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ABSTRACT
We propose a domain-independent framework for querying
and extracting large volumes of facts stored in natural lan-
guage text sources. In this framework, an extraction task is
expressed as a declarative query, combining text fragments
with wild cards, and the result of the query over a natu-
ral language text collection is a set of facts in the form of
unary, binary and general n-ary tuples. A significance of
our querying mechanism is that, despite being both sim-
ple and declarative, it can be applied to a wide range of
extraction tasks. However, a user-specified query over natu-
ral language text can be too restrictive and may not return
enough matches. Unlike term queries which can be relaxed
by removing some of the terms (as is done in search engines),
removing terms from a wild card query is more challenging
and can ruin its meaning. Also, any query expansion has the
potential to introduce false positives. In this paper, we ad-
dress the problem of query expansion, and also analyze a few
ranking alternatives to score the results and to remove false
positives. We conduct experiments evaluating our scoring
functions and comparing the results of our framework with
alternative approaches. The experiments show that our ap-
proach outperforms an alternative less general system and a
well-known statistics-based method in terms of both preci-
sion and recall.

1. INTRODUCTION
The World Wide Web contains a vast amount of infor-

mation and is a rich source for data extraction, but man-
ually extracting data from the Web is a tedious and time
consuming process, especially when a large amount of data
matches the extraction criteria. Example extraction tasks
include compiling a list of Canadian writers, finding a list
of medications that can treat a disease, etc. Unless such
lists have already been compiled and made available on the
Web, one has to query a search engine, examine the pages
returned, and extract a handful of instances from each page
(if there is any at all). The problem is further complicated
by the flexibility of natural languages. Consider the example
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of extracting Canadian writers; many bona fide writers are
not referred to as writers. Instead, they are often coined as
authors, novelists, journalists, etc. If only the phrase“Cana-
dian writers” is used in the query, many qualified instances
will not be extracted, thus the extraction quality is compro-
mised. Many previous data extraction systems either focus
on a more specific task by imposing tight restrictions on the
type of data that can be extracted (e.g. finding course offer-
ings and job postings) or are only applicable to documents
that follow a specific formatting (e.g. wrappers). For ex-
ample, the KnowItAll [12] system can extract hyponyms of
a user-specified class. The online prototype of the system
is further extended to support a few more specific binary
relations (e.g. X “ceo of” Y). A challenge facing many data
extraction systems in general is that the extraction task of-
ten is not easy to define or a definition may not be accurate,
leading to low precision and recall. Limiting the extraction
task to a few predefined classes is one way to reduce the
complexity of the problem.

In this paper, we address the problem by introducing a
framework that allows an extraction task to be encoded as
a simple query. A query in this framework is a natural lan-
guage sentence or phrase1 with some wild cards, and the
result of a query is a ranked list of matching tuples. For
instance, given the query “% is a car manufacturer”, the
output is expected to be a ranked list of car manufacturers,
preferably the real car manufacturers ranked the highest.
This query only uses one wild card, here denoted with %.
In general, a query can use more than one % wild card, and
the result of the query in this case is a table with one column
for each occurrence of the wild card.

Our first contribution is a declarative querying framework
for data extraction. Integration of wild cards in our queries
can generally reduce the number of queries that must be
issued, hence simplifying the extraction task. In our ear-
lier example about Canadian writers, for instance, a user
can use one type of wild card to indicate that terms sim-
ilar to writers should also be considered. Another type of
wild card may be used to indicate a probable position of
the desired data, from which values can be extracted. Com-
bining such wild cards with natural language phrases can
provide a simple but powerful interface, which can handle
much more extraction tasks than previous systems. There
is a close correspondence between our queries and star-free
regular expressions; our queries make use of certain abstrac-
tions geared toward natural languages which make it simpler

1We assume query phrases are in English, but our framework
should be applicable to other languages as well.



to write queries. Since the result of a query is a relation, our
queries with some syntactic sugar can be integrated in the
from clause of SQL queries.

Our second contribution is the idea of query expansion
through a set of declarative rewriting rules between para-
phrases. Since a given user query may not retrieve an ade-
quate number of facts, rewriting rules are generally expected
to improve the coverage of the queries and the quality of the
results. Our experiments, as reported in Section 6, show
that increasing the number of rewritings can improve both
recall and precision.

As our third contribution, we address the problem of rank-
ing in the context of rewriting rules. We propose a class of
algorithms for ranking the extracted results where each algo-
rithm exploits some of the relationships that exist between
the set of matching tuples and also between the set of query
patterns. We use the general term pattern to refer to both
query and query rewriting. When the results are ranked,
it is possible to set a cutoff threshold to filter invalid rows
from the result, making the final results more accessible to
the user.

Finally, as our last contribution, we theoretically analyze
our algorithms and experimentally evaluate them in the set-
ting of the Web. Our experimental results include compar-
isons with previously-proposed approaches to data extrac-
tion.

The rest of the paper is organized as follows. Section 2
describes both the syntax and the semantics of wild cards,
as well as the queries in our framework. An overview of
our query evaluation in the context of the Web is given in
Section 3. Section 4 discusses the details of our rewriting
rules and patterns. Our ranking algorithms are discussed in
Section 5. Experimental results are presented in Section 6
and the related work is reviewed in Section 7. We end the
paper with conclusions and future work in Section 8.

2. WILD CARD QUERIES
To express extraction tasks concisely and in a flexible

manner, we make use of wild cards in our queries. The use of
wild cards is prevalent in many areas of computer science.
Examples are SQL, operating system shells and scripting
languages such as Perl, Awk and Python. Unlike many of
these systems, our introduced wild cards iterate over the
domains of parts of speech or other meaningful groupings
of natural language words. In particular, we introduce two
types of wild cards, namely * and %.

2.1 Query syntax and semantics
The syntax and semantics of our queries are as follows.

% wild card: The % wild card represents one or more
noun phrases. A noun phrase may consist of one or mul-
tiple words; for instance, “movie” and “action movie” are
both noun phrases. This wild card, when used in a query,
indicates the location of a noun phrase or noun phrases
that should be extracted. For example, the query “summer
movies such as %” will extract noun phrases Harry Potter,
Shrek, and Spiderman from the following sentence: “Popular
summer movies such as Harry Potter, Shrek and Spiderman
appeal to audience of all ages.”

* wild card: The * wild card represents a set of phrases
with the same or similar meanings to a given phrase. Con-
sider the task of finding a listing of summer movies; we may
type the query “% is a summer movie”. However, some

bona fide movies are often referred to as “films”, “block-
busters”, and so on. In a naive approach, one may have to
try other terms similar to “movie”manually, save the results
each time, and put the results together at the end. The
naive method is tedious and inefficient. In our queries, a
term may be enclosed within a pair of * to instruct that the
search should be extended to include terms and phrases sim-
ilar to the given one. For example, the user can re-formulate
the query as “% is a summer *movie*”, and the query will
be automatically expanded to include related queries such
as “% is a summer film”, “% is a summer blockbuster”, etc.

It is feasible to consider other wild cards. For instance,
we could have wild cards that only match verbs, adjectives,
or a union of nouns, verbs and adjectives. It is also possible
to have a wild card that matches a prefix or suffix of a term
or a fixed-length sequence of terms. In an attempt to keep
the syntax of our queries simple, our queries extend phrase
queries of a typical search engine with the two wild cards %
and *, as discussed above. The following is a list of example
queries:

• % is a *country*

• % is a summer *blockbuster*

• % invented the light bulb

• Google *acquired* %

A query may use any number of wild cards. Given a query
with k % wild cards, the result of the query is a table with
k columns, one for each % wild card. We assume that the
result of a query is ranked and each row is assigned a score
as an indication of the level of support the row receives.
This score may depend on the size and the coverage of the
text collection that is being queried and the set of query
rewritings that are being used. Section 5 discusses a few
measures to rank the matching tuples of a query.

A query can have any number of * wild cards. Given a
query q with some * wild cards, let q1, . . ., qs be the set of
queries that are obtained by replacing each * wild card with
similar terms. A row matches q if it matches at least one
of q1, . . ., qs; the score of the row for q is an aggregation of
the scores of the row for q1, . . ., qs. For our purpose, two
terms are considered similar if they have the same meanings
(e.g. synonyms), one is a generalization of the other, or the
two terms can be used interchangeably in the same context.
The similar terms can be often obtained from dictionaries,
thesaurus, online corpus [18], etc.

3. EVALUATING WILD CARD QUERIES –
AN OVERVIEW

This section provides an overview of evaluating wild card
queries over a text corpus. Without loss of generality, our
discussion in this section is centered around the Web and
uses the query “% is a *country*” as an example. In partic-
ular, we consider the scenario where the extraction engine
is built on top of a search engine. Naturally the same steps
can be taken when the source data is stored locally, with a
difference that a local collection can be better indexed (e.g.
[7, 25, 9]) and the queries can be better optimized. To limit
the scope of the paper, we do not address the issues related
to indexing and query optimization.

Step 1 - query flattening As the first step, the query is
analyzed and expanded by replacing the words enclosed by



pairs of * wild cards (if any) with their similar terms. In the
given query, the word “country” is enclosed by *’s; a similar
word to country, based on an online system [18], is “nation”.
A new query, “% is a nation”, is formed and added to the
expanded query set. More than one query can be added if
multiple synonyms are found.

Step 2 - query rewriting In the next step, each query in
the query set is passed to a Part-Of-Speech (POS) tagger.
Each tagged query is compared with a set of precompiled
patterns for possible rewritings. The result of query tag-
ging is not always reliable, in particular for short queries.
To account for those cases, queries are also rewritten using
rules that do not require tagging. Let’s consider the query
“% is a country” first; after tagging, the query conforms to
the pattern “NP1 is a(n) NP2” where NP stands for a noun
phrase; note that the wild card % matches a noun phrase,
as we defined earlier. A pattern may be found relevant to a
pre-determined class, based on a specific relationship it de-
scribes, and may be rewritten by other patterns in the same
class. The pattern “NP1 is a NP2”, in particular, belongs to
the hyponym class, since the template indicates that NP1 is a
(hyponym of) NP2. Other patterns in the hyponym class in-
clude “NP2 such as NP1List”, “NP2 including NP1List”, etc.
All patterns in the matching class (i.e. the hyponym class)
are instantiated according to the matched query. Thus, the
query set is expanded with extra queries like “countries such
as %” and “countries including %”. Section 4 discusses our
query rewritings in more detail. Similarly, the query “% is
a nation” also matches a pattern in the hyponym class, and
the query set is further expanded. If the query cannot match
any pattern, no query expansion will occur at this step.

Step 3 - information retrieval engine As the third step,
all queries in the query set are sent to a search engine. For
each query, the matching snippets are downloaded for fur-
ther processing. When there is a large number of matches,
only a fixed number of them are selected. HTML tags are
stripped from downloaded snippets for each query and the
remaining text is analyzed to identify the pieces that match
the query. Noun phrases that appear in the positions of
% wild cards of a query are extracted from the text and
are saved in the result set. Words other than noun phrases
should not be extracted even if they appear in target loca-
tions. Suppose the query “% invented the light bulb” is sent
to a search engine and the following two snippets are among
those returned.

• Thomas Edison is often said to have invented the light
bulb.

• We all learned in our history classes that Thomas Edi-
son invented the light bulb in 1879.

The POS tagger identifies that the word “have” in the first
snippet is not a noun phrase, while “Thomas Edison” from
the second snippet is. Therefore, the phrase “Thomas Edi-
son” is extracted but “have” is not.

Step 4 - relevance ranking The result of extraction in the
previous step is a set of rows; for the given example, each
row is a noun phrase. A ranking algorithm is applied to
the extracted set. Section 5 gives the details of our ranking
algorithm. Finally, a sorted list of rows is returned. The rest
of this paper will focus on query expansion and relevance
ranking.

4. REWRITING QUERIES

A challenge in querying and information retrieval from
natural language text is the possibility of a mismatch be-
tween the expressions of queries and texts that have the
relevant information. A fact can potentially be expressed in
many different contexts and a query that gives one context
can miss many qualified candidates. We propose rewrit-
ing rules to express the set of transformations that can be
applied to a wild card query leading to alternative query
expressions that are expected to return the same or seman-
tically related results but are syntactically different. Query
rewriting is expected to increase recall, as it can be seen
from our example in Section 3. Our experiments in Sec-
tion 6 confirm that there is also a correlation between the
number of rewritings and the precision of the retrieved re-
sults. There are more evidence in favor of rewriting natural
language questions. For example, at TREC-10 QA evalua-
tion, the winning system used an extensive set of rewriting
rules as its only resource [23].

4.1 Rewriting Rule Language
The rewriting rule language lists different ways of rewrit-

ing a query. Each rule here is of the form rule-head → rule-
body. A rule head consists of one or more regular expressions,
and a rule body consists of one or more rewritings with place
holders. Multiple regular expressions in the head or rewrit-
ings in the body can be listed each in a new line. A rule
matches a query if any one of the regular expressions in the
head matches the query. When a rule matches a query, the
query is expanded with all rewritings in the rule body. For
each match, keywords from the query may be remembered
using capturing groups (e.g. parentheses) and the remem-
bered values may be recalled using back references in the
rule body. The remembered values can be transformed (e.g.
from a singular noun to a plural noun) before being used
in the rewritings. Each transformation is usually done by
looking up a table, from a set of tables compiled in advance
from a dictionary, thesaurus, and other offline sources. This
allows us to write generic rewritings that can match a large
number of queries. Our rewriting rule language is extend-
able and one can add more rules as they become available.
Here is an example of a rule. Given the query “countries
such as %”, the rule generates “%, and other countries” and
“% is a country” as possible rewritings.

(.+),? such as (.+)

(.+),? including (.+)

→
$2, and other $1 && plural($1)

$2 is a $1 && singular($1)

Let n denote the average number of rewritings produced
for each query. If a query uses k star wild cards and each
of these wild cards is replaced with m > 0 similar terms
on average, the query expansion would produce mk(n + 1)
queries. To appreciate the power of the rewriting rule lan-
guage, consider a manual data extraction where one has to
enumerate and try many of those queries manually.

4.2 Compiling Rewriting Rules
Preparing an exhaustive set of rewritings for a small set

of queries is not hard and may be done manually. Com-
piling a comprehensive set of rewritings for a large set of
possible queries in advance is more challenging. Given two
text fragments, deciding if one entails another is in general



computationally intractable, so is the problem of deciding
query rewritings. A more pragmatic approach is to spe-
cialize the rules to more specific domains; this is also the
approach adopted by the Pascal Recognizing Textual En-
tailment (RTE) challenge benchmark [22].

On the other hand, the effectiveness of a rule depends on
the precision and the recall for its rewritings and the frac-
tion of queries the rule matches. We can group the rewriting
rules into two categories: generic and specific. The generic
rules potentially match many queries and can be compiled
independent of a particular domain, whereas the specific
rules are domain-dependent. Two classes of generic rules
that we can easily identify are hyponyms and morphological
variants. A hyponym pattern describes lexico-syntactic re-
lations that can be used to infer one element is a hyponym
of another within a sentence. Hearst gives a list of hyponym
patterns [14]. A sample of hyponym patterns (either from
Hearst’s or hand-crafted by us) can be found in Table 1.

NP1 {,} “such as” NP2List
“such” NP1 “as” NP2List

NP1 {,} “especially” NP2List
NP1 {,} “including” NP2List

NP2List “and other” NP1
NP2List “or other” NP1

NP2, “a(n)” NP1
NP2 “is a(n)” NP1

NP1 NP2

Table 1: Hyponym patterns

The morphological variants of verbs are useful for rewrit-
ing many queries that contain verbs. A given query may
be rewritten by simply changing its verb tense and with-
out much affecting its meaning. Many extraction tasks are
expressed in the form of “Subject transitive-Verb Object”
which can be rewritten in a passive form and vice versa.
For example, if a user wants to find out who invented the
light bulb, she can express the extraction as “% invented the
light bulb”; a rewriting of the query is “the light bulb was
invented by %”. Our morphological patterns enumerate dif-
ferent verb tenses (e.g. present tense, past tense, . . . ) and
use both active and passive forms. We were able to express
all the relationships described by patterns in the hyponym
and morphological classes as rules in our rule language.

Although generic patterns and rewritings can be applied
to a wide range of queries, it is not hard to find queries
where no generic pattern is applicable or sufficient. In both
cases, rewriting rules need to be customized to a particu-
lar domain or extraction task. Specialized rules are likely
to match a larger number of high quality tuples, which will
lead to improvements in both recall and precision. Manually
compiling specific rewriting rules for potentially large num-
ber of different queries can be expensive. There is an active
research on automatically generating paraphrases in more
specific settings [19, 21], and the results are encouraging. A
notable work is by Lin and Pantel [19] on gathering over
182,000 classes of similar paths in the dependency trees of
a parsed newspaper text corpus. The collection should be
used with care though since two patterns in the same class
may not be paraphrases but only related. The same or a
similar algorithm may be used to find closely related rela-
tionships from a given text corpus, and these relationships
can be translated into rewriting rules after further inspec-
tions and verifications.

4.3 Rewriting Quality
Given a query, all rewritings are not expected to be equally

strong in terms of the quality of the results they may retrieve.
For example, “NP1 such as NP2List” is considered a strong
pattern in our hyponym class because a noun phrase that
appears at NP2List is very likely to be a hyponym of the
one that appears at NP1. On the other hand, “NP2, a(n)
NP1” may be considered a weak pattern because sometimes
the hyponym relation inferred by this pattern is incorrect
(e.g. “select a city, a country, and a region from the list.”).
For the rest of the time, the pattern can be used to extract
hyponyms from sentences like “. . . New York, a city of neigh-
borhoods . . . ”. Similarly, “NP1 NP2” may also be seen as a
weak pattern, but we find it very effective in certain cases,
such as the names of people. For example, the template
can be used to infer from the sentence “Prime Minister Paul
Martin attends a Canada Day ceremony . . . ” that “Paul
Martin” is a “Prime Minister”. The effects of using weak
patterns are two folds. First, weak patterns can become
strong ones in some cases, and under those circumstances
they can improve both recall and precision. Second, weak
patterns often introduce more false positives than other pat-
terns. We believe that the negative effects of weak patterns
are alleviated since the final results are ranked and the false
positives are likely to be removed or assigned very low ranks.

5. BRINGING ORDER TO RESULTS
The data extraction process discussed in this paper can

accumulate a large set of candidates. Some of the candidates
are correct, meaning that a user would expect to see them,
while the rest are errors.

5.1 Sources of Errors
A query typed by user can match many non-relevant rows,

in the sense that they may not be anticipated by the user.
For instance, the query “% is a country” matches the state-
ment “Joe is a country singer,” thus Joe will be added to the
list of country names. Certain Natural Language Processing
(NLP) techniques may be employed to reduce the number
of those false positives [12]. Using these techniques can be
expensive, and based on our experiments, the techniques do
not scale up well to large volumes of data and queries (e.g.
on the Web). In general, broad queries are likely to match
more false positives. Rewriting queries can also broaden the
queries and introduce additional false positives.

False positives also arise when queries are posed to un-
controlled collections such as the Web which contains many
incorrect statements. Since the published content may not
be verified for correctness, statements, such as “New York is
the capital of the United States” are not rare.

One more source of error is due to using a POS tagger. Al-
though POS taggers produce good results most of the time,
the accuracy usually depends on factors such as the num-
ber of words in the lexicon, etc. Sometimes verbs are mis-
classified as noun phrases, or vice versa.

Since correct extractions are inter-mixed with errors, it is
important to rank all candidates in terms of their relevance
to the user query. A good ranking algorithm should con-
sistently rank correct matches higher than errors, so that
errors are pushed down to the bottom of the sorted list.
A good ranking would make it easier to draw a cutoff line
somewhere in the sorted list, so that we can trade recall for
higher precision.



5.2 Ranking Heuristics
A problem related to ours is ranking the result of a natu-

ral language question over a text corpora, for instance in a
question answering system. The precision of an answer usu-
ally depend on factors such as the quality and the size of the
corpora and the relationships between the text of a question
and possible answers. In our case, given a query and a set of
rewritings, we want to find out meaningful ways of ordering
the results. In this section, we present a few heuristics be-
fore we analyze them within a more general ranking scheme
in the next section.

Number of Matched Pages or Documents (NPages):
Relevant tuples are likely to appear frequently within a query
pattern2 or one of its rewritings. One heuristic is to rank a
tuple based on the number of pages or documents in which
it matches the query or one of its rewritings. On large col-
lections and on the Web, it is either costly or impossible to
access all pages, and the numbers could be approximated
using a sample.

Mutual Information (MI) Another ranking scheme which
has been used previously to quantify the relationship be-
tween two random variables is the Mutual Information (MI).
If we denote the probability that a document contains the
text of query q (ignoring wild cards) with P (q), the proba-
bility that a document contains a row r with P (r), and the
probability that a document contains a proper encoding of
r in q with P (q, r), then the mutual information between q
and r is defined as

MI(q, r) = log
P (q, r)

P (q)P (r)
.

In some formulations of the mutual information, the above
formula is multiplied by P (q, r) [8]. This measure is used
in the past, for instance to evaluate the association between
words [10], and also between the instances of a class and a
discriminative phrase [12]. In our case, since P (q) is fixed
for a given query, the score of a tuple can be estimated as
the ratio P (q, r)/P (r). For a given query and tuple, the MI
measures the conditional probability that the tuple appears
within the query template given that the tuple appears in a
document.

Number of Matched Patterns (NPatterns) Another
simple ranking is to count for each tuple, the number of
different patterns (including the query and its rewritings)
that would extract the tuple. Because of the semantic re-
lationship between a query and its rewritings, if a tuple is
retrieved by multiple patterns, then there is probably a good
indication that the tuple is indeed a good match.

Discussion of Ranking Heuristics Our experiments com-
paring these heuristics (as reported in Sec. 6) show mixed
results for different queries. A general drawback for NPages
and NPatterns is that all query patterns are treated equally
important. With NPages, some correct instances that are
not frequent cannot be well-separated from false positives.
Also under NPages, the scores would be inflated when there
are duplicates (such as those on the Web). A drawback for
MI is that a tuple may not appear with the query but it may
appear with one of its rewritings. Selecting a single pattern
is not guaranteed to achieve a high recall. Also it is not clear

2The query would not have been issued in the first place if
it is assumed otherwise.

Patterns Instances

Italy

Japan

a superpower

the United States

China

such countries as %

% is a country

countries including %

Figure 1: Mutually reinforcing relationship between
patterns and tuples

how MI can be extended to account for multiple rewritings
of a query and also queries with multiple extractors. Fur-
thermore, obtaining hit counts can be costly and may not
be reliable (e.g. see [3]).

5.3 Relationship Graph between Patterns and
Tuples

Let SP denote the set of query patterns (i.e. the user-
specified query and all of its rewritings) and ST denote
the set of matching tuples. Consider the bipartite graph
G formed between SP and ST with an edge from p ∈ SP

to t ∈ ST if t matches p in some text. In some settings,
the edges of the graph may be assigned weights to indi-
cate the degree of a match. We define a ranking F as a
function that maps ST to an n-dimensional vector where
n is the size of ST . Some of our earlier heuristics can be
seen as special cases of this ranking function. In particular,
NPatterns(t) = indegree(t) and

NPages(t) =
X

p∈SP

w(p → t)

where w(p → t) is the number of pages that give rise to a
match between t and p.

A limitation of NPatterns and NPages is that all patterns
have the same influence on the scores. Our observations,
however, indicate that often there are a few patterns that
retrieve many good quality rows while the rest retrieve many
false positives. To remedy the problem, we propose weight-
ing the patterns and propagating the weights to the match-
ing tuples. The weights may be assigned at the same time
rewritings are compiled if they are available and are not ex-
pected to change much. For generic rewritings, however,
the weights can change from one query to next and a more
dynamic weighting scheme may be preferred.

A hypothesis is that good tuples and good patterns exhibit
a mutually reinforcing relationship: a good tuple is extracted
by many good patterns; a good pattern extracts many good
tuples. For example, if Canada is indeed a good match for
the query “% is a country”, it should be extracted by many
good related patterns, such as“countries including %”, “such
countries as %”, and so on. Similarly, if “countries such as
%” is indeed a good pattern for extracting country names, it
should extract many good instances, like the U.S., Canada,
China, etc. This mutually reinforcing relationship between
patterns and tuples is illustrated in Figure 1.

The same hypothesis is made in a hyperlinked environ-
ment where several ranking algorithms are proposed for find-
ing authoritative Web pages. Many of the observations made



for hyperlinked pages are consistent with those we have seen
between patterns and tuples, hence the ranking algorithms
developed there may be applied here. Our experiments use
an adaptation of Kleineberg’s HITS algorithm [15], but there
are indications that other two-level influence propagation al-
gorithms can equally be used.

Algorithm PT-hits Let’s associate weight wT (t) to each
tuple t, and weight wP (p) to each pattern p. In an itera-
tive and alternating fashion, the weights can be updated as
follows:

wT (t) =
X

{p|p extracts t}

wP (p) (1)

wP (p) =
X

{t|t is extracted by p}

wT (t) (2)

The weights can initially be all set to 1, then propagated
from patterns to tuples and vice versa. After each iteration,
the weights are normalized to keep them within a bound and
also to check the convergence. It is easy to show that this
iteration converges (see [17] for details).

5.4 Analyses of the Rankings
A property that is probably desirable for a scoring func-

tion is monotonicity.

Definition 1. A scoring function F is monotone if the
following property holds for the result set: for every pair
of tuples t1 and t2, if every pattern p that extracts t1 also
extracts t2 and w(p → t1) ≥ w(p → t2), then wT (t1) ≥
wT (t2).

Theorem 1. The scoring functions NPages, NPatterns
and PT-hits are all monotone.

Another property is how the scores change if the input
data (text collection, in our case) or the set of patterns
slightly change. We would prefer small changes in the in-
put or the set of patterns to have small effects on the scores
of the tuples. Let Gm,n be a collection of bipartite graphs
over a set of m patterns and n tuples, and F (G) denotes the
weight vector of tuples after a scoring function F is applied
to a bipartite graph G.

Definition 2. The normalized Kendall tau distance be-
tween two n-dimensional real vectors w1 and w2 is defined
as

dkt(w1, w2) =
2

n(n − 1)

n
X

i=1

n
X

j=1

Iw1,w2
(i, j)

where

Iw1,w2
(i, j) =



1 if w1(i) < w1(j) AND w2(i) > w2(j)
0 otherwise.

The Kendall tau distance measures the number of pairwise
disagreements between two (ranked) lists. The Kendall tau
distance changes if there is a change in ordering, but any
change in the actual scores would not affect the Kendall tau
distance if the ordering remains the same.

Definition 3. The normalized Manhattan distance be-
tween two n-dimensional real vectors w1 and w2 is defined
as

d1(w1, w2) =
1

n

n
X

i=1

|w1(i) − w2(i)|.

Definition 4. A scoring function F is stable on Gm,n un-
der distance function d if for every fixed k, we have

lim
m or n→∞

max
G∈Gm,n,e1,...ek∈E(G)

d(F (G), F (G\{e1, . . . , ek})) = 0

where E(G) denotes the edges of G and G\{e1, . . . , ek} is
the graph that is obtained after removing edges e1, . . . , ek of
G.

Definition 5. A scoring function F is local if for every
graph G ∈ Gm,n and every edge e ∈ E(G), if w1 = F (G)
and w2 = F (G\e), then Iw1,w2

(i, j) = 0 for all tuples i and
j which are not adjacent to e.

Based on the results reported for HITS [5], PT-hits is neither
stable nor local. We can derive the following results for
NPatterns and NPages.

Theorem 2. The scoring function NPatterns is stable un-
der both dkt and d1.

Proof. Let G′ = G\{e1, . . . , ek} and {1, . . . , l} be the
set of tuples in G′ which are affected by the change. Clearly
l ≤ k.
(Case for dkt) Consider the ordering of the tuples under
NPatterns(G). With every edge ei removed from the graph,
the ordering can be disturbed by n substitutions at most.
This extreme case arises when all tuples have the same scores
and removing ei moves a tuple to the bottom of the list. In
total, there are at most k tuples affected. Therefore the
maximum for dkt(w1, w2) ≤ 2(kn)/n(n − 1) = 2k/(n − 1),
and limn→∞ dkt(w1, w2) = 0.
(Case for d1) The sum of the changes in scores for affected
nodes cannot exceed k whereas this sum for non-affected
nodes is 0. Thus limn→∞ d1(w1, w2) = limn→∞ k/n = 0.

Theorem 3. NPages is stable under dkt. NPages is also
stable under d1 if w(p → t) bound to a fixed constant.

Proof. (Case for dkt) The stability proof is similar to
the one given for NPatterns. With every edge ei removed
from the graph, the ordering can be disturbed by n substi-
tutions at most. With at most kn substitutions in total,
limn→∞ dkt(w1, w2) = 0.
(Case for dkt) Suppose w(p → t) is bound to a constant c.
The sum of the changes in scores for affected nodes cannot
exceed ck, and the rest follows.

Theorem 4. The scoring functions NPatterns and NPages
are both local.

Proof. The locality follows from the fact that removing
an edge e only affects the score of a tuple that is linked by
e.

6. EXPERIMENTS
To experiment with our querying interface and to evaluate

our algorithms, we built a system called DeWild which relies
on the Web as its source of data3. Using the Web compared
to a closed collection has both benefits and drawbacks. A
benefit is that its information redundancy can compensate
for the relatively small size and coverage of our rewriting rule
set and the lightweight NLP techniques used. A drawback
is that the text collection often is not clean and there are
many bogus tuples that need to be filtered.

DeWild takes advantage of existing commercial search en-
gines and queries Google and Yahoo (when Google does not

3DeWild stands for Data Extraction using Wild cards. The
system is available online at dewild.cs.ualberta.ca.



respond, due to either its workload or the number of our
queries exceeding the engine limit) via their APIs. DeWild
lists the set of rewritings used for each query. In our ex-
periments, 200 snippets are downloaded for each extraction
pattern (our online system lists the set of extraction patterns
that are tried for each query). If there are fewer than 200
snippets found for a pattern, then all available snippets are
downloaded4. The snippets returned by a search engine typ-
ically consist of the search query and its surrounding text.
Since the target data appear immediately before or after the
user query, they can be often extracted using the snippets
only (without downloading the actual pages), hence network
and processing costs are significantly reduced. Though it
should be noted that a snippet may lack sentence bound-
aries, and this can reduce POS tagging accuracy. If it is
not explicitly stated otherwise, DeWild uses PT-hits as its
native ranking. For our experimental comparisons, we also
implement the other heuristics discussed in Section 5.

A publicly available POS tagger called NLProcessor5 is
used to identify the part of speech from retrieved text, so
that only noun phrases are extracted for % wild cards. For *
wilds cards, our system uses a collection of related words au-
tomatically compiled [18] from Wall Street Journal corpus,
but it can equally use other collections as well.

Next we report our experiments with DeWild.

6.1 Recall and Precision
In general, it is difficult to measure recall on the Web since

we often do not know the full answer set. The answer set
may not be all on the Web, or it can be scattered in many
pages of which some may not be crawled or indexed by a
search engine. To measure both recall and precision under
these constraints, we decided to extract instances of some
known classes. To make a comparison with an alternative
system, the class names were chosen from those reported for
KnowItAll [12].

Pattern Weight

US states, including % 0.739794
US states such as % 0.526682
% and other US states 0.320306
such US states as % 0.227648
US states, especially % 0.113638
% or other US states 0.074993
% is a US state 0.046522
US states % 0.013729
%, a US state 0

Table 2: Patterns that are used to extract country
and the US state names, with the weights computed
by PT-hits in each case

In one experiment, we used the names of 50 US states as
the ground truth and tried to retrieve and rank the same
data using PT-hits and our other heuristics. The query was
formulated as “US states such as %”; Table 2 shows the
extraction patterns which matched our intial query, after
instantiating “US states” in our generic patterns, as well as
their weights computed by PT-hits. Clearly, any of the pat-
terns in the table could have been used as a query and the
result returned by DeWild would have been the same. In our

4Our online demo downloads at most 30 snippets for each
query and each rewriting to keep the response time short.
5www.infogistics.com/textanalysis.html

evaluation, a retrieved state name was treated “correct” if it
was either a full state name or an abbreviation. Figure 2(a)
and (b) shows precision and recall for PT-hits, NPages,
NPatterns, MI and KnowItAll. Like PT-hits, KnowItAll has
a precision of 1 when recall is less than 0.35, meaning that
the top 35% of the answer is correct. For higher recalls, the
precision for KnowItAll drops sharply whereas PT-hits has
a precision of 1 for all recall values less than 0.75. Even for
higher recall values, the precision for PT-hits does not drop
sharply. NPatterns also performs reasonably well but the
precision of NPages for recalls over 0.25 drops under 0.8. To
do a ranking using mutual information (MI), we could use
either the query or one of its rewritings. Since it is not clear
which rewriting performs the best, we ran the algorithm
three times with the discriminative phrases “US state of X”,
“US states such as X”, and “X is a US state”. These vari-
ations of MI are respectively referred to as MI-1, MI-2 and
MI-3. Figure 2-b compares PT-hits to MI and to the online
system KnowItAll6. We have to point out that there are
differences between DeWild and KnowItAll. DeWild uses
search engines as its data source; even though the result of
a search engine is ranked, we are not making use of this
ranking. KnowItAll was originally using Google but it had
switched to its own local collection when we tested it. The
lack of sufficient details in the KnowItAll paper prevented
us from directly implementing it. Since we are comparing
precision at each recall, the size of the collection should not
have much impact on the comparison. The precision of MI
is very poor at low recall rates, which means that the highly
ranked instances by MI are mostly errors. Both MI-2 and
MI-3 perform poorly in terms of precision for all recall val-
ues. MI-1 performs good for higher recall values but not
so good for smaller recalls, meaning that many incorrect
instances show up at the top of the list.

In another experiment, we used a list of 192 country names,
compiled by the US State Department7, as the ground truth.
The query “countries such as %” was used for the extraction
in DeWild. As shown in Figure 2-c, not only PT-hits but
also NPatterns and NPages suprisingly perform very well.
Further investigation showed that this was due to the high
quality of search engine results for this particular query. On
the other hand, the MI heuristics didn’t perform that well
(as shown in Figure 2-d) because the search engine results
to our count queries were less reliable and this pushed some
invalid tuples up in the ranked list. PT-hits is less-affected
by the precision of the input (i.e. search engine results) and
often pulls out valid tuples that may be scattered among a
large number of incorrect ones.

6.2 Number of Rewritings
Adding each query rewriting introduces some cost at the

query processing time, and a question is if this additional
cost is justified. To evaluate the effect of the number of
rewritings on the precision and recall, we used PT-hits to
compile a list of “US states”but varied the number of rewrit-
ings that were used. We chose the best sets of 2, 3, and 5
patterns (i.e. those with the highest weights) from Table 2-
b and ran PT-hits each time with only one of these sets.
The precision-recall curve in each case is shown in Figure 3.
At the same recall rate, the precision improves significantly
when the number of patterns increases from 2 to 3. The pre-

6www.cs.washington.edu/research/knowitall
7www.state.gov/www/regions/independent_states.html
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Figure 2: Precision and recall with the extraction target set to the US states in (a) and (b) and country
names in (c) and (d)
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Figure 3: PT-hits precision and recall varying the
number of patterns for target US states

cision at higher recalls is further improved when the number
of patterns is increased from 3 to 5. We did the same ex-
periment with the country names and the results were the
same, hence they are not reported.

6.3 Handling Question-Answering Tasks

To do a further evaluation, we tried to use DeWild for
question-answering where one of the goals is to return the
actual answer to a question, rather than an entire paragraph
or a sentence. If a question is formulated as a DeWild query,
we can use our approach to locate the answer from the Web.
For our evaluation, we took the first five QA targets from
the TREC 2004 dataset [24]; since a QA target consisted of
multiple questions, we ended up with a total of 22 questions
in the experiment. For each question, we report the number
of correct answers given by TREC, the number of answers
from DeWild, the number of overlaps between the two, and
the number of rewritings used in DeWild. The result of the
evaluation is presented in Table 3.

For 55% of the questions (i.e. 12 questions), all answers re-
turned by TREC were also returned by DeWild. For 18% of
the questions, we couldn’t find a pattern between the ques-
tion and possible answers; hence we couldn’t form a query.
These are marked with “na” in the table. We found out
that the TREC answers for question 1.3 were not the ground
truth on the Web; therefore there was small overlap between
TREC and DeWild. For questions 2.3 and 4.4, there were
more than one formulation of the query but these different
formulations were not in our rewriting set; this explains the
small overlap between TREC and DeWild. For questions
4.5, the TREC answer was not supported on the Web and



we could only find it in NIST’s TREC pages. For question
5.4, which asked for the CEO of AARP, TREC had “Ho-
race Deets” or “Tess Canja” as the correct answer; this was
based on the information in year 2004. At the time of run-
ning our experiments, the correct answer was “Bill Novelli”
or “Marie Smith”. DeWild extracted the more up-to-date
correct answer.

question ans. in ans. in
id TREC DeWild overlaps rewritings

1.1 1 2 1 3
1.2 1 na na na
1.3 14 5 2 1
1.4 1 na na na
1.5 1 4 1 1
2.1 1 2 1 1
2.2 1 4 1 1
2.3 5 7 3 1
2.4 1 7 1 11
3.1 1 3 1 1
3.2 1 na na na
3.3 1 na na na
4.1 1 1 1 1
4.2 1 1 1 1
4.3 1 15 1 1
4.4 4 7 3 1
4.5 1 2 0 1
5.1 1 6 1 1
5.2 1 2 1 1
5.3 1 20 1 1
5.4 1 12 0 11
5.5 6 17 2 13

Table 3: DeWild’s handling of the first 22 questions
from TREC 2004

DeWild sometimes returned additional instances of which
some were correct and others were incorrect but appeared
with the query and gave additional information. For in-
stance, consider the question“Who discovered prions?” from
TREC which has only one correct answer. We transformed
the question to “prions are discovered by %” and passed it
as a query to DeWild. The highest ranked instance, “Stan-
ley Prusiner”, was the correct answer to the question, and it
also received a substantially larger weight than the second
best instance. Our system returns other acceptable answers,
including the 8th-ranked “Dr. Stanley Prusiner”, the 9th-
ranked “researcher Stanley Prusiner”, and the 12-th ranked
“Nobel Prize winner Stanley Prusiner”. These other answers
show that Stanley Prusiner was a doctor, a researcher, a
Nobel prize winner and he was from the University of San
Francisco.

6.4 Ad Hoc Data Extractions
As our last experiment, we tried to compile useful resource

lists which we could not find in a list format anywhere on
the Web. In one case, we tried to find the names of sum-
mer movies. Although some online resources maintain a
quite complete list of movies, they don’t classify movies as
summer movies or otherwise. The pattern “% is a summer
*blockbuster*” is used as the query for the task. The term
blockbuster, which is enclosed by * wild cards in the query, is
augmented by two extra related terms: movie and film. We
manually evaluated the extracted results using the Internet
Movie Database (IMDB) and concluded that all the results

in the top 10 were indeed correct movie names, and their
release dates were in the summer.

In one more experiment, we used the query “% is a Cana-
dian writer”to compile a list of Canadian writers. This time,
we put together a set of rewritings that were specific to the
query. The query returned over 1300 names. We could ver-
ify that 91 of the first 100 rows were real Canadian writers.
Of the first 200 rows that we verified, 156 were real Cana-
dian writers. We also compared the first 200 tuples to two
of the most comprehensive online lists of Canadian writers
that we could find. DeWild retrieved 86 real author names
which could not be found in one list8 and 70 names which
were not in the other list9. After combining the two lists,
DeWild still reported 58 names which we couldn’t find in
the combined list. This experiment shows that our queries
can be used to compile a reasonably good list of resources
which can be further edited for correctness.

7. RELATED WORK
There is a large body of work on question answering.

Many systems use a combination of NLP techniques (deep
or shallow), learning algorithms and hand-crafted rules to
classify the questions and to establish relationships between
terms of a question and a possible answer sentence (e.g. [16,
11, 20]). Despite some overlap, there are fundamental differ-
ences between our work and the work on question answering.
The size of the target set for question answering systems is
typically one or only a few, whereas our goal is to use DeWild
queries for large-scale data extractions. It is possible to inte-
grate our work within a question answering system if natural
language questions can be mapped to DeWild queries.

Large-scale data extraction from the Web has been the
subject of various recent work [1]. In particular, Brin [6]
suggests an algorithm which takes a small number of ex-
amples of a class as a seed set and extracts more examples
of the same class. His algorithm learns a set of extraction
patterns for each page (or pages with the same URL prefix)
that contains some of the examples and use those patterns to
extract more tuples from the same page(s). This algorithm
does a good job when data is structured in a tabular format
but is not expected to work on free text. This is because
it is generally unlikely to find more than one example (of
the seed set) in a text document such that their surround-
ing texts are the same. Given a small set of examples, the
semantics of the query sometimes is not also clearly defined.

KnowItAll [12] takes the description of a concept or class
(e.g. cities) as input and extracts instances (e.g. Paris,
New York, . . . ) of the class. The system maintains a set of
rules which can be instantiated with an input class to pro-
duce keywords that must be used to extract the instances
of the class. KnowItAll uses co-occurrence statistics, specif-
ically mutual information, to assess the relatedness of each
instance. Our approach differs from KnowItAll in several
important aspects: First, the query-based interface and the
support of wild cards make DeWild more adaptive to dif-
ferent extraction tasks. Second, unlike KnowItAll where a
concise description of a class must be given, a DeWild query
may specify only the context in which the instances may
appear. This is useful when a concise class description is
not available. Last but not least, our approach of porting
link-based ranking algorithms for assessing extraction re-

8www.track0.com/ogwc/authors
9www.umanitoba.ca/canlit/authorlist



sults from text is novel and performs better than the one
used in KnowItAll.

Related to our query rewritings is the work on query ex-
pansion [4] and query transformation for question answering
[2]. Query expansion has shown to be difficult for phrase
queries. Also query expansion and transformation tech-
niques are not directly applicable to queries with wild cards.
Our queries can benefit from inverted indexes on terms,
phrases, and N-grams and there are already some works in
these areas (e.g. [7, 9]). Other related work includes the
work on Web query languages and wrappers (see [13] for a
survey of this area before 1998). These works can be used to
extract data from a specific site or a set of pages with sim-
ilar structures but are not generally applicable to free text.
Finally, Google’s fill-in-the-blank is related to our wild cards
but is different. Google returns a ranked list of pages for a
fill-in-the-blank search but the ranking is different (and the
detail is not published).

8. CONCLUSIONS
We presented a framework for querying and large-scale

data extraction from natural language text, and evaluated
the effectiveness of our framework within a few data extrac-
tion tasks on the Web. We analyzed our rankings of the
results in terms of the stability and the locality of the scor-
ing functions and conducted experiments comparing their
effectiveness in terms of precision and recall. Our querying
interface is intuitive for writing queries and scalable to large
number of rewritings and with more wild cards.

Our work opens a few interesting directions for future
work. First, it would be interesting to study other wild
cards, querying schemes and formalisms that are simple for
writing queries and at the same time have a well-defined syn-
tax and semantics for query evaluations and optimizations.
We consider our wild card queries as a first step toward more
formal querying of natural language text. Second area for
possible future work is data storage and indexing. Despite
the extensive work on indexing free text, there is not much
work on indexing natural language text in particular. Given
that natural language text can be parsed, there is much room
for research on building indexes that are aware of sentence
structures and queries. Third, a more formal query syntax
and semantics opens the door for more study on mapping
queries to evaluation plans and access path selection and op-
timization. These are important issues when querying large
repositories and/or posing complex queries. Another area
for further study is on extracting n-ary relations for n > 3;
the problem in general is difficult since the columns of target
rows can be scattered in multiple sentences. Yet one more
area is on mapping natural language questions to more for-
mal queries that can be efficiently evaluated.
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