
Data Extraction from the Web Using Wild Card Queries

Davood Rafiei
Computing Science Department

University of Alberta
drafiei@cs.ualberta.ca

Haobin Li
Computing Science Department

University of Alberta
haobin@cs.ualberta.ca

ABSTRACT
This paper presents an overview of our work for searching
and retrieving facts and relationships within natural lan-
guage text sources. In this work, an extraction task over a
text collection is expressed as a query that combines text
fragments with wild cards, and the query result is a set of
facts in the form of unary, binary and general n-ary tuples.
Despite being both simple and declarative, the framework
can be applied to a wide range of extraction tasks. This
paper presents an overview of the work and its various com-
ponents. We also report some of our experiments and an
evaluation of the proposed querying framework in extract-
ing relevant information to a task.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; H.5.2 [Information Systems]: User Interfaces

General Terms
Algorithms,Experimentation,Measurement

Keywords
DeWild, Data Extraction, Web Search, Ranking

1. INTRODUCTION
The World Wide Web contains a vast amount of informa-

tion and is a rich source for data extraction, but manually
extracting data from the Web is a tedious and time consum-
ing process, especially when a large amount of data matches
the extraction criteria. Example extraction tasks include
compiling a list of Canadian writers, finding a list of medi-
cations for a disease, etc. Unless such lists have already been
compiled and made available on the Web, one has to query
a search engine, examine the pages returned, and extract a
handful of instances from each page (if there is any at all).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

The problem is further complicated by the flexibility of nat-
ural languages. Consider the example of extracting Cana-
dian writers; many bona fide writers are not referred to as
writers. Instead, they are often coined as authors, novelists,
journalists, etc. If only the phrase“Canadian writers” is used
in the query, many qualified instances will not be extracted,
thus the extraction quality is compromised. Many previous
data extraction systems either focus on a more specific task
by imposing tight restrictions on the type of data that can
be extracted (e.g. finding course offerings and job postings)
or are only applicable to documents that follow a specific
formatting (e.g. wrappers). For example, the KnowItAll [6]
system can extract hyponyms of a user-specified class. The
online prototype of the system is further extended to sup-
port a few more specific binary relations (e.g. X “ceo of”Y).
A challenge facing many data extraction systems in general
is that the extraction task often is not easy to define or
a definition may not be accurate, leading to low precision
and recall. Limiting the extraction task to a few predefined
classes is one way to reduce the complexity of the problem.

This paper presents an overview of a framework that al-
lows an extraction task to be encoded as a simple query.
A query in this framework is a natural language sentence
or phrase with some wild cards, and the result of a query
is a ranked list of matching tuples. For instance, given the
query “% is a car manufacturer”, the output is expected to
be a ranked list of car manufacturers, preferably the real car
manufacturers ranked the highest. This query only uses one
wild card, here denoted with %. In general, a query can use
more than one % wild card, and the result of the query in
this case is a table with one column for each occurrence of
the wild card.

One of our contributions is a declarative querying frame-
work for data extraction. Integration of wild cards in our
queries can generally reduce the number of queries that must
be issued, hence simplifying the extraction task. Another
contribution is the idea of query expansion through a set
of declarative rewriting rules between paraphrases. Since a
given user query may not retrieve an adequate number of
facts, rewriting rules are generally expected to improve the
coverage of the queries and the quality of the results. Fi-
nally, as our last contribution, we report an experimental
evaluation of our work in the setting of the Web.

The rest of the paper is organized as follows. Section 2
describes both the syntax and the semantics of wild cards,
as well as the queries in our framework. An overview of our
query evaluation in the context of the Web is given in Sec-
tion 3. An experimental evaluation of the work is presented

in Section 4 and the related work is reviewed in Section 5.
We end the paper with conclusions and future work in Sec-
tion 6. See the extended version of this paper [11] for more
details on our query expansion, ranking algorithms and a
more extensive evaluation of the work.

2. WILD CARD QUERIES
The use of wild cards is prevalent in many areas of com-

puter science, with examples found in SQL, operating sys-
tem shells and scripting languages such as Perl, Awk and
Python. Unlike many of these systems, our introduced wild
cards iterate over the domains of parts of speech or other
meaningful natural language word groupings. In particular,
we introduce two types of wild cards, namely * and %.

% wild card: The % wild card represents one or more
noun phrases. A noun phrase may consist of one or mul-
tiple words; for instance, “movie” and “action movie” are
both noun phrases. This wild card, when used in a query,
indicates the location of a noun phrase or noun phrases
that should be extracted. For example, the query “summer
movies such as %” will extract noun phrases Harry Potter,
Shrek, and Spiderman from the following sentence: “Popular
summer movies such as Harry Potter, Shrek and Spiderman
appeal to audience of all ages.”

* wild card: The * wild card represents a set of phrases
with the same or similar meanings to a given phrase. Con-
sider the task of finding a listing of summer movies; we may
type the query “% is a summer movie”. However, some
bona fide movies are often referred to as “films”, “block-
busters”, and so on. In a naive approach, one may have to
try other terms similar to “movie”manually, save the results
each time, and put the results together at the end. The
naive method is tedious and inefficient. In our queries, a
term may be enclosed within a pair of * to instruct that the
search should be extended to include terms and phrases sim-
ilar to the given one. For example, the user can re-formulate
the query as “% is a summer *movie*”, and the query will
be automatically expanded to include related queries such
as “% is a summer film”, “% is a summer blockbuster”, etc.
The * wild card should always be used in pairs.

It is feasible to consider other wild cards. For instance, we
could have wild cards that only match verbs, adjectives, or
a union of nouns, verbs and adjectives. It is also possible to
have a wild card that matches a prefix or suffix of a term or
a fixed-length sequence of terms. In an attempt to keep the
syntax of our queries simple, this paper only considers the
two wild cards % and *, as discussed above. The following
is a list of example queries:

• % is a *country*

• % is a summer *blockbuster*

• % invented the light bulb

• Google *acquired* %

A query may use any number of wild cards. Given a query
with k % wild cards, the result of the query is a table with
k columns, one for each % wild card. A query can also have
any number of * wild cards. Given a query q with some
* wild cards, let q1, . . ., qs be the set of queries that are
obtained by replacing each * wild card with similar terms.
A row matches q if it matches at least one of q1, . . ., qs. For

our purpose, two terms are considered similar if they have
the same meanings (e.g. synonyms), one is a generalization
of the other, or the two terms can be used interchangeably
in the same context.

3. EVALUATING WILD CARD QUERIES –
AN OVERVIEW

This section provides an overview of evaluating wild card
queries over a text corpus. Without loss of generality, our
discussion in this section is centered around the Web and
uses the query“% is a *blockbuster*”as an example. In par-
ticular, we consider the scenario where the extraction engine
is built on top of a search engine. Naturally the same steps
can be taken when the source data is stored locally, with a
difference that a local collection may be better indexed and
the queries can be better optimized. To limit the scope of
the paper, we do not address the issues related to indexing
and query optimization.

Step 1 - query flattening As the first step, the query is
analyzed and expanded by replacing the words enclosed by
pairs of * wild cards (if any) with their similar terms. In
the given query, the word “blockbuster” is enclosed by *’s;
similar words to blockbuster, based on an online system [9],
are “movie” and “film”. Two new queries, “% is a movie”
and “% is a film” are formed and added to the expanded
query set. In general, more queries may be added if multiple
synonyms are found.

Step 2 - query rewriting In the next step, each query in
the query set is passed to a Part-Of-Speech (POS) tagger.
Each tagged query is compared with a set of precompiled
patterns for possible rewritings. The result of query tag-
ging is not always reliable, in particular for short queries.
To account for those cases, queries are also rewritten using
rules that do not require tagging. Let’s consider the query
“% is a movie” first; after tagging, the query conforms to
the pattern “NP1 is a(n) NP2” where NP stands for a noun
phrase; note that the wild card % matches a noun phrase,
as we defined earlier. A pattern may be found relevant to a
pre-determined class, based on a specific relationship it de-
scribes, and may be rewritten by other patterns in the same
class. The pattern “NP1 is a NP2”, in particular, belongs to
the hyponym class, since the template indicates that NP1 is a
(hyponym of) NP2. Other patterns in the hyponym class in-
clude“NP2 such as NP1List”, “NP2 including NP1List”, etc.
All patterns in the matching class (i.e. the hyponym class)
are instantiated according to the matched query. Thus, the
query set is expanded with extra queries like “movies such
as %”and “movies including %”. More detailed discussion of
our query rewritings can be found elsewhere [11]. Similarly,
the query “% is a blockbuster” also matches a pattern in
the hyponym class, and the query set is further expanded.
If the query cannot match any pattern, no query expansion
will occur at this step.

Step 3 - information retrieval engine As the third step,
all queries in the query set are sent to a search engine. For
each query, the matching snippets are downloaded for fur-
ther processing. When there is a large number of matches,
only a fixed number of them are selected. HTML tags are
stripped from downloaded snippets for each query and the
remaining text is analyzed to identify the pieces that match
the query. Noun phrases that appear in the positions of
% wild cards of a query are extracted from the text and

are saved in the result set. Words other than noun phrases
should not be extracted even if they appear in target loca-
tions. Suppose the query “% invented the light bulb” is sent
to a search engine and the following two snippets are among
those returned.

• Thomas Edison is often said to have invented the light
bulb.

• We all learned in our history classes that Thomas Edi-
son invented the light bulb in 1879.

The POS tagger identifies that the word “have” in the first
snippet is not a noun phrase, while “Thomas Edison” from
the second snippet is. Therefore, the phrase “Thomas Edi-
son” is extracted but “have” is not.

Step 4 - relevance ranking The result of extraction in the
previous step is a set of rows; for the given example, each
row is a noun phrase. A ranking algorithm is applied to
the extracted set. More details on our ranking algorithms
can also be found elsewhere [11]. Finally, a sorted list of
rows is returned. The rest of this paper will focus on query
expansion and relevance ranking.

4. THE TOOL AND OUR EXPERIMENTS
To evaluate our querying framework and ranking algo-

rithms, we built a search tool, called DeWild, which relies
on the Web as its source of data 1.

Using the Web compared to a closed collection has both
benefits and drawbacks. A benefit is that its information
redundancy can compensate for the relatively small size and
coverage of our rewriting rule set and the lightweight NLP
techniques used. A drawback is that the text collection often
is not clean and there are many bogus tuples that need to
be filtered.

DeWild takes advantage of existing commercial search en-
gines and currently queries Google via its search API. In our
experiments, 200 snippets are downloaded for each extrac-
tion pattern (our online system only downloads 30 snippets
per pattern and also lists the set of extraction patterns that
are tried). If there are fewer than 200 snippets found for a
pattern, then all available snippets are downloaded2. The
snippets returned by a search engine typically consists of
the search query and its surrounding text. Since the tar-
get data appears immediately before or after the user query,
they can be often extracted using the snippets only (without
downloading the actual pages), hence network and process-
ing costs are significantly reduced. Though it should be
noted that a snippet may lack sentence boundaries, and this
can reduce POS tagging accuracy. For ranking the results,
DeWild natively uses an algorithm referred to as PT-hits
(see [11] for more details). Our reported experiment in this
paper is also based on the same ranking.

A publicly available POS tagger called NLProcessor3 is
used to identify the part of speech from retrieved text, so
that only noun phrases are extracted for % wild cards. For
* wilds cards, our system uses a collection of related words
automatically compiled [9] from Wall Street Journal corpus,

1DeWild stands for Data Extraction using Wild cards. The
system is available online at dewild.cs.ualberta.ca.
2Our online demo downloads at most 30 snippets for each
query and each rewriting to keep the response time short.
3www.infogistics.com/textanalysis.html

Question length
< 6 terms ≥ 6 terms all

DeWild 0.88 0.41 0.68
OpenEphyra 0.41 0.22 0.32

Table 1: Precision of the results for natural language
questions

but it can equally use other collections as well. Next we
report our experiments with DeWild.

To measure the effectiveness of the proposed querying
framework in expressing different extraction tasks, we used
the tool to express and answer natural language questions
seeking short answers. We randomly selected 100 natural
language questions from the AOL query log [10], with the
selection criteria that the queries were all started with one
of the wh-words what, which, who and where and were fol-
lowed by is, was, was or were. The break-down of the queries
were as follows: what-84, who-6, where-7 and which-3. The
why queries were excluded since these queries often seek long
answers and cannot be expressed in our framework. Even
among the selected queries, not all queries were expected to
have short noun phrases as answers (e.g. What is a hedge
fund? Or, what are the causes of poverty?); in fact, 58% of
the queries were in this category, and they could not be prop-
erly expressed as queries. Another 7% of the queries were
ill-formed search queries in the form of questions which we
didn’t expect them to have answers (e.g. what is my ac-
count balance?). We removed both classes of queries before
further considerations. We further removed another 2% of
the queries where we couldn’t find an answer after an exten-
sive search on the Web, and we were not sure if the questions
had an answer at all. The remaining 33% of the queries were
all expressed as queries in our framwork and were evaluated
using our online tool.

As a baseline for comparison, we also passed the queries as
they were expressed to OpenEphyra 4, a full-fledged open-
source question answering system. Similar to ours, OpenE-
phyra uses the Web, and in particular the Google search
engine, to evaluate the questions, hence both DeWild and
OpenEphyra had access to the same data collection. How-
ever, OpenEphyra does much more extensive parsing of the
questions and the answers, and has components for detect-
ing answer types (of questions) and named entity classes in
text.

Top 5 results of each query, as returned by each compar-
ison system, were given to two annotators who were asked
to check of the set included a correct answer to the original
question. Table 1 shows the precision, averaged over two an-
notations per question, for both systems. DeWild achieves
a much better precision, with a good annotator agreement
(kappa) of 0.66, for both short and a bit longer questions,
retrieving a correct answer for twice as many queries as
OpenEphyra.

5. RELATED WORK
There is a large body of work on question answering.

Many systems use a combination of NLP techniques (deep
or shallow), learning algorithms and hand-crafted rules to
classify the questions and to establish relationships between

4http://www.ephyra.info

terms of a question and a possible answer sentence (e.g. [8,
5]). Despite some overlap, there are fundamental differences
between our work and the work on question answering. Our
work is not a replacement for QA systems that can often
handle complex questions; it is rather a natural way of ex-
pressing short questions or extraction targets. It is possi-
ble to integrate our work within a question answering sys-
tem if natural language questions can be mapped to DeWild
queries.

Large-scale data extraction from the Web has been the
subject of various recent work [1]. In particular, Brin [4]
suggests an algorithm which takes a small number of ex-
amples of a class as a seed set and extracts more examples
of the same class. His algorithm learns a set of extraction
patterns for each page (or pages with the same URL prefix)
that contains some of the examples and use those patterns to
extract more tuples from the same page(s). This algorithm
does a good job when data is structured in a tabular format
but is not expected to work on free text. This is because it
is generally unlikely to find more than one example (of the
seed set) in a text document such that their surrounding
texts are the same.

KnowItAll [6] takes the description of a concept or class
(e.g. cities) as input and extracts instances (e.g. Paris,
New York, . . .) of the class. The system maintains a set of
rules which can be instantiated with an input class to pro-
duce keywords that must be used to extract the instances
of the class. KnowItAll uses co-occurrence statistics, specif-
ically mutual information, to assess the relatedness of each
instance. Our approach differs from KnowItAll in several
important aspects: First, the query-based interface and the
support of wild cards make DeWild more adaptive to dif-
ferent extraction tasks. Second, unlike KnowItAll where a
concise description of a class must be given, a DeWild query
may specify only the context in which the instances may
appear, and this is useful when a concise class description is
not available (this problem is somewhat addressed in Tex-
tRunner [2]). Last but not least, our approach of porting
link-based ranking algorithms for assessing extraction re-
sults from text is novel and performs better than the one
used in KnowItAll.

Other related work includes the work on query expansion
[3] and the work on Web query languages and wrappers (see
[7] for a survey of this area before 1998). Finally, Google’s
fill-in-the-blank is related to our wild cards but is different.
Google returns a ranked list of pages for a fill-in-the-blank
search but the ranking is different (and the detail is not
published). An evaluation of Google’s fill-in-the-blank com-
pared to DeWild can be found in the extended version of
this paper [11].

6. CONCLUSIONS
We presented a framework for querying and large-scale

data extraction from natural language text, and evaluated
the effectiveness of our framework within a few data extrac-
tion tasks on the Web. We analyzed our rankings of the
results in terms of the stability and the locality of the scor-
ing functions and conducted experiments comparing their
effectiveness in terms of precision and recall. Our querying
interface is intuitive for writing queries and scalable to large
number of rewritings and with more wild cards.

Our work opens a few interesting directions for future
work. First, it would be interesting to study other wild

cards, querying schemes and formalisms that are simple for
writing queries and at the same time have a well-defined syn-
tax and semantics for query evaluations and optimizations.
We consider our wild card queries as a first step toward more
formal querying of natural language text. Second area for
possible future work is data storage and indexing. Despite
the extensive work on indexing free text, there is not much
work on indexing natural language text in particular. Given
that natural language text can be parsed, there is much room
for research on building indexes that are aware of sentence
structures and queries. Third, a more formal query syntax
and semantics opens the door for more study on mapping
queries to evaluation plans and access path selection and op-
timization. These are important issues when querying large
repositories and/or posing complex queries. Another area
for further study is on extracting n-ary relations for n > 3;
the problem in general is difficult since the columns of target
rows can be scattered in multiple sentences. Yet one more
area is on mapping natural language questions to more for-
mal queries that can be efficiently evaluated.

Acknowledgments
This work is supported by Natural Sciences and Engineering
Research Council of Canada.

7. REFERENCES
[1] E. Agichtein. Extracting relations from large text

collections. PhD thesis, Columbia University, 2005.

[2] M. Banko and O. Etzioni. The tradeoffs between open
and traditional relation extraction. In Proc. of ACL,
2008.

[3] M. W. Billoti. Query expansion techniques for
question answering. MSc thesis, MIT, 2004.

[4] S. Brin. Extracting patterns and relations from the
world wide web. In WebDB Workshop at the EDBT
Conf., pages 172–183, 1998.

[5] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng.
Web question answering: Is more always better? In
Proc. of the SIGIR Conf., pages 291–298, 2002.

[6] O. Etzioni and et al. Web-scale information extraction
in knowitall: (preliminary results). In Proc. of the
WWW Conf., pages 100–110, 2004.

[7] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the World Wide Web : a survey. ACM
SIGMOD Record, 27(3):59–74, September 1998.

[8] C. C. T. Kwok, O. Etzioni, and D. S. Weld. Scaling
question answering to the web. In Proc. of the WWW
Conf., pages 150–161, 2001.

[9] D. Lin. Using syntactic dependency as local context to
resolve word sense ambiguity. In Proc. of the ACL
Conf., pages 64–71, 1997. (online demo at
www.cs.ualberta.ca/∼lindek/demos/depsim.htm).

[10] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In The 1st Intl. Conf. on Scalable Information
Systems, 2006.

[11] D. Rafiei and H. Li. Wild card queries for searching
resources on the web. CoRR, arXiv:0908.2588v1, 2009.

