Relationship Queries on Extended Knowledge Graphs

Mohamed Yahya', Denilson Barbosa?, Klaus Berberich!, Qiuyue Wang?, Gerhard Weikum?

'Max-Planck Institute for Informatics

2University of Alberta

3Renmin University of China

{myahya, kberberi, weikum}@mpi-inf.mpg.de
denilson@ualberta.ca qgiuyuew@ruc.edu.cn

ABSTRACT

Entity search over text corpora is not geared for relation-
ship queries where answers are tuples of related entities and
where a query often requires joining cues from multiple doc-
uments. With large knowledge graphs, structured querying
on their relational facts is an alternative, but often suffers
from poor recall because of mismatches between user queries
and the knowledge graph or because of weakly populated re-
lations.

This paper presents the TriniT search engine for querying
and ranking on extended knowledge graphs that combine
relational facts with textual web contents. Our query lan-
guage is designed on the paradigm of SPO triple patterns,
but is more expressive, supporting textual phrases for each
of the SPO arguments. We present a model for automatic
query relaxation to compensate for mismatches between the
data and a user’s query. Query answers — tuples of entities
— are ranked by a statistical language model. We present
experiments with different benchmarks, including complex
relationship queries, over a combination of the Yago knowl-
edge graph and the entity-annotated ClueWeb’09 corpus.

Keywords

Relationship Queries; Extended Knowledge Graphs; Query
Relaxation

1. INTRODUCTION

1.1 Motivation and Problem

Searching for entities and associated properties has re-
ceived much attention for both web contents and enterprise
documents. Examples are queries for “musicians who con-
tributed to movie soundtracks” or “companies that acquired
Internet startups”. IR-centric approaches typically associate
entities with statistical language models in order to match
and rank entity mentions and surrounding phrases in text
corpora [3]. Semantic-Web-style approaches, on the other
hand, rather tap structured knowledge graphs (KGs) such
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

WSDM’16, February 22-25, 2016, San Francisco, CA, USA.

(© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3716-8/16/02. .. $15.00

DO http://dx.doi.org/10.1145/2835776.2835795

as Freebase or Linked Open Data (LOD) collections such as
combinations of DBpedia, Yago, and MusicBrainz, and use
SPARQL queries to retrieve relevant RDF triples [16].

Neither of these paradigms provides good support for re-
lationship queries that connect multiple entities in a specific
way and return tuples of connected entities. Consider, for
example, the task of finding songs that appear in movies
and returning a list of (song, movie) pairs. This cannot be
fully expressed by IR-centric entity search which is bound to
return spurious results where a movie is merely mentioned in
the textual proximity of a song (e.g., “My Way” and the film
“The Man with the Golden Arm” in a Frank Sinatra biogra-
phy). On the other hand, the SPARQL language supports
expressive and precise queries over RDF graphs of entity-
relationship triples, but its results are limited by the prop-
erties (i.e., relation types, binary predicates) and facts (i.e.,
relation instances, predicate arguments) that the underlying
KG or LOD collection contains. So none of the established
paradigms can adequately cope with relationship queries.

Examples: In principle, the above example could be for-
mulated by the following SPARQL query:

SELECT 7s 7m WHERE {

?s type song . 7m type movie .
where 7s and 7m are variables and the second line contains
three triple patterns over the subject-predicate-object (SPO)
triples of the underlying KG. The query should return bind-
ings for song-movie pairs that are in the desired relationship.
However, this works only if the KG does indeed offer the
predicate musicInFilm and that predicate is sufficiently well
populated. If the KG instead contained predicates filmHas-
Soundtrack of type movie X album and albumContainsSong
of type album x song, the user would need to formulate a
very different query and non-expert users would typically
fail to get this right. Even if the user succeeded in posing
the best query formulation, the answers would be limited
by the facts of the KG, while the web or social media could
potentially hold many additional answers.

Similar cases arise in domains like business or sports, for
example, when searching for “South-American football play-
ers and European championships that they have won” (with
answers such as Lionel Messi and the UEFA Champions
League). Here one challenge that users would struggle with
is to properly formulate the two-hop join query with triple
patterns ?p type player . ?7p playedFor 7t .
7t type footballClub as KGs associate championships with
teams, not players. IR-style entity search would be more
convenient for users, but loses precision and would be mis-

?s musicInFilm ?m }

7t won 7c .


http://dx.doi.org/10.1145/2835776.2835795

led by co-occuring players and teams who were opponents
in final matches.

Problem Statement: The above information needs are
examples of relationship queries, which we define here as
SPARQL-like SPO queries with two or more distinct vari-
ables joined by one or more relationships. Such queries typ-
ically have two or more variables in their projection list (the
SELECT clause). This is in contrast to entity search queries
where there is a single variable in the query, whose bindings
are the query result. The problem addressed in this work
is how to express and process relationship queries over both
structured KGs and unstructured text/web corpora. We em-
phasize the coexistence and combination of KG and text, as
they complement each other in terms of potential answers.

Although we cast this problem into a structured query
language like SPARQL (and will extend this language), it
should be noted that users such as analysts or journalists
need a less formal UIl. Our methods can provide a form-
filling UI, which is user-friendly yet allows to generate (ex-
tended) SPARQL queries. Natural-language question an-
swering (QA) [19] and the translation of questions into queries
[7/131|35] would be a suitable UT as well.

1.2 Approach and Contribution

We developed a comprehensive system, TriniT (for “Triples
& Text”), to address the problem of relationship queries.
TriniT builds on three insights and novel contributions.

First, we extend a KG by running Open Information Ex-
traction (OIE) techniques [24] on a large Web corpus and
capturing triples of textual expressions along with their sur-
rounding contexts. By means of Named Entity Disambigua-
tion (NED) techniques [17], we obtain a combined dataset
with structured facts and text triples as first-class citizens.
Prior work [9H11] has looked into the interplay of KG and
text corpora, but limited this to either using distant knowl-
edge for enhancing text search or using textual witnesses for
fact statistics in the KG.

Second, for querying the extended KG, XKG for short, we
extend the SPARQL notion of triple patterns to allow each of
the SPO components to be a URI denoting entities, classes
or predicates, or a typed literal (e.g., dates), or a textual
phrase. Note that the W3C standard for SPARQL requires
S and P to be URI’'s and O to be a URI or a literal. By
supporting text in each of the SPO positions, we can formu-
late queries that tap into both structured and textual triples
simultaneously. For example, we can find more song-movie
pairs, beyond what the KG offers, by the triple pattern ?s
"appeared in" ?m (in conjunction with other triple patterns).
Prior work on extending SPARQL with text predicates [11]
has treated text as annotations of entire SPO facts, typically
based on keyphrases that are associated with the S and O
entities, and advocated SPO+text (SPOX) quad patterns.
On many queries, this loses precision as the system cannot
distinguish anymore if the X component specifically refers
to S, P, or O.

Third, despite the additional convenience of using text
for SPO components, the potential mismatch between the
user’s vocabulary and the names and phrases in the KG and
XKG still makes proper query formulation a difficult task.
To overcome this obstacle, TriniT provides a framework for
query relaxation rules, and algorithms to automatically ap-
ply rules to generate relaxed queries that yield higher recall.
For example, a user-provided triple pattern ?p won ?c for the

(football player, championship) example query can be auto-
matically rewritten into a text-based pattern ?p "has won"
7¢ (which can find more matches in the text corpus with en-
tity linkage to the KG) or into the more elaborate and appro-
priate patterns ?p playedFor 7t . 7t won ?c. The answer-
ranking model of TriniT considers the potential target drift
of such relaxations, and computes overall rankings for the re-
sults of different rewritings. Prior work on query relaxation
for RDF and XML data [1,[11,/12] was restricted to simple
structural rewritings like replacing a predicate by a variable
or lexical rewritings like replacing a class with a super-class.

The novel contributions of this work can be summarized
as follows:

e an extension of SPARQL triple patterns supporting ex-
pressive search over extended KGs in a convenient man-
ner, along with a judiciously designed answer-ranking
model,;

e aframework and algorithms for relaxation rules that sup-
port the automatic rewriting of user queries to improve
recall while preserving the query focus;

e experiments with complex relationship queries over the
combination of the YAGO knowledge graph and the Club-
Web’09 corpus, demonstrating the viability and benefits
of our model and methods.

2. DATA MODEL AND QUERY LANGUAGE

2.1 Extended Knowledge Graphs

In the standard setting of an RDF-based knowledge graph
(KG), we have two sets of objects: i) resources R encoded
as URD’s for entities, classes, or predicates (called properties
in RDF), and ii) literals L for values like numbers, dates,
etc. Predicates P C R are a special kind of resource used to
create facts that describe resources.

Definition 1 (Knowledge Graph (KG)). A knowledge graph
(KG) is a set of triples from (R x R x R)U(R X R x L).

The three components of a triple are called the subject,
predicate, and object, or SPO for short. When O is a re-
source, like an entity or class, the triple captures a relation-
ship (e.g., someone’s spouse or membership in a semantic
class); when O is a literal, the triple expresses an attribute
value for an entity (e.g., someone’s birthdate or salary). A
predicate can be seen as a binary relation, whose arguments
are the subject and object. Alternatively, the subject and
object can be seen as vertices connected by an edge labeled
with the predicate.

However big a KG could be, it is bound to provide incom-
plete knowledge, as there is always additional detail and
finesse that could be found in additional text sources. The
goal of extending a KG is to account for missing entities,
classes, predicates, or facts. To do this, we combine the KG
with one or more textual corpora annotated with entities
and predicates, some of which may already exist in the KG
whereas others are missing so far. The triples are extracted
from text by information extraction (IE) techniques, and
become additional knowledge which can be used to bridge
the gap between the information needs of users and the KG.
More specifically, we use Open IE methods like [24] to ex-
tract triples that consist of two noun phrases (for S and
O) that are connected by a noun phrase, verb phrase, or
a preposition (for P). We additionally employ methods for



Named Entity Disambiguation (NED) like |17] to map the
two noun phrases into entities registered in the KG. This
process is prone to error, but can be tuned to favor preci-
sion over recall. In our experimental studies, the IE and
NED error rates are low, and their benefit clearly outweighs
the errors.

As an example, suppose that the original KG contains the
triples in the left column of Table [1| (for simplicity we use
names for entities, classes, and predicates rather than URI’s
which would be required by the official RDF standard).

Additionally, assume that Open IE has identified further
triples shown in the right column of Table [I] where some of
the SPO components are mere text phrases as they could
not be mapped to any entity, class, or predicate in the KG.
The union of all these triples forms the extended knowledge
graph, XKG for short. For an XKG we do no longer refer
to resources and literals, but instead collectively call all of
these simply tokens C'.

Definition 2 (Extended Knowledge Graph (XKG)). An
extended knowledge graph (XKG) is a bag of triples over
tokens; that is, triples are from C' x C x C'.

The XKG being treated as a bag of triples takes into ac-
count that the IE process can produce the same triple many
times from different documents. We exploit this kind of re-
dundancy — not present in the original pure KG — in our
ranking model.

2.2 Triple Pattern Queries

We now define the triple pattern query language for query-
ing XKGs. Let V be an infinite set of variables, distinct from
tokens, and always prefixed with a question mark.

Definition 3 (Triple Pattern and its Results). A triple pat-
tern q is a triple from VUC x VUC x VUC. The results
of a triple pattern are triples t from the XKG such that the
tokens in q that are not variables are matched by t. For
the variables in q, the corresponding tokens in t are called
bindings.

Examples of triple patterns are: ?x usedIn KillBill (with
a predicate and an entity as tokens) and ?x “appears in” “Kill
Bill Vol 1”7 (with two phrases as tokens).

Definition 4 (Query). A query Q = {qi,..-gn} is a set
of triple patterns q; and a projection list P(Q) of variables
(typically with variables occurring in multiple q;, forming
join predicates). We require the join graph that is consti-
tuted by the q; as vertices and edges between them whenever
two of the triple patterns share a variable, to be a connected
graph (to avoid computing Cartesian products). P(Q) is a
(usually proper) subset of the variables in Q, defining the
output structure (typically entity tuples).

Relationship queries are those containing at least two dis-
tinct variables, requiring one or more relationships to join
them. In such queries, the projection list typically contains
two or more variables (|P(Q)| > 2), in which case answers
are proper tuples. This is in contrast with traditional entity
search which have a single variable, hence |P(Q)| = 1.

Definition 5 (Query Answer). For query Q, an answer (a)
is a mapping of the variables in Q to tokens in C. Applying
an answer (a) to a triple pattern ¢; € Q results in the triple
t;, we denote this by a(q;) = t;. The restriction of a query
answer to bindings of variables in P(Q) is called a projected
answer, denoted ap.

Example query 1: Finding movies with British songs
could be expressed as:

SELECT 7s 7m WHERE {
?s type song . 7m type movie . ?s usedIn 7m .
?s performedBy ?x . 7?x bornIn UK }

Note that the KG in Table [ alone would have no results to
this query, whereas the XKG yields the desired result (wWal-
terMitty, SpaceOddity). Alternatively to the triple pattern
7a “born” UK, we could specify the condition ?a ?7p “British”.
Neither of these is easy to formulate by a user who does not
know the XKG data really well.

Example query 2: Finding movies with American songs
and their singers requires both elaborate use of long paths in
the XKG (i.e., join chains) and the use of text-based triples
in the XKG:

SELECT 7m ?s ?x WHERE {
?s type song . 7m type movie .
?m hasSoundtrack 7a . 7a contains ?s .
?s performedBy ?x . 7x 7p “American” }

Again, formulating such a sophisticated query is awfully
hard for a user who does not know details of the under-
lying XKG. We will see in Section [3] that such sophisticated
queries can be generated by automatically rewriting a sim-
pler user query based on query relaxation rules.

3. QUERY RELAXATION

Query formulations by a user may fail to return the ex-
pected answer(s), either because the user has insufficient
understanding of the predicates, classes, and entities in the
XKG, or because no answer can completely satisfy all con-
ditions in the query.

Our solution to the above problems is query relaxzation,
where one or more parts of the query are automatically
rewritten in order to compute answers that are likely to
satisfy an information need but cannot be obtained by the
original query. We first define our framework for query re-
laxation, and then discuss specific choices of relaxation rules.

Definition 6 (Relaxation Rule). Given a query @ = {q,
.y Gn}, a relazation rule is a triple r = (q,q’,w), where
q C Q and is non-empty, q' is a set of triple patterns, and
w € [0,1] 4s a relazation weight that captures the closeness
between q and q’.

Definition 7 (Relaxation Rule Application, Relaxed Query).
Given a query Q and a relazation rule r = (q C Q,q’,w),
the application of r to Q results in query Q' = r(Q) =
(Q\a)ud with P(Q') = P(Q).

Given a query Q and a sequence of relaxation rules r =
(r1,...,Tm), a relazed query is a query Q' = rm(...71(Q)).

Rationale: Asan example, reconsider the example queries
of Section[2] The user may issue the seemingly perfect query:
SELECT 7s 7m WHERE {

?s type song . 7m type movie . ?7s usedIn 7m .

?s performedBy ?x . 7x bornIn UK }

to retrieve British songs in movies. However, this may not
return any results at all. To retrieve good candidates, we
could drop an entire triple pattern from the query such as
the one about birth in the UK, or we can relax overly re-
strictive predicates like bornIn by a textual token like “born”
or even by a variable that can be matched by any pred-
icate or token. Likewise, if the specified entity token UK



KG Triples XKG Triples
[s [ P [ O S [ P [ O
BangBang type song DavidBowie “born and lives in” | UK
Space0ddity type song DavidBowie won “best British singer”
KillBill type movie BangBang “by” NancySinatra
WalterMitty type movie “Sinatra’s daughter” | bornIn USA
SpaceOddity usedIn WalterMitty NancySinatra “an” “American singer”
Space0ddity performedBy DavidBowie “Lonely Shepherd” “appears in” KillBill
KillBill hasSoundtrack | KillBillAlbum “Lonely Shepherd” performedBy “Zamfir”
KillBillAlbum | contains BangBang “Zamfir” bornln Romania
Table 1: Example triples in KG (left) and additional samples in XKG (right).
is not directly matched in the XKG, we could generate se- Predicate Paraphrase
mantically related tokens like “British”, “English”, “Scottish”, graduatedFrom “graduated from”
“from London”, etc. All these variants can be automatically graduatedFrom | “went to”
generated in our relaxation framework. graduatedFrom | “alumnus” '
Obviously, some relaxations drift away from the original “performed by” | “recorded by”
user request. For example, “Scottish” or “from London”seem “performed by” | “singer”
to be less focused in approximating the original UK than “performed by” | “performance of” !

“British” — so their relaxation weights should be lower than
the weight for “British”. Of course, replacing UK by a vari-
able would be an even stronger relaxation and should have
an even lower weight.

The order in which relaxations are applied results in dif-
ferent queries. In Section@we discuss our query ranking and
processing schemes. The two are designed to incrementally
explore relaxations only if they can contribute to producing
the top-k-scoring answers. This approach avoids explicit
enumeration of all possible relaxations of a query, which can
be prohibitively expensive.

Relaxations in TriniT: TriniT provides interfaces for
users to implement their own relaxations. In this work we
consider two concrete forms of relaxation that are relevant
to the benchmarks we consider: structural relaxations and
predicate paraphrasing. Structural relaxations result in re-
placing a triple pattern by a set of triple patterns that con-
ceptually denote a path. We apply this to spatial predicates
that connect an entity with a location (e.g. from (?x bornIn
UK) to (?x bornIn 7y . 7y locatedIn UK)). We define an op-
erator that instantiates such rules based on the query. Such
rules can also be automatically mined from the XKG using
the method of .

Predicate paraphrasing is the most important type of re-
laxation we consider in this work. We generate paraphrases
for XKG predicates using the XKG itself. For each predicate
(e.g., graduatedFrom), we generate paraphrases (e.g., “went
to”) and inverse paraphrases (e.g., “alumnus” by consider-
ing the overlap between predicate arguments in the XKG.
Given two predicates (incl. textual ones), p1 and p2, where
args(pi) = {(s,0),(s,pi,0) € XKG} (ie., subject-object
pairs co-occurring with p;), the weight assigned to the re-
laxation r = ({?z p1 7y}, {7z p2 Ty}, w) is:

w — Largs(pi) Nargs(p2) |
| args(p2) | '

Inverse paraphrases are generated and weighted in the
same manner as above, by matching the XKG with an in-
verted version of itself, where the subject and object compo-
nents of a triple are switched. In our experiments, we do not
consider paraphrases that are stop words, as these consis-
tently hurt results. Table [2| shows examples of paraphrases
and inverse paraphrases (indicated by the ! superscript)
for both KG and textual relations extracted from our XKG.

Table 2: Example predicate paraphrases

Approaches such as can also be utilized to obtain more
paraphrases.

4. ANSWER RANKING AND
QUERY PROCESSING

The scoring model of TriniT is based on a statistical lan-

guage model (LM) for triple patterns, the basic building
blocks of a query. For composing the triples from different
sub-queries into overall answers, we judiciously aggregate
the scores of the retrieved triples. Upfront, it is not obvious
how to do this in a principled and efficiently implementable
manner. Our setting with joins, queries over many variables,
and bindings for multiple variables in the projected output
is very different from established language models for entity
search . Also, by treating triples obtained from OpenlE
as first-class citizens instead of using text to contextualize
triples, it differs from existing language models for
ranking and relaxation in knowledge graphs.
Answers for Single Triple Patterns: In analogy to the
traditional IR setting, we can view a triple pattern as a doc-
ument which generates individual triples. In this generative
setting, we define a language model for each such triple pat-
tern using a mixture model as follows:

#t
|g:|

where #t denotes the number of occurrences of triple ¢ in
the XKG, |g;| is the total number of triples matching ¢; in
the XKG. Likewise, | XKG| is the total size (i.e., number of
triples) of the XKG and ) is a tunable parameter between
0 and 1. The first term is defined to be non-zero only if ¢
matches ¢;. The above defines a proper probability distri-
bution: for each g;, summing up over all triples in the XKG
will always give us 1.

There are some subtle differences between this setting
and the traditional IR setting. Smoothing with a back-
ground model (the XKG in our case) serves two purposes
in traditional IR, namely to avoid zero probabilities and
to attain an idf-like effect . In our setting, since we

#t
|XKG|’

P@t|g)=A"=+(1-2)



only consider triples ¢t that match the triple pattern ¢;, zero
probabilities are not an issue. Further, a relative weight-
ing of triple patterns, corresponding to the idf-like effect,
is already obtained by considering triple-pattern selectivi-
ties |g;|, that is, how many matching triples exist. For our
mixture model, the parameter A\ thus controls whether the
probabilities P(t|q;) are only based on the number of oc-
currences of ¢t (for A = 0) or also consider triple-pattern
selectivities (for A > 0), resulting in a relative weighting of
triple patterns in the query.

Answers for Entire Queries: With answer scores defined
for single triple patterns, we compute the score of a complete
answer a for a composite query @ as follows:

score(a, Q) = H P(a(g:)]a:),

where a(¢;) =t is the XKG triple resulting from the appli-
cation of answer a to ¢;.

Multiple answers can produce the same projected answer
ap, which is the result the user is interested in. For example,
in a query with variables for movies, songs, and artists, if
the final output is required to be pairs of merely movies and
artists, the songs are “projected away”, and we may obtain
duplicates of the same movie-artist pair.

Thus, for each binding of the projection variables we need
to define how to aggregate the scores of the individual re-
sults (with bindings for all three variables) for the whole
group of duplicates. While summing up scores seems a nat-
ural choice, it incurs two problems: i) inflating the score of
answers with frequently occurring entities (e.g., artists with
many songs in many movies), and ii) forcing the query pro-
cessing to retrieve all duplicates for each projected answer
as they contribute to the scoring. Especially the second
point would be critical from an efficiency perspective and
rule out early pruning when scanning posting lists during
query processing. Therefore, we opt to use the maximum
score for each group rather than the sum over all duplicates,
and define the score of a projected answer of a query as

score(ap,Q) = max score(a, Q).
:apC

Scoring with Query Relaxation: We finally extend our
scoring model to account for query relaxation. Starting with
a user-provided query, @, we relax it in one or more steps
by applying a sequence of relaxation operators ri,...,r, to
obtain Q' = r,,(...r1(Q)). Each relaxation operator r; carries
a relaxation weight w; € [0, 1] which reflects how much a
relaxed query drifts away from the previous query.

The score of an answer obtained from a relaxation is de-
fined as: n

score(a,Q,Q’') = le x score(a,Q’).

=1

Intuitively, the score of a with respect to Q' is attenuated to
reflect the divergence of @’ from the original query Q. For
the special case where n = 0, i.e. Q' = @, with no relaxation
operators invoked, score(a, @, Q") = score(a, Q).

Because it is possible to generate the same answer through
multiple distinct relaxations, we define the score of an an-
swer with respect to the original query and the space of all
possible relaxations r as:

score(a,Q,r) = max
Q'=rn(...11(Q))
rTIEY

score(a, @, Q").

Here, an answer is assigned the maximum score it can
obtain from any of the possible relaxations of the query (in-
cluding the original query). The rationale for this design
decision is analogous to the above score aggregation over
duplicates when variables are projected away and in line
with [31]: we want to avoid unduly inflating the influence
of seeing the same answer many times in different contexts
and allow for early pruning in query processing.

Finally, the score of a projected answer in a setting with
relaxation is defined as:

score(ap,Q,r) = max score(a, @, r)
:apC

Query Processing in TriniT is a natural fit for the top-
k paradigm [20] where the goal is to produce the best k
answers with the highest scores while accessing as little of
the data as possible. Our implementation uses inverted in-
dexes to retrieve matching triples in decreasing order of their
probability P(t|g;) from the XKG. This score monotonicity
ensures that the algorithm can maintain result candidates in
a priority queue with upper bounds for their final scores, and
apply a threshold test for early termination. Our query pro-
cessor applies the incremental merge algorithm [31] to au-
tomatically invoke relaxations judiciously and combine an-
swers for a triple pattern and its relaxations.

S. EXPERIMENTAL EVALUATION

We report on an experimental evaluation that demon-
strates the effectiveness of TriniT and provides insights into
answering relationship-centric queries. We make our results
publicly available (http://mpii.de/yago-naga/TriniT).

5.1 Methods

We compare two different configurations of TriniT with
three natural state-of-the-art baselines. Figure c) shows
an example query for each system. The first TriniT configu-
ration (TriniT-Relax) processes queries without considering
relaxations. We contrast this to TriniT+Relax where TriniT
has access to relaxations that it can automatically invoke as
needed during query processing.

The first baseline we consider (ES) is based on the work
by Balog et al. [2] for entity search. Here, an entity is repre-
sented by two fields containing the semantic types it belongs
to and a textual description. We use Model 4, which is most
effective one that allows us to enforce type constraints that
are crucial for good results. The ES approach cannot return
tuples in response to relationship queries, so we formulate
queries to ask about a single entity (a single variable).

The second baseline (ERS) is that by Li et al. [23] for
entity-relationship search. Here, queries are evaluated over
an entity-annotated corpus. The score of a match of a query
condition (a textual description of a typed variable or tex-
tual relation connecting two such variables) depends on the
proximity of phrases in the condition and variable bindings.

Finally, we compare TriniT with SPOX(SPO+teXt), an
extended version of the approach by Elbassuoni et al. [11].
Each SPO triple pattern in the KG is associated with textual
keywords, which are an aggregation of keywords associated
with the S and O components of the triple. For example, the
triple RusselCrowe actedIn ABeautifulMind would be associ-
ated with the set of keywords {%ohn’, ‘nash’, ‘true’, ‘story’,
‘princeton’, ‘australia’ ...}. On the query side, SPO triple pat-
terns can optionally come with teXtual conditions that spec-
ify constraints which cannot be expressed in structured SPO


http://mpii.de/yago-naga/TriniT

[ALGOL-JohnBackus-TuringAward]

(a)

“Programming languages invented by a Turing Award winner.”
(b)

TriniT:

SELECT ?x ?y WHERE {?x type programming_language .

?y type person . 7?7y "invented" 7x .
7y won TuringAward}

ES:
type: (programming_language) text:(programming language
invented by a turing award winner)

ERS:

SELECT 7x 7y FROM programming_language 7x, person 7y
WHERE ?7x:["won", "turing award"] AND 7x,?7y:["invented"]}
SPOX:

SELECT 7x 7y WHERE {?x type programming_language .

?y type person . 7?x ?r 7y ["invented"]

7y won TuringAward}

()

Figure 1: Query generation & formulation example

form over the KG. For example, the SPOX pattern 7x acte-
dIn ?y[‘rue story’] is used to for actors in a movie based
on a true story. During query answering, the SPO parts
of the query are first matched against the KG, and the an-
swers are subsequently ranked using language models that
consider witness counts of KG triples as well teXtual key-
word conditions with their frequencies. The original SPOX
approach includes a form of relaxation in which entities or
relations in a query are replaced by variables. We improve
on this by moving these entities or relations to the X compo-
nent of a triple instead of completely discarding them. This
way they can still influence the final ranking of answers. We
report results from this improved approach. We do not con-
sider |12] as a baseline since relaxations here are performed
by replacing KG entities and relations with other KG rela-
tions, which almost always results in semantic drift, as KGs
rarely contain redundancy.

5.2 Benchmarks

Existing entity-search queries tend not to be relationship-
centric. A contribution of this work is a new set of 70 in-
herently relationship-centric information needs, referred to
as COMPLEX queries here (e.g., “Programming languages
invented by people who won the Turing Award.”). We next
describe how these queries were generated. A query was
constructed starting from a chain of entities (e.g., [ALGOL-
JohnBackus-TuringAward]) where some become part of the
query and others serve as an answer. These chains are auto-
matically sampled from domains within the XKG, where a
domain is the set of entities that fall within a specified set of
semantic types. The domains we consider are cinema, mu-
sic, books, sports, computing, and military conflicts. The
cinema domain, for example, includes entities of the types
actor, show, director, award, and producer. Within each do-
main, we iteratively sample entities starting from a pivot
entity to form a chain. The first pivot entity (ALGOL in our
example) is sampled non-uniformly based on a popularity
prior from the domain. Next, we find the 20 entities in
the domain that have the highest coherence with the cur-
rent pivot by the Wikipedia-link measure of Milne & Wit-
ten [25]. We then sample these entities non-uniformly, based

on the number of XKG facts connecting them to the pivot
to choose the next pivot. This process is repeated to obtain
chains of size 2-4 (determined randomly). A human annota-
tor then constructs a question from the chain asking for the
first entity while containing multiple unknowns correspond-
ing to other entities in the chain. An annotator can discard
a chain if she thinks no interesting question can be generated
from it. Figure [Ta) shows an example of a chain, and (b)
shows the corresponding question formulated by the human
annotator. While the question is constructed by considering
a single chain, it can have many answers. In the example
of Figurem (Pascal,NiklausWirth) and (Smalltalk,AlanKay)
are two possible answers among several others.

We additionally ran experiments with two benchmarks
from previous work. The first, ESQ), is a set of 485 entity-
centric queries compiled by Balog & Neumayer [|4]. We re-
move from this dataset SemSearch ES and INEX LD queries
as they do not fit our setting. SemSearch ES contains queries
such as “YMCA Tampa” and “nokia €737, which refer to a
specific entity with no relations at all. INEX LD, is highly
keyword centric (e.g. “allegedly caused World War I”) with
a very noisy gold standard (e.g. Aerial_bombing of_cities
is considered a relevant entity for the above query). This
leaves us with 255 queries from which we remove 37 involv-
ing aggregation (e.g., “movies with eight or more Academy
Awards”) as these are beyond the capability of all the sys-
tems in this experiment, leaving us with 218 queries. Un-
like our COMPLEX queries, ESQ queries ask for individual
entities rather than tuples, and are usually expressed in the
form of a type (e.g., “EU countries”) or a type with a descrip-
tion that contains a single relation (e.g., “movies directed by
Francis Ford Coppola”).

The other benchmark from prior work, which we call ERQ,
is constructed by Li et al. [23] and consists of 28 queries. 22
of the queries in this dataset are similar to the ones in ESQ),
with 6 only asking for pairs of entities.

System Input Generation: TriniT and each of the
three baselines described in Section expects a specific
form of query as shown in Figure c). In the first step, an
information need in the form of a question (Figure [I[b)) is
shown to a human annotator who is asked to translate it into
a proto-query. In the second step, the proto-query is used
to automatically create queries for the four systems using
a set of rules described below. The annotator, after being
shown four examples of question-to-proto-query translation,
is presented with the Ul shown in Figure[2] Here, each row
provides SPO fields for specifying SPO triple patterns. Each
field provides auto-completion functionality for KG entities
(S and O) and predicates (P). The annotator is asked to
express the given question in SPO form, and is instructed
to use the auto-completion suggestions when appropriate, or
resort to textual tokens if necessary.

For ES, the type field is filled with the type associated
with the first variable in the proto-query, and the text of
the question is used in the text field. For ERS and SPOX,
variable type-constraints are maintained. ERS cannot deal
with KG entities and relations in the query (it only returns
entity tuples as results), so they are mapped to their tex-
tual form. SPOX can only deal with entities and relations
in the S and P components, respectively, but not textual
tokens. To accommodate this, we extend an SPO triple pat-
tern in the proto-query with an X component and move the
S/O textual component there — note that this is not the



“Programming languages invented by a Turing Award winner.”

?X [ type

programming_1language

type

?

<

?x

[ |
(7 ) |
[ ] [ "invented"
[ )

?y won

) )
] [ person ]
] J
) )

Turing_Award
Alan_Turing
Turing_Award

Turing_Machine

Figure 2: Proto-query interface, with input for the question in Figure a).

same as SPOX relaxation described above, which is part of
query processing. In real life, we envision a system used by
professionals such as journalists and researchers willing to
invest some learning effort in exchange for the more expres-
sive querying they get in return from the different types of
queries, with support from appropriate Uls.

5.3 Data

We finally describe the data we use for TriniT and the
various baselines we consider. We note that we run our own
implementations of the baselines on a scale larger than what
was previously reported.

We use as our KG Yago2s, whose predicates connect enti-
ties from Wikipedia to other entities (e.g. TomHanks actedIn
ForrestGump), literals (e.g. TomHanks birthDate 1956-7-9), or
semantic types (e.g. TomHanks type actor), with a total of
48M triples (44M class assignments, and 4.4M relations and
attributes).

As a text corpus, we use the FACC1 dataset, which an-
notates text spans in the ClueWeb’09 corpus with entities
linked to Wikipedia entities (via Freebase) with a precision
and recall estimated to be 80-85% and 70-85%.

For TriniT, we construct the XKG by combining the KG
described above with the result of a simple yet effective open
information extraction scheme over the annotated ClueWeb
corpus as follows. We look for pairs of entity annotations
in the same sentence separated by a string of at most 50
characters, and create a triple where the two entities are the
subject and object, and the separating string is the relation
connecting them. In this way we obtain 392M extractions,
resulting in 65M unique triples. For predicate paraphrases,
we run the predicate paraphrasing scheme described in Sec-
tion [3 on top of the XKG to generate 172M pairs of scored
predicate paraphrases like those in Table

We use the annotated ClueWeb corpus for ERS as we did
for TriniT. In addition, ERS takes type associations from
our KG, ensuring ERS has data comparable to that used by
TriniT. We attempted to evaluate the three benchmarks on
the [ERS online demol However, it contained only a subset
of the entities and types needed to answer COMPLEX and
ES queries, preventing a fair comparison with other systems.
For SPOX, we use our the annotated ClueWeb corpus to as-
sociate keywords with entities and subsequently KG triples.
To do this we find all words that occur in the same sentence
as an entity and keep those with a positive association (us-
ing normalized PMI) with the entity. SPOX uses the same
KG as TriniT, Yago2s.

In ES we use an entity’s Wikipedia page to populate its
textual description, in line with . We tried to extend
this by adding to this field sentences from the annotated
ClueWeb corpus that mention the entity. However, this re-

ESQ (218)

P@5 | MAP | NDCG R
ES 0.183 | 0.138 | 0.211 0.093
ERS 0.182 | 0.150 | 0.232 0.119
SPOX 0.249 | 0.218 | 0.336° | 0.188
TriniT-Relax | 0.158 | 0.140 | 0.192 0.093
TriniT+Relax | 0.218 | 0.190 | 0.287 0.156

ERQ (28)

P@s | MAP | NDCG R
ES 0.492 | 0.388 0.489 0.236
ERS 0.408 | 0.353 0.387 0.177
SPOX 0.577 | 0.561 0.580 0.248
TriniT-Relax | 0.467 | 0.448 0.502 0.174
TriniT+Relax | 0.637 | 0.614 | 0.692 0.267

COMPLEX (70)

Pa@5 | MAP | NDCG R
ES 0.132 0.104 0.172 0.115
ERS 0.249 0.243 0.322 0.234
SPOX 0.243 0.237 0.250 0.134
TriniT-Relax | 0.370 0.360 0.419 0.258
TriniT+Relax | 0.603° | 0.594° | 0.775° | 0.613°

Table 3: Experimental results.

sulted in worse retrieval effectiveness. We populate the se-
mantic type field for an entity from the types it is associated
with in the KG.

5'u4 Results and Analysis

Table [3] shows our experimental results. Following earlier
work, we use precision@5, NDCG (with binary relevance),
MAP, and recall as quality measures. For queries with an
empty results list, we define all measures to be 0.

For ESQ queries, we use the gold standard provided with
the benchmark. For ERQ and COMPLEX no gold standard
is given, so we crowdsource relevance judgments and deter-
mine the relevance of an answer by majority vote of three
judges. Note that since the XKG contains noise, human an-
notators were instructed to base their judgments on the real
world rather than on the XKG. Inter-annotator agreement
was measured using Fleiss’ kappa to be 0.837 indicating al-
most perfect agreement. In all cases we use binary relevance.

ERQ and COMPLEX queries do not easily lend them-
selves to computing the complete set of relevant results, with
queries such as “NBA teams married to actresses, and the
teams they play for” (COMPLEX) or “people born in Spain”
(ERQ). To compute NDCG and recall, we use pooling from
the various systems to create a golden standard. Since ES
returns single entities and not tuples, we project all answers
on the same dimension as the one used for the ES query and
compute the golden standard over that dimension.

“Significant improvement (two-tailed paired t-test, p < 0.01).


http://yago-knowledge.org
http://lemurproject.org/clueweb09/
http://idir.uta.edu/erq/

I- “Spouses of actors who graduated from an Ivy
League university.”
Query: SELECT 7x 7y ?z WHERE { ?x type person .
7y type actor . 7z type university .
7y graduatedFrom 7z . 7x marriedTo 7y .
7z "member of" IvyLeague }

XKG: ChristopherReeve graduatedFrom JuilliardSchool
ChristopherReeve "went to"  CornellUniversity

Relaxations:
0.066

(7w graduatedFrom ?z) — (7w "went to" 7z):

Relevant answers:

-TriniT-Relax: ¢

-TriniT+Relax:

{(DanaReeve, ChristopherReeve, CornellUniversity)}

II-“Lieutenant governors of the province where
Ottawa is located.”

Query: SELECT ?x ?y WHERE {?x type province .
?y type person . Ottawa locatedIn ?y .
?x "lieutenant governor of" ?y }

XKG: Ottawa locatedIn NationalCapitalRegion
NationalCapitalRegion locatedIn Ontario
Ontario "lieutenant governor" DavidOnley
HilaryWeston "lieutenant governor of" Ontario

Relaxations:
(7w locatedIn ?z)—(?w locatedIn 7u . ?7u locatedIn ?z): 1.0
(?w locatedIn ?z) — (7w "part of" ?z): 0.073
(?w "lieutenant governor of" ?7z)—
(7z "lieutenant governor" ?7w): 0.259

Relevant answers:

-TriniT-Relax: ¢

-TriniT+Relax:

{(DavidOnley, Ontario), (HilaryWeston, Ontario)}

Figure 3: Anecdotal examples of results

Figure [3| gives illustrative examples from our COMPLEX
queries set. We discuss the results by benchmark next.

ESQ Queries: Here SPOX outperforms all systems. On
these non-relationship centric queries, SPOX boils down to
an improved version of ES. If a query can be formulated
in a structured manner, then this tends to be reflected in
SPOX query formulations, resulting in SPO only queries,
without the X components. When this is not possible, most
of the query conditions end up in the X component of a type-
constraint triple pattern either by formulation or through
the improved SPOX relaxation scheme we described above.

TriniT is penalized against SPOX on queries that can be
satisfactorily answered with keywords without the need to
establish crisp relationships, as TriniT requires. For exam-
ple, the query “Nordic authors known for children’s litera-
ture”is reduced in the SPOX model to ?x type author [ ‘nordic
children’s literature’]. Here, looking at the co-occurrences of
an author and the keywords suffices to return good answers.
On the other hand, the SPO query formulation used for
TriniT, with P set to “known for”, could not find matches
in the XKG, even with relaxation. This result demonstrates
that keyword based querying is an effective paradigm for a
certain class of queries. Once we move to more relationship-
centric queries below, we start observing the advantage of
TriniT’s approach.

We can already observe the advantages of relaxation at
this stage. For example, on a simple query asking for “Italian
Nobel winners”, the TriniT query uses the KG predicate won.
While this looks reasonable, the KG only lists winners of
specific Nobel prizes (e.g., NobelPrizeInLiterature). Only
by relaxing won to the inverse textual predicate, “winner”,
is the TriniT query able to return the correct answers from
triples like (NobelPrize "winner" EnricoFermi).

It is also interesting to observe the relatively close perfor-
mance of ES and ERS. For most ESQ queries, ERS will re-
duce to ES, with a type constraint and a set of keywords de-
scribing the target entity, but with different scoring schemes.

ERQ Queries vary in how relationship-centric they are.
The majority of ERQ queries (22/28) ask about a single en-
tity, not a tuple, requiring no joins. The rest, while they ask
for a tuple, can all conceivably be answered from an indi-
vidual document describing a relevant entity. ERQ queries
like “films starring Robert de Niro, and their directors” and
“Novels and their Academy Award winning film adaptations”
issued to the ES system in search for movies/novels, respec-
tively, return satisfactory results. TriniT, when answering
such questions is able to return tuples with an explanation
of the precise relations that hold between the various entities
in a tuple (either those part of the user’s query, or matched
through relaxation).

Seemingly simple ERQ queries which ask for a list of indi-
vidual entities, not tuples, can be easily mishandled due to a
lack of relation awareness. Results from ES and ERS for the
query “football players who were FIFA Player of the Year”
include the entities DavidBeckham and ThierryHenry, both of
whom were runners-up for the award, but never actually
received it. TriniT is able to handle this query correctly.

For this class of queries SPOX starts to suffer when the
desired relationships connecting two variables are either not
sufficiently populated or unavailable in the KG.

COMPLEX Queries are the most interesting: they re-
quire combining factual knowledge from multiple sources
and establishing the existence of the relation specified in the
query. TriniT with relaxations significantly outperforms all
other systems on this dataset. Figure I) helps understand
why. It would be rare to find documents where keyword
matching would correctly answer this query. Even then,
we cannot expect to obtain a complete list of results. This
query is inherently relationship-centric, best fit for TriniT.
The original TriniT query contains one textual XKG predi-
cate “member of”, as no KG relation covers it. However, the
KG relation graduatedFrom lacks sufficient coverage, as the
fact (ChristopherReeve graduatedFrom CornellUniversity) is
missing. The XKG compensates for this through the tex-
tual relation “went to” (see Table 7 which is exploited by
an automatically-invoked relaxation to facilitate the return
of the relevant answer shown. For ES, this query, like most
others in the benchmark, is too challenging: the evidence
needed to answer is multiple hops away from a relevant en-
tity. As in earlier examples, ERS can be brittle when es-
tablishing the existence of a relation in the query is critical
for answering it. ERS scores entities in an answer based
on their proximity to each other and to query terms ex-
pressing relations that must hold. This can be detrimen-
tal due to the complexities of natural language: e.g., “pri-
vate and public universities including Ivy League members,
MIT, VanderbiltUniversity, SwarthmoreCollege , CalBerke-
ley...” is incorrectly taken as evidence of SwarthmoreCol-



lege’s membership in the IvyLeague. Figure II) shows an
example of a COMPLEX query where multiple relaxations
are triggered, including a structural relaxation of the spa-
tial locatedIn predicate, a predicate paraphrase and inverse
paraphrase. On this query, SPOX fails as it contains no re-
lation connecting a pair of entities that can serve as correct
bindings of 7x and ?y, both of which have to be projected to
the user. In this case, SPOX’s relaxation scheme is not help-
ful. Here, ERS turns out to be more effective than SPOX
as it relies on a less rigid scheme for answering queries.

5.5 Discussion

On relationship-centric queries, TriniT+Relax outperforms
the baselines by a clear margin. This is most pronounced for
the COMPLEX benchmark with relationship-centric queries
— the very point that paper aims to address. Here the gains
are high in all metrics.

It is also important to understand the limitations of TriniT
and why it fails on some queries. Simpler entity queries can
often be answered satisfactorily using traditional keyword-
based approaches, as we have seen for SPOX over ESQ.
Here, TriniT’s relationship-centric approach is crucial only
when keyword matches are misleading and crisp relations
must be established. For TriniT+Relax, we observe that
losses are mostly due to incorrect XKG facts and semantic
drift in the relaxations. Such incorrect facts arise from in-
correct entity annotations, or shortcomings in the extraction
scheme. Generally, incorrect facts matching a triple pattern
are less frequent than correct ones, which also means that
the answers obtained through these have smaller weights.
This is usually a problem for queries with a small number
of expected correct answers, where the correct answers rank
highest, and incorrect ones are at the bottom of the list.

The second source of incorrect answers is relaxations that
drift from the original query intention. Again, this is mostly
an issue in queries where few correct answers are expected
compared to the number of answers actually returned, and
can often be pruned away by observing a sudden drop in
answer scores. This is why the scoring scheme presented in
Section [4 uses maz rather than sum for score aggregation.

6. RELATED WORK

Entity Search: Methods for entity search over large text
corpora have been greatly advanced; [3| gives an overview.
In these models, queries are keywords and return ranked
lists of individual entities. Some methods use knowledge
bases for feature expansion [9], but stick to the same query-
and-answer model. One of the currently best methods is |2],
which is based on entity language models and harnesses en-
tity categories (i.e., semantic types) for ranking and for re-
stricting answers to the desired type — so it can, for example,
ensure that a query returns only songs, not movies, albums,
or singers. However, the model is still limited to comput-
ing a list of single entities. So there is no way of returning
tuples of entities, such as song-movie pairs, as answers. We
included the method of [2| as a baseline in our experiments.

Query Relaxation: In IR, the classic case for query
relaxation is query expansion for keyword queries [34] or
recommendations for query reformulation [8]. Some work
along these lines has explored the use of thesauri or knowl-
edge bases, to generate semantically related terms for a given
query. For structured data, generating relaxed queries has
been explored for relational data (e.g., [26}39]) and for RDF

data [11,|12]. For tree-structured XML data, structural re-
laxation techniques have been developed, such as rewrit-
ing an XPath child condition into a descendant condition
(e.g., [1]) or using semantic-relatedness-based relaxations for
content terms in XPath queries (e.g., [32]). None of these
is suitable for the combination of graph-structured data and
text corpora.

Search on Knowledge Graphs: There is ample work
on querying RDF databases and Linked-Open-Data with
SPARQL [16]. However, this is exact-match querying on
structured data emphasizing efficiency and scale while disre-
garding ranking or relaxation. Keyword-based graph search
has also been extensively studied for relational databases
[37]. These include ranking, but are limited to structured
data and do not consider full documents attached to graph
nodes. The most notable works on ranking SPARQL query
answers are [11,|22], using statistical language models and
supporting entity-tuple answers. Our approach is largely in-
spired by these models. However, this prior work has limited
support for keywords attached to triples and does not extend
to our XKG setting with text-based triples derived from
large corpora. The same limitation holds for work on graph
query languages (e.g., [36]). Finally, there are methods for
telegraphic text queries over structured KGs (e.g., |28]), but
they do not extend to the more demanding case of XKG.

Question Answering: Natural-language question an-
swering (QA) is traditionally based on passage retrieval and
statistical learning over unstructured text corpora. Even the
ground-breaking IBM Watson system has made only limited
use of structured data for special cases |19]. Recently, new
approaches to QA have developed methods for translating
user questions into structured queries that can be evaluated
on KGs and Linked Data [7}/13,|30,/33}/35]. This line of re-
search does not consider the combination of text and triples
in an XKG@G, though.

Querying Entity-Annotated Text: Searching and ex-
ploring text corpora that are annotated with entities and/or
linked to a KG has been addressed in various projects, most
notably the Broccoli system [5l6], ERQ [23], and STICS [18§].
Albeit not based on SPARQL, these are very expressive and
powerful search engines. However, except for ERQ (see be-
low) they do not provide any non-trivial ranking of results
— which is crucial for XKG.

The work of [211/29] addresses telegraphic text queries over
XKG-like combinations of text and data. The approach here
is to jointly learn the segmentation and entity interpreta-
tion of the input query (in text form) and the ranking of
candidate results. There is no notion of structured queries,
though, and the more advanced queries that our model al-
lows are beyond the scope of that prior work. Most impor-
tantly, queries that need to test for multiple relationships
and return tuples of entities are not supported.

Closest to our approach is the ERQ system [23]. This work
integrated text conditions into a structured query language
with typed variables for both entities and entity pairs (i.e.,
relationships). Albeit primarily addressing richer entity-
relationship search over Wikipedia, this method could be
applied to XKG. We therefore include it as a baseline in our
experimental studies.

7. CONCLUSION

Knowledge workers like journalists or analysts need query
functionality that goes beyond the established line of entity



search. This paper has addressed these needs by developing
a powerful query language and a search engine, TriniT, for
relationship queries, tapping the combination of knowledge
graphs and web corpora to compute answers. For ease of
use, TriniT starts with SPO-structured triple patterns that
users can easily generate by a form-based UI, but allows
also text phrases in each of the SPO components. Then,
TriniT automatically and incrementally relaxes the query by
rewriting rules for higher recall. Experiments with advanced
queries over an extended knowledge graph of web-scale size
demonstrate the viability of our approach and its benefits
over prior work.

Acknowledgment. Qiuyue Wang is supported by the Na-
tional Natural Science Foundation of China (Grant no.
61202331, 61532010).

8. REFERENCES

[1] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava,
D. Toman: Structure and Content Scoring for XML.
VLDB 2005.

[2] K. Balog, M. Bron, M. de Rijke: Query Modeling for
Entity Search Based on Terms, Categories, and
Examples. TOIS 29(4), 2011.

[3] K. Balog, Y. Fang, M. de Rijke, P. Serdyukov, L. Si:
Expertise Retrieval. Foundations and Trends in
Information Retrieval 6(2-3), 2012.

[4] K. Balog, R. Neumayer: A Test Collection for Entity
Search in DBpedia. SIGIR 2013.

[5] H. Bast, A. Chitea, F. M. Suchanek, I. Weber:
ESTER: Efficient Search on Text, Entities, and
Relations. SIGIR 2007.

[6] H. Bast, F. Biurle, B. Buchhold, E. HauBmann:
Semantic Full-text Search with Broccoli. SIGIR 2014.

[7] J. Berant, A. Chou, R. Frostig, P. Liang: Semantic
Parsing on Freebase from Question-Answer Pairs.
EMNLP 2013.

[8] P. Boldi, F. Bonchi, C. Castillo, S. Vigna: Query
Reformulation Mining: Models, Patterns, and
Applications. Information Retrieval 14(3), 2010.

[9] J. Dalton, L. Dietz, J. Allan: Entity Query Feature
Expansion Using Knowledge Base Links. SIGIR 2014.

[10] B. B. Dalvi, E. Minkov, P. P. Talukdar, W. W. Cohen:
Automatic Gloss Finding for a Knowledge Base using
Ontological Constraints. WSDM 2015.

[11] S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow,
G. Weikum: Language-model-based Ranking for
Queries on RDF-graphs. CIKM 2009.

[12] S. Elbassuoni, M. Ramanath, G. Weikum: Query
Relaxation for Entity-Relationship Search. ESWC
2011.

[13] A. Fader, L. Zettlemoyer, O. Etzioni: Open Question
Answering over Curated and Extracted Knowledge
Bases. KDD 2014.

[14] L. A. Galarraga, C. Teflioudi, K. Hose, F. M.
Suchanek: AMIE: Association Rule Mining under
Incomplete Evidence in Ontological Knowledge Bases.
WWW 2013.

[15] E. Gabrilovich, C. Markovitch: Computing Semantic
Relatedness using Wikipedia-Based Explicit Semantic
Analysis. IJCAI 2007.

[16] T. Heath, C. Bizer: Linked Data: Evolving the Web
into a Global Data Space. Morgan & Claypool 2011.

[17] J. Hoffart et al.: Robust Disambiguation of Named
Entities in Text. EMNLP 2011.

[18] J. Hoffart, D. Milchevski, G. Weikum: STICS:
Searching with Strings, Things, and Cats. SIGIR 2014.

[19] IBM Journal of Research and Development 56(3),
Special Issue on “This is Watson”, 2012.

[20] 1. F. Ilyas, G. Beskales, M. A. Soliman: A Survey of
Top-k Query Processing Techniques in Relational
Database Systems. Computing Surveys 40(4), 2008.

[21] M. Joshi, U. Sawant S. Chakrabarti: Knowledge
Graph and Corpus Driven Segmentation and Answer
Inference for Telegraphic Entity-seeking Queries.
EMNLP 2014.

[22] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath,
G. Weikum: NAGA: Searching and Ranking
Knowledge. ICDE 2008.

[23] X. Li, C. Li, C. Yu: Entity-Relationship Queries over
Wikipedia. TIST 3(4), 2012.

[24] Mausam, M. Schmitz, S. Soderland, R. Bart, O.
Etzioni: Open Language Learning for Information
Extraction. EMNLP-CoNLL 2012.

[25] D. Milne, I.LH. Witten: An Effective, Low-Cost
Measure of Semantic Relatedness Obtained from
Wikipedia Links. WIKIAT 2008.

[26] D. Mottin, A. Marascu, S. Basu Roy, G. Das, T.
Palpanas, Y. Velegrakis: A Probabilistic Optimization
Framework for the Empty-Answer Problem. PVLDB
6(14), 2013.

[27] Z. Nie, Y. Ma, S. Shi, J. Wen, W. Ma: Web Object
Retrieval. WWW 2007.

[28] J. Pound, A. K. Hudek, 1. F. Ilyas, G. E. Weddell:
Interpreting Keyword Queries over Web Knowledge
Bases. CIKM 2012.

[29] U. Sawant, S. Chakrabarti: Learning Joint Query
Interpretation and Response Ranking. WWW 2013.

[30] S. Shekarpour, A.-C. N. Ngomo, S. Auer: Question
Answering on Interlinked Data. WWW 2013.

[31] M. Theobald, R. Schenkel, G. Weikum:: Efficient and
Self-tuning Incremental Query Expansion for Top-k
Query Processing. SIGIR 2005.

[32] M. Theobald, H. Bast, D. Majumdar, R. Schenkel, G.
Weikum: TopX: Efficient and Versatile Top-k Query
Processing for Semistructured Data. VLDB J. 17(1),
2008.

[33] C. Unger et al.: Template-based Question Answering
over RDF Data. WWW 2012.

[34] J. Xu, W. B. Croft: Query Expansion Using Local and
Global Document Analysis. SIGIR 1996.

[35] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, G. Weikum: Natural Language Questions
for the Web of Data. EMNLP-CoNLL 2012.

[36] S. Yang, Y. Wu, H. Sun, X. Yan: Schemaless and
Structureless Graph Querying. PVLDB 7(7), 2014.

[37] J. X. Yu, L. Qin, L. Chang: Keyword Search in
Databases. Morgan & Claypool 2009.

[38] C. Zhai, J. Lafferty: A Study of Smoothing Methods
for Language Models Applied to Information
Retrieval. TOIS 22(2), 2004.

[39] X. Zhou, J. Gaugaz, W. Balke, W. Nejdl: Query
Relaxation using Malleable Schemas. SIGMOD 2007.



	Introduction
	Motivation and Problem
	Approach and Contribution

	Data Model and Query Language
	Extended Knowledge Graphs
	Triple Pattern Queries

	Query Relaxation
	Answer Ranking and Query Processing
	Experimental Evaluation
	Methods
	Benchmarks
	Data
	Results and Analysis
	Discussion

	Related Work
	Conclusion
	References

