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Abstract. Named Entity Disambiguation is the task of assigning entities from a Knowledge Graph (KG) to mentions of such
entities in a textual document. The state-of-the-art for this task balances two disparate sources of similarity: lexical, defined
as the pairwise similarity between mentions in the text and names of entities in the KG; and semantic, defined through some
graph-theoretic property of a subgraph of the KG induced by the choice of entities for each mention. Departing from previous
work, our notion of semantic similarity is rooted in Information Theory and is defined as the mutual information between random
walks on the disambiguation graph induced by choice of entities for each mention. We describe an iterative algorithm based
on this idea, and show an extension that uses learning-to-rank, which yields further improvements. Our experimental evaluation
demonstrates that this approach is robust and very competitive on well-known existing benchmarks. We also justify the need
for new and more difficult benchmarks, and provide an extensive experimental comparison of our method and previous work on
these new benchmarks.
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1. Introduction

A knowledge graph (KG) is a repository of struc-
tured information consisting of unique entities (e.g.,
notable people, cities, companies and other kinds of
organizations, etc.), facts about entities (e.g., the date
of birth of such people), and relations between entities
(e.g., the cities where such people were born). The re-
cent advent of large KGs, derived from Web-scale cor-
pora and/or Wikipedia, has renewed the interest in al-
gorithmic understanding of natural language text, es-
pecially in the context of the Web and social media
where facts or properties about named entities are de-
scribed in many documents.

Two crucial tasks in natural language understanding
have to do with named entities, which are the persons,
organizations, locations, etc. that are explicitly men-
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tioned in text using proper nouns: (1) Named Entity
Recognition (NER) corresponds to finding mentions to
entities in the text; and (2) Named Entity Disambigua-
tion (NED), which is the task of disambiguating the
named entities by linking them to the actual entities in
the KG (when possible). The NER process is usually
done by taking lexical and grammatical features into
account, meaning that some of the mentions identified
through this process may refer to entities that are not
in the KG. NED, on the other hand, is done for a spe-
cific KG, and provides a mapping between each men-
tion and an existing KG entity (or NIL if no such as-
signment is possible), thus grounding each mention in
a surrogate to a real world entity. NED is key for the
KG construction and maintenance which can expand
or correct KGs with (new) facts of entities extracted
from previously unseen text [17].

Our work concerns the NED task. This article de-
scribes effective algorithms for solving this problem,
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assuming the input is a KG and a document where
all mentions to entities (explicit or implicit) have been
identified.

Challenges. The ambiguity of natural language has
always been a challenge for NED, even to humans,
because most real world entities can be referred to in
many different ways (e.g., people have nicknames),
while the same textual mention may refer to multiple
real-world entities (e.g., different people have the same
name). The following examples illustrate the issues:

Example 1
Malone, a retired professional basketball player, is
mostly known for his time with the Washington Bullets,
where he was an NBA All-Star twice. He also played
for Utah, Philadelphia, and Miami.

Example 2
Malone, nicknamed “The MailMan” spent his first 18
seasons in NBA with the Utah Jazz, and final season
with Los Angeles. He was a two-time NBA MVP, a 14-
time NBA All-Star

Observe that the same entity (the NBA franchise
team Utah Jazz) is referred to in different ways in the
examples above: as “Utah” in Example 1 and explic-
itly by its full name in Example 2. On the other hand,
two different players are mentioned in the same way,
by their last name “Malone”: Jeff Malone in Example 1
and Karl Malone in Example 2. The disambiguation
of the mentions to the players is hard because of the
shared context: both mentions refer to basketball play-
ers who played as an NBA All-Star, and also played for
the same franchise.

1.1. Canonical Solution

A typical NED system proceeds in two stages: (1)
candidate selection, which aims at quickly finding a
small number of KG objects which are likely to be
mentioned in the text, and (2) mention disambiguation
which computes the final mapping between the named
entities in the text and the objects in the KG. Candidate
selection is often started by consulting alias dictionar-
ies (see, e.g., [35]) using coarse-grained string similar-
ity matching to minimize the chances of filtering out
good candidates. The disambiguation step, on the other
hand, is done by aggregating multiple and much more
sophisticated notions of similarity.

The first disambiguation methods assumed that the
mentions in the text were completely independent, and

relied on local contextual features such as the words
surrounding the mentions [2,3], and statistical features
derived from KGs. These approaches work best when
the surrounding context is rich enough to uniquely
identify the objects being mentioned. For instance,
these methods would work really well with famous
politicians with an uncommon last name. On the other
hand, they would fail to distinguish the two NBA play-
ers in the examples above given their shared context
(from a lexical point of view): both players have the
same last name and played for the same team. Indeed,
“Malone” in both examples is likely to be mapped to
Karl Malone, who is more well known and thus has a
higher prior.

To avoid being fooled by disproportional priors,
most state-of-the-art approaches exploit known con-
nections between the objects in the KG to help with the
disambiguation, based on the assumption that the dis-
ambiguation of each mention should somehow affect
the disambiguation of another. For instance, Example
1 has an explicit mention to the NBA team Washing-
ton Bullets, which is easy to disambiguate; once that
is done, the NED system must be significantly more
likely to map “Malone” in that sentence to Jeff Malone,
since he is more strongly related to that team. These as-
sociations between objects in the KG induce notions of
semantic relatedness which are often captured as some
property of a disambiguation graph containing objects
in the KG which were identified as candidates for the
mentions in the text as illustrated in Fig. 1.

The choice of semantic similarity determines both
the accuracy and the computation cost of the NED
method. One successful strategy [15] computes the
set-similarity involving (multi-word) keyphrases about
the mentions and the entities, collected from the KG.
This approach works best when the named entities in
the document are mentioned in similar ways to those
in the corpus from which the KG is built (typically,
Wikipedia). Another approach [27] computes the set
similarity between the neighbor entities directly con-
nected in the KG. Doing so, however, ignores entities
that are indirectly connected yet semantically related,
making limited use of the KG graph.

In previous work [11], we introduced a method
that used an information-theoretic notion of similarity
based on stationary probability distributions resulting
from random walks [38] on the disambiguation graph,
which led to consistently superior accuracy. This arti-
cle describes substantial extensions over that method.
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Fig. 1. Example named entity disambiguation scenario.

1.2. Our approach

Our WNED (Walking Named Entity Disambigua-
tion) method is a greedy, global NED algorithm based
on a sound information-theoretic notion of semantic
relatedness derived from random walks on carefully
built disambiguation graphs [11]. We build specific
disambiguation graphs for each document, thus adher-
ing to the notion of global coherence assumption—that
coherent entities form a dense subgraph. By virtue of
using random walks, our notion of similarity leverages
indirect connections between nodes in the disambigua-
tion graph, and is thus less susceptible to false posi-
tives incurred by disproportionately high priors of head
entities.

Contributions This article presents several signifi-
cant extensions over our previous work:

– a revised iterative disambiguation algorithm with
fewer parameters and a simplified optimization
goal than in [11];

– a new disambiguation method based on a state-of-
the-art “learning-to-rank” approach that further
improves on the accuracy reported previously;

– a comparative evaluation of both approaches
against 11 other NED systems on 16 public
datasets using a the GERBIL framework [40];

– a much deeper experimental evaluation than pre-
vious works in the area, establishing that previous
public benchmarks are rather “easy”, in the sense
that a simple baseline can correctly disambiguate
most mentions;

– a framework for deriving new benchmarks and
two benchmarks from large Web corpora (Wikipedia
and Clueweb 2012) with documents of increasing
difficulty, which are also balanced (i.e., they have
the same number of documents in each difficulty
class).

We evaluate the learning-to-rank approach in two
ways. First, we follow the the standard machine learn-
ing methodology (namely to separate the benchmark-
ing data into training and testing sets) for each dataset.
Next, we use the widely used CoNLL dataset for train-
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ing, and test the resulting system on all other bench-
marks. This results in an algorithm that consistently
outperforms previous methods, across benchmarks and
often by a wide margin.

It is also worth noting that our statically hand-tuned
algorithm also outperformed most of previous methods
and is quite competitive with the learning approach.
These observations corroborate the superiority and ro-
bustness of using random walks for the NED task. In
summary, the algorithm and the evaluation method-
ology described in this article significantly push the
state-of-the-art in this task.

2. NED with Random Walks

This section first describes Named Entity Disam-
biguation as an optimization problem and then gives
an overview of our solution based on using Random
Walks to estimate semantic similarities and a greedy,
iterative approximation algorithm (Section 3).

2.1. The NED Problem

Let d be a document with all mentions to named en-
tities marked up through an NER process, and KG =
(E,L) be a knowledge graph represented as a graph
whose nodes inE correspond to real world entities and
links in L capture relationships among them. The task
of NED is to assign unique entity identifiers from E
to the mentions in d, whenever appropriate. NIL rep-
resents the entities that do not exist in the KG (also
known as out-of-KG entity).

More precisely:

Definition 1 (Named Entity Disambiguation) Given
a set of mentions M = {m1, . . . ,mm} in a document
d, and a knowledge graph KG = (E,L), the NED
problem is to find an assignment Γ : M → E∪{NIL}.

A good assignment Γ balances two factors: the lo-
cal similarity between mention mi and the entity ej =
Γ(mi) assigned to it, and the global coherence among
the entities in the assignment.

As usual, we define the local similarity φ(mi, ej) as:

φ(mi, ej) = α prior(mi, ej)+(1−α)ctx (mi, ej) (1)

where prior(mi, ej) is a corpus prior probability that
ej is the right entity for mi, usually derived from alias
dictionaries built from the KG, and ctx (mi, ej) is the

similarity between local features extracted from text
(e.g., keywords) surrounding mi in the document and
descriptions associated to ej in the KG.

The global coherence Ψ(Γ) of the assignment mea-
sures how each entity in the assignment relates to the
others:

Ψ(Γ) =
∑

e∈Γ[M ]

ψ(e,Γ) (2)

in which ψ(e,Γ) measures the semantic similarity be-
tween an entity e and all others in the assignment Γ.
Maximizing the sum in Eq. 2 is consistent with the
document coherence assumption, in which one expects
the input document to belong to a single topic (e.g.,
sports) under which all entities in the assignment Γ are
tightly related.

Under the reasonable assumption that the local
similarity is normalized, we can formulate the NED
problem as a min-max optimization where the goal
is to maximize the global coherence while mini-
mizing the loss in pairwise local similarity within
the assignment, which can be estimated as |M | −∑
mi∈M φ(mi,Γ(mi)). Here |M | is the number of

mentions in the document. An equivalent and simpler
formulation of the problem is to find an assignment Γ∗

that maximizes:

Γ∗ = arg max
Γ

Ψ(Γ) ·
∑

mi,ej∈Γ

φ(mi, ej)

 (3)

The primary role of Ψ(Γ) in the optimization above
is to leverage connections between entities in the KB
to prevent disambiguation mistakes caused by dispro-
portionately high priors of some candidate entities. For
example, Karl Malone has a higher prior than Jeff Mal-
one and thus would be incorrectly assigned to mention
“Malone” in the sentence of Example 1 above. How-
ever, once “Washing Bullets” is disambiguated, Ψ(Γ)
will “counter” the effect of the high prior because Jeff
Malone is directly connected to that team in KB.

The state-of-the-art is to define Ψ(Γ) as some graph-
theoretic measure derived from a subgraph of the KB
induced by the assignment (recall Fig. 1). For exam-
ple, the AIDA system assigns weights to edges in the
(disambiguation) subgraph and takes the sum of the
weights of those edges in a minimum spanning tree
connecting all entities used in the assignment. Thus, if
e1 and e2 are two candidate entities for the same men-
tion m, AIDA will favor the one with the shortest path
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(in terms of KB edges) to another entity also in the
assignment.

2.2. Global Coherence with Random Walks

Our approach to capturing the global coherence [11]
is rooted in Information Theory and corresponds to
the mutual information between probability distribu-
tions arising from random walk processes on the dis-
ambiguation graph: one always restarting from a sin-
gle candidate entity, and the other restarting from all
entities used in the assignment Γ.

More precisely, we build a disambiguation graph G
(Fig. 1) which is a subset of the KB: the nodes are can-
didate entities and their immediate neighbors, and the
edges are the associations between these entities in the
KB. Let N be the number of nodes in G. A random
walk with restart is an iterative process that assigns
scores to nodes in the graph, defined as:

rt+1 = β × rt ×A+ (1− β)× v (4)

where r is the N -dimensional vector with the scores,
A is the transition matrix for the graph, v is the prefer-
ence vector, used to determine the nodes in the graph
from which new walks (re)start, and β is the probabil-
ity of following an edge in the graph.

Given any entity e in the graph, if we define the pref-
erence vector as vi = 1(index (e) = i), the corre-
sponding random walk on G will induce a probability
distribution of reaching any of the N nodes in G start-
ing from e. We call such distribution the semantic sig-
nature of the entity e. This notion of signature extends
naturally to a set of entities; thus, the signature of an
assignment Γ is the probability distribution resulting
from a random walk process where the starting points
are the entities in Γ.

We define ψ(e,Γ) in Eq. 2 as the reciprocal of the
mutual information between the signatures of e and Γ,
measured using a variant of the Kullback–Leibler di-
vergence to handle the case when Qi is zero:

ZKLγ(P,Q) =
∑
i

Pi

{
log Pi

Qi
Qi 6= 0

γ Qi = 0
(5)

Intuitively, our notion of coherence favors candidate
entity e1 over e2 if its signature is more similar to the
signature induced by the assignment Γ. By leverag-
ing random walks, our notion of coherence takes into
account both direct and indirect connections between
pairs of entities in the disambiguation graph, departing
from previous work.

Algorithm 1 Iterative WNED
Input: M = {m1,m2, . . . ,mn}, KG = (E,L)
Output: Assignment Γ̂ : M → E ∪ {NIL}

1: Γ̂ = 〈Γi, 1 ≤ i ≤ |M | |Γi = NIL〉
2: L = 〈mi ∈M sorted by |aliases(mi)|〉
3: for i = 1 to |L| do
4: if |cand(mi)| = 1 then
5: Γ̂i(mi) = cand(mi)
6: end if
7: if |cand(mi)| > 1 then
8: d = vecInit(M,KG, Γ̂); Q = signature(d)
9: max = 0

10: for ej ∈ cand(mi) do
11: P = signature(ej)

12: ψ(ej , Γ̂i−1) =
1

ZKLγ(P,Q)

13: score(ej) = ψ(ej , Γ̂i−1) · φ(mi, ej)
14: if score(ej) > max then
15: e∗ = ej ; max = score(ej)
16: end if
17: end for
18: if score(e∗) < θ then
19: Γ̂i(mi) = NIL
20: else
21: Γ̂i(mi) = e∗

22: end if
23: end if
24: end for
25: return Γ̂

2.3. Linking to NIL

A mention is linked to NIL when no good candidate
entities can be found for that mention or when the sim-
ilarity score of the best entity falls short of a threshold.
Both criteria are, of course, application-specific, and
thus outside of the scope of this work.

3. Disambiguation Algorithms

This section gives the details of our two NED meth-
ods, which use the same underlying algorithm and dif-
fer only on the way they compute the semantic simi-
larity.

As previously observed (see, e.g., [14]), the NED
problem is intimately connected with a number of NP-
hard optimizations on graphs, including the maximum
m-clique problem [10], from which a polynomial time
reduction is not hard to construct. Thus we resort to
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Algorithm 2 vecInit
Input: M = {m1,m2, . . . ,mn},KG = (E,L),Γ :

M → E
Output: Document disambiguation vector d

1: let n be the size of the disambiguation graph
2: d = 0(n)

3: if Γ 6= ∅ then
4: for m, e ∈ Γ do
5: de = 1
6: end for
7: else
8: for m ∈M do
9: for e ∈ cand(m) do

10: de = prior(e,m) · tf idf (m)
11: end for
12: end for
13: end if
14: normalize d
15: return d

an iterative greedy algorithm, called Walking NED
(WNED), and described in Alg. 1.

WNED starts by sorting the mentions by their de-
gree of ambiguity, measured by the number of entities
that have that mention as an alias (line 2). Note that the
ambiguity of a mention is typically much higher than
the number of candidates that are in fact considered
(see [11]). If a mention has a single promising can-
didate, WNED assigns that candidate to the mention
(line 5). The main loop of the algorithm goes through
each mention with more than one promising candidate
(lines 7–23): updating the semantic signature of the
partial entity assignment (line 8), and, for each can-
didate, computing the signature of the candidate (line
11), and selecting the best candidate based on the fol-
lowing greedy approximation of the original optimiza-
tion:

Γ̂i(mi) = arg max
ej∈cand(mi)

(ψ(ej , Γ̂i−1) ·φ(mi, ej)) (6)

A final step of the algorithm is to assign NIL to
those mentions whose even the best candidate entity
has a low score (lines 18–22). The cut-off threshold θ
is application-defined.

Parameters The experimental evaluation reported
here was obtained with the following parameter set-
ting: in Eq. 1 α = 0.8; in Eq. 4, β = 0.85; and in Eq. 5,
γ = 20. These settings were obtained experimentally.

3.1. Disambiguation via Learning to Rank

Most approaches including ours consider the NED
problem as an entity ranking problem: candidates are
ranked according to a score (e.g. E.q 6), and the highest
ranked candidate is assigned. Such ranking is based on
multiple criteria (e.g., prior probability, context simi-
larity, semantic similarity, etc.) that may apply differ-
ently in different situations, making it hard or impos-
sible to craft a fixed way of aggregating them all that
performs well in all cases. With benchmarking data
available, one can leverage machine learning to derive
a better ranking strategy, at least for the specific dataset
used for training.

This Learning to Rank approach originates from In-
formation Retrieval. The methods can be divided into
three classes [21]: pointwise, listwise, and pairwise.
The pointwise approaches consider query-document
pairs as independent instances, and use regression to
predict the scores of each document (given the query)
and rank them accordingly. As such, pointwise meth-
ods are not trained on actual rankings, but instead on
features from the documents and the queries. On the
other hand, listwise approaches are trained on the ac-
tual document rankings for different queries, and their
goal is to learn how to predict a new ranking given a
new query. Finally, the pairwise approaches work on
ordered pairs of documents instead of full rankings,
and seek to predict which document in the pair would
rank higher.

Among the Learning-to-Rank approaches we exper-
imented with, LambdaMART [41], which is a pair-
wise method, achieved the best performance. Lamb-
daMART employs the MART (Multiple Additive Re-
gression Trees) algorithm to learn Boosted Regression
Trees, and takes advantage of LambdaRank [4] gradi-
ents to bypass the difficulty of handling non-smooth
cost function introduced by most IR measures, and
combines the cost function and IR metrics together to
utilize the global ranking structure of documents.

Our Learning-to-Rank WNED algorithm, called
L2R.WNED, is essentially the same as Alg. 1, except
we replace the scoring of entities given the mentions
(lines 8–13) by invoking the LambdaMART classifier
to obtain the highest ranked candidate entity. The de-
tails follow.

Features Although there are many useful features
for ranking [45], our main goal is to establish the
robustness and utility of the semantic similarity for
the NED task, rather than performing exhaustive fea-
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ture engineering at the risk of over-fitting. Thus we
use four features, all of which are familiar in this re-
search area: prior probability, context similarity, se-
mantic relatedness, and name similarity which is mea-
sured by the N-Gram distance [19] between a men-
tion and the canonical name of the entity. More pre-
cisely, given a mention-entity pairm−e, we extract the
following features: (1) prior probability prior(m, e),
(2) context similarity ctx (m, e), (3) name similar-
ity nameSim(m, e), and (4) semantic relatedness
semantic(e,d) as before.

Training data Using a pairwise ranking method, for
each mention we need ordered pairs of entities e1, e2

such that e1 is ranked higher than e2. Such pairs are
easy to obtain when gold standard benchmarking data
is available. Given a mention m, let entity ẽ be the one
assigned to m in the ground truth. We apply the can-
didate selection step (see [11]), collecting k candidate
entities c1, . . . , ck for the mention. Our training data is
then all pairs (ẽ, ci), ẽ 6= ci, 1 ≤ i ≤ k.

In our experiments, we verify the system perfor-
mance with two training approaches. First, we used
the standard 10-fold cross-validation, thus training and
testing on the same benchmark. Also, we experimented
with training on the CoNLL dataset, which is the
largest of the public benchmarks, while testing on
other datasets. Both approaches worked well. In par-
ticular, we found that training CoNLL data produced a
quite robust method that worked well on other bench-
marks.

Prediction Using the training data, our approach
trains a model and uses it to build an evaluator which
takes in a feature set representing the similarity be-
tween a mention and its candidate entity and computes
the probability that the mention refers to the candidate.
All candidate entities are evaluated and ranked with
the probability. The entity with the highest probabil-
ity is then chosen as the final entity. More specifically,
given the feature set Feature(mi, ej): prior(mi, ej),
ctx (mi, ej), nameSim(mi, ej), semantic(e,d), the
evaluator aims to find the entity maximizing the fol-
lowing objective.

e∗ = arg max
ej∈cand(mi)

evaluate(Feature(mi, ej)) (7)

3.2. Computational Cost

There are two factors contributing to the cost of
WNED: computing the signatures and greedily select-
ing the best candidate for each mention.

Let n = |M |. The total number of candidates that
are considered by WNED is K = O(n), because of
the candidate selection step keeps a constant number of
promising candidates [11]. The total number of seman-
tic signature computations is K + |M | = O(n). The
size of the disambiguation graph is O(n) vertices and
O(n2) edges (unless some non-trivial pruning is per-
formed). Therefore, if the number of iterations in the
random walks is fixed, computing all signatures can be
done in O(n2) time (and space).

As for the time required for the actual scoring,
for fixed KG and input document, computing the
prior probability and the context similarity are done
through database lookups at O(1) time. In the stan-
dard WNED, we also need to compute the Zero-KL
divergence on vectors of length n, which can be done
in O(n) time. For L2R.WNED, the time is bound by
the size of the model, which depends on the amount of
training data, and is againO(1) for the purposes of our
analysis.

In our experience, the highest actual costs lie in
building the disambiguation graphs, which must be
done for each input document, and performing the ran-
dom walks. Our current implementation keeps the en-
tire disambiguation graph in main memory to speed
this up. We leave for future work improving the per-
formance of WNED.

4. Experimental Validation

Given the host of applications where NED is useful
and the inherent difficulty of the problem, a lot of ef-
fort has been devoted recently in establishing fair and
comprehensive benchmarks for this task. In particu-
lar, Web-based experimental platforms such as GER-
BIL [40] are a clear step in the right direction, as they
go a long way in automating the collection and report-
ing of results of different algorithms under the same
benchmarks and evaluation conditions. In the appendix
we report the results of both our methods on GERBIL
version 1.2.4 with the D2KB setting.

Despite their effectiveness and convenience, the in-
formation reported by platforms such as GERBIL (par-
ticularly, aggregate accuracy measurements) is not
enough for a deeper analysis that can lead to algo-
rithmic improvements. Thus, we re-implemented and
experimented with several NED systems and com-
pared them against both WNED and the L2R.WNED.
In the remainder of this section we report on our
own experimental evaluation on well-known publicly
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Table 1
Accuracy results of all methods on the 4 public benchmarks.

Method
MSNBC AQUAINT ACE2004 AIDA-CONLL

Acc. F1@MI F1@MA Acc. F1@MI F1@MA Acc. F1@MI F1@MA Acc. F1@MI F1@MA

PRIOR 0.86 0.86 0.87 0.84 0.87 0.87 0.85 0.85 0.87 0.75 0.75 0.76

CONTEXT 0.77 0.78 0.72 0.66 0.68 0.68 0.61 0.62 0.57 0.40 0.40 0.35

Cucerzan 0.88 0.88 0.88 0.77 0.79 0.78 0.79 0.79 0.78 0.73 0.74 0.72

M&W 0.68 0.78 0.80 0.80 0.85 0.85 0.75 0.81 0.84 0.60 0.68 0.68

Han11 0.88 0.88 0.88 0.77 0.79 0.79 0.72 0.73 0.67 0.62 0.62 0.58

AIDA 0.77 0.79 0.76 0.53 0.56 0.56 0.77 0.80 0.84 0.78 0.79 0.79

GLOW 0.66 0.75 0.77 0.76 0.83 0.83 0.75 0.82 0.83 0.68 0.76 0.71

RI 0.89 0.90 0.90 0.85 0.88 0.88 0.82 0.87 0.87 0.79 0.81 0.80

WNED 0.89 0.90 0.90 0.88 0.90 0.90 0.83 0.86 0.89 0.84 0.84 0.83

L2R.WNED-CONLL 0.91 0.92 0.92 0.85 0.87 0.87 0.85 0.88 0.90
0.89 0.89 0.89

L2R.WNED 0.91 0.92 0.91 0.88 0.90 0.90 0.85 0.88 0.89

available benchmarks. Further, we justify the need for
more challenging benchmarks for this task, provide a
methodology for deriving such benchmarks, and report
on experiments on two new benchmarks we introduce.

Experiment Configuration We refer to previous work
[11] for the details on building the entity graph and
the initial pruning of candidate entities prior to the ac-
tual disambiguation per se. The KB used in our ex-
periment is built from the Wikipedia 20130606 dump.
The source code for our system is available from https:
//github.com/U-Alberta/wned.

Metrics We use the standard accuracy, precision, re-
call, and F1:

accuracy =
|truth ∩ result |
|truth ∪ result |

precision =
|truth ∩ result |
|result |

recall =
|truth ∩ result |
|truth|

F1 =
2 ∗ precision ∗ recall
precision + recall

Where truth is a ground truth assignment and result
is the assignment produced by the NED system.

4.1. Evaluation on Established Benchmarks

We compare WNED and L2R.WNED to the state-
of-the-art systems (Detailed descriptions of these sys-
tems are in the Related Work at Section 5):

– Cucerzan [7]—the first global NED approach,

– M&W [26]—a leading machine learning NED
solution,

– Han11 [13]—a global method that also uses ran-
dom walks (on a disambiguation graph built dif-
ferently from ours),

– AIDA [14]—a global method that formulates
NED as a subgraph optimization problem,

– GLOW [31]—a system combining local and
global features for NED,

– RI [6]—the start-of-the-art NED system using re-
lational inference for mention disambiguation.

We also evaluate two useful baselines: CONTEXT

which chooses the candidate entity with highest textual
similarity to the mention, ctx (m, e), and PRIOR which
picks the entity with highest prior probability for each
mention, prior(m, e). These baselines are informative
as virtually all methods rely on these measures in one
way or another, including ours (recall Eq. 6). Some-
what surprisingly, as shown next, not every method im-
proves on both of them.

As mentioned in [9], GERBIL uses an old version of
the public datasets. Thus we update four widely used
public benchmarks: (1) MSNBC [7], with 20 news ar-
ticles from 10 different topics (two articles per topic)
and 656 linkable mentions in total; (2) AQUAINT,
compiled by Milne and Witten [26], with 50 docu-
ments and 727 linkable mentions from a news cor-
pus from the Xinhua News Service, the New York
Times, and the Associated Press; (3) ACE2004 [31], a
subset of the documents used in the ACE2004 Coref-
erence documents with 35 articles and 257 linkable
mentions, annotated through crowdsourcing; and (4)
AIDA-CONLL [14], a hand-annotated dataset based
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on the CoNLL 2003 data, with 13881 Reuters news ar-
ticles and 27817 linkable mentions.

To avoid discrepancy of results due to different
Wikipedia versions used in different systems, we up-
date all datasets and results of compared NED sys-
tems to their redirected entities in our Wikipedia dump.
All datasets used in this evaluation, including the new
benchmarks introduced below, as well as the accu-
racy results obtained with each method on each doc-
ument can be downloaded from http://dx.doi.org/10.
7939/DVN/10968.

Table 1 shows the results of the two baselines
and the above listed NED systems on the four pub-
lic benchmarks. As customary, we report F1 ag-
gregated across mentions (micro-averaged, indicated
as F1@MI) and across documents (macro-averaged,
F1@MA).

For the learning to rank approaches, L2R.WNED-
CONLL refers to the method where the learning is
done on the AIDA-CONLL dataset, regardless of the
test corpus, and L2R.WNED is the method where the
model is trained on a fraction of the respective bench-
mark. Note that our WNED uses a different optimiza-
tion objective, thus the results are not the same as the
results in our previous work [11].

Discussion A few observations are worth making
here. Among previous work, RI has the best perfor-
mance across benchmarks. The disambiguation via
textual similarity alone, as done by the CONTEXT

baseline, leads to poor accuracy in general, especially
on the more challenging AIDA-CONLL benchmark.
The PRIOR baseline, on the other hand, performs well
across the board, outperforming several systems. This
points to limitations in the benchmarks themselves:
they use high quality news articles, where the enti-
ties are likely to be mentioned at least once by their
full name (which is easy to disambiguate with a prior
alone).

The reader will notice that virtually every method
in the literature is evaluated against a baseline like
PRIOR, and if one looks back to earlier works, the re-
ported accuracy of such baseline is not nearly as high
as what we report. This can be explained by the con-
tinuous cleaning process on Wikipedia—from which
the statistics are derived. As we use a more recent and
cleaner corpus, where the support for good and appro-

1The original dataset includes 5 other documents where all men-
tions are linked to NIL, and are therefore removed from our analysis.

priate entity aliases is markedly higher than for spuri-
ous or inappropriate mentions.

With respect to WNED and L2R.WNED, both
outperform all competitors on all benchmarks, with
L2R.WNED performing best overall. Another obser-
vation is that training our L2R.WNED with AIDA-
CONLL data is quite effective on all other bench-
marks, and sometimes superior to training our method
with data from the specific benchmark. While not
surprising (as all benchmarks come from the same
domain—news), these results mean that L2R.WNED
trained on AIDA-CONLL can be seen as an effective
and off-the-shelf NED system. Another general obser-
vation is that there is quite a lot of variability in the rel-
ative ordering of the previous methods across bench-
marks, except for RI and our methods. This some-
what surprising lack of robustness in some systems
may have been caused by over-tuning for the devel-
opment benchmark, resulting in poor generalization
when tested on different benchmarks.

4.2. The Need for New Benchmarks

Although the four benchmarks discussed above are
useful reference points, since they are well-known and
have been used for the evaluation of most NED sys-
tems, they leave a lot to be desired for a deeper and
more systematic accuracy evaluation. As noted in the
previous section, they are clearly biased towards pop-
ular entities, and thus, not representative of all sce-
narios where NED is necessary. To further illustrate
the point, Table 2 breaks down the number of docu-
ments in each benchmark at different levels of accu-
racy achieved by PRIOR (i.e., the brackets are deter-
mined by the overall accuracy of all mentions in the
document). As can be seen, the vast majority of docu-
ments in all previous benchmarks are not particularly
challenging: In fact, PRIOR produces perfect results
for as many as 20% of all documents of AQUAINT
and AIDA-CONLL and 31% of all documents in the
case of the ACE2004 benchmark. It follows that these
benchmarks are dated and unlikely to lead to further
significant improvements in the area.

A desirable feature of any thorough evaluation that
is not necessarily fulfilled by any of the previous
benchmarks is that of representativeness. Namely, it
would be ideal to have a mix of mentions or documents
with different levels of difficulty in equal proportions
(say on a 10-point scale from “easy” to “hard”). With-
out such equity, the effectiveness metrics reported in
the literature (which aggregate at the mention or doc-
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Table 2
Breakdown of the public benchmarks by the accuracy of the PRIOR method; #docs and #mentions are, respectively, the number of documents
and the average number of mentions per document in each bracket; the number in parenthesis is the fraction of the entire benchmark covered by
each bracket.

Accuracy
MSNBC AQUAINT ACE2004 AIDA-CONLL

#docs #mentions #docs #mentions #docs #mentions #docs #mentions

0.0 – 0.1 0 (0%) 0 0 (0%) 0 0 (0%) 0 5 (0.4%) 5.0

0.1 – 0.2 0 (0%) 0 0 (0%) 0 0 (0%) 0 35 (2.5%) 40.4

0.2 – 0.3 0 (0%) 0 0 (0%) 0 0 (0%) 0 29 (2.1%) 20.2

0.3 – 0.4 0 (0%) 0 0 (0%) 0 0 (0%) 0 62 (4.5%) 17.4

0.4 – 0.5 2 (10%) 51.5 0 (0%) 0 0 (0%) 0 61 (4.4%) 30.0

0.5 – 0.6 3 (15%) 45.7 0 (0%) 0 0 (0%) 0 100 (7.2%) 22.5

0.6 – 0.7 3 (15%) 37.0 1 (2%) 8.0 5 (14.3%) 10.8 164 (11.8%) 21.7

0.7 – 0.8 4 (20%) 29.8 12 (24%) 15.3 5 (14.3%) 10.8 210 (15.1%) 26.8

0.8 – 0.9 3 (15%) 53.0 16 (32%) 14.4 12 (34.3%) 8.5 267 (19.2%) 28.3

0.9 – 1.0 3 (15%) 25.0 11 (22%) 15.0 2 (5.7%) 12.0 164 (11.8%) 43.5

1.0 2 (10%) 17.5 10 (20%) 13.9 11 (31.4%) 6.4 291 (21.0%) 13.2
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10

100

bracket

corpus AIDA CoNLL ClueWeb 12 Wikipedia

(a) Mentions per document.
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1000
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corpus AIDA CoNLL ClueWeb 12 Wikipedia

(b) Candidate entities per mention.

Fig. 2. Corpus statistics.

ument level) may not be good predictors of actual per-
formance in real applications. For instance, if a large
fraction of the mentions in the benchmarks are “too
easy” compared to real documents, the metrics will
overestimate the true accuracy.

Of course, in order to fine tune the difficulty of the
mentions and the documents in a benchmark one needs
a reliable indicator of “difficulty” that can be applied to
a large number of documents. Manual annotations are
clearly undesirable here, and so is crowdsourcing: the
number of annotations needed might prove prohibitive
and even if resources are not a concern this leads to a

single benchmark (i.e., if more documents are needed,
more annotations would be required).

4.3. New Benchmarks

To obtain new and balanced benchmarks, we con-
sider the PRIOR baseline as a proxy for the true diffi-
culty of a mention, and we obtain documents by sam-
pling from large publicly annotated corpora such as
ClueWeb and Wikipedia. In this way, we can easily
collect large corpora of previously annotated docu-
ments and retain as many as needed while tuning dis-
ambiguation difficulty to the desired proportion.



Z. Guo and D. Barbosa / Robust Named Entity Disambiguation with Random Walks 11

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1e+03

1e+05

bracket

corpus AIDA CoNLL ClueWeb 12 Wikipedia

(a) Number of nodes.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

bracket

corpus AIDA CoNLL ClueWeb 12 Wikipedia

(b) Average node degree.

Fig. 3. Disambiguation graph statistics.

More precisely, we applied PRIOR to all documents
of Wikipedia (20130606 dump) and the FACC1 anno-
tated ClueWeb 2012 dataset 2. We grouped documents
by the resulting average accuracy (of all mentions in
the document), and randomly picking 40 documents
for each bracket. Also, we further restricted the bench-
marks to documents in which PRIOR achieved 0.3 or
higher accuracy as we observed that below that thresh-
old, the quality of the annotations in the ClueWeb
dataset were very low. Finally, we controlled the num-
ber of mentions per document: for the Wikipedia cor-
pus we have the mean at 20.8 (σ = 4.9) and for the
ClueWeb 2012 we have the mean at 35.5 (σ = 8.5).

Some statistics about the proposed benchmarks:
Fig. 2a shows the average number of mentions per doc-
ument and Fig. 2b shows the average number of can-
didates per mention. For the sake of comparison, we
also report the same statistics from the documents in
the AIDA-CONLL dataset in the respective accuracy
brackets. Fig. 3 shows statistics about the disambigua-
tion graphs built by our method (which, as discussed
in Section 3, depend both on the number of candidates
per mention and on how densely connected they are
in the entity graph). Fig. 3a shows the average graph
sizes (in terms of number of nodes) and Fig. 3b shows
the average node degree.

As one can see, the variability in our datasets is con-
siderably smaller compared to AIDA-CONLL, partic-

2http://lemurproject.org/clueweb12/FACC1/

Table 3
Average per-bracket accuracy on large-scale benchmarks. Brackets
for AIDA-CONLL are as in Table 2; only those brackets with PRIOR

accuracy 0.3 or higher were used.

Method AIDA-CONLL Wikipedia ClueWeb 12

PRIOR 0.57 0.56 0.57

CONTEXT 0.39 0.59 0.42

Cucerzan 0.68 0.66 0.60

M&W 0.58 0.83 0.65

Han11 0.57 0.78 0.61

AIDA 0.75 0.63 0.59

GLOW 0.61 0.69 0.57

RI 0.74 0.75 0.68

WNED 0.79 0.84 0.77

L2R.WNED 0.85 0.85 0.78

ularly when it comes to clear outliers (indicated as in-
dividual dots in the charts).

4.4. Results on the New Benchmarks

Fig. 4 shows the accuracy on the new benchmarks.
We plot the accuracy of the best performing methods
for each of the difficulty brackets (defined by the ac-
curacy of the PRIOR baseline). For clarity, we plot the
accuracy of the best 5 approaches. For comparison, we
also show the accuracy of each method on the AIDA-
CONLL benchmark. For the Wikipedia and ClueWeb
benchmarks, each bracket corresponds to exactly 40
documents, whereas for the AIDA-CONLL dataset
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Fig. 4. Average accuracy of the top-5 methods on the Wikipedia,
Clueweb 12, and AIDA-CONLL datasets grouped by the accuracy
of the PriorProb baseline.

the brackets are as in Table 2. For convenience, a di-
agonal dotted line whose area under the curve (AUC)
is 0.5 (loosely corresponding to the PRIOR baseline) is
also shown. Methods consistently above that line are
expected to outperform the PRIOR baseline in practice.
Table 3 shows the average accuracy of every method
across brackets, corresponding to the AUC in Fig. 4.

A few observations are worth mentioning here.
First, the two new benchmarks complement the AIDA-
CONLL benchmark: overall, the Wikipedia bench-
mark is easier than AIDA-CONLL, while the ClueWeb
12 is harder. Second, as before, the RI method per-
formed very well, although not as dominantly as in the
four public benchmarks. It also seems that the previ-
ous supervised methods tend to over-perform on their
own development datasets (Wikipedia for M&W and
CoNLL for AIDA).

Our L2R.WNED and WNED systems outperform
all other competitors across all benchmarks, perform-
ing much better on the more “difficult” cases (i.e.,
in lower brackets). In concrete terms, WNED and
L2R.WNED exhibit, on average, 21% and 26% rela-
tive gain in accuracy over the previous methods (ex-
cluding the baselines) on the three benchmarks com-
bined, which is significant. Given that our development
and tuning was done with a subset of the AQUAINT,
MSNBC and ACE2004, the strong results of WNED
and L2R.WNED demonstrate the robustness and gen-
erality of our approach.

4.5. Qualitative Error Analysis

We now look at the kinds of errors made by our
method. To do so, we manually inspected every er-
ror for the smaller MSNBC, AQUAINT, and ACE2004
datasets, and analyzed 20 errors randomly picked in
each bracket for the larger ones.

The first observation is that in the older benchmarks,
a larger fraction of the errors in our method happen in
the candidate selection phase, as illustrated in Fig. 5.
On average, 54% of the errors in the smaller bench-
marks are due to candidate selection (compared to 18%
in the other ones). This reinforces the hypothesis that
the entities mentioned in these older benchmarks are
easier to disambiguate3.

3Note: given that the smaller benchmarks are older, it is unlikely
they mention more out-of-KB entities than the other ones, espe-
cially AIDA-CONLL. Thus, because we use the same standard
NLP pipeline for processing the inputs across all benchmarks, the
discrepancy in Fig. 5 can only mean that our method is successful on
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Fig. 5. Breakdown of errors by WNED across benchmarks; for
AIDA-CONLL, Wikipedia and ClueWeb 12, the errors are esti-
mated from a sample.

Below we discuss prototypical errors in each of the
phases.

Errors during Candidate Selection
Incorrect Co-reference Resolution We employ a co-
reference resolution algorithm in our text processing
pipeline to increase recall. Due to the heuristic nature
of the algorithm, it is possible that distinct named enti-
ties are incorrectly deemed to be the same. For exam-
ple, in the sentence

“Time Warner stagnated for five years after it
was created in 1990 by the merger of Time and
Warner.”

the entity “Time” at the end of the sentence is incor-
rectly resolved to “Time Warner”, leading to an error.
About 1% of the errors (1.5% in the harder bench-
marks) are due to incorrect resolution of named enti-
ties.

Incomplete Alias Dictionary Currently, we disam-
biguate only those mentions corresponding to an alias
from Wikipedia, leading to problems in sentences like

“Thirteen miners were trapped inside the Sago
Mine near Buckhannon, W. Va.”

In this case we miss the abbreviation “W. Va.” for West
Virginia. This kind of error was noticeably more com-
mon in the easier benchmarks (accounting for 30%
of the errors in the ACE2004 dataset). In the AIDA-

most of the (in-KB) entities in the older benchmarks, making them
“easier” than the other ones.

CONLL benchmark only 2% of the errors are due to
this problem.

Aggressive Pruning Another source of error by our
method is pruning the correct entity from the disam-
biguation graph. For example, in sentence

“A state coordinator for the Florida Green Party
said she had been ...”

the correct entity (the Green Party of Florida) is
pruned due its low prior but could probably be cor-
rectly resolved given the mention to Florida in the
same sentence. Instead, WNED links the mention to
the US Green Party. Of course, pruning is done to re-
duce the cost of the random walks, and future algorith-
mic improvements can alter this trade-off.

Errors during Mention Disambiguation
These are errors where the correct entities according

to the ground truth were selected as the candidates but
not chosen during the mention disambiguation phase
by our algorithm.

Lack of Application Domain We observed that most
of the errors associated with locations happen because
the documents in most benchmarks are news articles
that start with the location of the news source report-
ing the news (e.g., New York Times documents always
start with a mention to New York). More often than
not, such locations are totally unrelated to the topic of
the documents and other mentions in the document,
breaking the global coherence assumption. These er-
rors, which can be easily fixed via pre-processing, ac-
counts for 5% of the mistakes of our algorithm in the
MSNBC and AIDA benchmarks and 2% across all
benchmarks.

Need for Deeper Text Analysis There are of course
very hard disambiguation cases where a deeper under-
standing of the text would be needed for a successful
algorithmic approach. One example is the sentence:

“Maj. Gen. William Caldwell, a U.S. military
spokesman, told reporters that ...”

In this case there are two candidates with the same
name and high military rank, thus being semantically
related to the document and confusing the algorithm.
In this case, extraneous facts about the candidates,
unrelated to the text itself, could be used for disam-
biguating the mention. For instance the candidate in-
correctly chosen by our algorithm died in the 1820s
while the correct candidate was still alive at the time
the benchmark article was written. Given that the doc-
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Table 4
Questionable disambiguation errors

Mention WNED Suggestion Ground Truth

Iraqi Iraqi people Iraq

Hungarian Hungary Hungarian people

executives Corporate title Chief executive officer

Russian Russian language Russians

Iranian Iranian people Iran

Greek Greek language Ancient Greece

civil war American Civil War Civil war

broadcaster Presenter Broadcasting

ument states the facts as current news, the incorrect
candidate could have been pruned out.

Questionable Errors
We argue that in many cases, our algorithm (as well

as other systems) chose an entity that are considered
erroneous by the ground truth but that would be accept-
able to a human judge. For example, in the sentence:

“Coach Saban said the things Crimson Tide fans
most wanted to hear.”

our system links “Crimson Tide” in the sentence to the
Alabama Crimson Tide football, which is the men’s
varsity football team of the university while the ground
truth refers to Alabama Crimson Tide which corre-
sponds to both the men’s and women’s teams. We
found that about 17% of the errors are in this cate-
gory, with a higher prevalence in the harder bench-
marks (21%). Table 4 lists many other similar errors,
where a case can be made that the ground-truth itself
is probably too strict.

Impact of the Greedy Approach
Given the iterative WNED is a greedy algorithm,

it is interesting to see how an erroneous disambigua-
tion decision influences future ones, especially in the
very first round. In all benchmarks, we found one er-
ror in the first round among all the errors in MSNBC,
AQUAINT and ACE2004 datasets4, and less than eight
errors from the random samples in the other 3 bench-
marks. In all cases, the first error did not prevent the
algorithm from correctly disambiguating other men-
tions.

As for the initialization step, we found that most
documents in our benchmarks do have unambiguous

4A mention to the USS Cole which should have been linked to
USS Cole (DDG-67), was linked to USS Cole bombing.

mentions available, and most of them are correctly
linked to the true entity5. In MSNBC, we have 2 er-
rors from the unambiguous mentions, New york stock
exchange and NYSE, both are linked to New york mer-
cantile exchange. This error barely affects the seman-
tic signature since they are still stock related entities.
There are 5 such errors in AQUAINT, and 1 error in
ACE2004, all of which have little affect on the linking
results of other mentions in the same document.

Finally, we found that most other errors happened
after 5 iterations, when the document disambiguation
vector already captures the topic fairly well. These
errors are for mentions that are not semantically re-
lated to other mentions in the document, or simply due
to the disproportionately high priors favoring (incor-
rectly) head entities.

5. Related Work

NED is commonly cast as a ranking problem where
we estimate the likelihood with which each candidate
entity should be assigned to each mention, choosing
the one with the highest likelihood. Based on the fea-
tures used and the way mentions are disambiguated,
most work about entity disambiguation in the literature
can be divided into two main groups.

The first group, which we refer to as local methods,
disambiguate each mention in a document indepen-
dently of others using local features. These methods
represent mentions and entities with feature vectors
and measure the likelihood using a compatibility func-
tion such as vector similarity measures. The most com-
monly used local features include lexical features such
as bag-of-words [2], keyphrases [15], n-grams [37], or
semantic word embeddings [47] extracted or derived
from the surrounding context, and statistical features
such as the probability of entities given a mention from
a knowledge graph. While the first local methods were
unsupervised [2,3], combining features through man-
ually tuned parameters, others optimize the parame-
ter selection with various classifiers [8,24,26,43,44,46]
often using Wikipedia as a source of training data. As
described, the main issues with local methods are the
data sparsity problem on the features and ignoring the
semantic dependencies between mentions.

The second group of methods, which we refer to
as global methods, adhere to the hypothesis that men-

5Recall (Sec. 3) we initialize the document disambiguation vector
with unambiguous mentions when available.
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tions from the same document are semantically coher-
ent around the topic of the document, and cast the dis-
ambiguation problem as an optimization whose objec-
tive is to find the assignment with maximum global co-
herence. Thus appropriate semantic relatedness mea-
sures and efficient inference for the assignment with
maximum global coherence are the two most impor-
tant factors. Cucerzan [7] proposed the first global ap-
proach which measures the semantic relatedness be-
tween entities using Wikipedia categories of entities.
Milne and Witten (M&W) [26] represent each en-
tity with their directly connected entities in a knowl-
edge graph and measure relatedness using normalized
Google distance between the representations. Kulka-
rni et al. [20] also use the M&W semantic relatedness
measure in their collective approach. In addition to
that, Ratinov et al. [31] add the PMI (Pointwise Mutual
Information) of entities into their SVM classifier, and
Cheng and Roth [6] model more fine-grained seman-
tics such as relations between mentions as constraints
in the semantic relatedness, which greatly improved
the results. More recently, Zwicklbauer et al. [47] use
word embeddings from the context of entities as the
representation to measure their semantic relatedness.

With semantic relatedness measures, entities and
their relationships can be represented as an entity
graph, and the optimization objective is to find a sub-
graph with maximum global coherence in which each
node corresponds to the referent entity of a mention
in the document. AIDA [14] aims to find a dense sub-
graph in the mention-entity graph that contains all
mentions and a single mention-entity edge for each
mention according to their definition of graph density.
Han et. al [13] also use the graph built around can-
didates of mentions and apply random walk over the
graph to obtain the pagerank score of entities which is
used to measure the global coherence. Instead of us-
ing PageRank, AGDISTIS [39] applies the HITS algo-
rithm on the graph and uses the authority score of a
candidate for its global coherence with mentions and
other entities.

The assumption that mentions belong to one single
topic may not be true in many documents. For such
cases, topic modelling can be used to distribute la-
tent topics across candidate entities. Han and Sun [12]
combine the local compatibility and global coherence
using a generative entity-topic model to infer the un-
derlying referent entities. Li et al. [22] introduce addi-
tional information of entities mined from external cor-
pus into a generative graph model to improve the ef-
fectiveness of NED, especially for entities with rare

information available in the knowledge graph. Kataria
et al. [18] proposed a semi-supervised hierarchical
topic model for entity disambiguation based on the
Wikipedia’s category hierarchy and word-entity asso-
ciations. Ganea et al. [9] recently proposed a light-
weight probabilistic model based on the co-occurrence
statistics derived from knowledge graphs.

Most semantic relatedness measures employed in
NED systems compute the relatedness between two
entities only. Instead, we propose a unified seman-
tic representation for both entities and the collective
entity-to-mention assignment (Γ), with which we can
measure how well a candidate entity fits with those
previously assigned in an unified way. Our represen-
tation can capture the semantics of unpopular enti-
ties (those with low degree in the entity graph), which
makes our NED approach more robust. This observa-
tion is supported by our experiments. The idea of using
random walks with restart has been applied on graphs
constructed from the WordNet [25], with the stationary
distribution to represent the semantics of words. It has
been shown to be effective in the word similarity mea-
surement [1,16], and word sense disambiguation [30].
However, we are not aware of any previous work us-
ing the stationary distribution from random walk with
restart to represent entities and documents in NED.

When it comes to learning to rank, Zheng et.al [45]
applied learning to rank approaches on the NED task
and demonstrated its superior effectiveness over most
state-of-the-art algorithms. Their results showed that
the listwise method ListNet [5] performed better than
the pairwise approach Ranking Perceptron [34]. How-
ever, we found that the pairwise approach Lamb-
daMART [41] achieved the best performance on our
datasets among most learning to rank algorithms.

6. Conclusion

We described a method for named entity disam-
biguation that combines lexical and statistical features
with semantic signatures derived from random walks
over suitably designed disambiguation graphs. Our se-
mantic representation uses more relevant entities from
the knowledge graph, thus reducing the effect of fea-
ture sparsity, and results in substantial accuracy gains.
We described a hand-tuned greedy algorithm as well
as one based on learning-to-rank. Both outperform the
previous state-of-the-art by a wide margin. Moreover,
we showed that our L2R.WNED algorithm trained on
the standard AIDA-CONLL corpus is quite robust
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across benchmarks. We also evaluated both systems
using the GERBIL framework on 16 public datasets
and showed the superiority of our approach.

Moreover, we demonstrated several shortcomings of
the existing NED benchmarks and described an ef-
fective way for deriving better benchmarks and de-
scribed two new such benchmarks based on web-scale
annotated corpora (ClueWeb12 and Wikipedia). Our
benchmark generation method can be tuned to pro-
duce “harder” or “easier” cases as desired. Overall, the
benchmarks we describe complement the largest cur-
rently available public benchmark. Our experimental
evaluation compared our methods against six leading
competitors and two very strong baselines, revealing
the superiority and robustness of our NED system in a
variety of settings. Our method was particularly robust
when disambiguating unpopular entities, making it a
good candidate to address the “long tail” in Informa-
tion Extraction.

Future work There are several directions worth ex-
ploring. Sec. 4.5 lists several ideas for algorithmic im-
provements that can lead to better NED systems in
the future. Also, while the new benchmarks described
here can be used for both accuracy and scalability
tests (as one can easily obtain large quantities of docu-
ments from ClueWeb12 and Wikipedia), further work
is needed in helping the design and verification of
ground-truths.

System performance is one issue we will need to im-
prove. Currently, the average time to disambiguate a
document with less than 100 is in the order of a few
minutes, and the time could increase with the num-
ber of mentions in a document and average number of
candidates per mention. Majority of the time is spent
on the expensive random walk computations. Approxi-
mating the semantic signature with less expensive ran-
dom walk algorithms would be helpful. Other than
that, designing a system using appropriate indexing
and utilizing the current large-scale data processing in-
frastructure would also be interesting.
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Appendix

A. Evaluation on GERBIL

GERBIL [40] is a general framework for entity an-
notation, which has more than 11 NED systems and 16
public datasets for the entity disambiguation task. We
compare our system with all available systems includ-
ing graph-based systems: AGDISTIS [39], AIDA [14],
Babelfy [28], FOX [36], WAT [29], xLisa [42], and
PBoH [9]; context-based systems: DBpedia Spot-
light [23], FREME NER [33], Kea [37], and NERD-
ML [32]. The datasets mainly contain documents from
news article, RSS feeds, tweets, encyclopedia and the
mix. Detailed statistics of the datasets are shown in
Table 5. We can see that most datasets are from news
articles which means that entities mentioned in the
documents are popular ones. Performance on datasets
with very few mentions per document such as Micro-
posts2014 and N3-RSS-500 will depends more on the

Table 5
Statistics of datasets in GERBIL [40].

corpus topic #docs #mentions/doc

ACE2004 news 57 4.44

AQUAINT news 50 14.54

MSNBC news 20 32.50

AIDA/CoNLL news 1393 19.97

DBpediaSpotlight news 58 5.69

KORE50 mixed 50 2.86

Microposts2014 tweets 3505 0.65

N3-RSS-500 RSS-feeds 500 0.99

N3-Reuters-128 news 128 4.85

OKE 2015 Task 1 encyclopedia 199 5.41

contextual similarity, and less on the global coherence
of most approaches.

Table 6 gives the results evaluated using GERBIL 6,
PBoH [9] 7, and our systems 8. Note that the results
of PBoH in Table 6 are from their updated report on
GERBIL 1.2.4, which is different from results reported
in [9] 9.

We can see that comparing to other NED sys-
tems, our two systems WNED and L2R.WNED-
CONLL (trained with 20% AIDA/CoNLL dataset)
can achieve very competitive results on most of the
datasets. Although no special processing is applied on
the micropost2014 datasets, our systems still achieve
better results than all other systems except the PBoH.
One main types of errors on microposts are from the
candidate selection due to the casual writing style in
micropost which causes many uncommon name varia-
tions.

6http://gerbil.aksw.org/gerbil/experiment?id=201611040001
7http://gerbil.aksw.org/gerbil/experiment?id=201610270004
8Due to an implementation issue, each dataset has to be evaluated

separately. Results are available in http://dx.doi.org/10.7939/DVN/
10968

9There is a drop on the results from version 1.1.4 to version 1.2.4.
Details: https://github.com/AKSW/gerbil/issues/98
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Datasets AGDISTIS [39]

AIDA [14]

Babelfy [28]

DBpedia Spotlight [23]

FOX [36]
FREME NER [33]

Kea [37]
NERD-ML [32]

WAT [29]

xLisa [42]

PBoH [9]
WNED

L2R.WNED-CONLL

ACE2004

0.65 0.69 0.53 0.48 0.00 0.49 0.66 0.58 0.66 0.70 0.72 0.77 0.76
0.77 0.82 0.70 0.68 0.37 0.65 0.77 0.73 0.77 0.80 0.83 0.88 0.87
0.66 0.80 0.61 0.58 0.00 0.58 0.76 0.67 0.76 0.81 0.79 0.83 0.81
0.78 0.89 0.76 0.75 0.39 0.71 0.84 0.79 0.85 0.88 0.86 0.91 0.90

AQUAINT

0.52 0.55 0.68 0.53 0.00 0.56 0.78 0.60 0.73 0.76 0.81 0.79 0.79
0.51 0.55 0.68 0.52 0.00 0.43 0.78 0.58 0.74 0.75 0.81 0.79 0.79
0.73 0.57 0.70 0.55 0.00 0.58 0.81 0.62 0.75 0.79 0.84 0.83 0.83
0.59 0.56 0.70 0.54 0.00 0.44 0.80 0.60 0.76 0.77 0.83 0.83 0.83

MSNBC

0.73 0.69 0.71 0.42 0.02 0.22 0.78 0.62 0.73 0.50 0.82 0.88 0.88
0.73 0.65 0.68 0.44 0.02 0.16 0.77 0.64 0.73 0.50 0.82 0.90 0.89
0.74 0.74 0.76 0.46 0.02 0.24 0.84 0.67 0.79 0.55 0.86 0.89 0.89
0.73 0.70 0.73 0.48 0.02 0.18 0.84 0.70 0.80 0.57 0.85 0.91 0.90

AIDA/CoNLL-Complete

0.55 0.68 0.66 0.50 0.51 0.38 0.61 0.20 0.71 0.47 0.75 0.76 0.77
0.53 0.66 0.60 0.50 0.48 0.29 0.57 0.12 0.68 0.45 0.75 0.76 0.77
0.57 0.77 0.74 0.58 0.54 0.44 0.68 0.24 0.80 0.54 0.80 0.79 0.80
0.52 0.76 0.68 0.59 0.50 0.33 0.65 0.14 0.78 0.52 0.78 0.78 0.79

AIDA/CoNLL-Test A

0.54 0.67 0.65 0.48 0.49 0.28 0.61 0.00 0.70 0.45 0.75 0.76 0.76
0.50 0.62 0.59 0.47 0.45 0.23 0.56 0.00 0.66 0.41 0.73 0.75 0.75
0.56 0.74 0.74 0.55 0.53 0.33 0.67 0.00 0.78 0.52 0.80 0.78 0.79
0.49 0.71 0.68 0.55 0.47 0.25 0.64 0.00 0.76 0.48 0.77 0.75 0.76

AIDA/CoNLL-Test B

0.54 0.69 0.68 0.52 0.49 0.35 0.61 0.01 0.72 0.47 0.75 0.75 0.76
0.54 0.68 0.62 0.51 0.48 0.22 0.61 0.00 0.70 0.46 0.75 0.76 0.77
0.55 0.77 0.76 0.60 0.52 0.40 0.69 0.00 0.80 0.54 0.80 0.77 0.79
0.54 0.78 0.70 0.60 0.51 0.26 0.70 0.01 0.80 0.53 0.79 0.78 0.79

AIDA/CoNLL-Training

0.55 0.69 0.65 0.50 0.52 0.39 0.61 0.28 0.71 0.48 0.75 0.76 0.77
0.53 0.66 0.60 0.50 0.50 0.30 0.56 0.17 0.68 0.45 0.73 0.77 0.77
0.57 0.77 0.74 0.58 0.55 0.45 0.69 0.33 0.81 0.56 0.80 0.79 0.80
0.52 0.76 0.68 0.59 0.51 0.35 0.64 0.21 0.79 0.53 0.78 0.78 0.79

DBpediaSpotlight

0.27 0.25 0.52 0.71 0.15 0.45 0.74 0.56 0.67 0.71 0.79 0.79 0.80
0.28 0.21 0.51 0.69 0.12 0.31 0.73 0.53 0.69 0.71 0.80 0.81 0.82
0.40 0.25 0.52 0.71 0.15 0.45 0.74 0.56 0.67 0.71 0.80 0.80 0.81
0.36 0.21 0.51 0.69 0.12 0.31 0.73 0.53 0.69 0.71 0.80 0.82 0.83

KORE50

0.33 0.69 0.74 0.46 0.27 0.17 0.60 0.31 0.62 0.51 0.63 0.56 0.50
0.30 0.64 0.70 0.42 0.22 0.14 0.53 0.25 0.52 0.45 0.58 0.52 0.50
0.33 0.69 0.74 0.46 0.27 0.17 0.60 0.31 0.62 0.51 0.63 0.56 0.50
0.30 0.64 0.70 0.42 0.22 0.14 0.53 0.25 0.52 0.45 0.59 0.52 0.50

Microposts2014-Test

0.33 0.42 0.48 0.50 0.22 0.42 0.64 0.52 0.60 0.55 0.73 0.63 0.67
0.60 0.59 0.63 0.66 0.49 0.60 0.76 0.67 0.74 0.68 0.85 0.75 0.79
0.42 0.42 0.48 0.50 0.22 0.42 0.64 0.52 0.60 0.55 0.74 0.65 0.69
0.61 0.59 0.63 0.66 0.49 0.60 0.76 0.67 0.74 0.68 0.85 0.76 0.79

Microposts2014-Train

0.42 0.51 0.51 0.48 0.31 0.46 0.65 0.52 0.63 0.59 0.71 0.64 0.67
0.61 0.61 0.61 0.61 0.48 0.56 0.74 0.63 0.73 0.67 0.81 0.74 0.76
0.51 0.51 0.51 0.48 0.31 0.46 0.65 0.52 0.63 0.59 0.73 0.67 0.70
0.63 0.61 0.61 0.61 0.48 0.56 0.74 0.63 0.73 0.67 0.82 0.75 0.78

N3-RSS-500

0.61 0.45 0.44 0.20 0.56 0.28 0.44 0.38 0.44 0.45 0.53 0.69 0.68
0.61 0.39 0.38 0.16 0.54 0.20 0.39 0.30 0.37 0.38 0.53 0.69 0.68
0.52 0.66 0.64 0.32 0.50 0.44 0.62 0.57 0.64 0.65 0.55 0.65 0.63
0.52 0.64 0.63 0.41 0.49 0.45 0.61 0.58 0.63 0.66 0.48 0.62 0.61

N3-Reuters-128

0.66 0.47 0.45 0.33 0.54 0.24 0.51 0.41 0.52 0.39 0.65 0.63 0.64
0.72 0.38 0.39 0.27 0.57 0.16 0.46 0.35 0.44 0.34 0.72 0.63 0.63
0.64 0.57 0.55 0.41 0.52 0.31 0.61 0.51 0.63 0.49 0.69 0.62 0.65
0.68 0.51 0.55 0.41 0.54 0.29 0.60 0.51 0.59 0.52 0.72 0.60 0.60

OKE 2015 Task 1
evaluation dataset

0.59 0.56 0.59 0.31 0.56 0.32 0.63 0.61 0.57 0.62 0.63 0.62 0.62
0.60 0.55 0.58 0.27 0.53 0.26 0.63 0.60 0.56 0.61 0.63 0.62 0.62
0.62 0.63 0.66 0.36 0.60 0.38 0.71 0.70 0.65 0.71 0.68 0.65 0.65
0.61 0.62 0.65 0.30 0.56 0.28 0.71 0.68 0.62 0.70 0.67 0.64 0.65

OKE 2015 Task 1 ex-
ample set

1.00 0.60 0.4 0.22 0.78 0.25 0.55 0.00 0.60 0.5 0.50 0.67 0.67
1.00 0.72 0.65 0.44 0.67 0.44 0.69 0.33 0.72 0.69 0.67 0.75 0.75
1.00 0.86 0.57 0.50 0.80 0.40 0.75 0.00 0.86 0.80 0.67 0.75 0.75
1.00 0.89 0.80 0.33 0.89 0.50 0.82 0.33 0.89 0.89 0.78 0.82 0.82

OKE 2015 Task 1
gold standard sample

0.62 0.67 0.71 0.25 0.54 0.41 0.78 0.77 0.72 0.75 0.76 0.78 0.78
0.64 0.65 0.68 0.20 0.49 0.32 0.76 0.74 0.69 0.73 0.76 0.78 0.77
0.64 0.71 0.75 0.27 0.56 0.44 0.81 0.81 0.77 0.79 0.80 0.82 0.82
0.64 0.67 0.72 0.22 0.53 0.35 0.79 0.77 0.73 0.76 0.78 0.80 0.79

Table 6
Results of NED systems reported by Gerbil. The rows in each
cell report the F1@Micro, F1@Macro, InKB F1@Micro, and InKB
F1@Macro respectively, in which red marks the highest F1 and blue
marks the second highest F1.


