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Abstract

We study similarity queries for time series data where
similarity is defined in terms of a set of linear transforma-
tionson the Fourier series representation of a sequence. We
have shown in an earlier work that this set of transforma-
tionsisrich enough to formul ate operationssuch as moving
average and time scaling.

In this paper, we present a new algorithm for process-
ing queries that define similarity in terms of multipletrans-
formations instead of a single one. The idea is, instead
of searching the index multiple times and each time apply-
ing a single transformation, to search the index only once
and apply a collection of transformationssimultaneoudy to
the index. Our experimental results on both synthetic and
real data show that the new algorithm for simultaneoudy
processing multipletransformationsis much faster than se-
guential scanning or index traversal using one transforma-
tionat a time. e al so examine the possibility of composing
transformationsin a query or of rewriting a query expres-
sion such that the resulting query can be efficiently evalu-
ated.

1. Introduction

Time-seriesdataare of growing importancein many new
database applications, such as datamining or datawarehous-
ing. A time seriesis asequence of real numbers, each num-
ber representing avalue at atime point. For example, the se-
guencecould represent stock or commodity prices, sales, ex-
change rates, westher data, biomedica measurements, etc.
We are often interested in similarity queries on time-series
data[3, 2]. For example, we may want to find stocksthat be-
have in approximately the same way (or approximately the
oppositeway, for hedging); or productsthat had similar sell-
ing patterns during the last year; or years when the temper-
ature patterns in two regions of the world were similar. In
queries of thistype, approximate, rather than exact, match-
ingisrequired.

A simple approach to determine a possiblesimilarity be-

tween two time sequences is to compute the Euclidean dis-
tance (or any other distance, such asthe city-block distance)
between the two sequences, and call the two sequences ssm-
ilar if their distance is less than some user-defined thresh-
old. However, there are many similarity queries that such
a simple notion of similarity fails to capture; for example,
one may consider two stocks similar if they have amost the
same pricefluctuations, even though one stock might sell for
twice as much asthe other. Consider the foll owing motivat-
ing examples.
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Figure 1. On the top from left to right,
daily closings of Dow Jones 65 Composite Volume
(COMPV) index, NYSE Wolume (NYV) index and
both put together, normalized and smoothed
using 9-day moving average. On the bot-
tom from left to right, again daily closings of
COMPV index, NYSE Declining Issues (DECL) in-
dex and both put together, normalized and
smoothed using 19-day moving average.

Example1.1 Figure 1 shows daily closings of three in-
dices: Dow Jones 65 Composite \blume (COMPV), NYSE
Volume (NYV) and NYSE Declininglssues (DECL). It isdif-
ficult to see any similarity between these sequences. The
Euclidean distance between closes of COMPV and NYV is
2873 and that between COMPV and DECL is12939. Onthe
other hand, if we normalize * closes of COMPV and NYV

1This operation is described in Section 3.




and comparetheir 9-day moving averages, they look similar.
The Euclidean distance between 9-day moving averages of
normalized closes of COMPV and NYV islessthan 3. Sim-
ilarly, if we normalize the closes of COMPV and DECL and
compare their 19-day moving averages, they also look simi-
lar. Infact, ‘ 19-day moving average’ isthe shortest moving
average that reduces the Euclidean distance between nor-
malized closes of COMPV and DECL to lessthan 3.

Moving averages are widely used in stock data analysis
(for example, see [5]). Their primary use is to smooth out
short term fluctuations and depict the underlying trend of
a stock. Given two sequences to be compared, we usualy
do not know what moving average can make them similar.
There can be severa moving averages that reduce the dis-
tance between two sequences to less than a threshold. We
are often interested in the shortest moving average mainly
because it leaves more details to the distance computation
process 2. Moving averages can be formulated as linear
transformationsover the Fourier representation of atime se-
guence[12].
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Figure 2. The daily closing price of Pacific Gas
andElectric Co. (PCG) and that of PlumCreek Tim-
ber Co. (PCL), both starting from 94/11/02 for
128 days, represented in normal forms and
their momentums.

Example 1.2 Figure2 showsinnorma formthedaily clos-
ing prices of stocks of Pacific Gas and Electric Co. (PCG)
and Plum Creek Timber Co. (PCL) both starting from
November 2nd, 1994 for 128 days. One way to compare the
change rates of two stocks isto compare their “momenta’,
which are obtained for every stock by subtracting the price
a timet from the price a time t+1 (or, in generd, t+n for
some n). The Euclidean distance between the two momenta
is 13.01. The series representing the price of PCG has a
spike on February 3rd while the series of PCL has a spike

2Although it seems if two sequences are similar w.rt. n-day moving
average, they should be similar w.rt. (n + 1)-day moving average, thisis
not truein general; acounter examplecan be foundin the extended version
of this paper [10].

on February 8th. No valueisrecorded for February 4th, 5th
and 6th. If we shift the momentum of PCG two days to the
right, the spikeswill overlap and the Euclidean distance will
reduce to 5.65.

The momentum of a sequence describestherateat which
itsvalue (such as the price in the preceding example) isris-
ing or faling and it is seen as a measure of strength be-
hind upward or downward movements. On the other hand,
shifting a sequence horizontally before comparing it to an-
other sequence removes any possible delay between thetwo
sequences which can arise, for example in the stock mar-
ket domain because of different reactions of two stocks to
the same piece of news or recording errors. Both momen-
tum and shifting can beformulated aslinear transformations
over the Fourier representation of a sequence (see the ex-
tended version of this paper for details [10]). In generd,
there can be severd possiblelinear transformations (or time
shifts, as an example) to be applied to sequences and each
transformation can either reduce or increase the di stance be-
tween sequences. However, for every pair of sequences we
are usually interested in finding transformations that reduce
the distance between them to a minimum.

In this paper, we propose a fast algorithm to process
gueriesthat specify morethan onetransformation asthe ba-
sisfor similarity. Theideais, instead of processing asingle
transformation at a time, to process a collection of them at
once. To achieve thisgoa, we construct a minimum bound-
ing rectangle (MBR) for transformations. We show that the
mi nimum bounding rectangl e for transformations can be ap-
plied to a multidimensional index constructed on sequences,
thus reducing the number of searches over theindex to one.
Our experiments show that this algorithm performs much
better than both sequential ly scanning all sequences and also
the index traversal using one transformation at atime. We
also examine the possibility of composing transformations
in a query or of rewriting a query expression such that the
resulting query can be efficiently evaluated.

The organization of therest of the paper isasfollows. In
the next section we review the related work. The benefits
of using transformations for expressing similarity queriesis
discussed in Section 3. In Section 4 we propose a gorithms
for fast processing queries that express similarity in terms
of multipletransformations. Section 5 containsexperiments
that show the effectiveness of our algorithms. Section 6 is
the conclusion.

2. Related Work

An indexing technique for the fast retrieval of similar
time sequences is proposed by Agrawal et a. [1]. Theidea
isto use Discrete Fourier Transform (DFT) to map time se-
guences (stored in a database) into the frequency domain.



The DFT of timesequence & = [z¢] fort =0,1,---,n—1,
denoted by X, isgiven by
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where j = /—1 isthe imaginary unit. Keeping only the
first k Fourier coefficients, each sequence becomesapointin
ak-dimensional feature space. To alow afast retrieva, the
authors keep thefirst k Fourier coefficients of a sequencein
aR-treeindex. In an earlier work [13], as amajor improve-
ment over thistechnique, we show that the last few Fourier
coefficients of a sequence are as important as the first few
coefficients due to the symmetry property of DFT. We also
show that using the symmetry property improvesthe search
time of theindex by morethan afactor of 2 without increas-
ing its dimensionality.

In another work [12], we use this indexing method and
propose techniques for retrieving similar time sequences
whose differences can be removed by a linear transforma-
tion such as moving average, time scaling and inverting. In
this paper, we generalize our earlier work and allow queries
that express similarity in terms of multipletransformations.
Our work here can be seen as an efficient implementation of
aspecia case of the query language described by Jagadish
et d. [9] for time-series data.

There are other related works on time series data. An ex-
tension of the indexing technique of Agrawal et a. [1] for
subsequence matching is proposed by Faloutsos et a. [6].
Goldin et a. [7] show that the similarity retrieval will be
invariant to simple shifts and scales if sequences are nor-
malized before being stored in theindex. Yi et a. [18] use
time warping as a distance function and present algorithms
for retrieving similar time sequences under thisfunction. A
guery language for time series data in the stock market do-
main isdeveloped by Roth[14]. Morerelated worksinclude
thework of Agrawal et a. [3] on querying shapes of histo-
ries, the work of Shatkay and Zdonik [17] on representing
sequences in terms of some functions and the work of Se-
shadri et al. [16] on querying sequences in general.

3. Similarity Queries and Transformations

A transformation can be seen as away to remove certain
variations before aligning two sequences. Although many
kindsof variationsmay be present in each sequence, wecon-
sider only those that can be removed using linear transfor-
mationson the Fourier seriesrepresentation of the sequence.
Moreformaly, atransformationisapair of real 2 vectors, de-

-

noted by ¢t = (@, b). Thetransformation ¢ applied to a point

3We have shown earlier [12] how a transformation described in terms
of two complex vectors can be mapped into one expressed in terms of two
real vectorsunder a safety constraint.

Fmapsrtod i+ b. Thisclass of transformations can eas-
ily express operations such as moving average, momentum,
time shift, etc. The expressionsof thesetransformationsand
more can be found somewhere else [12, 11].

3.1. Transformations - Normal Form

An efficient way to compare two time sequences is to
compare their normal forms. Given a time sequence #
of mean u and standard deviation o, the transformation

— —— . I
(1/c,—p/0) applied to # givesitsnormal form. Dueto the
linearity property of DFT, the same transformation is appli-
cable to the Fourier representation of a sequence.

Althoughitisnot required by thea gorithmsgiveninthis
paper, we assume time sequences are normalized and for ev-
ery sequence, itsnormal form along withits mean and stan-
dard deviation are stored in arelation. Thisis mainly be-
cause of efficiency (asisnoted by Goldin et al. [7]) and the
following two attractive properties of the normal form se-
guences which are not mentioned by Goldin et al. [7].

1. It minimizes the Euclidean distance with respect to the
scalar shift,i.e. D(X — s;,Y — s,) hasits minimum
when s, and s,, respectively are chosen to be the means

of Zand i 4.

2. The Euclidean distance between two normalized se-
quences is directly related to their cross-correlation °.

D*(X,Y)=2(n—1-np(X,Y)) )

This can be derived by expanding the Euclidean dis-
tance formulaand replacing the mean and the standard
deviation respectively by 0 and 1 in both the Euclidean
distance and the cross-correl ation formul as.

The second property can be quite useful in formulating
similarity queries or translating one query to another. Since
the Euclidean distance between two sequences can range
fromzerotoinfinity, itisusually difficult to specify athresh-
oldfor thisdistance. Instead, we can specify athreshold for
cross-correlation which is between 0 and 1 and plug it into
Equation 2 to find a threshold for the Euclidean distance.
Using Equation 2, we can a so trandate any expression that
uses the cross-correlation in a query to onethat usesthe Eu-
clidean distance or vice versa

3.2. Composing Transformationsin a Query

Inaquery, wemay specify asequence of transformations
to be appliedto atime sequence. For example, we may want

4This can be verified by taking the first derivatives of D w.rt. s, and
sy and equating them to zero.
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toapply a“ s-day shift” followed by an“ m-day moving aver-
age’,fors=0,...,10andm = 1, ..., 40, to a sequence.
We claim the queries expressed in terms of such a sequence
of transformations also benefit from the algorithmsgivenin
this paper. We show this by giving a method to trandate
any query expression that uses a sequence of transforma-
tionsinto one that uses only a set of transformations. The
resulting query can then be processed using the same tech-
nigque that we present for multiple transformations.

Given transformations¢; = (a7, b}) andty = (d3, b;),
for exampl e respectively corresponding to “2-day shift” and
“10-day moving average’, supposewe want to apply ¢, fol-
lowed by ¢4, whichwedenoteby ¢5(¢;), to sequence)?. We
can construct the new transformation as follows:

ty(t1(X)) = db*(dl %X +by) + by ©)

= ag*a_i*X+a_§*b1+b2

Transformationts (¢, ) equivalently can beexpressed asts =
(a3, bs) Where a3 = db  di and by = a3 * by + bs.

We can use this result to compose two sets of trans-
formations. Given two transformation sets 77 and 75,
for example respectively corresponding to “s-day shift”
for s =0,...,10 and “m-day moving average’ for m =
1,...,40, wecan construct transformationset 75 = 7%(71),
which correspondsto a“s-day shift” followed by an “m-day
moving average” for all possible values of s and m, asfol-
lows:

Tz = {ts =t2(t1) | t1 € Th,t2 € To} 4

where t,(t1) is defined by Equation 3. Using Equations 3
and 4, we can ssmplify aquery by replacing any expression
that uses a sequence of transformations with one that uses
only asingleor aset of transformations. We can processthe
resulting query using the techniques described in the next
section.

4. Processing Similarity Queries

We consider spatial queries, namely range queries, spa-
tial join queries and nearest neighbor queries and alow our
transformationsto be used in those queries. We discuss the
issue of processing range queriesin more detail and the two
othersvery briefly. We start with thefollowing range query:

Query 1. “Given the closing price of a stock
g and a set of transformations denoted by T,
find every stock s € stocks and transforma
tiont € T such that the Euclidean distance
D(t(s.close), t(q.close)) < €.”

Asaspecific example, T could be the set of m-day mov-
ing averages for m € {1...40} and we may want to find
all stocksthat have an m-day moving average similar to that

of IBM. A solution for processing this query isto scan the
whole stocks relation, compute the m-day moving average
for the closing price of every stock and determine if there-
sulting sequence is within distance ¢ of the m-day moving
average of the close of IBM. The distance predicate needs
to be checked for al possible transformations. We refer to
this algorithm as the sequential-scan method. The cost of
this algorithm includes one scan of the whole relation and
computing the distance predicate |stocks| * | T'| times.

Another approach isfor every t € T, apply t to thein-
dex built on the first few Fourier coefficients of the closing
priceand do arange query on thenew index [12]. Theunion
of theseresultsfor al ¢ € T gives the query answer. We
cal this algorithm ST-index, where ST stands for ‘a Single
Transformation a atime’. The cost of this agorithm in-
cludes traversing the index |7’ times. Next, we describe a
new agorithm that requires a single scan of the index and
performs much better than both the sequential-scan and ST-
index algorithms. We shall refer to this new agorithm by
MT-index, where MT stands for ‘ Multiple Transformations
atatime'.

4.1. MT-Index Algorithm for Multiple Transfor ma-
tions

A transformation ¢ is of the form¢ = (@, b) where @
and b are n-dimensional real vectors. Thus, a transforma-
tion can berepresented asapoint in a 2n-dimensional space.
Given aquery that requires aset of transformationsto be ap-
pliedto a set of data sequences (or points), wefirst construct
a minimum bounding rectangle (MBR) for al transforma-
tions. Having a multidimensional index for time sequences,
we can apply the transformation rectangle to entries of the
index. For a point data set, entries of a multidimensional
index (such as R-tree) are usualy in the form of points or
rectangles. Since a point can be seen as a special kind of a
rectangle with its lower bound equal to its upper bound in
every dimension, we only consider applying a transforma-
tion rectangle to a data rectangle.

To apply atransformation rectangle to a data rectangle,
we decompose the 2n-dimensional transformation rectan-
gleinto two n-dimensiona MBRs, one corresponding to @
which we denote by mult-MBR, and the other correspond-
ing to b which we denote by add-MBR. Given mult-MBR:
<(M11, Mlh), ...>andadd-MBR: <(14117 Alh), ...>and
data rectangle X: <(X1l, X1h),...>, the result of apply-
ing mult-MBR and add-MBR to rectangle X isrectangle Y:
<(Y1l,Y1h),...> where

YL = A;l+ ©)
min(M;l+ X;l, Ml X;h, M;hx X;l, M;h x X;h)
Yih = A;h+
max (Ml « X;1, M;lx X;h, M;h x X;l, M;h* X;h)



for al dimensionsi. Asan example, consider the points of
m-day moving averagefor m = 1, ...,40. Figure 3 shows
the magnitudes and the angles of these points at the second
DFT coefficient and their decompositions into mult-MBR
and add-MBR. It can be observed that points inside mult-
MBR make ahorizontal lineat 1. Thisisdueto thefact that
adata point angleismultiplied by 1. Similarly pointsinside
add-MBR make a vertical line a O to show the fact that a
data point magnitude is added by 0. The result of applying
these MBRsto a datarectangle is shown in Figure 4.

MV1-40 MUIt-MBR for MV1-40 add-MBR for MV1-40
2
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Figure 3. The second DFT coefficients of m-
day moving averages (for m = 1,...,40) and
their decompositions into mult-MBR and add-
MBR
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Figure 4. A data rectangle before and after
being transformed

To devel op an agorithm for answering Query 1, suppose
an R-treeindex isavailable on sequences. We can apply the
transformation rectangleto every datarectanglein theindex
and construct a new index on the fly. The new index iscon-
structed oneindex rectangle at atime, and each timethe new
rectangleischecked to see whether it intersectsthe query re-
gion. Thisprocessretrievesaset of candidatedataitemsthat
includesall qualifying dataitems plus some fal se positives.
Thelast step of the a gorithm removes fal se positivesby ap-
plying every member of the transformation set to every can-
didate data item and selecting data items that intersect the
guery region. We can write the search agorithm more for-
mally asfollows:

Algorithm 1 : Given an R-treeindex which is built on the
first k Fourier coefficients of a sequence and whose root is
N, atransformation set 7", a threshold ¢, and a search point
7, usetheindex to find all sequencesthat becomewithindis-
tance ¢ of ¢ after being transformed by a member of 7'.

1. Build MBR r for pointsin 7" and project r into amult-
MBR and an add-MBR as described above.

2. Build a search rectangle of width ¢ around ¢. We call
thisrectangle ¢,¢c:-

3. If N isnot aleaf, apply the mult-MBR and the add-
MBR to every (rectangle) entry of N using Equation 5
and check if theresulting rectangleintersectsq,..... For
every intersecting entry, goto step 3 and dothisstep on
the index rooted at the node of the intersecting entry.

4. If N isaledaf, apply the mult-MBR and the add-MBR
to every (point) entry of N and check if the resulting
rectangleintersectsq,..:. If so, theentry isacandidate.

5. For every candidate entry, retrieve its full database
record, apply dl transformations inside » to the se-
guence, and determine transformations that reduce the
Euclidean distance between the data sequence and the
guery sequence to lessthan e.

This agorithm is guaranteed not to miss any qualifying
sequence (the proof is given in the extended version of this
paper [10]). We can develop similar algorithms for effi-
ciently processing spatia join and nearest neighbor queries.
Inaspatial join query, we apply the transformation MBR to
all data items used in the join predicate before computing
the predicate. For example, we may want to find al pairs
of stocks that have similar closing prices with respect to an
m-day moving average for somem € {1,...,40}. Having
an R-tree index for the closing prices, we can use any well-
known spatid join agorithmfor R-tree and change thejoin
condition such that the transformation rectangle be applied
to both data rectangles involved in the join before testing
them for a possible overlap. Similarly in anearest neighbor
guery, as we walk down the tree, we apply the transforma-
tionMBRtodl entries of thenodewevisit. Wecan thenuse
any kind of metric (such as MINDIST or MINMAXDIST
[15]) to prunethe search.

4.2. Performance I mprovement

A potentia problem with the MT-index algorithm is if
transformations make severa clusters or a few of them
spread al over the space, then the minimum bounding rect-
angle of transformationswill cover alargearea. ThisMBR,
when applied to a data rectangle, can easily make the data
rectangleintersect the query region. This can reduce thefil-
tering power of the index dramatically. A solution for this



problem is to allow more than one transformation rectan-
gle. Asthenumber of MBRsgoesup, theareaof each MBR
gets smaller, and as aresult the filtering power of the MBR
increases; but, on the other hand, the same index needs to
be traversed several times. In the worst case, the number of
MBRsisthe same as the number of transformations, i.e. ev-
ery MBR includes only one transformation point. In such a
case, both ST-index and MT-index perform exactly the same.

Now the question is how we should optimally choose
MBRsfor a given set of transformations such that the cost
of Algorithm 1 (interms of the number of disk accesses) be-
comes minimum. One solution is to estimate the cost for
any possible set of MBRs and choose the set with minimum
cost. A first attempt in estimating the cost for a given set of
MBRsisto usethe total area of MBRs. However, the total
areais minimum if every MBR includes only one transfor-
mation point, i.e. the ST-index algorithm is used. Another
approach for estimating the cost of a given set of MBRsis
to apply MBRsfor afixed data rectangle, say a unit square,
then compute the total area of the resulting data rectangles.
Due to this estimation, the best performance should be ob-
tained using only one transformation rectangle.

However, our experiments showed that using one trans-
formation rectangle did not necessarily give the best per-
formance. The worst performance for MT-index, which is
close to that of ST-index, is when we pack two clusters
of transformations into one rectangle. A solution to avoid
this problem isto use a cluster detection algorithm (such as
CURE [8]) and avoid packing two clustersinto one rectan-

ge

4.3. Ordering Assumption on Transfor mations

So far, we have made no assumption on any possible or-
dering among transformations. In this section, we define a
notion of ordering among transformations and show that it
can be quiteuseful in guiding the search process more effec-
tively.

Definition1 We call < 7,<> an ordering of 7' =
{t1,ta,...,t,} wr.t. value domain domand distance func-
tionDif Vu;, v; € dom, Vi, 8, € T,

tr <t = D(t(vi), ti(vy)) < D(te(vi), tx(vi))

Once an ordering is established among transformations, we
can use this ordering to guide the search more cleverly.
To give an example, consider Query 1 and assume 7' =
{2,...,100} represents a set of scaling factors. It is easy
to show that “less than” defines an ordering among mem-
bers of T w.rt. the domain of time sequences and the Eu-
clidean distance (see the extended version of this paper for
a proof [10]). To find al transformations that make a data
sequence to become similar to a query sequence we do not

need to apply all scalefactorsto sequences. Instead, weneed
to find thelargest scale factor that makes the distance predi-
catetrue. Suppose s; issuch ascale factor. One way to find
s; isto do abinary search on the set of scale factors. Defi-
nition 1 easily impliesthat the distance predicateis true for
al scale factorslessthan s;.

We can use the binary search technique in al three a-
gorithms described earlier. In the case of the sequentia
scan method, we still need to scan the whole stocks rela
tion. However, the number of sequence comparisons drops
to |stocks| * log|T|. Similarly in the case of the MT-index
algorithm, the number of disk accesses till will bethe same,
but the number of comparisonsfor every candidate sequence
dropstolog|T'|. The ordering assumption reduces the num-
ber of index traversals for ST-index to log|T|.

Ontheother hand, the ordering assumption doesnot hold
in general. There are useful transformationsthat are not or-
dered w.r.t. time sequences and the Euclidean distance. For
example, we can show that no ordering is possible for a set
of moving averages w.r.t. time sequences and the Euclidean
distance (see the extended version of this paper for a proof
[10).

5. Experimental Results

We implemented both ST-index and MT-index, on top of
Norbert Beckmann's Version 2 implementation of the R*-
tree [4]. We ran experiments on both stock prices data ob-
tained from the ftp site “ftp.ai.mit.edu/pub/stocks/results’
and synthetic data. All our experiments were conducted on
a 168MHZ Ultrasparc station. The stock prices database
consisted of 1068 stocks and for each stock its daily clos-
ing pricesfor 128 days. Each synthetic sequence wasin the
formof ¥ = [¢;] wherez; = z;_1 +2; and z; isauniformly
distributed random number in the range [—500, 500].

For every time series, we first transformed it to the nor-
mal form for reasons described in Section 3.1, and then we
found its Fourier coefficients. Since the mean of a normal
form seriesis zero by definition, the first Fourier coefficient
isawayszero, sowe can throw it away. For every sequence,
we stored the magnitudes and the angles of the second and
thethird DFT coefficientsin theindex. We used the symme-
try property of DFT in all our experiments over theindex.

We report our experimentsin two parts. Inthefirst part,
we compare MT-index to ST-index and sequentia scan. In
thispart, we made the choice of packing all transformations
into one rectangle though it did not necessarily give us the
best possible performance of MT-index. In the second part,
we varied the number of transformation rectanglesfrom one
to itsmaximum to see the effect of having multipletransfor-
mation rectangles on the performance of MT-index. In al
our experimentsover range queries, weran each experiment
100 times and each time we chose arandom query sequence



fromthe dataset and searched for al other sequences within
distancee of thequery sequence. We averaged theexecution
times from these runs. We also set the correlation threshold
fixed to 0.96 for &l range queries. We plugged this thresh-
old in Equation 2 to find a value for the Euclidean distance
threshold.

5.1. Comparing M T-index to ST-index and Sequen-
tial Scan
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Figure 5. Time per query varying the number
of sequences for range queries

Figure 5 shows the running time of Query 1 using three
algorithms sequential-scan, ST-index, and MT-index. In
the experiment, we set the number of transformationsfixed
to 16, but we varied the number of sequences from 500
to 12,000. The experiment ran on synthetic sequences of
length 128. The transformationswere a set of moving aver-
ages ranging from 10-day moving average to 25-day mov-
ing average. The average output size was 7 or more de-
pending on the number of input sequences. The figure
showsthat MT-index performs better than both ST-index and
sequential -scan.

Figure 6 shows the running time of Query 1 again using
three algorithms sequential-scan, ST-index, and MT-index.
In the experiment, we set the number of sequences fixed to
1068, but we varied the number of transformations from 1
to 30. The transformations were a set of moving averages
ranging from 5-day moving average to 34-day moving aver-
age. The experiment ran on real stock prices data. The av-
erage output size was 11 or more depending on the number
of transformations. The figure showsthat MT-index outper-
forms both ST-index and sequential-scan.

5.2. Multiple Transformation Rectangles

Inthissection, we show that groupingal transformations
in one rectangle does not necessarily give usthe best possi-
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Figure 6. Time per query varying the number
of transformations for range queries

ble performance. To show this, we ran Query 1 using MT-
index algorithm on real stock prices data, but this time we
varied the number of transformations per MBR from oneto
its maximum. The transformation set consisted of m-day
movingaveragesform = 6, . .., 29. Weequally partitioned
subsequent transformationsand built an MBR for each parti-
tion. AsisshowninFigure7, despitethefact that collecting
all transformationsin onerectangle resulted inthe minimum
number of disk accesses, it did not necessarily give us the
best performance mainly because of the increased number
of false positives.
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Figure 7. Both the running time and the num-
ber of disk accesses varying by the number
of transformations per MBRs

We later added the inverted version of each transforma-
tion, which was obtained by multiplying every coefficient
by -1, to the transformation set. This created two clusters
in amultidimensional space. Again, we equally partitioned
subsequent transformationsand built an MBR for each par-
tition. We varied the number of transformations per MBR
from one to 48 which was the size of the transformation
set. Asisshown in Figure 7, the running time shows bumps



when we pack one third or al of the transformationsin a
rectangle. The same bumps are also observed in the num-
ber of disk accesses. Thisisduetothe fact that in these two
cases the gap between two clustersisincluded in atransfor-
mation rectangle.

These experiments show that as we start packing trans-
formationsinto rectangles, we see amagjor performance im-
provement which continuesup to acertain point (six to eight
transformations per rectangle here). The performance after
thispoint either staysthe same or goesdown. Theworst per-
formance for M T-index, which was even worse than that of
ST-index, was when we packed two clusters of transforma-
tions into one rectangle. A solution to avoid this problem
isto use acluster detection algorithm in advance and avoid
packing more than one cluster to a rectangle.

6. Summary

We have proposed an efficient method for processing
similarity queries that specify multiple transformations as
the basis for similarity. We have shown that, instead of ap-
plying many single transformations to the index, we can
group transformations and apply a group of them simulta
neoudly to the index. We have discussed the possihility of
grouping transformationsinto multiplerectangles and its ef-
fects on the performance of the agorithm. We have also
shown that in the presence of some ordering among trans-
formations, the search can be guided more efficiently. We
evaluated our method over both real stock prices data and
synthetic data. Our experiments confirm that the given al-
gorithm for handling multiple transformations outperforms
both the sequentia scanning and the index traversal using
onetransformation at atime.
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