Image statistics and Texture modeling Dana Cobzas

[Srivastana, Simoncelli, Zhu – on the advances in statistical modelling of natural images IMIV 2003]

[Huang, Mumford – Statistics of Natural Images and Models, CVPR 1999]

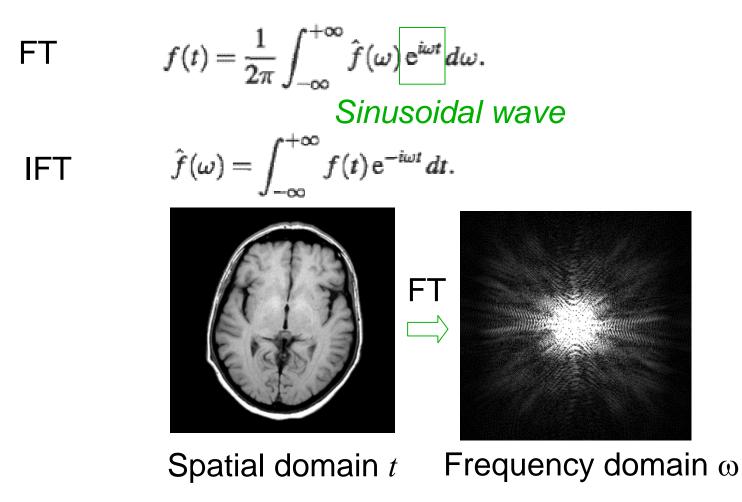
[Mallat – a wavelet tour of signal processing, 1999]

Overview

- Spectral analysis
 - Fourier transform
 - Windowed Fourier Transform, Gabor filters
 - Structure tensor
- Connection to simple cells in primary visual cortex
- Image statistics
- Statistical models in image space
- Paper

Fourier transform

Linear operator that decomposes a function into a continuos spectrum of frequency components



Filtering in frequency domain

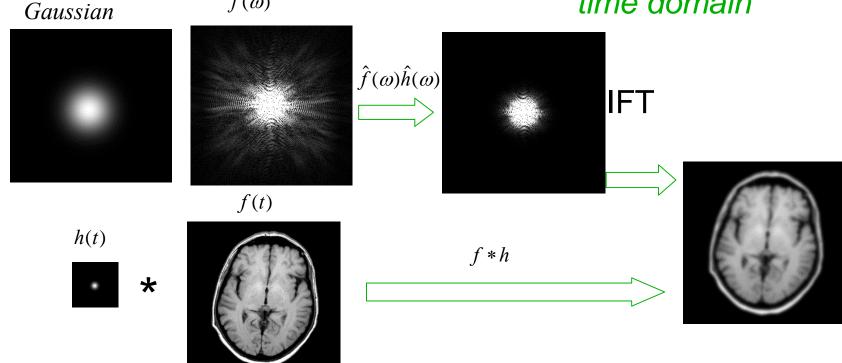
Linear time invariant operator

 $\hat{f}(\omega)$

 $\hat{h}(\omega)$

$$Lf(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\omega) \,\hat{h}(\omega) \,\mathrm{e}^{i\omega t} \,d\omega.$$

- localized in frequency <u>but not in</u> <u>space</u>
- $e^{i\omega t}$ covers the whole time domain



Windowed Fourier Transform

Gabor atoms

- time-frequency atoms that have a minimal spread in timefrequency plane
- Translation in time and frequency of a time window g

$$g_{u,\xi}(t)=g(t-u)e^{i\xi t}.$$

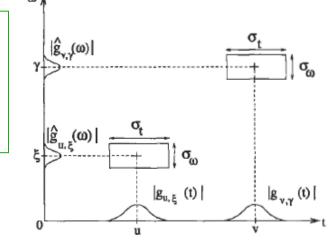
concentrate energy in thespatial neighborhood u

• frequency neighborhood of ξ

$$\hat{g}_{u,\xi}(\omega) = \hat{g}(\omega - \xi) e^{-iu(\omega - \xi)}.$$
• frequent
WFT
$$Sf(u,\xi) = \int_{-\infty}^{+\infty} f(t) g_{u,\xi}^*(t) dt = \int_{-\infty}^{+\infty} f(t) g(t - u) e^{-i\xi t} dt$$

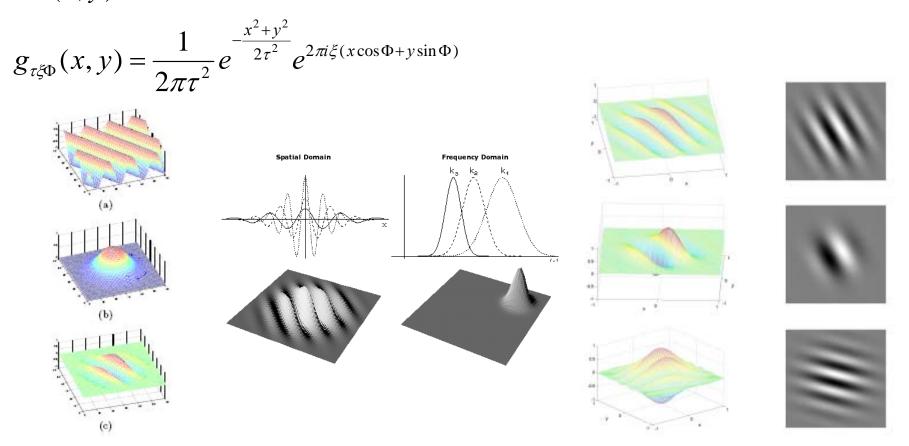
$$Sf(u,\xi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\omega) \hat{g}_{u,\xi}^*(\omega) d\omega.$$

Time invariant filter $Lf(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\omega) \hat{h}(\omega) e^{i\omega t} d\omega.$



Gabor filters

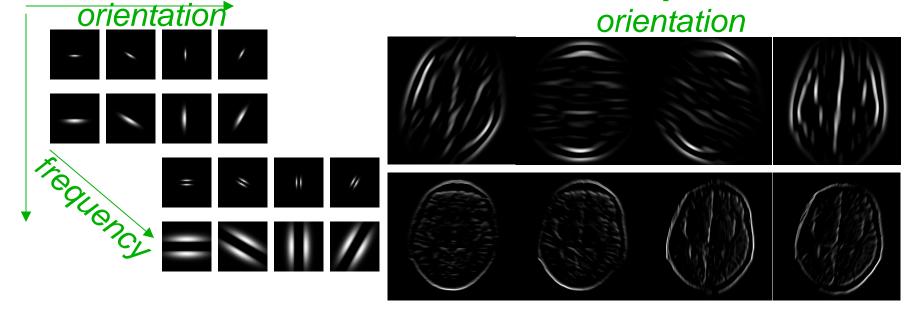
g =Gaussian modulated with Gabor atom: $g_{u,\xi}(t) = g(t-u)e^{i\xi t}$. an oriented sin wave t = (x, y)

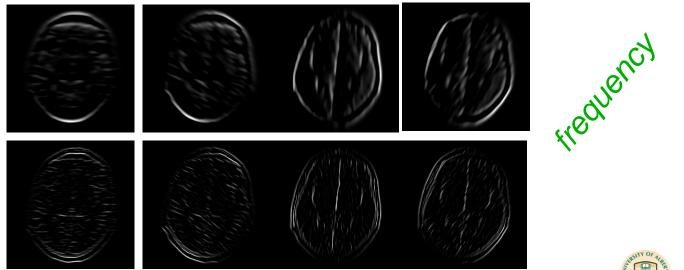


Gabor filter formation

Examples of Gabor filters

Gabor filters examples



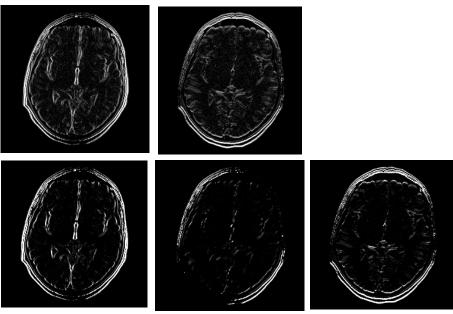


scale

Structure tensor

Image gradient ∇I

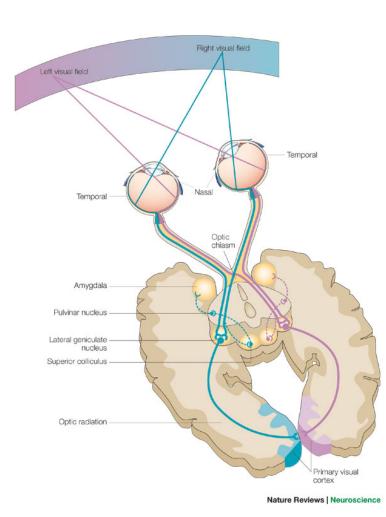
Structure tensor



Smoothed tensor
$$G_{\tau} * (\nabla I \nabla I^T) = \begin{pmatrix} G_{\tau} * I_x^2 & G_{\tau} * I_x I_y \\ G_{\tau} * I_y I_x & G_{\tau} * I_y^2 \end{pmatrix}$$

- Semi-definite matrix
- *dominant orietation = corresponding to biggest eigenvalue*
- magnitude trace
- homogeneity of orientation = smallest / biggest eigenvalue
- no scale ! based on linear diffusion (Total Variation flow)

Motivation for use of Gabor filters



- Simple cells in the primary visual cortex have receptive fields (RFs) which are restricted to small regions of space and highly structured [Marcelja 1980, Jones & Palmer 1987].
- Recent examinations, among others the one by [Jones & Palmer 1987] showed that the response behavior of simple cells of cats corresponds to local measurements of frequencies.

resample Gabor filters

Statistics on natural images

Statistics of filter responses on natural images

Scale invariance

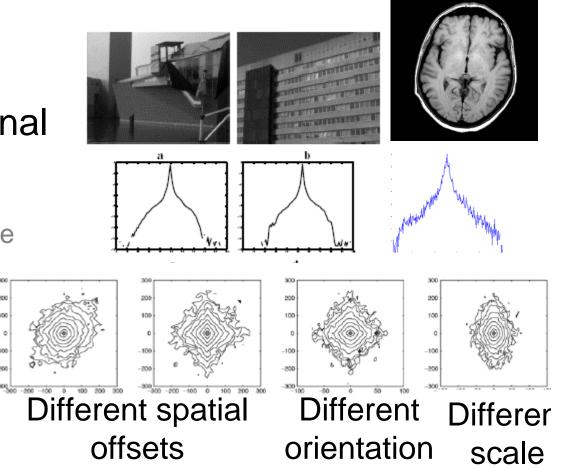
marginal distribution of stats remain unchanged

 Non-Gaussian marginal statistics

large correlations across scale

 Non-Gaussian joint statistics

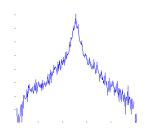
dependencies across scale, orientation, position



Models for images

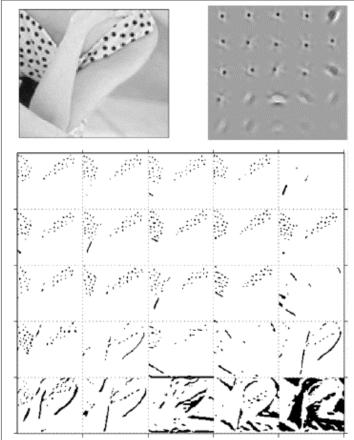
- 1. Statistical models in image space

 - Analytical densities of filter responses
 - Generalized Laplacian
 - Student-t distribution
 - [...]



Models for images

- 2. Image manifolds : define a lower dimensional manifold in the space of NxM matrices
- Linear local subspaces
 - PCA stats. of projected coef.
 - ICA minimize correlation
 - Local linear embedding
 - Texons higher local structures



[Texons- Malick IJCV 2001]

Models for images

3. Database of example pathes :



