
Towards Annotating Relational Data on the Web
with Language Models

Matteo Cannaviccio
Roma Tre University

Rome, Italy
cannaviccio@uniroma3.it

Denilson Barbosa
University of Alberta
Edmonton, AB, Canada
denilson@ualberta.ca

Paolo Merialdo
Roma Tre University

Rome, Italy
paolo.merialdo@uniroma3.it

ABSTRACT

Tables and structured lists on Web pages are a potential source
of valuable information, and several methods have been proposed
to annotate them with semantics that can be leveraged for search,
question answering and information extraction. This paper is con-
cerned with the specific problem of finding and ranking relations
from a given Knowledge Graph (KG) that hold over pairs of enti-
ties juxtaposed in a table or structured list. The state-of-the-art for
this task is to attempt to link the entities mentioned in the table
cells to objects in the KG and rank the relations that hold for those
linked objects. As a result, these methods are hampered by the
incompleteness and uneven coverage in even the best knowledge
graphs available today. The alternative described here does not
require entity linking, relying instead on ranking relations using
generative language models derived from Web-scale corpora. As
such, it can produce quality results even when the entities in the
table are missing in the KG. The experimental validation, designed
to expose the challenges posed by KG incompleteness, shows that
our approach is robust and effective in practice.
ACM Reference Format:

Matteo Cannaviccio, Denilson Barbosa, and Paolo Merialdo. 2018. Towards
Annotating Relational Data on the Web with Language Models. InWWW
2018: The 2018 Web Conference, April 23–27, 2018, Lyon, France. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3178876.3186029

1 INTRODUCTION

The Web is a vast source of intrinsically relational knowledge ex-
pressed in hundreds of millions of tables and many more structured
lists within billions of documents. Web-scale table corpora have
found many applications, including search and question answer-
ing [5, 15, 28], knowledge graph construction [8, 19, 26, 27], schema
understanding and auto-complete [5, 31], to name a few. However,
unlike with documents in which information is encoded in text
amenable to natural language understanding tools, the facts and
relationships encoded in tables are implicit, and therefore hard to

This paper is published under the Creative Commons Attribution 4.0 Inter-
national (CC BY 4.0) license. Authors reserve their rights to disseminate
the work on their personal and corporate Web sites with the appropriate
attribution. In case of republication, reuse, etc., the following attribution
should be used: “Published in WWW2018 Proceedings © 2018 International
World Wide Web Conference Committee, published under Creative Com-
mons CC BY 4.0 License.”
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee),
published under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186029

film.film.featured_film_locations

film.film.actor

Figure 1: Web table with actors and filming locations of

James Bond movies.

extract automatically. The various approaches for understanding
Web tables amount to two main tasks: (1) identifying the type of
each column in a table, and (2) identifying the relationship between
pairs of columns in the table. As a motivating example, Fig. 1 shows
a snippet of a prototypical table (from Wikipedia in this case) that
can be easily extracted and parsed with tools like Google tables
or an automatic wrapper induced from a set DOM-trees. It is clear
to a human looking at the table that the second column has actors
who played in the movies in the first column. With little effort (e.g.,
after reading the article with that table) a human can infer that the
third column has countries that were filming locations of the movies
in the first column. Yet, extracting those types and relationships is
out of reach of text-based Information Extraction tools that rely on
linguistic patterns used to encode knowledge [17].

The first methods for Web table understanding [28] were strictly
lexical, using frequently occurring keywords and phrases as anno-
tations, and are primarily useful for keyword-based table search.
The prevalent approach, however, is to leverage existing Web-scale
Knowledge Graphs (KGs) for semantic Web table understanding,
whereby one annotates columns with classes of entities and pairs of
columns with relationships from the KG ontology [12, 15, 24, 25, 37].
To do so, these methods attempt to disambiguate the entities in
the table by linking them to objects in the KG. If this can be done,
one can immediately annotate each table column with the ontology
type covering the entities in the column. Next, the relationship
between a pair of columns can be inferred ranking KG relations
based on their coverage of (entity pairs in the rows) of the table.

Although highly intuitive, the approach outlined above is ham-
pered by the fact that even the best existing KGs are notoriously
incomplete [18, 29, 32], missing many entities (not only obscure
tail entities) as well as many relations among the entities. More
precisely, KG incompleteness introduces two problems. First, if the
Web table contains mostly entities that are not in the KG or cannot
be easily linked, no table annotations are possible. It is worth men-
tioning that state-of-the-art entity linking methods rely on textual

https://doi.org/10.1145/3178876.3186029
https://doi.org/10.1145/3178876.3186029

Web
Search

LM1

LMn

LM2
Rank

with LMs
NoisyORPLM

output
ranked list of relations

r1, r2, …, rk

sentence1sentence1sentences

Build LMs
for KG

Relations

input
entity pair(s)

<s1, o1> … <sn, on>

Figure 2: Overview of our approach.

features (e.g., keyphrases) which are hardly available in the context
of Web table understanding. Second, the KG coverage for specific
relations is often biased, which can lead to unexpected results even
if the entities can be correctly linked as illustrated next.

The example of Fig. 1 was chosen systematically to illustrate the
problems caused by KG incompleteness. We picked a table with a
column whose cells would: (1) be difficult to link to Freebase objects,
and (2) participate in a partially populated relation of interest. In
our example, the names of the movies are hard to distinguish from
their respective soundtrack albums, even with sophisticated string
matching methods (e.g., [30]). Moreover, although we can easily
disambiguate the countries in the table, and although Freebase has
a dedicated relation for filming locations of movies, the coverage of
that relation is heavily biased towards recent movies, lacking the
filming location of most Bond movies. Freebase is not as incomplete,
however, in the music domain. In fact, it contains all countries were
the soundtracks of the Bond movies were released. As a result, one
would be biased towards annotating the relationship between the
first and third columns of Fig. 1 with the predicate for the region
where an album is released, which would be incorrect in this case.
(In passing, at the time of writing, both YAGO and DBpedia also
lack the filming locations of most Bond movies.)

1.1 Problem Statement

For convenience, we adopt the Freebase notation and terminology.
As customary, we model a knowledge graph as a labeled, di-

rected multi-graph KG = (N ,E,L) where N , E, and L are sets of
nodes, edges, and labels. Nodes can be entities, represented us-
ing unique identifiers called “m-ids” (e.g., m/03_gd), text literals
in quotes (e.g., "James Cameron"), or types denoted as paths in an
ontology (e.g., film/director). Labels in L define relation names
(e.g., film/director/film). Edges in E ⊆ N × L × N are called state-
ments or triples and can be used to assign types to entities (e.g.,
⟨m/03_gd, type/object/type, film/director⟩); to describe entities
(e.g., ⟨m/03_gd, type/object/name, "James Cameron"⟩) or to relate
pairs of entities (e.g., ⟨m/03_gd, film/director/film, m/0dr_4⟩). We
assume the KG ontology specifies types for the domain and range
of every relation.

This paper seeks to describe and evaluate a principled and ef-
fective way of predicting KG relations that hold over columns of
Web tables. (Note that doing so allows one to annotate the columns
themselves with the domain and range types from the KG ontol-
ogy for those relations.) Predicting which relation(s) hold for pairs
of entities amounts to ranking all KG relations for those entities
followed by either thresholding or taking the top-k relations in
the ranking. Thus, in this paper we focus on, and evaluate relation

phrase freq.
was released in 0.23
topped the charts in 0.17
is available only in 0.14
... ...
shot in 0.04

(a) music/release/region

phrase freq.
was filmed in 0.44
set in 0.26
shot in 0.14
... ...
was released in 0.03

(b) .../featured_film_locations

Figure 3: Generative language models for two relations be-

tween works of art and countries.

sentences freq.
Dr. No filmed entirely in Jamaica 6
Dr. No location Ocho Rios Jamaica 3
Dr. No based and shot in Jamaica 2
Dr. No filmed in Kingston, Jamaica 1

Figure 4: Web search results for ⟨"Dr. No","Jamaica"⟩.

rankings instead of predictions. Without loss of generality, we as-
sume the input to be a set of entity pairs, as one can always convert
a multi-column table or a nested list into one or more sets of pairs.
Also, we assume that all pairs in the set are similarly related; or, in
other words, the input is not random. More precisely:

Definition 1. Given a set I = {⟨s1,o1⟩, . . . , ⟨sn ,on⟩} of subject-
object entity pairs, and a list L of relation names from a KG, produce
a ranked list r1, . . . , rk of k relations from L that hold over pairs in I ,
sorted by decreasing relevance.

1.2 Overview of Our Approach

Fig. 2 illustrates our method, which is heavily inspired by the estab-
lished Language Models (LMs) for IR approach [36], in which the
goal is to model each document separately and score documents
w.r.t. queries based on how likely the corresponding models are to
generate the query. Keeping with this analogy, the KG relations in
our setting play the role of the “documents” and the pairs of entities
play the role of the “queries”.

Models of KG Relations. We model a KG relation distribution-
ally using the phrases that are used to express it. We learn such mod-
els from the approximately 500M texts in English of the ClueWeb09
corpus, leveraging Google’s FACC1 annotation corpus assigning
m-ids of Freebase entities to thementions in those texts where these
entities appear. Following the state-of-the-art in open relation ex-
traction [20], we gather phrases appearing between m-ids in the
corpus and filter out phrases that describe ontological relations
(e.g., “is a” and variants) and phrases that do not conform to known
patterns defined at the level of parts-of-speech [7] tags. The details
of the construction of LMs are given in Sec. 3.

Relation Ranking. To rank KG relations for entity pair ⟨si ,oi ⟩,
we perform a Web search with those entities and extract relational
phrases connecting the entities in the result of the Web search.
Then, we score the KG relations based on how likely their corre-
sponding models are to generate the set of phrases extracted from
the Web search. Continuing with our running example, Fig. 3a

2

shows some of the phrases of the LM associated with the rela-
tion associating albums to the countries they have been released,
while Fig. 3b shows phrases for the relation for filming locations
of movies. Fig. 4 shows some sentences from the Web search with
entities ⟨"Dr. No","Jamaica"⟩. In this case, the relation about movie
locations will rank higher than the relation about album releases.

Two models for KG relation scoring are considered here (see
Sec. 4.2): (1) PLM, the “standard” conjunctive approach of maximiz-
ing the likelihood of all terms in the query, and (2) Noisy OR, a
disjunctive approach where the ranking may be biased towards a
small number of highly relevant phrases. Finally, note that when
the input consists of multiple entity pairs, we need a way of finding
aggregate scores for the relations relative to all such pairs. Again,
two ways of doing so are discussed and evaluated here (Sec. 4.3):
(a) a global strategy that combines all sentences of all pairs into
a single global query used to rank the LMs (once), and (b) a local
strategy where we produce a ranking for each pair, merging them
to arrive at a final prediction.

Evaluation. To the best of our knowledge, there are no bench-
marks concerned with KG incompleteness and how they affect table
understanding. Therefore, we designed two experiments to illus-
trate how our method can overcome this problem. In the first we
use a synthetic benchmark with facts that are both true and known
to be missing from Freebase, DBpedia, and YAGO (Sec. 5), following
our previous work [6]. In the second we experiment with tables
from Wikipedia for which a state-of-the-art web table annotation
tool [24] fails to produce any output (Sec. 5.7).

Contribution. We describe an effective method for ranking KG
relations that applies to pairs of named entities that is less sus-
ceptible to KG incompleteness than the current state-of-the-art.
Departing from previous work, our method does not require that
the entities are linked to, or even exist in the KG. Instead, our
method works whenever a Web search returns phrases describing
how the entities are related. Our method is general: it is not specific
to any KG, corpus or natural language, and the Web search can
be replaced by a search on any large corpus. Finally, perhaps the
biggest advantage of our method is that it predicts relations based
on corpus statistics which are independent of, and not biased by the
KG coverage. Our experimental evaluation, which has been con-
ducted on publicly available datasets, indicates that our method can
correctly predict relationships for in-KG and for out-of-KG entities,
where state-of-the-art approaches fail, and thus can significantly
contribute to improve previous work in this area.

2 RELATEDWORK

Language Models have found many uses in Information Retrieval
beyond document ranking [14, 22, 36]. A state-of-the-art entity
search method [2] is based on “entity LMs” that harness entity cate-
gories (i.e., semantic types) for ranking and filtering answers based
on a desired type (e.g., movies, albums, etc.). Other applications in-
clude searching and ranking over RDF-structured Linked Data and
knowledge graphs with queries that combine keywords and entity
examples [4] or interpret so-called telegraphic text queries [13] on
the underlying structured data [23]. LMs have also been found use-
ful in ranking the results of exact, relaxed and keyword-augmented

graph-pattern queries over RDF graphs [10, 34], which has applica-
tions in translating natural language questions into SPARQL queries
over KGs [35], among others. We use LMs for relation prediction.

Our work borrows from relation prediction methods that exploit
the duality between KG relations and phrases occurring in text
(e.g., [1, 3, 9, 17, 33]), except that we employ strict filters to remove
non-relational and ontological patterns [7]. While we use LMs for
prediction and achieve good results, other ranking models from
Information Retrieval and/or other relation prediction models from
the field of Information Extraction could be used for the same
purpose.We leave as futurework investigating other scoringmodels
and how they fare in our setting.

We are motivated by the problem of understanding Web tables,
widely recognized as a valuable knowledge source on the Web [5].
The first solution [28] is meant for search, annotating columns
with keywords from an “is-a” database and relationships between
columns with keyphrases frequently occurring with the entities
in the table. On the other hand, by annotating pairs of columns
with KG relations that hold over the respective entities, our method
annotates the tables with semantic information. With our method,
the columns can be annotated with the expected (semantic) types
for the relations as per the KG schema.

Recent work on Web table understanding links entities in table
cells to KG objects and pairs of columns with KG relations that
hold over them [12, 15, 25, 37]. An earlier work in this area [15]
learns a probabilistic graphical model that collectively annotates
cells with entity identifiers, columns with KG types and pairs of
columns with KG relations, maximizing the joint probability of the
assignment. Another idea is to model each row of the table as a set
of (possibly multi-valued) attributes describing a single entity in
the KG [25]; each row of the table is then matched with entities in
DBpedia, taking into account the table headers and how well they
match classes in the DBpedia ontology. Unlike these works, our
method does not require linking entities to KG objects and, thus,
should be less susceptible to KG incompleteness. We validate this
hypothesis experimentally in two ways. First, we use a synthetic
benchmark with facts that are both true and known to be missing
from Freebase, DBpedia, and YAGO (Sec. 5), obtained from [6].
Second, we experiment with tables from Wikipedia for which a
state-of-the-art web table annotation tool [24] fails to produce
any output (Sec. 5.7). Our evaluation confirms our hypothesis and
suggests our method can be used in conjunction with previous work
to lead to better Web table understanding tools.

3 BUILDING LANGUAGE MODELS

Achieving accurate results in our setting requires LMs derived
from a large corpus of phrases that are relational, grammatical,
and frequent (so that they are likely to match evidence gathered
at prediction time). Thus, we use the English subset of ClueWeb09
and the 5 billion annotations provided by Google’s FACC1 corpus,1
indicating which text spans contain mentions of entities known to
Freebase, identified through their m-ids.

Replacing actual mentions to named entities in the text by their
corresponding m-ids, we arrive at content such as the following:

/m/06mr6 famously starred as /m/06k5xq besides /m/0clpml

1http://lemurproject.org/clueweb09
3

http://lemurproject.org/clueweb09

Since in Freebase the entities /m/06mr6 (actor Sir Sean Connery)
and /m/06k5xq (fictional character Robin Hood) are related through
relation film/actor/.../character, we add the phrase “famously
starred as” to the language model of that relation (and also to the
models of all other relations between these entities).

In a nutshell, building LMs boils down to: for every pair of m-
ids that belong to a relation, extracting all phrases connecting
those m-ids from the corpus, filtering uninformative phrases and
aggregating the counts accordingly. Next, we explain the filtering
steps we perform to increase the quality of our language models.

3.1 Filtering Phrases

Our goal is to predict relations between pairs of entities such as
family and romantic relationships between people, employment
relationships between people and organizations, and business re-
lationships among organizations. In order to keep our LMs highly
focused we discard generic and uninformative phrases with the
help of lightweight natural language processing tools.

Filtering Uninformative Phrases. Not all phrases connecting
entities are useful for relation prediction. For example, in the sen-
tence above, the phrase “famously starred as” describes an actual
relation between the surrounding entities while the phrase “besides”
between /m/06k5xq (Robin Hood) and /m/0clpml (James Bond) does
not. To filter out such noise, we parse the sentences containing pairs
of m-ids and check if the phrases connecting the entities conform
to known grammatical patterns that describe binary relations [7],
discarding those that do not. This step eliminates the vast majority
of the phrases but ensures our language models are grammatical
and predictive.

Placeholder Generalization. We often can (and should) gener-
alize the phrases that reveal the same relation but differ in some de-
tail. For example, phrases “starred in the 3rd movie of” and “starred
in the first movie of” express the same relation, and are generalized
into “starred in the ORD movie of”, where “ORD” stands for any
ordinal number. We apply similar generalizations to instances of
other common generic types such dates, distances and numbers.
Fig. 5 summarizes the placeholders used with the relative frequency
(i.e. number of phrases).

Further Filtering. We are not interested in ontological relations
that describe class membership of entities, such as that Sir Sean
Connery is an actor and that James Bond is a fictional character.
Other prominent ontological relations concern the ethnicity of
people, the business segment of organizations, etc. Thus, we discard
phrases that are variants of the “is a” pattern, often used in these
cases (e.g., “is a British actor” or “was an American activist”).

3.2 Phrase Statistics

We were able to find 19M distinct pairs of m-ids that are connected
by a (filtered) relational phrase in the ClueWeb09 corpus. Only
1.4M of these pairs (8%) belong to one of the approximately 5K
Freebase relations. In total, these 1.4M pairs are related through
2.36M distinct phrases in the corpus. Although we found some
fairly long phrases, the majority of them are relatively short (4.3
tokens per phrase on average). As expected, we observed that the

Global Statistics

annotated pairs of m-ids (related in KG) 19 M (1.4M)
annotated relations (⩾ 1 phrase) 2739
distinct relational phrases 2.36M

Placeholders

AGE (3.2K), DATE (1K), LENGTH (3.4K)
MONEY (5.5K), ORD (15K), SCORE (3.3K)

TIME (2K), UNIT (1K), WEIGHT (100), YEAR (845)

Filtered Models Statistics

relations (⩾ 200 phrases) 500
LMs derived 1934
filtered phrases 27.7 K

Figure 5: Statistics after the filtering process.

distribution of phrases by frequency in the corpus follows a power-
law.

3.3 Specializing LMs Based on Type

The Freebase ontology specifies the expected types of the entities
that can participate in any given relation. For example, relation
/film/film/subject, that describes the subject of a movie, has do-
main /film/film and range /film/film_subject. Although some-
what informative, these types are fairly generic. For example, the
subjects of biographical movies are people (and thus instances of
/people/person), while the subjects of documentaries can be or-
ganizations or locations. Note however, that the LMs for these
different kinds of movies are likely to be very different: the rela-
tional phrase “is the biography of” is appropriate for movies whose
subject are people, while “portrays the founding of” is suitable for
movies about organizations. In order to account for such nuances,
we partition the phrases associated with each relation based on
generic entity types that can be inferred automatically by typical
NER systems2, and are available in Freebase as /people/person,
/organization/organization, and /location/location. A catch-all
“misc” type is used for all the other entities. This results in each
FB relation having up to 16 different LMs, one for each possible
combination of types.

3.4 Model Statistics

In the end, of the 4819 relations in Freebase, we are able to build
models for 2739. For the purposes of the evaluations reported here,
we experimented only with those relations for which we could find
at least 200 distinct phrases. This corresponds to 500 relations and
1934 different models (on average 3.78 LMs per relation, based on
the combination of NER types). Fig. 5 summarizes statistics about
the number of language models we derived from ClueWeb09, and
those we use in our experimentation.

4 RELATION RANKING

This section gives details the steps involved in relation ranking.

2Person (PER), Location (LOC), Organization (ORG), and Miscellaneous
(MISC) as defined by Stanford NER [11].

4

4.1 Gathering Evidence from the Web

Given an entity pair ⟨s1,o1⟩, we perform a Web search looking for
sentences mentioning both entities in the given order. For the pur-
poses of this paper, we collected sentences from snippets returned
by Google, saving time and bandwidth. The actual scoring of rela-
tions is done on relational phrases, extracted from the snippets, that
match those used to build the language models. That is, we process
the snippets in the same way described in Sec. 3.1. If multiple rela-
tional phrases are found in the same snippet our system uses all of
them. Also, we attempt to minimize the effects of geo-localization
and personalization in Google searches by periodically obtaining
a new IP address via a Private Virtual Network service. Of course,
our system is not restricted to Google. In fact, a local index of a
large Web crawl (e.g., ClueWeb or the Web commons crawl) could
be used instead of Google for this step.

We compare two strategies for matching phrases: exact match-
ing (equality) and shallow approximate matching, which works
as follows. Given a span of text we find candidate phrases using
n-grams at character level (3-grams) and then we score them us-
ing a Fuzzy Jaccard Similarity [30] that takes into account fuzzy
matchings between the individual words3. The approximate match
comes with a clear precision and recall trade-off: it introduces noise
but results in more phrases being matched. For example, the text
“filmed entirely in” in a Web search snippet could match phrases
“was filmed in” and “were filmed by”, belonging to different LMs.
We investigate this trade-off and confirm in the experimental eval-
uation that approximate matching generally improves the quality
of the rankings.

4.2 Ranking for Individual Entity Pairs

As mentioned in Sec. 1.2, we take an IR approach to rank KG re-
lations based on their relevance for an entity pair. To recap the
notation and avoid confusion, each “document” D corresponds to
a KG relation and a “query” Q corresponds to relational phrases
connecting entities obtained through a Web search. Given an entity
pair ⟨si ,oi ⟩, we denote by a(⟨si ,oi ⟩) the ranking of all documents
for the query resulting from that pair, computed according to a
score(·, ·) function (explained below).

Query Likelihood Scoring. The query likelihood retrievalmodel
assumes that the query terms are samples drawn from a LM derived
from a document. Formally, given query Q and document D, from
which a model θD is derived, we rank the documents by decreasing
score, defined as:

score(Q,D) = P(Q |θD).

Many approaches have been used for estimating P(Q |θD). We start
with the robust multinomial language model, which assumes that
terms are generated independently, and avoid overfitting with in-
terpolation (i.e., Jelinek-Mercer smoothing) [36]. More precisely, let
C be a document containing all the phrases and S the set of phrases.
Then:

score(Q,D) =
∏
p∈S

P(p |θD)
c(p,Q) (1)

where:

3We use Jaro-Winkler similarity with a threshold of 0.9.

P(p |θD) = λ P(p |D) + (1 − λ) P(p |C) (2)

P(p |D) =
c(p,D)

|D |
and P(p |C) =

c(p,C)

|C |
(3)

Above, c(p, ·) denotes the frequency of phrase p in the query Q ,
document D or corpus C . We call this ranking approach PLM, for
Phrase Language Model in the experimental evaluation.

We set λ = 0.9 experimentally.

Disjunctive Gate Scoring. The query likelihood approach uses
a conjunctive gate to combine evidence from multiple phrases while
predicting the likelihood of a relation: a model that cannot generate
most phrases in the query is unlikely to rank high. In our setting,
this is often an overkill. For example, one can be reasonably certain
that the relation /film/film/featured_film_locations holds for a
pair of entities connected by the phrase “was filmed in”. An implicit
assumption here is that the frequency of the phrases used to build
the LMs and the queries is a good proxy for how reliable they
are. While this seems reasonable at Web scale, one could take the
trustworthiness of the sources [8] into account, e.g., via re-ranking
or by a priori filtering.

To allow for more permissive predictions we calculate the score
of each relation interpolating its prior and its posterior probability
conditioned by every single phrase in the query. We aggregate the
posterior of each phrase using a “noisy-OR” gate [21]:

score(Q,D) = β P(D |p1, ...,pQ) + (1 − β) P(D) (4)

where:
P(D |p1, ...,pQ) = 1 −

∏
p∈Q

(1 − P(D |p)) (5)

P(D |p) =
c(p,D)∑

l ∈L c(p,Dl)
(6)

A “noisy-OR” gate combines evidence differently from the stan-
dard PLM: a relation scores high if the query contains any of the
high frequency phrases associated with that relation. We call this
ranking approach Noisy OR in the experimental evaluation.

As λ for the standard model, β is a coefficient to control the
amount of smoothing. We set it experimentally to β = 0.8.

4.3 Ranking for Multiple Pairs

We now move on to the general form of the problem which applies
to a set of entity pairs ⟨s1,o1⟩, . . . , ⟨sn ,on⟩, e.g., coming from dif-
ferent rows of the same table, and in which we need to rank KG
relations in some aggregate form. We consider two ways of pro-
ducing an aggregate ranking. The first is a global approach where
we merge the results of the Web searches for each individual pair
into a single query, used to rank all KG relations, while the second
is a local aggregation approach, where we score KG relations by
merging the individual rankings obtained for each pair separately.

Global Aggregation. In this aggregation approach we build a
queryQ ′ containing all phrases in eachQi derived from entity pair
⟨si ,oi ⟩, with the appropriate phrase counts, and obtain a single
ranking using Eq. 1 or Eq. 4 to produce the final answer, depending
on the scoring model used.

Local Aggregation. In this approach we first rank all relations
for each of the entity pairs, and combine these rankings to score
the relations. Let ai = a(⟨si ,oi ⟩) be the ranking obtained for entity

5

pair ⟨si ,oi ⟩, computed according to Eq. 1 or Eq. 4 depending on the
scoring model:

a1 = a(⟨s1,o1⟩) = r
a1
1 , r

a1
2 , . . . , r

a1
k...

an = a(⟨sn ,on⟩) = r
an
1 , r

an
2 , . . . , r

an
j

The local aggregated score of a relation is its mean (inverse) rank
across all individual rankings:

aggscore(r) =
1
n

∑
ai

1
rank(r ,ai)

(7)

In this way, a relation that ranks high for a large number of pairs
will have a higher score and rank high for the set of entity pairs.

5 EXPERIMENTS

We now report on an experimental evaluation of the LM-based
relation ranking approach to show it does not suffer from the KG
incompleteness problem and, thus, can be a viable alternative to
Entity Linking (EL) approaches. To do that, we experiment first on
two corpora of facts involving pairs of in-KG entities, comprising
9 relations from the person domain (Tab. 1 shows the relations).
The first corpus, called LectorFacts, consists of facts known to
be missing from DBpedia and Freebase. The second corpus, called
KGFacts, comprises the same relations as LectorFacts, but with
facts that are present in both DBpedia and Freebase. With these
two corpora, we can simulate the scenarios where EL methods
should work (KGFacts) and the scenario where they would not
(LectorFacts). We thoroughly evaluate our system both with indi-
vidual pairs of entities (Sec. 5.2) and also with sets of pairs (Sec. 5.3)
as input, under a variety of scenarios. Then, to further illustrate
the KG incompleteness issue, we evaluate our approach on pairs of
columns from Wikipedia tables mixing in-KG and out-of-KG enti-
ties but for which a state-of-the-art EL method, T2K Match [24–26],
fails to identify the correct relations (Sec. 5.7).

For the experiments reported here, we trained our method was
to predict 500 different Freebase relations (recall Sec. 3.4) and used
Google for the Web search step.

Statistics about LectorFacts and KGFacts. To the best of
our knowledge, no previous benchmark for Web table understand-
ing considers the case where KG incompleteness prevents an EL
approach to predict a good relation even when all entities are in
the KG. Therefore, we rely on the only corpus of facts known to
be missing from mainstream and publicly available KGs [6]4, and
call it LectorFacts here. We restrict our evaluation to the 9 non-
ontological relations in the original corpus5, and use 50 facts (i.e.,
entity-pairs) from each relation. For the sake of comparison, we cre-
ated a similar benchmark, KGFacts, by randomly picking 50 entity
pairs from each of the relations in LectorFacts, among those pairs
that appear in both DBpedia and Freebase. In a sense, these two
benchmarks complement each other: facts from KGFacts concern
prominent pairs of entities and generate more hits on a Web search.
As shown in Tab. 1, on average, we are able to obtain twice as many

4Available at: http://downloads.dbpedia.org/2016-04/ext/lector_facts/
5people/person/nationality, people/person/religion and

people/person/ethnicity are ontological relations and thus ignored.

Relation
LectorFacts KGFacts

sent. phrase sent. phrase

ex. ap. ex. ap.

people/person/parents 39.5 2.8 4.9 93.5 8.6 16.6
people/person/education 22.3 1.3 2.2 113.3 8.6 16.8
sports/pro_athlete/teams 61.4 3.5 6.3 131.4 17.3 29.9
people/person/place_of_death 55.1 1.5 3.3 126.3 10.9 21.5
government/politician/party 37.7 1.6 2.5 102.8 11.0 21.9
people/person/place_of_birth 54.2 2.5 4.4 119.9 9.7 18.5
award/award_winner/awards_won 58.1 2.7 6.1 94.2 8.2 15.0
people/person/spouse 49.0 2.7 5.5 84.2 8.5 15.4
people/person/children 43.2 2.0 4.1 82.0 7.1 14.2

Mean 46.7 2.3 4.4 105.3 10.0 18.9

Table 1: Mean number of sentences retrieved from the Web

search and corresponding number of matching phrases ob-

tained with the exact and the approximate method. Each re-

lation consists of 50 entity pairs.

hits (the “sent.” column in the table) on that corpus compared to
LectorFacts. The two columns under “phrase” in the table show
the (average) number of relational phrases (i.e., the ones used to
build the LMs) thatmatch the sentences returned by theWeb search.
These phrases are used (as queries) to predict the relations in our
approach. We experiment with exact and approximate matching
of sentences and relational phrases. For clarity, all results reported
use exact matching, except those in Sec. 5.4.

5.1 Metrics

Given a set I = {⟨s1,o1⟩, . . . , ⟨sn ,on⟩} of subject-object entity pairs
we have only one correct answer (the pairs are labeled with a
single relation). In order to evaluate the ranking produced by the
system we use the reciprocal rank [16] that corresponds to the
multiplicative inverse of the rank of the correct relation. More
precisely, let a(I) = r1, . . . , rk be the response of a prediction for
the input pairs I in which relations are given in decreasing order
of relevance, and let truth(I) be the ground truth relation for I , the
reciprocalrank(a, I) is:

reciprocalrank(a, I) =
k∑
i=1

1(truth(I) = a[i])

i
(8)

where 1(·) is the indicator function (returns 1 if the condition ap-
pearing as its argument holds, 0 otherwise) and a[i] is the relation
in position i in the ranking. Note that the metric implicitly takes re-
call into account. Indeed if the system does not predict any ranking
or the correct relation is not present the reciprocal rank is 0. Finally,
we use the Mean Reciprocal Ranking (MRR) [16] to evaluate the
results of multiple input sets I = I1, ..., In :

MRR(I) =
1
|I |

∑
Ij ∈I

reciprocalrank(a, Ij) (9)

5.2 MRR on Individual Entity Pairs

Fig. 6 shows the MRR(I), per relation, obtained on predicting the
relation for each of the 50 pairs individually. As expected, relation
prediction on KGFacts is easier than on LectorFacts regardless

6

http://downloads.dbpedia.org/2016-04/ext/lector_facts/

LECTORFACTS KGFACTS

awards_won

children

education

parents

party

place_of_birth

place_of_death

spouse

teams

0.0 0.5 1.00.0 0.5 1.0
MRR

NoisyOR
PLM

Figure 6: MRR on individual entity pairs.

of the ranking model. Quantitatively speaking, Noisy OR was 20%
more effective than PLM on the KGFacts corpus (MRR of 0.64 and
0.53, respectively), and 31% more effective on LectorFacts (MRR
of 0.46 and 0.35, respectively). This can be explained by the larger
number of relational phrases that can be obtained with pairs of en-
tities in KGFacts (recall Tab. 1). Looking at the MRR results across
relations, one can see that some relations are harder to predict
than others. This is explained by the ambiguity of the phrases in
some language models. For example, “is the daughter of” is almost
exclusively used in people/person/parents. Similarly, descriptive
phrases like “won the” and “was awarded the” are strongly as-
sociated with award/award_winner/awards_won. Other relations are
expressed through generic phrases that can only be interpreted in
context, such as “leader of the”, “led the” or “left the” which appear
in the models of .../person/employment, .../politician/party or
.../pro_athlete/teams.

It should be noted that the difficulties of dealing with ambiguity
are more pronounced because the system evaluated here is config-
ured to predict 500 different relations from all Freebase domains.
Much better results are to be expected if one learns models for
domain-specific relations.

5.3 MRR on Multiple Pairs

Fig. 7 shows theMRR for each combination of: corpus (LectorFacts
and KGFacts), scoring model (Noisy OR and PLM), and method
for combining evidence (local aggregation and global query), when
considering multiple entity pairs. We vary the size of the input set
from 3 to 20 pairs, and each plot is the average of 10 different sam-
ples. We cap the size to 20 pairs as previous work has reported that
this is the average number of rows found in real Web Tables [26].
Several general observations are possible from the figure: (1) using
multiple pairs for relation ranking has a significant positive impact
on MRR; (2) aggregating pairwise rankings is more robust, regard-
less of scoring model; and (3) Noisy OR generally outperforms the
standard language model PLM. Next, we discuss these findings in
more detail.

More Entity Pairs is Better. Unsurprisingly, the more entity
pairs we use, the higher the MRR. To quantify this, the highest MRR

●

● ●

●

●

● ●

●

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

●● NoisyOR
PLM

(a) Local on LectorFacts

●
●

●

●

●
●

●

●

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

●● NoisyOR
PLM

(b) Local on KGFacts

●

●
●

●

●

●

●

●

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

●● NoisyOR
PLM

(c) Global on LectorFacts

● ●

●

●

●
●

●

●

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

●● NoisyOR
PLM

(d) Global on KGFacts

Figure 7: MRR on sets of entity pairs.

achieved with individual pairs was 0.64, obtained with the Noisy
OR on KGFacts. Testing the same model on the same corpus with
local aggregation, we achieve MRR of 0.84 using 3 pairs and 0.98
using 20 pairs, corresponding to improvements of 31% and 53%,
respectively. Looking at LectorFacts with Noisy OR and local
aggregation, even more pronounced gains are evident: 43% with 3
pairs and 89% with 20 pairs. The highest MRR are obtained with 20
entity pairs and the Noisy OR model: 0.98 on KGFacts with local
aggregation, and 0.91 on LectorFacts with global queries. We
conjecture on this discrepancy below. These results underscore the
high potential of our method for Web table understanding, where
predictions are made on multiple entity pairs, and not just one.

To see how multiple pairs help relation scoring, suppose the
input is a table with soccer players and the teams they played
for. If we are given just the pair ⟨"Luis Enrique","FC Barcelona"⟩,
we will not be able to discern whether .../pro_athlete/teams or
soccer/.../manager should rank higher as both relations apply to
that pair. However, if the input also contains another pair like
⟨"Neymar Jr.","Paris St Germain"⟩, we will be much more likely
to predict .../pro_athlete/teams. In other words, the ambiguity of
the input reduces with more pairs, as expected.

Local Aggregation is More Robust. When it comes to the lo-
cal aggregation of multiple pairwise predictions versus a single
prediction using a global query formed by grouping all sentences
from the Web searches, there seems to be a dependence on the
actual number of phrases that are used: with a small number of
phrases (e.g., as in LectorFacts), it is better to use the global ap-
proach while with many phrases it is much better to use the local
aggregation. Using the AUC of the plots in Fig. 7 as a proxy, we
can quantify this argument: for LectorFacts, the global approach
is superior by 4% (Fig. 7(a) and (c)) while for KGFacts the local
aggregation is better by 7% (Fig. 7(b) and (d)). As a matter of fact,
the global aggregation method gets worse on KGFacts as more

7

entity pairs are used. This happens because with more pairs there
are more (and more diverse) sentences, which leads to the global
query to lose focus. For example, looking at some entity pairs in re-
lation people/person/education we can find phrases such as “who
became president of”, “is the co founder of” or “played football at”
that are associated (sometimes very strongly) with many relations.
The problem is more evident with the Noisy OR model as it does
not take phrase frequency into account and thus does not have any
way of weighing importance of the phrases in the query. To verify
this hypothesis, we pruned all but the 5 most frequent phrases in
the queries used in Fig. 7(d), and scored these pruned queries with
Noisy OR, resulting in a 5% improvement.

Noisy OR is Better. A comparison of the AUC of the plots in
Fig. 7 reveals that scoring with Noisy OR is generally superior to
that with PLM. In quantitative terms, the relative improvements
can be as high as 24% (see Fig. 7(a)) and considering all the con-
figurations Noisy OR obtains a relative gains of 20% over PLM. In
conclusion, a Noisy OR scoring model is very robust if applied with
a local aggregation approach independently from the popularity of
the entities involved.

5.4 Matching Phrases Approximately

All results shown so far were obtained by exactly matching sen-
tences from theWeb search against relational phrases in the LMs (to
form the queries used for relation ranking). Because exact matching
leads to low hit counts (sometimes, even empty queries), we experi-
mented with alternative ways of approximately matching sentences
to relational phrases, settling for the scheme described in Sec. 4.1.
Fig. 8 shows that approximate matching (dashed line) generally
improves on exact matching (solid line). For clarity, we show the re-
sults with local aggregation only. In quantitative terms, comparing
the AUC of the plots, we observe the biggest improvement (19%)
for the PLM scoring. This improvement can be attributed to the
fact that approximate matching effectively doubles the number of
hits as shown in Tab. 1 (see the phrase columns).

It is worth noting that approximate matching closes the gap in
MRR between KGFacts and LectorFacts considerably. Compar-
ing the AUC between plots, the best setting for KGFacts (Noisy
OR with local aggregation and exact phrase matching) is only 6%
superior to the best setting for LectorFacts (Noisy OR with local
aggregation and approximate phrase matching).

5.5 Pruning LMs

While our concern in this work is effectiveness, we report on a brief
experiment on the natural trade-off between the LM sizes, inference
time and accuracy. Tab. 2 shows the MRR and the inference time
of the two models on samples of 20 pairs from LectorFacts for
different values of the minimum support (F in the table) required
for a phrase to be used in any language model6. Unsurprisingly,
increasing the minimum support leads to fewer and smaller models,
and, consequently: a drop in MRR, and a drop in inference time. For
the Noisy OR scoring model, however, the trade-off is quite favor-
able: with F =100 there is no drop in MRR while the inference time
is cut in half. This is easily explained by the power-law distribution

6For clarity, all other results reported here are on LMs with F =1.

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

approx
exact

(a) PLM on LectorFacts

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

approx
exact

(b) Noisy OR on LectorFacts

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

approx
exact

(c) PLM on KGFacts

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

0.4

0.6

0.8

1.0

3 5 10 20
Size (#pairs)

M
R

R

approx
exact

(d) Noisy OR on KGFacts

Figure 8: Approximate (dashed lines) versus exact (solid

lines) matching on multiple entity pairs with local aggrega-

tion.

F
PLM Noisy OR

MRR time (ms) MRR time (ms)

1 0.71 230.0 ±11.1 0.88 78.5 ±11.0
10 0.70 180.5 ± 3.5 0.87 78.1 ± 7.1
100 0.55 178.1 ± 4.6 0.88 44.1 ± 2.0
1000 0.14 167.4 ± 3.5 0.85 39.1 ± 1.3

Table 2: MRR and inference time versus minimum phrase

support (F).

of phrases in the ClueWeb09 corpus (Sec. 3.2) and the fact Noisy
OR relies on phrases that are strongly associated with a relation,
which inevitably ignores phrases with low support.

5.6 Towards Practical Tools

The observations in the experiments above indicate that the LM-
based relation ranking can perform well enough to be useful in
practice. Moreover, they indicate that a configuration of Noisy OR
with local aggregation and approximate sentence matching to be
very robust. One possible tuning would be to use the global query
approach if the number of sentences returned by the Web search is
below an application specific threshold.

5.7 Towards Web Table Understanding

We now report on a preliminary experiment to show that relation
prediction with LMs can be a viable alternative to Entity Linking
(EL) for Web Table Understanding. While EL methods fail on tables
with entity pairs from LectorFacts, even though they concern

8

EPG EPL ENG ENL APG APL ANG ANL

35 38 43 49 32 41 28 52

Table 3: Relations correctly predicted (out of 80) on Web

Table Understanding for different combinations of phrase

matching (A-approximate, E-exact), model (N-Noisy OR, P-

PLM) and aggregation approach (L-local, G-global).

in-KG entities, the issue is not artificially introduced by that bench-
mark. To show this, we collected actual Wikipedia tables containing
in-KG and out-of-KG entities and facts from different domains and
for which even the state-of-the-art EL method T2K Match [24–26]
fails. Since an independent benchmark for this task is lacking, we
manually extracted 80 pairs of columns from 65 different Wikipedia
tables, for which T2K Match was unable to assign a relation. These
pairs cover a range of topics and relations beyond LectorFacts,
including geography, sports, actors and directors of movies and TV
shows, among others.

The average number of entity pairs in this test was 31. The
average number of sentences retrieved by the Web search is 39. We
tested our method with these 80 pairs and manually evaluated the
results to determine if the predicted relations were appropriate. 7

We evaluate the results using precision@1 (1 if the first rela-
tion in the output ranking is correct, 0 otherwise) of each pair.
Tab. 3 shows the number of entity pairs for which the top ranked
relation was judged appropriate, for different configurations. The
best results (52 relations out of 80) are obtained with approximate
matching (A), using the Noisy OR score model (N) and locally ag-
gregating the multiple pairs (L), which is also the best configuration
on LectorFacts. Developing a proper benchmark for this task is
non-trivial and important future work for this area.

6 CONCLUSION

This paper studied the problem of predicting relations from a Knowl-
edge Graph that hold over relational data found on theWeb, such as
tables, structured lists, CSV/TSV files, among others. The methods
described here fill a gap left by text-based Information Extraction
tools and overcome the main obstacle of table understanding meth-
ods relying on linking entities to objects in the graph.

Our approach borrows from Information Retrieval and Infor-
mation Extraction work and uses generative language models to
represent the relations in a KG with relational phrases, extracted
from a Web-scale corpus of independently annotated text using the
state-of-the-art in Open Information Extraction to filter out noise.
Thus, relation prediction is done by ranking the respective models
based on how likely they are to generate the phrases on the Web
that connect the entities given as input. The paper evaluates differ-
ent approaches for model ranking and for aggregating evidence to
predict relations for a set of entity pairs. Further evaluations with
other standard ranking approaches are left for future work.

7All data used for this experiment, including the top-3 relations pro-
duced by each of our methods, can be found at https://ln.sync.com/dl/
b7e5a9f40#rfyp47tn-irz5dvhn-bwmn58kr-cetrhxmj

Finally, the paper reports on an experimental evaluation designed
to stress the issues caused by KG incompleteness, a limiting factor
of the most related previous work. The encouraging results indicate
the method overcome the KG incompleteness issue and that its
accuracy is high enough to suggest it can be successfully applied
on tasks such as KG construction and augmentation.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Natural Sci-
ences and Engineering Research Council of Canada. D. Barbosa was
a visiting researcher at the Max Planck Institute for Informatics,
Saarbrucken, Germany during the development of parts of this
work. The authors thank Y. A. Sekhavat, who contributed to our
preliminary work.

REFERENCES

[1] Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting Re-
lations from Large Plain-text Collections. In Proceedings of the Fifth
ACM Conference on Digital Libraries (DL ’00). ACM, 85–94.

[2] Krisztian Balog, Marc Bron, and Maarten De Rijke. 2011. Query Model-
ing for Entity Search Based on Terms, Categories, and Examples. ACM
Trans. Inf. Syst. 29, 4 (2011), 22:1–22:31.

[3] Danushka Tarupathi Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka.
2010. Relational Duality: Unsupervised Extraction of Semantic Rela-
tions Between Entities on the Web. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW 2010). ACM, 151–160.

[4] Marc Bron, Krisztian Balog, and Maarten de Rijke. 2013. Example
Based Entity Search in the Web of Data. In Proceedings of the 35th
European Conference on Advances in Information Retrieval (ECIR’13).
Springer-Verlag, 392–403.

[5] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu,
and Yang Zhang. 2008. WebTables: exploring the power of tables on
the web. PVLDB 1, 1 (2008), 538–549.

[6] Matteo Cannaviccio, Denilson Barbosa, and Paolo Merialdo. 2016. Ac-
curate Fact Harvesting from Natural Language Text in Wikipedia with
Lector. In Proceedings of the 19th International Workshop on Web and
Databases (WebDB ’16). ACM, 9:1–9:6.

[7] Filipe de Sá Mesquita, Jordan Schmidek, and Denilson Barbosa. 2013.
Effectiveness and Efficiency of Open Relation Extraction. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language
Processing. 447–457.

[8] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao,
Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang.
2014. Knowledge Vault: A Web-scale Approach to Probabilistic Knowl-
edge Fusion. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 601–610.

[9] Doug Downey, Stefan Schoenmackers, and Oren Etzioni. 2007. Sparse
Information Extraction: Unsupervised Language Models to the Rescue.
In ACL 2007, Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics.

[10] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and
Gerhard Weikum. 2009. Language-model-based Ranking for Queries
on RDF-graphs. In Proceedings of the 18th ACM Conference on Informa-
tion and Knowledge Management (CIKM ’09). ACM, 977–986.

[11] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005.
Incorporating non-local information into information extraction sys-
tems by Gibbs sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics (ACL’05). Association for
Computational Linguistics, 363–370.

9

https://ln.sync.com/dl/b7e5a9f40#rfyp47tn-irz5dvhn-bwmn58kr-cetrhxmj
https://ln.sync.com/dl/b7e5a9f40#rfyp47tn-irz5dvhn-bwmn58kr-cetrhxmj

[12] Yusra Ibrahim, Mirek Riedewald, and Gerhard Weikum. 2016. Making
Sense of Entities and Quantities in Web Tables. In Proceedings of the
25th ACM International on Conference on Information and Knowledge
Management (CIKM ’16). ACM, 1703–1712.

[13] Mandar Joshi, Uma Sawant, and Soumen Chakrabarti. 2014. Knowl-
edge Graph and Corpus Driven Segmentation and Answer Inference
for Telegraphic Entity-seeking Queries. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP
2014. 1104–1114.

[14] John Lafferty and Chengxiang Zhai. 2017. Document LanguageModels,
Query Models, and Risk Minimization for Information Retrieval. SIGIR
Forum 51, 2, 251–259.

[15] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Anno-
tating and Searching Web Tables Using Entities, Types and Relation-
ships. PVLDB 3, 1 (2010), 1338–1347.

[16] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
2008. Introduction to information retrieval. Cambridge University
Press.

[17] Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren
Etzioni. 2012. Open Language Learning for Information Extraction.
In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning. 523–534.

[18] Bonan Min, Ralph Grishman, Li Wan, ChangWang, and David Gondek.
2013. Distant Supervision for Relation Extraction with an Incomplete
Knowledge Base. In Human Language Technologies: Conference of the
North American Chapter of the Association of Computational Linguistics,
Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA. 777–782.

[19] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. 2014. Using linked
data to mine RDF from wikipedia’s tables. In Proceedings of the 7th
ACM international conference on Web search and data mining. ACM,
533–542.

[20] Ndapandula Nakashole, Gerhard Weikum, and Fabian M. Suchanek.
2012. PATTY: A Taxonomy of Relational Patterns with Semantic Types.
In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning. 1135–1145.

[21] Judea Pearl. 1989. Probabilistic reasoning in intelligent systems - net-
works of plausible inference. Morgan Kaufmann.

[22] JayM. Ponte andW. Bruce Croft. 1998. A LanguageModelingApproach
to Information Retrieval. In SIGIR ’98: Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. 275–281.

[23] Jeffrey Pound, Ihab F. Ilyas, and Grant E.Weddell. 2010. QUICK: Expres-
sive and Flexible Search over Knowledge Bases and Text Collections.
PVLDB 3, 2 (2010), 1573–1576.

[24] Dominique Ritze and Christian Bizer. 2017. Matching Web Tables To
DBpedia - A Feature Utility Study. In Proceedings of the 20th Interna-
tional Conference on Extending Database Technology, EDBT 2017, Venice,
Italy, March 21-24, 2017. 210–221.

[25] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. 2015. Match-
ing HTML Tables to DBpedia. In Proceedings of the 5th International
Conference onWeb Intelligence, Mining and Semantics (WIMS ’15). ACM,
Article 10, 10:1–10:6 pages.

[26] Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and Christian Bizer.
2016. Profiling the Potential of Web Tables for Augmenting Cross-
domain Knowledge Bases. In Proceedings of the 25th International Con-
ference on World Wide Web. 251–261.

[27] Yoones A. Sekhavat, Francesco Di Paolo, Denilson Barbosa, and Paolo
Merialdo. 2014. Knowledge Base Augmentation using Tabular Data.
In Proceedings of the Workshop on Linked Data on the Web co-located
with the 23rd International World Wide Web Conference (WWW 2014),
Seoul, Korea, April 8, 2014.

[28] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, War-
ren Shen, Fei Wu, Gengxin Miao, and Chung Wu. 2011. Recovering
Semantics of Tables on the Web. PVLDB 4, 9 (2011), 528–538.

[29] Chi Wang, Kaushik Chakrabarti, Tao Cheng, and Surajit Chaudhuri.
2012. Targeted Disambiguation of Ad-hoc, Homogeneous Sets of
Named Entities. In Proceedings of the 21st International Conference on
World Wide Web (WWW ’12). ACM, 719–728.

[30] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2014. Extending String
Similarity Join to Tolerant Fuzzy Token Matching. ACM Trans. Data-
base Syst. 39, 1, Article 7 (Jan. 2014), 7:1–7:45 pages.

[31] Yue Wang and Yeye He. 2017. Synthesizing mapping relationships
using table corpus. In Proceedings of the 2017 ACM International Con-
ference on Management of Data. ACM, 1117–1132.

[32] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul
Gupta, and Dekang Lin. 2014. Knowledge Base Completion via Search-
based Question Answering. In Proceedings of the 23rd International
Conference on World Wide Web (WWW ’14). ACM, 515–526.

[33] Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas
Usunier. 2013. Connecting Language and Knowledge Bases with Em-
bedding Models for Relation Extraction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. 1366–
1371.

[34] Mohamed Yahya, Denilson Barbosa, Klaus Berberich, Qiuyue Wang,
and Gerhard Weikum. 2016. Relationship Queries on Extended Knowl-
edge Graphs. In Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining (WSDM ’16). ACM, 605–614.

[35] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, Maya Ramanath,
Volker Tresp, and Gerhard Weikum. 2012. Natural Language Ques-
tions for the Web of Data. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL ’12). Association for
Computational Linguistics, 379–390.

[36] ChengXiang Zhai. 2008. Statistical Language Models for Information
Retrieval. Morgan & Claypool Publishers.

[37] Ziqi Zhang. 2014. Towards Efficient and Effective Semantic Table
Interpretation. In Proceedings of the 13th International Semantic Web
Conference - Part I (ISWC ’14). Springer-Verlag NewYork, Inc., 487–502.

10

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Overview of Our Approach

	2 Related Work
	3 Building Language Models
	3.1 Filtering Phrases
	3.2 Phrase Statistics
	3.3 Specializing LMs Based on Type
	3.4 Model Statistics

	4 Relation Ranking
	4.1 Gathering Evidence from the Web
	4.2 Ranking for Individual Entity Pairs
	4.3 Ranking for Multiple Pairs

	5 Experiments
	5.1 Metrics
	5.2 MRR on Individual Entity Pairs
	5.3 MRR on Multiple Pairs
	5.4 Matching Phrases Approximately
	5.5 Pruning LMs
	5.6 Towards Practical Tools
	5.7 Towards Web Table Understanding

	6 Conclusion
	Acknowledgments
	References

