Bulk Loading Large Collections of Hyperlinked Resources

Davood Rafiei
Department of Computing Science
University of Alberta

drafiei@cs.alberta.ca

ABSTRACT

The problem of loading large collections of hyperlinked re-
sources into a relational database is complicated with inter-
node references when these references cannot be indexed.
We show that this scenario can arise in many real life hy-
perlinked resources and propose several solutions to address
the problem. We run some experiments over a graph of the
Web with 178 million nodes and around 1 billion edges and
report our results.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval].

General Terms: Algorithms, Experimentation.

Keywords: bulk loading, larges graphs, Web graph.

1. INTRODUCTION

Useful information can be extracted and explored from
the linkage structure of the hyperlinked resources, leading to
better understanding of the topology of the network. Stor-
ing data in a relational database has the benefit that queries
can be easily written in SQL and optimized within the SQL
engine. Loading a small graph into a database is straightfor-
ward. Loading a large graph when there are no unresolved
references is also trivial. Loading a large graph in the pres-
ence of unresolved references is not only straightforward, but
it is often the source of a mis-understanding. For instance,
Bar-Yossef and Rajagopalan [2] use tables PAGES (page key,
page-shingle) and LINKS(src_page key, dest_page key)
to store a Web graph and make the claim that building these
tables “requires a constant time per page.” It is easy to show
that this claim does not hold for the Web graph unless more
specific assumptions are made. First, the node descriptions
must be shortened because a URL is too long to be used
as a key. While a URL on average is 53 characters long,
machine-generated URLs can be longer than 1000 (based
on our experiments with a snapshot of the Web). This is
far more than the maximum length allowed for candidate
keys or indexable columns in major database systems. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

HT 05, September 6-9, 2005, Salzburg, Austria.

Copyright 2005 ACM 1-59593-168-6/05/0009 ...$5.00.

length of both a primary key and an indexable column is
limited, for example, in DB2 to 254 characters and in Ora-
cle to 758 characters. Apart from DBMS limitations, long
keys incur unnecessary additional costs at the query pro-
cessing time. A solution is to assign a shorter id to every
URL. Second, when a node is assigned a new id, all refer-
ences of the node must be replaced with this id. Resolving
references in general cannot be done in linear time.

The aforementioned problems are not unique to the Web
graph. Machine-generated ids (e.g. URIs) can appear in
xml documents through the use of xlink and name spaces.
Long ids can appear in academic citations to refer to, for
example, publications inside digital libraries. Long ids can
arise in networks with no centralized authority governing
the creation of ids such as peer-to-peer networks.

If a referenced node is already in the database (those are
called backward references), the id assigned to that node
may need to be looked up. If a referenced node is not yet
loaded (those are called forward references), the references
may be saved until the nodes they refer to are loaded. Our
work addresses the general problem of loading a graph when
neither the graph nor the id map can fit in memory.

In this paper, we evaluate some of the alternatives for
loading a large graph into a relational database; our evalua-
tion includes the expected behaviours and some of the limi-
tations. We present the conditions under which the loading
can be done in linear time, and an algorithm which can be
used when the conditions are met. As a proof of concept,
we report our experiments of loading a connectivity graph
of a snapshot of the Web into DB2.

Related to our work is the problem of bulk loading into
an OODB database where some solutions have already been
proposed. Some of these solutions load the entire list of ref-
erences into memory, thus these methods are not applicable
to large graphs. Only a partition-list approach (which cor-
responds to our join-based resolution) does not make such
an assumption and can be applied to large graphs [11].

2. LOAD ALGORITHMS

Let Nodes and Edges denote the two tables which will
store the graph description. Each node is uniquely identified
by one or more attributes (e.g. URL, ip address, etc). The
load algorithm (1) must assign a short key to each node
and (2) must replace all references to that node with the
newly-assigned key. In our study, we examine four different
load algorithms. Our naive algorithm is basic and is only
used for the purpose of comparison. Our work with Web-
like graphs that have certain power law properties raises

some interesting questions such as: (1) can we exploit those
properties to boost the performance of the loading? (2)
how much improvement can be achieved? Our semi-naive
algorithm improves upon our naive algorithm and addresses
some of these questions. For clarity of the presentation, both
algorithms are geared toward the Web graph. Our third and
fourth algorithms are general and perform the loading in two
steps: first the references are resolved, then the data is bulk
loaded using a relational bulk loading utility.

2.1 NaivelLoading

Stream through Web pages and for every page r
If r has not been seen before, then add (7id, r)
to nodes where rid is an id assigned to r
For every link s inside the Web page
If s has not been seen before, then add
(sid, s) to nodes where sid is an id assigned to s
Add (rid,sid) to edges

The algorithm performs a lookup for every URL that is
encountered; this includes lookups for the URL of the page
and for the URL of every page the page links to. For the
Web graph, it is estimated that a page links to 7.2 pages
on average [8]. Thus the average number of lookups for a
document is estimated to be 8.2. The algorithm does an
insert for every node and every edge.

Column URL is too long to be indexed (as discussed ear-
lier). On the other hand, without an index on URL, each
lookup from nodes will end up scanning the whole table.
To avoid a sequential scan, we break column URL into two
pieces, say url; and wurls, such that wrl; is short enough to
be indexed and URL = concat(urly,urls). Having an index
on urli, we can benefit from the index for lookups.

The algorithm still has some drawbacks including the large
number of lookups, the cost associated to each lookup and
the number and the cost of inserts to the index on wrl;.
There is also an overhead due to the logging activities of
the DBMS, but it is possible to avoid such an overhead by
building data files outside the DBMS and loading them into
the DBMS afterwords using a relational bulk loading utility.

2.2 Semi-naive Loading

The naive algorithm can be improved in several aspects.
Our improvements are geared toward graphs with scaling
properties. In particular, we exploit the power law distri-
butions of in- and out-degrees of nodes to improve the load
performance. It is shown that a large number of dynamic
systems demonstrate such power law distributions [1]. Since
each incoming edge to a node translates to an access of that
node in the naive algorithm, clearly nodes with the largest
in-degrees are accessed the most. As our first improvement
of the naive algorithm, we identify a set of nodes with the
largest in-degrees and store them in a hash table in memory.
No disk access is needed for searches over nodes that reside
in memory. It is easy to compile such a list from a relatively
small sample; if a url appears in a large number of pages, it
is likely that it will also appear in a small sample [5].

The Web graph also has a large number of nodes with
zero or one incoming edges. When every such node is vis-
ited, there is no need to search the database since the node
cannot be there. But in the naive method, those nodes are
still being searched before being loaded into the database.
To avoid unnecessary searches, we build a summary of all

URLs in the database and use it for membership testing.
This is done using the Bloom filters [7], a hash-based trick
for quickly testing membership. The summary is built in-
crementally while the nodes are being loaded.

Our third refinement is specific to the Web where links
can appear more than once in a page. On average, more
than 14% of the links in a page are duplicates, based on our
experiments. To avoid searches for duplicate links, we keep
in a memory hash table all links recently visited in the page.

2.3 Bulk Loading Using Joins

Assign a unique key to each node, and use joins to re-
place every node description in edges with its surrogate key.
The join is done twice so that both endpoints of an edge
are replaced with their keys. For a shorter key assignment,
one can use a dense assignment of sequential ids (e.g. in-
tegers). The node set may include duplicates in which case
duplicates are removed before keys are assigned. If p. and
pn respectively denote the number of disk pages in Edges
and Nodes, the cost of this method is mainly the cost of
joins which can vary from 3(pe + pn) I/Os (when the main
memory is large enough to store ,/p, disk pages) to up to
O(pelogpe + prlogprn) 1/Os in general (e.g. see [4]).

2.4 Bulk Loading with Fingerprints

Map node descriptions to short ids using a fingerprinting
function. If it can be guaranteed that every node description
is mapped to a unique id, then all references can be resolved
within one scan of the nodes and the edges. It is not hard
to show that there is no such mapping that works for all
possible inputs, though there are families of functions such
that, for all possible inputs, functions in these families result
into a very limited number of collisions. One such family of
functions is discussed here.

Next, find every node that is assigned a non-unique id and
replace it with a unique key. This can be generally done by
sorting the nodes and reassigning some of the keys; the cost
in terms of the number of I/Os varies from 3p, (when the
memory can hold /p, disk pages) to O(pnlogpn). Denote
with N, the set of nodes where a key is reassigned.

Finally scan the edges and replace every node description
with its id. This can be easily done using the same function
applied to nodes except for nodes in N,,. If the number
of nodes in N,, is small, then those nodes can be kept in
memory and can be looked up before an id is assigned.

In our implementation of this method, we had to choose
a fingerprinting function that could avoid duplicate ids as
much as possible since these ids incurred additional costs.
We decided to use Rabin’s method [9] which has also been
used in several practical applications (e.g. [6]). Compared to
alternative fingerprinting functions such as MD5 and SHA
[10, 3], Rabin’s method has the flexibility of generating fin-
gerprints of any length, hence it is applicable for graphs of
different sizes. The length of a fingerprint in MD5 is fixed
to 128 bits and in SHA is fixed to 160 bits or longer. These
other methods also do not provide a bound on the expected
number of collisions.

Rabin’s Fingerprinting Method

Given an input sequence by,—1,...b1,bo of m bits, the se-
quence can be regarded as the polynomial P(z) = z™ +
bm_1z™ '+ ...+ bz + bo. Let Qz) = o* 4+ 1+
...+ c1z + ¢o be an irreducible polynomial * of degree k.

!A polynomial is called irreducible if it cannot be factored

The reminder P(z) mod Q(z) = hp—12*~" + ..., hiz + ho
is computed using polynomial arithmetic modulo 2; the se-
quence hy_1,...,h1,ho is the fingerprint of the input se-
quence. This method has a number of interesting properties
(as shown by Rabin [9]).

LEMMA 1. For an irreducible polynomial Q(z) of a prime
degree k, this algorithm assigns every fingerprint with equal
probabilities.

LEMMA 2. Given n sequences, each of length m bits or
less, and a prime number k that denotes the length of the fin-
gerprints in bits, the probability that two distinct sequences
are mapped to the same fingerprint is less than nm2/2k.

The ratio in Lemma 2 is an upper bound and can be
greater than 1. Lemma 2 bounds the expected number of
collisions to n>m?/2*.

3. EXPERIMENTAL RESULTS

This section reports our experiments with loading a graph
of the Web with over 178 million nodes and 800 million
edges, crawled in 1999 by by Internet Archive. Due to our
hardware limitations, our experiments were conducted only
using the crawled Web pages and the hyperlinks induced on
such pages. The graph would have had over 1.3 billion nodes
if we wanted to include pages that were not crawled. Our
experiments were conducted using DB2 on a Linux machine
with dual Pentium IIT processors running at 933 MHz, 2GB
of RAM and a RAID disk of size 640GB. The nodes and the
edges of the graph were respectively stored in tables nodes
and edges.

We used the Linux commands for most of our data pre-
processing. The join-based resolution was implemented by
sorting the hyperlinks twice (once on the source URL and
once on the destination URL) and the URLs and merging
them. For the resolution by fingerprinting, we only needed
to scan URLs and hyperlinks once. We relied on the DB2
bulk loading utility to identify the URLs that were assigned
the same ids; this incurred no additional costs since the bulk
loader was already checking for the uniqueness of the pri-
mary key and our fingerprinting scheme guaranteed to keep
the number of collisions low (if not zero). The join-based
resolution took over 750 minutes whereas the fingerprinting
scheme only took 34 minutes. Once the references were re-
solved, we used the DB2 load command to bulk load data
into the database; the running time of this step for both
algorithms were the same. The load time did not include
the checking for the referential integrity constraints as they
were not needed.

For the naive and semi-naive algorithms, we could not
load more than a tiny fraction of data after running them
for a few days. As shown in Figure 1, the running time
of each insert statement increases at least linearly with the
load factor.

4. CONCLUSIONS

We presented some of the issues related to loading a large
network into a relational database and discussed some pos-
sible solutions, two of which used the relational bulk loading
utility. Both join- and fingerprinting- based algorithms are

into nontrivial polynomials over the same field.

12
o 10
]
E
o B8
g
= Naive
2 b m Semi-Naive
=
g 4
@
E
E 2 [I [I
, mill
0.1 03 0.6 0.9 1.2 1.4 1.8
Load factor (=db size / db size after the full
load)%

Figure 1: Time per adding a node varying the
database size

scalable to larges graphs but the fingerprinting scheme is
quite faster, as reported in our experiments. There were
other factors that affected the load time and were outside
our control. They included the time for data cleaning and
also the time for running the relational bulk loading utility.
Acknowledgments

This work is supported by Natural Sciences and Engineer-
ing Research Council of Canada. Rabin’s method was im-
plemented by Calvin Chan and Hahua Lu.

5. REFERENCES

[1] R. Albert and A. L. Barabasi. Statistical mechanics of
complex networks. Rev. Mod. Phys., 74:47-94, 2002.

[2] Z. Bar-Yossef and S. Rajagoplan. Template detection
via data mining and its applications. In Proc. of the
WWW Conference, pages 580-591, 2002.

[3] FIPS. Secure hash standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[4] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database System Implementation. Prentice Hall, 2000.

[6] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. Measuring index quality using random
walks on the Web. In Proc. of the WWW Conference,
pages 213-225, 1999.

[6] A. Heydon and M. Najork. Mercator: a scalable,
extensible web crawler. In Proc. of the WWW
Conference, pages 219-229, 1999.

[7] D. E. Knuth. The Art of Computer Programming,
volume 3. Addison Wesley, second edition, 1998.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Extracting large-scale knowledge bases
from the Web. In Proc. of the VLDB Conference,
pages 639-650, 1999.

[9] M. O. Rabin. Fingerprinting by random polynomials.
Report TR-15-81, Center for Research in Computing
Technology, Harward University, 1981.

[10] R. Rivest. Rfc 1321 - the MD5 message-digest
algorithm. http://www.fags.org/rfcs/rfc1321.htm.

[11] J. L. Wiener and J. F. Naughton. Oodb bulk loading
revisited: The partitioned-list approach. In Proc. of
the VLDB Conference, pages 30-41, 1995.

