle (MBR) for transformations. We show that the
minimum bounding rectangle for transformations can be ap-
plied to a multidimensional index constructed on sequences,
thus reducing the number of searches over the index to one.
Our experiments show that this algorithm performs much
better than both sequentially scanning all sequences and also
the index traversal using one transformation at a time. We
also examine the possibility of composing transformations
in a query or of rewriting a query expression such that the
resulting query can be efficiently evaluated.

The organization of the rest of the paper is as follows. In
the next section we review the related work. The benefits
of using transformations for expressing similarity queries is
discussed in Section 3. In Section 4 we propose algorithms
for fast processing queries that express similarity in terms
of multiple transformations. Section 5 contains experiments
that show the effectiveness of our algorithms. Section 6 is
the conclusion.

2. Related Work

An indexing technique for the fast retrieval of similar
time sequences is proposed by Agrawal et al. [1]. The idea
is to use Discrete Fourier Transform (DFT) to map time se-
quences (stored in a database) into the frequency domain.
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where 6 � � �7� is the imaginary unit. Keeping only the
first k Fourier coefficients, each sequence becomes a point in
a k-dimensional feature space. To allow a fast retrieval, the
authors keep the first k Fourier coefficients of a sequence in
a R-tree index. In an earlier work [13], as a major improve-
ment over this technique, we show that the last few Fourier
coefficients of a sequence are as important as the first few
coefficients due to the symmetry property of DFT. We also
show that using the symmetry property improves the search
time of the index by more than a factor of 2 without increas-
ing its dimensionality.

In another work [12], we use this indexing method and
propose techniques for retrieving similar time sequences
whose differences can be removed by a linear transforma-
tion such as moving average, time scaling and inverting. In
this paper, we generalize our earlier work and allow queries
that express similarity in terms of multiple transformations.
Our work here can be seen as an efficient implementation of
a special case of the query language described by Jagadish
et al. [9] for time-series data.

There are other related works on time series data. An ex-
tension of the indexing technique of Agrawal et al. [1] for
subsequence matching is proposed by Faloutsos et al. [6].
Goldin et al. [7] show that the similarity retrieval will be
invariant to simple shifts and scales if sequences are nor-
malized before being stored in the index. Yi et al. [18] use
time warping as a distance function and present algorithms
for retrieving similar time sequences under this function. A
query language for time series data in the stock market do-
main is developed by Roth [14]. More related works include
the work of Agrawal et al. [3] on querying shapes of histo-
ries, the work of Shatkay and Zdonik [17] on representing
sequences in terms of some functions and the work of Se-
shadri et al. [16] on querying sequences in general.

3. Similarity Queries and Transformations

A transformation can be seen as a way to remove certain
variations before aligning two sequences. Although many
kinds of variations may be present in each sequence, we con-
sider only those that can be removed using linear transfor-
mations on the Fourier series representation of the sequence.
More formaly, a transformation is a pair of real 3 vectors, de-
noted by � �98 �:;� �<>= . The transformation � applied to a point

3We have shown earlier [12] how a transformation described in terms
of two complex vectors can be mapped into one expressed in terms of two
real vectors under a safety constraint.

�� maps �� to �:@? ��BA �< . This class of transformations can eas-
ily express operations such as moving average, momentum,
time shift, etc. The expressions of these transformations and
more can be found somewhere else [12, 11].

3.1. Transformations - Normal Form

An efficient way to compare two time sequences is to
compare their normal forms. Given a time sequence ��
of mean C and standard deviation D , the transformation8 ��E��F D �

�G����E� C F D = applied to �� gives its normal form. Due to the
linearity property of DFT, the same transformation is appli-
cable to the Fourier representation of a sequence.

Although it is not required by the algorithms given in this
paper, we assume time sequences are normalized and for ev-
ery sequence, its normal form along with its mean and stan-
dard deviation are stored in a relation. This is mainly be-
cause of efficiency (as is noted by Goldin et al. [7]) and the
following two attractive properties of the normal form se-
quences which are not mentioned by Goldin et al. [7].

1. It minimizes the Euclidean distance with respect to the
scalar shift, i.e. H 8 �� �JIGK%� �L ��INM = has its minimum
when INK and INM respectively are chosen to be the means
of �� and �O 4.

2. The Euclidean distance between two normalized se-
quences is directly related to their cross-correlation 5.

H�P 8 �� � �L = �4Q�8 ���
�B� �;R;8 �� � �L =S= (2)

This can be derived by expanding the Euclidean dis-
tance formula and replacing the mean and the standard
deviation respectively by 0 and 1 in both the Euclidean
distance and the cross-correlation formulas.

The second property can be quite useful in formulating
similarity queries or translating one query to another. Since
the Euclidean distance between two sequences can range
from zero to infinity, it is usually difficult to specify a thresh-
old for this distance. Instead, we can specify a threshold for
cross-correlation which is between 0 and 1 and plug it into
Equation 2 to find a threshold for the Euclidean distance.
Using Equation 2, we can also translate any expression that
uses the cross-correlation in a query to one that uses the Eu-
clidean distance or vice versa.

3.2. Composing Transformations in a Query

In a query, we may specify a sequence of transformations
to be applied to a time sequence. For example, we may want

4This can be verified by taking the first derivatives of D w.r.t. TVU andT�W and equating them to zero.
5 X �ZY[7\ Y] ��^`_bac%d ae f _gacbh _%aei ac h i ae



to apply a “s-day shift” followed by an “m-day moving aver-
age”, for I �4��� ����� ����� and � � ��� ����� ��� � , to a sequence.
We claim the queries expressed in terms of such a sequence
of transformations also benefit from the algorithms given in
this paper. We show this by giving a method to translate
any query expression that uses a sequence of transforma-
tions into one that uses only a set of transformations. The
resulting query can then be processed using the same tech-
nique that we present for multiple transformations.

Given transformations � � � 8 �: � � �< � = and � P � 8 �: P � �
<
P
=
,

for example respectively corresponding to “2-day shift” and
“10-day moving average”, suppose we want to apply � � fol-
lowed by � P , which we denote by � P 8 � �

=
, to sequence �� . We

can construct the new transformation as follows:

� P 8 � � 8 �
� =�= � �: P ? 8 �: � ? �� A �< � = A �< P (3)

� �: P ? �: � ? �� A �: P ? �< � A �< P
Transformation � P 8 � �

=
equivalently can be expressed as ��� �8 �: � � �< � = where �: � � �: P ? �: � and �< � � �: P ? �< � A �< P .

We can use this result to compose two sets of trans-
formations. Given two transformation sets 	 � and 	 P ,
for example respectively corresponding to “s-day shift”
for I � � � ����� ����� and “m-day moving average” for � �
��� ����� ��� � , we can construct transformation set 	 � � 	 P 8 	 �

=
,

which corresponds to a “s-day shift” followed by an “m-day
moving average” for all possible values of I and � , as fol-
lows:

	
� ��� ��� � � P 8 � �
=�
 � ��� 	 � � � P � 	 P

�
(4)

where � P 8 � �
=

is defined by Equation 3. Using Equations 3
and 4, we can simplify a query by replacing any expression
that uses a sequence of transformations with one that uses
only a single or a set of transformations. We can process the
resulting query using the techniques described in the next
section.

4. Processing Similarity Queries

We consider spatial queries, namely range queries, spa-
tial join queries and nearest neighbor queries and allow our
transformations to be used in those queries. We discuss the
issue of processing range queries in more detail and the two
others very briefly. We start with the following range query:

Query 1: “Given the closing price of a stock
q and a set of transformations denoted by T,
find every stock I � I ������� I and transforma-
tion � � 	 such that the Euclidean distance
H 8 � 8

�/� ����EI � ����� I�& = � � 8
����� �/E� � ����� I�& =S=����

.”

As a specific example, T could be the set of � -day mov-
ing averages for � � � � ����� � � � and we may want to find
all stocks that have an � -day moving average similar to that

of IBM. A solution for processing this query is to scan the
whole stocks relation, compute the � -day moving average
for the closing price of every stock and determine if the re-
sulting sequence is within distance

�
of the � -day moving

average of the close of IBM. The distance predicate needs
to be checked for all possible transformations. We refer to
this algorithm as the sequential-scan method. The cost of
this algorithm includes one scan of the whole relation and
computing the distance predicate


 I ������� I 
 ? 
 	 
 times.
Another approach is for every � � 	 , apply t to the in-

dex built on the first few Fourier coefficients of the closing
price and do a range query on the new index [12]. The union
of these results for all � � 	 gives the query answer. We
call this algorithm ST-index, where ST stands for ‘a Single
Transformation at a time’. The cost of this algorithm in-
cludes traversing the index


 	 
 times. Next, we describe a
new algorithm that requires a single scan of the index and
performs much better than both the sequential-scan and ST-
index algorithms. We shall refer to this new algorithm by
MT-index, where MT stands for ‘Multiple Transformations
at a time’.

4.1. MT-Index Algorithm for Multiple Transforma-
tions

A transformation � is of the form � � 8 �:;� �<G= where �:
and �< are � -dimensional real vectors. Thus, a transforma-
tion can be represented as a point in a Q � -dimensional space.
Given a query that requires a set of transformations to be ap-
plied to a set of data sequences (or points), we first construct
a minimum bounding rectangle (MBR) for all transforma-
tions. Having a multidimensional index for time sequences,
we can apply the transformation rectangle to entries of the
index. For a point data set, entries of a multidimensional
index (such as R-tree) are usually in the form of points or
rectangles. Since a point can be seen as a special kind of a
rectangle with its lower bound equal to its upper bound in
every dimension, we only consider applying a transforma-
tion rectangle to a data rectangle.

To apply a transformation rectangle to a data rectangle,
we decompose the Q � -dimensional transformation rectan-
gle into two � -dimensional MBRs, one corresponding to �:
which we denote by mult-MBR, and the other correspond-
ing to �< which we denote by add-MBR. Given mult-MBR:� 8� � � �� �"! = � ����� # and add-MBR:

� 8%$ � � ��$ ��! = � ����� # and
data rectangle X:

� 8 � � � � � � ! = � ����� # , the result of apply-
ing mult-MBR and add-MBR to rectangle X is rectangle Y:� 8 L � � � L � ! = � ����� # where
L'&)( �*$ & � A (5)

�,+ � 8� & � ? �-& � �. & � ? �-& ! �. & ! ? �-& � �. & ! ? �-& ! =L & ! �/$ & ! A
� : � 8� & � ? �-& � �0 & � ? �-& ! �1 & ! ? �-& � �0 & ! ? �2& ! =



for all dimensions + . As an example, consider the points of
m-day moving average for � � ��� ����� ��� � . Figure 3 shows
the magnitudes and the angles of these points at the second
DFT coefficient and their decompositions into mult-MBR
and add-MBR. It can be observed that points inside mult-
MBR make a horizontal line at 1. This is due to the fact that
a data point angle is multiplied by 1. Similarly points inside
add-MBR make a vertical line at 0 to show the fact that a
data point magnitude is added by 0. The result of applying
these MBRs to a data rectangle is shown in Figure 4.
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Figure 3. The second DFT coefficients of � -
day moving averages (for � � � � ����� ��� � ) and
their decompositions into mult-MBR and add-
MBR
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Figure 4. A data rectangle before and after
being transformed

To develop an algorithm for answering Query 1, suppose
an R-tree index is available on sequences. We can apply the
transformation rectangle to every data rectangle in the index
and construct a new index on the fly. The new index is con-
structed one index rectangle at a time, and each time the new
rectangle is checked to see whether it intersects the query re-
gion. This process retrieves a set of candidate data items that
includes all qualifying data items plus some false positives.
The last step of the algorithm removes false positives by ap-
plying every member of the transformation set to every can-
didate data item and selecting data items that intersect the
query region. We can write the search algorithm more for-
mally as follows:

Algorithm 1 : Given an R-tree index which is built on the
first k Fourier coefficients of a sequence and whose root is
N, a transformation set 	 , a threshold

�
, and a search point

�� , use the index to find all sequences that become within dis-
tance

�
of �� after being transformed by a member of 	 .

1. Build MBR � for points in 	 and project � into a mult-
MBR and an add-MBR as described above.

2. Build a search rectangle of width
�

around �� . We call
this rectangle ������� � .

3. If
�

is not a leaf, apply the mult-MBR and the add-
MBR to every (rectangle) entry of

�
using Equation 5

and check if the resulting rectangle intersects � ����� � . For
every intersecting entry, go to step 3 and do this step on
the index rooted at the node of the intersecting entry.

4. If
�

is a leaf, apply the mult-MBR and the add-MBR
to every (point) entry of

�
and check if the resulting

rectangle intersects � �	��� � . If so, the entry is a candidate.

5. For every candidate entry, retrieve its full database
record, apply all transformations inside � to the se-
quence, and determine transformations that reduce the
Euclidean distance between the data sequence and the
query sequence to less than

�
.

This algorithm is guaranteed not to miss any qualifying
sequence (the proof is given in the extended version of this
paper [10]). We can develop similar algorithms for effi-
ciently processing spatial join and nearest neighbor queries.
In a spatial join query, we apply the transformation MBR to
all data items used in the join predicate before computing
the predicate. For example, we may want to find all pairs
of stocks that have similar closing prices with respect to an� -day moving average for some � � � � � ����� ��� � � . Having
an R-tree index for the closing prices, we can use any well-
known spatial join algorithm for R-tree and change the join
condition such that the transformation rectangle be applied
to both data rectangles involved in the join before testing
them for a possible overlap. Similarly in a nearest neighbor
query, as we walk down the tree, we apply the transforma-
tion MBR to all entries of the node we visit. We can then use
any kind of metric (such as MINDIST or MINMAXDIST
[15]) to prune the search.

4.2. Performance Improvement

A potential problem with the MT-index algorithm is if
transformations make several clusters or a few of them
spread all over the space, then the minimum bounding rect-
angle of transformations will cover a large area. This MBR,
when applied to a data rectangle, can easily make the data
rectangle intersect the query region. This can reduce the fil-
tering power of the index dramatically. A solution for this



problem is to allow more than one transformation rectan-
gle. As the number of MBRs goes up, the area of each MBR
gets smaller, and as a result the filtering power of the MBR
increases; but, on the other hand, the same index needs to
be traversed several times. In the worst case, the number of
MBRs is the same as the number of transformations, i.e. ev-
ery MBR includes only one transformation point. In such a
case, both ST-index and MT-index perform exactly the same.

Now the question is how we should optimally choose
MBRs for a given set of transformations such that the cost
of Algorithm 1 (in terms of the number of disk accesses) be-
comes minimum. One solution is to estimate the cost for
any possible set of MBRs and choose the set with minimum
cost. A first attempt in estimating the cost for a given set of
MBRs is to use the total area of MBRs. However, the total
area is minimum if every MBR includes only one transfor-
mation point, i.e. the ST-index algorithm is used. Another
approach for estimating the cost of a given set of MBRs is
to apply MBRs for a fixed data rectangle, say a unit square,
then compute the total area of the resulting data rectangles.
Due to this estimation, the best performance should be ob-
tained using only one transformation rectangle.

However, our experiments showed that using one trans-
formation rectangle did not necessarily give the best per-
formance. The worst performance for MT-index, which is
close to that of ST-index, is when we pack two clusters
of transformations into one rectangle. A solution to avoid
this problem is to use a cluster detection algorithm (such as
CURE [8]) and avoid packing two clusters into one rectan-
gle.

4.3. Ordering Assumption on Transformations

So far, we have made no assumption on any possible or-
dering among transformations. In this section, we define a
notion of ordering among transformations and show that it
can be quite useful in guiding the search process more effec-
tively.

Definition 1 We call
� 	 ��� # an ordering of 	 �

� � � � � P � ����� � � �
�

w.r.t. value domain dom and distance func-
tion D if ��� & � ��� ���
	�� � � ��
 � ��� � 	 ,

��� � ��
���� 8 ��� 8 � & = � ��� 8 ��� =�=�� � 8 ��
 8 � & = � ��
 8 ��� =�=

Once an ordering is established among transformations, we
can use this ordering to guide the search more cleverly.
To give an example, consider Query 1 and assume 	 �
�+Q�� ����� ������� � represents a set of scaling factors. It is easy
to show that “less than” defines an ordering among mem-
bers of T w.r.t. the domain of time sequences and the Eu-
clidean distance (see the extended version of this paper for
a proof [10]). To find all transformations that make a data
sequence to become similar to a query sequence we do not

need to apply all scale factors to sequences. Instead, we need
to find the largest scale factor that makes the distance predi-
cate true. Suppose I & is such a scale factor. One way to findI & is to do a binary search on the set of scale factors. Defi-
nition 1 easily implies that the distance predicate is true for
all scale factors less than I & .

We can use the binary search technique in all three al-
gorithms described earlier. In the case of the sequential
scan method, we still need to scan the whole stocks rela-
tion. However, the number of sequence comparisons drops
to

 I �����"� I 
 ? ����� 
 	 
 . Similarly in the case of the MT-index

algorithm, the number of disk accesses still will be the same,
but the number of comparisons for every candidate sequence
drops to ����� 
 	 
 . The ordering assumption reduces the num-
ber of index traversals for ST-index to ����� 
 	 
 .

On the other hand, the ordering assumption does not hold
in general. There are useful transformations that are not or-
dered w.r.t. time sequences and the Euclidean distance. For
example, we can show that no ordering is possible for a set
of moving averages w.r.t. time sequences and the Euclidean
distance (see the extended version of this paper for a proof
[10]).

5. Experimental Results

We implemented both ST-index and MT-index, on top of
Norbert Beckmann’s Version 2 implementation of the R*-
tree [4]. We ran experiments on both stock prices data ob-
tained from the ftp site “ftp.ai.mit.edu/pub/stocks/results”
and synthetic data. All our experiments were conducted on
a 168MHZ Ultrasparc station. The stock prices database
consisted of 1068 stocks and for each stock its daily clos-
ing prices for 128 days. Each synthetic sequence was in the
form of ����9� ��� 	 where � � � � � � � A��N� and �N� is a uniformly
distributed random number in the range � ��� ��������� ��	 .

For every time series, we first transformed it to the nor-
mal form for reasons described in Section 3.1, and then we
found its Fourier coefficients. Since the mean of a normal
form series is zero by definition, the first Fourier coefficient
is always zero, so we can throw it away. For every sequence,
we stored the magnitudes and the angles of the second and
the third DFT coefficients in the index. We used the symme-
try property of DFT in all our experiments over the index.

We report our experiments in two parts. In the first part,
we compare MT-index to ST-index and sequential scan. In
this part, we made the choice of packing all transformations
into one rectangle though it did not necessarily give us the
best possible performance of MT-index. In the second part,
we varied the number of transformation rectangles from one
to its maximum to see the effect of having multiple transfor-
mation rectangles on the performance of MT-index. In all
our experiments over range queries, we ran each experiment
100 times and each time we chose a random query sequence



from the data set and searched for all other sequences within
distance

�
of the query sequence. We averaged the execution

times from these runs. We also set the correlation threshold
fixed to 0.96 for all range queries. We plugged this thresh-
old in Equation 2 to find a value for the Euclidean distance
threshold.

5.1. Comparing MT-index to ST-index and Sequen-
tial Scan
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Figure 5. Time per query varying the number
of sequences for range queries

Figure 5 shows the running time of Query 1 using three
algorithms sequential-scan, ST-index, and MT-index. In
the experiment, we set the number of transformations fixed
to 16, but we varied the number of sequences from 500
to 12,000. The experiment ran on synthetic sequences of
length 128. The transformations were a set of moving aver-
ages ranging from 10-day moving average to 25-day mov-
ing average. The average output size was 7 or more de-
pending on the number of input sequences. The figure
shows that MT-index performs better than both ST-index and
sequential-scan.

Figure 6 shows the running time of Query 1 again using
three algorithms sequential-scan, ST-index, and MT-index.
In the experiment, we set the number of sequences fixed to
1068, but we varied the number of transformations from 1
to 30. The transformations were a set of moving averages
ranging from 5-day moving average to 34-day moving aver-
age. The experiment ran on real stock prices data. The av-
erage output size was 11 or more depending on the number
of transformations. The figure shows that MT-index outper-
forms both ST-index and sequential-scan.

5.2. Multiple Transformation Rectangles

In this section, we show that groupingall transformations
in one rectangle does not necessarily give us the best possi-
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Figure 6. Time per query varying the number
of transformations for range queries

ble performance. To show this, we ran Query 1 using MT-
index algorithm on real stock prices data, but this time we
varied the number of transformations per MBR from one to
its maximum. The transformation set consisted of � -day
moving averages for � ��� � ����� �>Q�� . We equally partitioned
subsequent transformationsand built an MBR for each parti-
tion. As is shown in Figure 7, despite the fact that collecting
all transformations in one rectangle resulted in the minimum
number of disk accesses, it did not necessarily give us the
best performance mainly because of the increased number
of false positives.
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Figure 7. Both the running time and the num-
ber of disk accesses varying by the number
of transformations per MBRs

We later added the inverted version of each transforma-
tion, which was obtained by multiplying every coefficient
by -1, to the transformation set. This created two clusters
in a multidimensional space. Again, we equally partitioned
subsequent transformations and built an MBR for each par-
tition. We varied the number of transformations per MBR
from one to 48 which was the size of the transformation
set. As is shown in Figure 7, the running time shows bumps



when we pack one third or all of the transformations in a
rectangle. The same bumps are also observed in the num-
ber of disk accesses. This is due to the fact that in these two
cases the gap between two clusters is included in a transfor-
mation rectangle.

These experiments show that as we start packing trans-
formations into rectangles, we see a major performance im-
provement which continues up to a certain point (six to eight
transformations per rectangle here). The performance after
this point either stays the same or goes down. The worst per-
formance for MT-index, which was even worse than that of
ST-index, was when we packed two clusters of transforma-
tions into one rectangle. A solution to avoid this problem
is to use a cluster detection algorithm in advance and avoid
packing more than one cluster to a rectangle.

6. Summary

We have proposed an efficient method for processing
similarity queries that specify multiple transformations as
the basis for similarity. We have shown that, instead of ap-
plying many single transformations to the index, we can
group transformations and apply a group of them simulta-
neously to the index. We have discussed the possibility of
grouping transformations into multiple rectangles and its ef-
fects on the performance of the algorithm. We have also
shown that in the presence of some ordering among trans-
formations, the search can be guided more efficiently. We
evaluated our method over both real stock prices data and
synthetic data. Our experiments confirm that the given al-
gorithm for handling multiple transformations outperforms
both the sequential scanning and the index traversal using
one transformation at a time.
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