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Abstract We propose an improvement of the known DFT-based indexing technique for
fast retrieval of similar time series. We use the last few Fourier coefficients in the
distance computation without storing them in the index since every coefficient at
the end is the complex conjugate of a coefficient at the beginning and as strong
as its counterpart. We show analytically that this observation can accelerate the
search time of the index by more than a factor of two. This result was confirmed
by our experiments, which were carried out on real stock prices and synthetic
data.
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Introduction

Time series constitute a large amount of data stored in computers. Examples
include stock prices, exchange rates, weather data and biomedical measure-
ments. We are often interested in similarity queries on time-series data [3, 2].
For example, we may want to find stocks that behave in approximately the
same way; or years when the temperature patterns in two regions of the world
were similar.

There have been several efforts to develop access methods for efficient
retrieval of similar time series [1, 6, 12, 15]. Agrawal et al. [1] propose an
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efficient index structure to retrieve similar time series stored in a database.
They map time series into the frequency domain using the Discrete Fourier
Transform (DFT) and keep the first few coefficients in the index. Two series
are considered similar if their Euclidean distance is less than a user-defined
threshold.

In this paper, we propose using the last few Fourier coefficients of a time
series in the distance computation, the main observation being that, every
coefficient at the end is the complex conjugate of a coefficient at the beginning
and as strong as its counterpart. This observation reduces the search time of
the index by more than 50% in most cases.

The rest of the paper is organized as follows. In the next section we review
some background material on related work and on the discrete Fourier trans-
form. Our proposal on the efficient use of DFT in retrieving similar time series
is discussed in Section 2.. In the same section, we present analytical results on
the search time improvements of our proposed method. Section 3. discusses
the performance results obtained from experiments on real and synthetic data.
Section 4. is the conclusion.

1. BACKGROUND

In this section, we briefly review background material on past related work
and on the discrete Fourier transform.

1.1 RELATED WORK

There has been follow-up work on the indexing technique proposed by
Agrawal et al. [1]. In our earlier work [12, 11], we use this indexing method
and propose techniques for retrieving similar time sequences whose differences
can be removed by a linear transformation such as moving average, time scaling
and inverting. More follow-up work includes the work of Faloutsos et al. [6] on
subsequence matching and that of Goldin et al. [7] on normalizing sequences
before storing them in the index.

In this paper, we use the indexing technique proposed by Agrawal et al.[1],
but in addition to the first few coefficients we also take the last few coefficients
into account. Both our analytical results and our experiments show that this
observation accelerates the retrieval speed of the index by more than a factor
of 2. All follow-up works described earlier benefit from this performance
improvement.

There are other related works on time series data. A domain-independent
framework for posing similarity queries on a database is developed by Jagadish
et al. [8]. The framework has three components: a pattern language, a
transformation rule language, and a query language. The framework can be
tuned to the needs of time series domain. Yi et al. [15] use time warping as a
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distance function and present algorithms for retrieving similar time sequences
under this function. Finally, Agrawal et al. [3] describe a pattern language
called SDL to encode queries about “shapes” found in time sequences.

1.2 DISCRETE FOURIER TRANSFORM

Let a time series be a finite duration signal
����������
	 for � �
��������������������� .

The DFT of
�� , denoted by

��
, is given by

��� � �� �  "!$#%�'&)( �*�,+.-�/1032�4657 8 �
�������������������9� (1.1)

where : � � �;� is the imaginary unit. Throughout this paper, unless it is stated
otherwise, we use small letters for sequences in the time domain and capital
letters for sequences in the frequency domain. The energy of signal

�� is given
by the expression <>= ���?@�  �!A#%�
&�(CB ��� BED�F (1.2)

A fundamental observation that guarantees the correctness of the indexing
method for time series data is Parseval’s rule [10], which states for a given
signal

�� its energy remains the same after DFT, i.e.

<>= ���?G� <H= �� ? where
��

is the DFT of
�� . Using Parseval’s rule and the linearity property of DFT (for

example, see Oppenheim and Schafer [10] for details), it is easy to show that
the Euclidean distance between two signals in the time domain is the same as
their distance in the frequency domain.I D

= ��A� �J�?K� <H= ��L� �JM?N� <>= �� � �O ?@� I D
= �� � �O ? (1.3)

2. STORAGE AND RETRIEVAL OF SEQUENCES

Given a set of time series data, we can construct an index [1] as follows:
find the DFT of each sequence and keep the first few DFT coefficients as the
sequence features. Let’s assume that we keep the first k coefficients. Since
all DFT coefficients except the first one are complex numbers, keeping the
first P DFT coefficients maps every time series into a point in a

=1Q
P �R��? -

dimensional space. These points can be organized in a multidimensional index
such as R*-tree[4]. Keeping only the first k Fourier coefficients in the index
does not affect the correctness because the Euclidean distance between any
two points in the feature space is less than or equal to their real distance due to
Parseval’s rule and the monotonic property of the Euclidean distance. Thus, the
index always returns a superset of the answer set. However, the performance
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of the index mainly depends on the energy concentration within the first P
Fourier coefficients of sequences. It turns out that a large class of real world
sequences concentrate the energy within the first few coefficients, i.e. they have
a skewed energy spectrum of the form �

=
� ! D � ? for ��� � F � where

�
denotes

the frequency. For example, classical music and jazz fall in the class of pink
noise whose energy spectrum is �

=
� !$# ? ([14, 13]), stock prices and exchange

rates fall in the class of brown noise whose energy spectrum is �

=
� ! D ? ([9, 5]),

and the water level of rivers falls in the class of black noise for which ��� � (
[9, 13]).

To retrieve similar time series stored in the index we may invoke one of the
similarity (range, nearest-neighbour, or all-pair) queries. For example, suppose
we want to answer a range query using the index, i.e., to find all sequences

��
that

are within distance 	 of a query sequence
�

, or equivalently

I = �� � �
 ?�� 	 . A
common approach to answer this query is to build a multidimensional rectangle
of side

Q
	 (or a multidimensional circle of radius 	 ) around

�

and check for an

overlap between the query rectangle (circle) and every rectangle in the index.
That is, instead of checking

I D
= �� � �
 ?
� 	 D , we check B ��� � 
 � B D � 	 D for8 �
��� F�F�F � P � � . The latter is a necessary (but not sufficient) condition for the

former.
The size of the query rectangle has a strong effect on the number of directory

nodes accessed during the search process and the number of candidates which
includes all qualifying data items plus some false positives (data items whose
full database records do not intersect the query region). Our goal here is
to reduce the size of the query region, using the inherent properties of DFT,
without sacrificing the correctness.

2.1 OUR PROPOSAL

The following lemma is central to our proposal.

Lemma 1 The DFT coefficients of a real-valued sequence of duration � sat-
isfy

�  "! � � ���� for 8 � ��� F�F�F ��� �
� where the asterisk denotes complex
conjugation

#
.

Proof: See Oppenheim and Schafer [10, page 25].
This means the Fourier transform of every real-valued sequence is symmetric

with respect to its middle. A simple implication of this lemma is B �  �! � B �B ��� B , i.e. every amplitude at the beginning except the first one appears at the
end.

Observation 1 In the class of (real-valued) time series that have an energy
spectrum of the form �

=
� ! D � ? for ��� � F � , the DFT coefficients are not only

strong at the beginning but also strong at the end.
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This means if we do our distance computations based on only the first P
Fourier coefficients, we will miss all the information carried by the last P
Fourier coefficients which are as important as the former. However, the next
observation shows that the first P Fourier coefficients are the only features that
we need to store in the index.

Observation 2 The first �
= ��� ��?�� Q � DFT coefficients of every (real-valued)

time series contain the whole information about the sequence.

The point left to describe now is how we can take advantage of the lastP Fourier coefficients without storing them in the index. We can write the
Euclidean distance between two time series

�� and
�� , using equations 1.3 and

1.2, as follows:

I D
= �� � ���?N� I D

= �� � �
 ?N�  �!A#%� &)( B � � � 
 � B D (1.4)

where
��

and
�


are respectively DFTs of
�� and

�� . Since B �  "! � B � B ��� B and

B 
  "! � B � B 
 � B for 8 � ��� F�F�F � ���9� , we can write
I D

= �� � �
 ? as follows:

I D
= �� � �
 ?N� B � ( � 
 ( BED �

��	 �
��
 �
 D !A#� & #

Q
B � � � 
 � B D � B �  �
 D � 
  �
 D B D +��M+����

�
�  �!A#���
 D� & #

Q
B � � � 
 � B D ����� �

(1.5)
A necessary condition for the left side to be less than 	 D is that every

magnitude on the right side be less than 	 D . For the time being and just for
the purpose of presentation, we assume time series are normalized D before
being stored in the index. In general, time series may be normalized because
of efficiency reasons [7] or other useful properties [11]. Since the first Fourier
coefficient is zero for normalized sequences, there is no need to store it in the
index. In addition, since P is usually a small number, much smaller than � , we
can assume that the

= ��� Q ? ��� coefficient is also not stored in the index. Now
the condition left to be checked on the index isQ

B ��� � 
 � BED � 	 D 8 ��� 8 ����� F�F�F � P
or, equivalently

B � � � 
 � B � 	� Q 8 ��� 8 ����� F�F�F � P
A common approach to check this condition is to build a search rectangle

of side D��� D �
� Q
	 (or a circle of diameter

� Q
	 ) around

�

and check for an

overlap between this rectangle (circle) and every rectangle in the index. The
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search rectangle is still guaranteed to include all points within the Euclidean
distance 	 from

�

, but there is a major drop in the number of false positives.

The effect of reducing the size of the search rectangle on the search time of a
range query is analytically discussed in the next section.

The symmetry property can be similarly used to reduce the size of the search
rectangle even if sequences are not normalized. The only difference is that one
side of the search rectangle (the one representing the first DFT coefficient) is
Q
	 and all other sides are

� Q
	 .

We can show that all-pair queries also benefit from the symmetry property
of DFT. Suppose we want to answer an all-pair query using two R-tree indices,
i.e., to find all pairs of sequences that are within distance 	 form each other.
A common approach for processing this query is to take pairs of (minimum
bounding) rectangles, one rectangle from each index, extend the sides of one
by

Q
	 and check for a possible overlap with the other. However, the symmetry

property implies that if we extend every side by
� Q
	 , the result is still guaranteed

to include all qualifying pairs though the number of false positives is reduced.

2.2 ANALYTICAL RESULTS ON THE SEARCH TIME
IMPROVEMENTS

There are two factors that affect the search time of a range query, if we
assume the CPU time to be negligible; one is the number of index nodes
touched by the query rectangle and the other is the number of data points inside
the search rectangle (or candidates). Both factors can be approximated by the
area of the search rectangle, if we assume data points are uniformly distributed
over a unit square, and the search rectangle is a rectangle within this square (we
relax this assumption later in this section). Thus, to compare the search time
of a rectangle of side

� Q
	 to that of a one of side

Q
	 , we compare their areas.

Since a search rectangle has

Q
P sides, the area (or the volume) of a search

rectangle of side
� Q
	 is

= � Q
	 ? D�� �

Q
� 	 D�� . This is one

Q
� th of the area (or the

volume) of a rectangle of side

Q
	 which is

=1Q
	 ? D�� �

Q
D�� 	 D�� . Thus under the

assumptions we have made, using a search rectangle of side
� Q
	 instead of a

one of side

Q
	 should reduce the search time by

= ���L� � Q
�
?���������� . For example,

using a rectangle of side
� Q
	 on an index built on the first two non-zero DFT

coefficients should reduce the search time by 75%.
However, for the class of time series that have an energy spectrum of the

form �

=
� ! D � ? , the amplitude spectrum follows �

=
� ! � ? . In particular for

�
� � , the amplitude reduces as a factor of frequency and points get denser in
higher frequencies. If we assume that the first non-zero DFT coefficient (for
every data or query sequence) is uniformly distributed within a unit square, the�
th DFT coefficient (for

� � ��� F�F�F � P ) must be distributed uniformly within a
square of side

� ! �
. Thus keeping the first P Fourier coefficients maps sequences
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into points which are uniformly distributed within rectangle � � =
������� � � ������ � � �9�*� Q ! � � � ����� Q ! � � � F�F�F � ����� P ! � � � ����� P ! � � ? .

In addition, a search rectangle built on an arbitrarily chosen query point
�


(inside or on � ) is not necessarily contained fully within � . If
�


happens to
be a central point of � , as is shown in Figure 1.1, the overlap between the
two rectangles reaches its maximum. We refer to this query as ‘the worst case
query’ since it requires the largest number of disk accesses. On the other hand,
if
�


happens to be a corner point of � , the overlap between the two rectangles
reaches its minimum. We call this query ‘the best case query’. Thus the area
of the overlap between the search rectangle and � , and as a result the search
time, is not only a factor of 	 but also a factor of

�

.

: the best case query point

: the worst case query point**

R

Figure 1.1 Two extreme query points

To compare the search time of a query rectangle of side
� Q
	 to that of one

of side

Q
	 , we can compare their area of overlap with � . The projection of the

overlap between a search rectangle of side

Q
	 and � to the

�
th DFT coefficient

plane is a square of side � � � = � ! � � Q 	 ? for the worst case query and a square of
side � � � = � ! � � 	 ? for the best case query. Thus the area of the overlap between
the search rectangle and � for the worst case query is � �� & #

=
� � � = � ! � � Q 	 ? ? D

and that for the best case query is � �� & #
=
� � � = � ! � � 	 ? ? D .

To eliminate the effect of the size of � in our estimates, we divide the area
of the overlap by the area of � , i.e. � �� & #

=
� ! � ? D , to get what we call the

query selectivity. The query selectivity for the worst case query using a search
rectangle of side

Q
	 can be expressed as follows:

�
=
� � P �

Q
	 ? � � �� & #

=
� � � = � ! � � Q 	 ? ? D� �� & #

=
� ! � ? D

� ��� & #
=
� � � = � ! � � Q 	 ? � � ? D F (1.6)

The term � � � = � ! � � Q 	 ? � � is 1 for
� ! ��� Q

	 (or
� �

=1Q
	 ? !A#�
 � ) , and it is

Q
	 � � for� ! � �

Q
	 (or

� �
=1Q
	 ? !A#�
 � ). Thus the query selectivity can be expressed as

�
=
� � P �

Q
	 ? �	�

�  �
��

�
� D � � -�������� ��
� & #

=1Q
	 � � ? D (1.7)
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It can be easily shown that
�
=
� � P � 	 ? gives the query selectivity for the best case

query using the same search rectangle. If we employ the symmetry property
of the DFT, i.e. use a search rectangle of side

� Q
	 , the query selectivities

for the worst and the best case queries respectively would be
�
=
� � P � �

Q
	 ? and�

=
� � P � �� D ? .
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Figure 1.2 Query selectivity per search rectangle and k varying the threshold on brown noise
data for: (a) the worst case query, (b) the best case query

Figure 1.2(a) shows the worst case query selectivity per search rectangle andP varying the query threshold for brown noise data ( � ��� ). As is shown, using
the symmetry property reduces the query selectivity by 50% to 75% for P �

Q
and 	

� � F � . If we keep the first three non-zero DFT coefficients ( P ��� ), using
the symmetry property reduces the selectivity by up to 87%. In general, taking
the symmetry property into account reduces the selectivity and as a result the
search time in the worst case by 50% to

= �;�
� � Q
�
? � ������� for P �

Q
and

	
� � F � .
Figure 1.2(b) shows the best case query selectivity per search rectangle andP varying the query threshold again for the brown noise data. As is shown,

taking the symmetry property into account reduces the selectivity by at least
75% for all values of 	

� � F � , if we keep only the first two non-zero DFT
coefficients. In general, taking the symmetry property into account reduces
the selectivity and as a result the search time of the best case query by 75% to
= � �9� � Q

�
? �C����� � for P �

Q
and 	

� � F � .
3. EXPERIMENTS

To show the performance gain of our proposed method, we implemented
it using Norbert Beckmann’s Version 2 implementation of the R*-tree[4] and
compared it to the original indexing method proposed by Agrawal et al. [1].
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All our experiments were conducted on a 168MHZ Ultrasparc station. We ran
experiments on the following two data sets:

1. Real stock prices data obtained from the FTP site “ftp.ai.mit.edu/pub/stocks/results”.
The data set consisted of 1067 stocks and their daily closing prices. Every
stock had at least 128 days of price recordings.

2. Synthetic random walk sequences each of the form
��R� �����
	 where� � � � � !A# ��� � and � � is a uniformly distributed random number in the

range � � � ���*� � ��� 	 . The data set consisted of 20,000 sequences.

We first transformed every sequence to its normal form, and then found its
DFT coefficients. We kept the first P DFT coefficients as the sequence features.
Since a DFT coefficient was a complex number, a sequence became a point
in a

Q
P -dimensional space. But the first DFT coefficient was always zero for

normalized sequences, and we did not need to store it in the index; instead,
we stored the mean and the standard deviation of a sequence along with itsP � � DFT coefficients. In our experiments we used the polar representation
for complex numbers.

To do the performance comparison, we used both range and all-pair queries.
For range queries, we ran each experiment 100 times and each time we chose a
random query sequence from the data set and searched for all other sequences
within distance 	 of the query sequence. We averaged the execution times from
these runnings. Our all-pair queries were spatial self-join queries where we
searched the data set for all sequence pairs within distance 	 of each other.

3.1 VARYING THE QUERY THRESHOLD
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Figure 1.3 Both query selectivities and running times for range queries varying the query
threshold
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Our first experiment was on stock prices consisting of 1067 time series each
of length 128. Our aim was to make a comparison between average case query
selectivities obtained experimentally and the extreme case query selectivities
computed analytically. We fixed the number of DFT coefficients to 2, but
we varied the query threshold from � ����� ��� ��� to � F

Q
� �	��� ��� ��� where

��� ��� ��� was the maximum amplitude of the first non-zero DFT coefficient
over all sequences in the data set. Under this setting, a threshold 	 �
��� ��� ���
in our experiments was analogous to threshold 	 in our analytical results. The
average output size for 	 � � �����M�
� ��� was 75 out of 1068 and that for
	 � � F

Q
� �����M�
� ��� was zero, so we didn’t try smaller thresholds. Since

query points were chosen randomly, we expected the query selectivity for
every threshold 	 ����� ��� ��� to fall between the two extreme selectivities
(the worst case and the best case) computed analytically for 	 . As is shown
in Figure 1.3, for 	 ����� ��� ��� � � F � , using the symmetry property reduces
the query selectivity by 53% to 64% and the search time by 70% to 74%. It
is consistent with our analytical results. For � F � � 	 ����� ��� ��� � � , as the
figure shows, using the symmetry property reduces the query selectivity by
45% to 64% and the running time by 62% to 74%.

3.2 VARYING THE NUMBER OF DFT
COEFFICIENTS

1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of DFT coefficients

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

: index
: index (sym)

Range Queries

1 2 3 4
0

20

40

60

80

100

120

140

Number of DFT coefficients

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

: index
: index (sym)

All−Pair Queries

Figure 1.4 Running times for range and all-pair queries varying the number of DFT coefficients

Our next experiment was again on stock prices data, but this time we fixed
the query threshold for range queries to � F � � ����� ��� ��� and that for all-pair
queries to � F �

Q
�	��� ��� ��� . This setting gave us average output sizes of 30

and 203 respectively for range and all-pair queries. We varied the number of
DFT coefficients kept in the index from 1 to 4. Figure 1.4 shows the running
times per query for range and all-pair queries. Taking our observations into
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account reduces the search time of the index by 66% to 72% for range queries
and by 61% to 72% for all-pair queries.

3.3 VARYING THE NUMBER OF SEQUENCES
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Figure 1.5 Running times for range and all-pair queries varying the number of sequences

In our next experiment, we fixed the number of DFT coefficient to 2 and
the sequence length to 128, but we varied the number of sequences from 100
to 1067. The experiment conducted on stock prices data set. We again fixed
the query threshold for range queries to � F � � ����� ��� ��� and that for all-pair
queries to � F �

Q
�����M�
� ��� . Figure 1.5 shows the running times per query

for range and all-pair queries. Our observation reduces the search time of the
index by 63% to 71% for range queries and by 64% to 72% for all-pair queries.

3.4 VARYING THE LENGTH OF SEQUENCES

Our last experiment was on synthetic data where we fixed the number of
DFT coefficients to 2 and the number of sequences to 20,000, but we varied
the sequence length from 128 to 512. The size of the data file was in the range
of 40 Mbytes (for sequences of length 128) to 160 Mbytes (for sequences of
length 512). We fixed the query threshold to � F � � �	��� ��� ��� and, based on
our analytical results, we expected using the symmetry property to reduce the
search time by 50% to 75%. Figure 1.6 shows the running times per query for
range queries. Our proposed method reduces the search time of the index by
73% to 77%. The search time improvement is slightly more than our analytical
estimates mainly because of the CPU time reduction for distance computations
which is not accounted for in our analytical estimates. Because of the high
volume of data, experiments on all-pair queries were very time consuming. For
example, doing a self-join on sequences of length 512 did not finish after 12
hours of overnight running. For this reason, we did not report them.
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Figure 1.6 Running times for range queries varying the length of sequences

4. CONCLUSIONS
We have proposed using the last few Fourier coefficients of time sequences

in the distance computation, the main observation being that every coefficient at
the end is the complex conjugate of a coefficient at the beginning and as strong
as its counterpart. Our analytical observation shows that using the last few
Fourier coefficients in the distance computation accelerates the search time of
the index by more than a factor of two for a large range of thresholds. We also
evaluated our proposed method over real and synthetic data. Our experimental
results were consistent with our analytical observation; in all our experiments
the proposed method reduced the search time of the index by 61% to 77% for
both range and all-pair queries.
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Notes

1.
� ��� ��� ��� & � � ! ��� �

2. A sequence is in normal form if its mean is 0 and its standard deviation is 1.
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