
THÈSE
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Abstract

During the past few years, the use of the theory of partial differential equations

has provided a solid formal approach to image processing and analysis research, and

has yielded provably well-posed algorithms within a set of clearly defined hypotheses.

These algorithms are the state-of-the-art in a large number of application fields such

as image de-noising, segmentation and matching. At the same time, the combination

of stochastic and variational approaches has led to powerful algorithms which may

also be described in terms of partial differential equations. This is the approach fol-

lowed in the present work, which studies the problem of dense matching between two

images using statistical dissimilarity criteria. Two classes of algorithms are consid-

ered, corresponding to these criteria being calculated globally for the entire image, or

locally within corresponding regions. In each case, three dissimilarity criteria are stud-

ied, defined as the opposite of the following similarity measures: mutual information

(well adapted to a general statistical dependence between the grey-level intensities),

correlation ratio (adapted to a functional dependence), and cross correlation (adapted

to an affine dependence). The minimization of the sum of the dissimilarity term and

a regularization term defines, through the associated Euler-Lagrange equations, a set

of coupled functional evolution equations. Particular emphasis is put in establishing

the conditions under which these evolution equations are well posed, i.e. they have a

unique solution. It is shown that the proposed algorithms satisfy these conditions for

two classes of linear regularization terms, including one which encourages discontinu-

ities of the solution at the contours of the reference image. The discretization and the

numerical implementation of the matching algorithms is discussed in detail and their

performance is illustrated through several real and synthetic examples, both with 2D

and 3D images. As these examples show, the described algorithms are of interest in

applications which do not necessarily involve sensors of multiple modalities. They are

also of special interest to the medical imaging community, where data fusion between

different imaging sensors often requires correcting for nonlinear distortions.





Resuḿe

Depuis quelques années, l’utilisation deśequations aux d́erivées partielles a pourvu

la recherche en traitement d’images d’une approche formelle solide, et a aboutià des

algorithmes dont on peut montrer le caractère bien pośe, étant donńe un ensemble

d’hypoth̀eses clairement définies. Ces algorithmes forment l’état de l’art dans beau-

coup de domaines d’application tels que le débruitage, la segmentation et la mise en

correspondance. En parallèle à ceci, des approches combinant des principes varia-

tionnels et stochastiques ont amené à de puissants algorithmes qui peuvent aussiêtre

décrits en termes d’équations aux d́erivées partielles. C’est l’approche suivi dans ce

travail, òu estétudíe le probl̀eme de mise en correspondance dense entre deux images,

en utilisant des crit̀eres statistiques de dissemblance. Deux classes d’algorithmes sont

consid́eŕees, selon que ces critères soient calculés globalement pour toute l’image, ou

localement entre des régions correspondantes. Dans chaque cas, trois critères de dis-

semblance sont́etudíes, d́efinis comme l’oppośe des crit̀eres de ressemblance suivants:

information mutuelle (bien adaptée à une d́ependance statistique très ǵeńerale entre

les niveaux de gris), rapport de corrélation (adapt́e à une d́ependance fonctionnelle), et

corŕelation croiśee (adapt́eeà une d́ependance affine). La minimisation de la somme

du terme de dissemblance et un terme de régularisation d́efinit, à travers leśequations

d’Euler-Lagrange, un système d’́equations fonctionnelles d’évolution. Nouśetudions

les conditions sous lesquelles ceséquations d’́evolution sont bien posées, c’est-̀a-dire

ont une solution unique et montrons que les algorithmes proposés satisfont ces condi-

tions pour deux classes d’opérateurs lińeaires ŕegularisants, dont une est conue pour

encourager des variations rapides de la solution le long des contours de l’image de

référence. La performance de ces algorithmes est illustréeà travers plusieurs exem-

ples synth́etiques et ŕeels, aussi bien sur des images 2D que 3D. Comme le montrent

ces exemples, les algorithmes décrits sont applicables̀a des probl̀emes qui ne font

pas ńecessairement intervenir des capteurs de modalités diff́erentes. Ils sont aussi

sṕecialement int́eressants pour la communauté de l’imagerie ḿedicale, òu le probl̀eme

de fusionner des données provenant de différentes modalités d’imagerie ńecessite sou-

vent de corriger des distorsions non-linéaires.
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Introduction

Cette th̀ese porte sur le problème de la mise en correspondance dense entre deux

images, et en particulier lorsqu’une comparaison directe des intensités s’av̀ere im-

possible. Ŕesoudre automatiquement ce problème est unéetape fondamentale dans

l’exploitation et l’étude du contenu des images. Par exemple, c’est un pré-requis

essentiel dans plusieurs problèmes de vision par ordinateur tels que l’étalonage de

caḿeras et la reconstruction 3D̀a partir de (au moins) deux vues d’une scène. Le

probl̀eme peut̂etre vu ǵeńeriquement comme celui de la fusion de données, c’est-̀a-dire

celui de la mise en correspondance d’informations provenant de plusieures sources.

Quand les sources sont d’une nature complémentaire, elles partagent par définition

très peu d’information comune, et il s’avère donc difficile de fusioner leur sorties re-

spectives. Ceci est un problème tr̀es courant dans l’analyse des images médicales,

où l’on est souvent confronté à des multiples modalités d’imagerie (Tomographie par

rayons X, Ŕesonance Magnetique Nucléaire, Emission de Positrons, etc.). Dans ce

contexte, le problème est souvent appellé recalage multimodal. D’autres situations où

une comparison directe des intensités devient inutile apparaissent en vision par ordi-

nateur. Ainsi, mettre en correspondence des structures similaires sous des conditions

d’illumination variantes ou lorsque les objets ont des propriét́es de ŕeflectance ou de

diffusion différents (alb́edos diff́erents) sont deux exemples ou les méthodes de re-

calage multimodal peuventégalement s’appliquer.

Nous proposons une approche variationnelle pour le recalage multimodal non-

rigide. Les techniques décrites reposent sur le calcul de mesures statistiques de dissem-

blence entre les intensités de ŕegions correspondantes. Deux familles d’algorithmes

sont consid́eŕees, correspondant au calul global ou local de ces critères. L’approche

suivie est celle d’une modélisation continue du problème et le calul de la première

variation des crit̀eres statistiques. L’existence et l’unicité d’une solution aux flots de

minimisation est d́emontŕee pour les trois critèresétudíes (dans leur version locale et

globale) ainsi que pour deux familles d’opérateurs diff́erentiels de ŕegularisation.

Plan du manuscrit

Le document est diviśe en trois parties. La première partie (chapitres 1̀a 3) est

consacŕee à la description des concepts essentiels mis en jeu dans l’appariement de

deux images en utilisant des critères statistiques de dissemblance, et donne une vue

d’ensemble de l’approche proposée. Les conditions ńecessaires̀a l’exsistence et

unicité de la solution du problème de minimisation sont́etablies et deux oṕerateurs

de ŕegularisation sont́etudíes en montrant qu’ils satisfont les propriét́es requises. La

seule partie des algorithmes qui n’est pas traitée est celle qui concerne le terme de mise

en correspondance, issue du critère de dissemblance. C’est là l’objet de la deuxìeme

partie (chapitres 4̀a 6), qui étudie en d́etail ce terme deśequations fonctionnelles,
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en calculant tout d’abord la première variation des six critères de dissemblance et en

établissant ensuite leurs bonnes propriét́es pour le caractère bien pośe du processus

de minimisation. Finalement, la troisième partie (chapitres 7̀a 9) d́ecrit en d́etail

la discŕetisation et l’impĺementation nuḿerique des algorithmes qui résultent de ces

équations, et présente des résultats exṕerimentaux avec des déformations synth́etiques

et ŕeelles, mettant en jeu des images 2D ou 3D. Un résuḿe de chaque chapitre est

donńe à continuation.

PARTIE I: Un Probl̀eme Ǵeńerique de Mise en Correspondance Dense

CHAPITRE 1

Ce chapitre introduit les concepts de base mis en jeu dans la mise en correspondance

de deux images. Il commence par une introduction de la théorie de l’espace d’échelle

(scale-space) et donne la définition d’image adopt́ee dans la suite. Il continue en

définissant le problème de mise en correspondance en fonction du type de transforma-

tion recherch́ee et d́ecrit ensuite les critères statistiques de ressemblance en géńeral. Il

termine en d́ecrivant le formalisme du calcul de variations et résume l’approche suivie

dans cette th̀ese en donnant la forme géńerale deśequations d’́evolution qui gouvernent

le processus de minimisation.

CHAPITRE 2

Ce chapitre est consacré à l’étude du probl̀eme de minimisation introduit au chapitre 1,

dans le cadre abstrait de l’analyse fonctionnelle. L’existence et l’unicité de plusieurs

types (faible, forte, classique) de solutions au problème d’́evolution est d́emontŕee en

supposant un terme de mise en correspondance Lipschitz-continu et des opérateurs de

régularisation ǵeńerant des semi-groupes (continus, analytiques) de contractions.

CHAPITRE 3

Ce chapitréetudie la partie ŕegularisation des algorithmes de mise en correspondance.

Deux familles diff́erentes d’oṕerateurs lińeaires sont considéŕees, dont une conçue

pour encourager les discontinuités du champ de déplacement le long des contours

de l’image de ŕeférence. Il est montré que ces oṕerateurs ǵeǹerent des semi-groupes

uniformément continus et analytiques de contractions et satisfont donc les conditions

nécessaireśetablies au chapitre 2. Après une discussion sur les espaces fonctionnels

consid́eŕes, des preuves géńerales d’existence de fonctions minimisantes pour les

fonctionnelles d’́energie propośees sont d́ecrites.
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PARTIE II: Étude des Mesures Statistiques de Similarité

CHAPITRE 4

Ce chapitre introduit les deux classes de termes de dissemblance considéŕees, ap-

peĺees globales et locales. Leur définition est donńee en termes d’estimations non-

param̀etriques de la densité jointe des intensités à partir soit des images dans leur

ensemble (globales) soit de régions correspondantes autour de chaque point (locales).

Dans chaque cas, trois mesures de similarité sont d́efinies: corŕelation croiśee, rapport

de corŕelation et information mutuelle.

CHAPITRE 5

Dans ce chapitre, leśequations d’Euler-Lagrange associées sont d́erivées pour les six

mesures de dissemblance.Étant donńee la forme complexe de ces fonctionnelles, un

calcul explicite de leur d́erivée de Ĝateaux est ńecessaire pour le calcul deséquations

d’Euler-Lagrange.

CHAPITRE 6

Ce chapitre est consacré à montrer que les gradients calculés au chapitre 5 d́efinissent

des fonctions satisfaisant les conditions de continuité ńecessaires̀a l’existence et

unicité de la solution du problème de minimisation, telles qu’elles sontétablies au

chapitre 2.

PARTIE III: Aspects Nuḿeriques

CHAPITRE 7

Ce chapitre d́ecrit les sch́emas nuḿeriques utiliśes pour discŕetiser leséquations

d’évolution continues, ainsi que pour l’interpolation des images et leurs gradi-

ents. Des sch́emas en temps explicites et implicites sont considéŕes. Le sch́ema

d’implémentation de l’estimation de densité baśe sur du filtrage ŕecursif est d́ecrit en

détail.

CHAPITRE 8

Ce chapitréetudie l’estimation des différents param̀etres des alogrithmes, et en partic-

ulier du param̀etre de lissage dans l’estimation de la densité jointe d’intensit́es.
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CHAPITRE 9

Ce chapitre pŕesente des résultats exṕerimentaux pour tous les algorithmes décrits en

utilisant des donńees aussi bien synthétiques que ŕeelles. Les exemples incluent des

images 2D pour des applications en vision par ordinateur, et des images 3D provenant

de différentes modalités d’imagerie ḿedicale.

Conclusion

Dans cette th̀ese, nouśetudions le probl̀eme de mise en correspondance dense en-

tre deux images, en utilisant des critères statistiques de dissemblance. Deux classes

d’algorithmes sont considéŕees, selon que ces critères soient calculés globalement

pour toute l’image, ou localement entre des régions correspondantes. Dans chaque

cas, trois crit̀eres de dissemblance sontétudíes, d́efinis comme l’oppośe des crit̀eres de

ressemblance suivants: information mutuelle (bien adaptéeà une d́ependance statis-

tique tr̀es ǵeńerale entre les niveaux de gris), rapport de corrélation (adapt́e à une

dépendance fonctionnelle), et corrélation croiśee (adapt́eeà une d́ependance affine).

La minimisation de la somme du terme de dissemblance et un terme de régularisation

définit, à travers leśequations d’Euler-Lagrange, un système d’́equations fonction-

nelles d’́evolution. Nousétudions les conditions sous lesquelles ceséquations

d’évolution sont bien posées, c’est̀a dire ont une solution unique et montrons que les

algorithmes propośes satisfont ces conditions pour deux classes d’opérateurs lińeaires

régularisants, dont une est conçue pour encourager des variations rapides de la solution

le long des contours de l’image de référence. La performance de ces algorithmes est

illustréeà travers plusieurs exemples synthétiques et ŕeels, aussi bien sur des images

2D que 3D. Comme le montrent ces exemples, les algorithmes décrits sont applicables

à des probl̀emes qui ne font pas nécessairement intervenir des capteurs de modalités

diff érentes. Ils sont aussi spécialement int́eressants pour la communauté de l’imagerie

médicale, òu le probl̀eme de fusionner des données provenant de différentes modalités

d’imagerie ńecessite souvent de corriger des distorsions non-linéaires.
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Introduction

The present thesis deals with a specific problem in the field of image analysis, namely

image matching. Loosely speaking, the problem is that of establishing correspon-

dences between points in two different images. Solving this problem is a fundamental

prerequisite in understanding and exploiting the contents of images. For instance, it

is essential in middle-level computer vision tasks such as camera calibration and 3D

reconstruction from two or more views. The problem may be viewed in a generic

fashion as that of data fusion, i.e. that of putting in correspondence information from

several sources. When the sources are of a complementary nature, they share by def-

inition little or no common information, and therefore fusing their outputs becomes

particularly difficult. This is a common problem in medical imaging, where several

modalities are widely used (Xray Tomography, Magnetic Resonance Imaging (MRI),

functional MRI (fMRI), Positron Emission Tomography, etc.). In this context, the

problem is calledmultimodalimage matching. Other situations in which a comparison

of the source outputs becomes difficult are matching under varying illumination con-

ditions, or images produced by physical objects with different responses to the same

illumination (e.g. different albedos). A possible approach to the solution of this prob-

lem is to define meaningful structures in the image, invariant under transformations of

the grey-level intensities, for example edges, corners, etc, and then design low-level

methods to extract them from the image. Methods to match these structures can then

be devised.

This thesis proposes a variational framework for dense multimodal matching.

Rather than working with extracted features, the described techniques rely on the com-

putation of statistical dissimilarity measures between the intensities of corresponding

regions. The approach which is followed is that of a continuous modeling of the prob-

lem, based on the theory of the calculus of variations and partial differential equations

(PDEs). This formalism has proved very fruitful in image processing and analysis

through its application in image de-noising, segmentation, and matching, mainly be-

cause it de-emphasizes the role of discretization and allows to take profit of many

results from these mathematical disciplines. The proposed algorithms are divided into

two families, corresponding respectively to global and local statistical dissimilarity cri-

teria. The well posedness of the proposed algorithms is proved by showing existence

and uniqueness of the solution to the evolution equations that describe the maximiza-



24 Introduction

tion of the similarity criteria.

Contributions

This section aims at situating the present work in its context with respect to existing

methods, so that a clear appreciation of its contributions and limits may be established.

The amount of literature on the subject of image matching is very large. A good survey

in the computer vision domain is provided by Mitiche and Boutemy [59]. Barron, et al.

give a performance evaluation of some popular optical flow algorithms in [13]. In the

domain of medical image registration, a good and recent survey is provided by Maintz

and Viergever [9].

At a conceptual level, most of the existing methods for the recovery of motion

rely on the minimization of an energy which encompasses two sources of a priori

knowledge: (a) what should a good matching satisfy and (b) a model of the transfor-

mation or some other constraint allowing to limit the search for possible matches.

As for the first point we can mention the optical flow constraint, the local image

differences, or more general block matching strategies [79, 66], which allow to use

richer, non-local similarity measures (cross-correlation [35, 36, 21, 64], mutual infor-

mation [87, 93, 88, 52], correlation-ratio [76], among several others [94, 43, 70, 50]).

As for the second point, we can find for instance the search for low-dimensional

transformations (e.g. affine, quadratic, or spline-interpolation between a set of con-

trol points [57, 78]). Another example of a constrained deformation is the stereo case,

in which the knowledge of the fundamental matrix allows to restrict the search for

the matching point along the epipolar line [3, 95]. If the searched transformation is

a more general function (i.e. not described by parameters), the constraint may consist

in requiring some smoothness of the displacement field, possibly preserving discon-

tinuities [81, 3, 72, 6, 55, 56, 11, 10, 32]. Statistical similarity measures have been

widely used in the context of image registration through their maximization over a set

of low parametric transformations [9]. Mutual information was introduced by Viola

et al. [87, 93, 88] and independently by Maes et al. [52]. The correlation ratio was

first proposed as a similarity measure for image matching by Roche et al. [76]. Other

statistical approaches rely on learning the joint distribution of intensities, as done for

instance by Leventon et al. [50]. Extensions to more complex (non-rigid) transforma-

tions using statistical similarity measures include approaches relying on more complex

parametric transformations [57, 78], block-matching strategies [53, 41, 37], or para-

metric intensity corrections [74]. Some recent approaches rely on the computation of

the gradient of the local cross correlation [21, 64].

Concerning the regularization of dense displacement fields, we distinguish the

approaches based on explicit smoothing of the field, as in Thirion’s deamons algo-

rithm [81] (we refer to [69] for a variational interpretation of this algorithm), from
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those considering an additive term in the global energy, yielding (possibly anisotropic)

diffusion terms [12, 91]. For a comparison of these two approaches, we refer to the

work of Cachier and Ayache [19, 20].

Typically, differential methods are valid only for small displacements and special

techniques are required in order to recover large deformations. For instance Alvarez et

al. [6] use a scale-space focusing strategy. Christensen et al. [25] adopt a different ap-

proach. They look for a continuously invertible mapping which is obtained by the com-

position of small displacements. Each small displacement is calculated as the solution

of an elliptic PDE describing the non-linear kinematics of fluid-elastic materials un-

der deforming forces given by the matching term (in their case the image-differences).

Trouvé [84] has generalized this approach using Lie group ideas on diffeomorphisms.

Under a similar formalism, a very general framework which also allows for changes

in the intensity values is proposed by Miller and Younes [58].

In this thesis, we focus on the study of a family of functional equations resulting

from the minimization of global and local statistical dissimilarity measures. The em-

phasis is put on to the computation of the first variation of these criteria and on the

study of the properties of their gradient operators which are important to establish the

well posedness of the minimization flows.

Concerning smoothness of the solution, we consider an energy functional com-

posed of the sum of a matching and a regularization term and restrict our study to

regularization terms yielding linear operators. We obtain a large family of matching

algorithms, each one implying different a priori knowledge about the smoothness of

the deformation and the relation between image intensities. We prove that all these

problems have a global solution and that the functional equations governing the min-

imization are well posed in the sense of Hadamard. Interesting generalizations of

these results may be obtained for more complex regularization schemes. In this re-

spect we refer to the work of Weickert and Schnörr [91], Trouv́e [84] and Miller and

Younes [58]. The main contributions of our work are listed below.

• We propose a unifying framework for a family of variational problems for multi-

modal image matching. This framework subsumes block matching algorithmic

approaches as well as techniques for non-rigid matching based on the global

estimation of the intensity relations.

• We formally compute the gradient of local and global statistical dissimilarity

measures, which is an essential step in defining and studying the well posedness

of their minimization. Contrary to more standard matching terms like intensity

differences or the optical flow constraint, these matching terms are non-local,

which makes the standard method of the calculus of variations inapplicable.

• We show that the operators defined by the gradients of these criteria satisfy some

Lipschitz-continuity conditions which are required for the well posedness of the
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associated matching flows.

Document Layout

This manuscript is divided in three parts. Part I (chapters 1 to 3) is devoted to the

description of the basic concepts involved in matching two images using statistical

dissimilarity measures and provides an overview of the proposed approach. The

conditions for the existence and uniqueness of a solution to the minimization problem

are established and two regularization operators are studied by showing that they

satisfy the required properties. The only part of the algorithms that is not treated is

the study of the matching term, coming from the dissimilarity measure. This is the

object of part II (chapters 4 to 6), which studies this term of the functional equations

in detail, computing the first variation of the six dissimilarity criteria and establishing

their good properties in the sense of the well posedness of the minimization process.

Finally, part III (chapters 7 to 9) describes in detail the numerical implementation

of the resulting algorithms, and presents several experimental results with real and

synthetic deformations, involving both 2D and 3D images. In the following, a detailed

summary of each chapter is given.

PART I: The Generic Image Matching Problem

CHAPTER 1

This chapter gives an overview of the type of algorithms studied in the thesis. After

providing the formal definition of an image adopted in the sequel, the general matching

problem is defined. The chapter continues with a discussion of the statistical similarity

criteria and their intuitive behavior. It ends by describing the general framework of the

calculus of variations and summarizes the approach followed in the thesis by giving

the general form of the functional equations which describe the minimization flows.

CHAPTER 2

This chapter is devoted to the study of the minimization problem introduced in chap-

ter 1, within the abstract framework of functional analysis. The chapter starts with

a discussion of the functional spaces considered. Then the existence and uniqueness

of several kinds of solutions (weak, strong, classical) to the generic evolution prob-

lem is shown assuming Lipschitz-continuity of the matching term and regularization

operators generating certain types of contraction semigroups of operators (uniformly

continuous, analytical).
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CHAPTER 3

This chapter studies the regularization part of the algorithms. Two different families

of linear operators are considered, including one which is designed to encourage

discontinuities of the displacement field along the edges of the reference image. It

is shown that these operators generate uniformly continuous, as well as analytical

semigroups of contractions and therefore satisfy the required conditions established in

chapter 2.

PART II: Study of Statistical Similarity Measures

CHAPTER 4

This chapter introduces the two classes of matching terms considered, which are called

local and global. Their definition is given in terms of non-parametric Parzen-window

estimates of the joint intensity distribution from either the whole image or correspond-

ing regions around each pixel (voxel). In each case, three similarity measures are

defined: cross-correlation, correlation ratio and mutual information. Existence of min-

imizers for the energy functional obtained is then shown.

CHAPTER 5

In this chapter, the Euler-Lagrange equations are derived for the six dissimilarity mea-

sures. Due to the non-standard form of these functionals, an explicit computation of

their Gateaux-derivative is necessary.

CHAPTER 6

This chapter is devoted to showing that the gradients of the statistical criteria com-

puted in chapter 5 satisfy the Lipschitz-continuity conditions established in chapter 2,

necessary to assert the well-posedness of the evolution equations.

PART III: Implementation Aspects

CHAPTER 7

This chapter describes the numerical schemes employed in implementing the continu-

ous evolution equations, as well as for interpolating image and gradient values.
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CHAPTER 8

This chapter discusses the way in which the different parameters of the algorithms are

determined, particularly the smoothing parameter for the Parzen window estimates.

CHAPTER 9

This chapter presents experimental results for all the described algorithms using both

real and synthetic data. Examples include 2D images for applications in computer

vision and 3D images concerning different medical image modalities.



Part I

A Generic Image Matching
Problem





Chapter 1

Overview

This chapter gives an overview of the type of algorithms studied in the thesis. After

providing the formal definition of an image adopted in the sequel, the general matching

problem is defined. The chapter continues with a discussion of the statistical similarity

criteria and their intuitive behavior. It ends by describing the general framework of the

calculus of variations and summarizes the approach followed in the thesis by giving

the general form of the functional equations which describe the minimization flows.

1.1 Definition of Images

Physically, an image is a set of measurements obtained by integration of some density

field, for example irradiance or water concentration, over a finite area (pixel) or volume

(voxel). Sometimes images are vector valued, as color images for example. We shall

restrict ourselves to scalar images. In a computer, an image appears as a set of scalar

values ordered in a two or three-dimensional array. The grey-value obtained involves a

neighborhood of a point, and the idea of resolution, or scale, is captured by modeling

the physical field as a tempered distribution. In practice, this amounts to defining

image derivatives by convolution with the derivative of an appropriate kernel. We will

view images as functions defined over a two or three dimensional manifold, usually

a bounded domainΩ of Rn (n = 2, 3) with smooth boundary∂Ω. The range of an

image will be considered to be the interval[0,A].

1.2 Image Matching

In many applications, one needs to integrate information coming from different types

of sensors, compare data acquired at different times, or put similar structures of two

different images into correspondence. These tasks are known respectively as data fu-
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sion, image registration and template matching, and they are all based upon the ability

to automatically map points between the respective domains of the images. Addition-

ally, computing the optical flow, reconstructing a 3D scene from (at least) two views,

tracking a “feature” or a region in a video sequence and calibrating a camera, also

require the ability to establish point correspondences between two images.

(a) Black and white photography (b) Magnetic resonance angiography

(c) T1-weighted magnetic resonance (d) Functional magnetic resonance

Figure 1.1: Examples of different image modalities

The problem can be formulated as follows. Given two sets of points on a manifold

(for instanceRn), we want to be able to automatically put them into correspondence,

say by finding a functionφ : Rn → Rn. This function can be constrained in many

ways, depending on how much we know about the relation between the two sets. For

instance, when matching points from a stereo pair we know that corresponding points

should belong to epipolar lines, and that from two views taken with the same center
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of perspective (but different viewing orientations), the transformation is a homogra-

phy [34]. In other cases, other, more complicated functions are needed, but some a

priori knowledge may still be available, like the fact that the transformation should

be “smooth” and invertible. Consider for instance the images shown in Figure 1.2 on

the following page. The first image pair represents a three-dimensional scene with

no moving objects, viewed by a projective camera from two different points in space.

Consequently, the transformation which links the points in both images is a homogra-

phy within each plane of the scene. The regions where occlusions occur, are regions

where the transformationφ is not invertible. The two images of the second example

were constructed by calculating and assigning to each pixel its signed distance from

two given curves (the curves outlined in red). One possible way of matching points in

the first curve with points in the second curve is by matching all the points in these two

images. This would require to find a highly nonlinear mapping which however should

be smooth and invertible, at least for the points near the curves.

1.3 Multimodality and Statistical Similarity Criteria

The second component in the matching problem (the first one was the nature of the

transformationφ) is the knowledge about what should be satisfied when two points are

to be associated with one another. Coming back to the examples of Figure 1.2, it is

clear that for the first image pair a reasonable way of matching the images is by simply

comparing the intensities of corresponding pixels. For the second case, since the value

of the images is zero for points lying on the curves, it seems also reasonable to match

the images by a comparison of the local image intensities.

However, images may be produced by a variety of sensors (Figure 1.1 on the facing

page gives some examples), and this simple way of measuring their similarity is no

longer adapted. More general ways of comparing the images are therefore needed.

This is the role of statistical similarity measures, which have been widely used to

cope with the problem of registering different medical image modalities (see the first

example of Figure 1.3 on page 35). Nevertheless, these criteria can be used in other

situations in which no intensity comparison can be made, even though the acquiring

sensors are of similar kind. This is the case for instance when matching images of

similar objects which however have different responses to similar lighting conditions

(e.g. the two skins with different albedos in the second example of Figure 1.3).

Let us try to give an intuition behind these similarity measures by picturing arti-

ficial imaging sensors. The described situation is admittedly far simpler than reality,

but the idea behind the similarity criteria can be better grasped in this ideal situation.

Formal definitions will be postponed until chapter 4.

Suppose our detectors are sensitive to a physical quantityQ. To fix ideas, we may

pictureQ as the intensities of a given image (see Figure 1.4 on page 37). We note
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(a) (b)

(c) (d)

Figure 1.2: Between (a) and (b) the camera has undergone a rigid 3D movement so

that, within each plane of the scene, the matching function is a homography. On the

other hand, (c) and (d) are constructed as the signed distance functions to the red

curves. The matching of these curves requires a highly nonlinear mapping between

the two images. The occlusions in the top-row example are regions where the mapping

function is not invertible. The mapping between the two curves should on the contrary

be invertible everywhere.
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(a) (b)

(c) (d)

Figure 1.3: Nonrigid “multimodal” matching examples: (a) and (b): T1-weighted

anatomical magnetic resonance image (MRI) against functional MRI. (c) and (d) : two

human faces (with different skin albedos) under similar illuminating conditions.
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the output of two given sensorsi1 andi2. If their response is a smooth function ofQ,

the support of the joint intensity distribution of intensities is generally a curve in the

plane[i1, i2]. A particular case is obtained when one of the responses is an invertible

function ofQ (sayi1). In this case, the support of the joint distribution has a functional

form f(i1). When bothi1 andi2 are invertible functions ofQ, the support of the joint

distribution is also an invertible function and the output of the two sensors may be

equalized to yield the same image. This suggests that looking at the joint distribution

of intensities and somehow constraining it to be clustered is an appropriate way of

matching related outputs.

As will be clear from their expressions, the gradients of the three similarity mea-

sures that we consider define three types of clustering processes of the joint distribution

according to a hierarchy of constraints on the intensity relations. Roche et al. [75, 73]

have clarified the assumptions on which these similarity measures rely by looking

for optimal measures from various sensor models. At the most general stage, mutual

information is a measure of the statistical dependency betweeni1 andi2. A more con-

strained criterion is the correlation ratio, which measures the functional dependency

between the intensities. Finally, the cross correlation is still more constrained, as it

measures their affine dependency (see Figure 1.5).

1.4 Dense Matching and the Variational Framework

We now summarize the modeling assumptions used in the sequel and define the match-

ing problem in the context of the calculus of variations. We consider two images

Iσ
1 = I1 ? Gσ andIσ

2 = I2 ? Gσ at a given scaleσ, i.e. resulting from the convolution

of two square-integrable functionsI1 : Rn → R andI2 : Rn → R (n = 2, 3) with

a Gaussian kernel of standard deviationσ. Given a region of interestΩ, a bounded

region ofRn (we may require its boundary∂Ω to fulfill some regularity constraints,

e.g. that of being of classC2), we look for a functionh : Ω → Rn assigning to each

point x in Ω a displacement vectorh(x) ∈ Rn. This function is searched for in a set

F of admissible functions such that it minimizes an energy functionalI : F → R of

the form

I(h) = J (h) +R(h),

whereJ (h) measures the “dissimilarity” betweenIσ
1 and

Iσ
2 ◦ (Id + h)

andR(h) is a measure of the “irregularity” ofh (Id is the identity mapping ofRn).

The dissimilarity term will be defined in terms of global or local statistical mea-

sures on the intensities ofIσ
1 andIσ

2 ◦ (Id+h), and the irregularity term will generally

be a measure of the variations ofh in Ω. For example ifh is differentiable,R(h) could
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Same input for the three sensors
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Figure 1.4: Synthetic sensors and the support of the joint intensity distribution (SJID)

of their outputs. The second and third rows represent the response and output of three

synthetic sensors.
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conditionals

i1i1i1 Joint intensity distributionP (i1, i2)

i2

i2

i2I2(x)
marginals

I1(x)

p(i1|I2(x))

p(i2|I1(x))

p(i1)

p(i2)

Figure 1.5: Schematic joint intensity distribution. The three criteria give a hierarchy

of measures to compare image intensities. The cross correlation measures their affine

dependency, so that maximizing this criterion amounts to trying to fit an affine function

to the joint density. The correlation ratio measures their functional dependency, so that

the optimal density can have the shape of a nonlinear function. Finally, their mutual

information gives an estimate of their statistical dependency; maximizing this criterion

tends to clusterP .

be defined as a certain norm of its JacobianDh. In summary, the matching problem is

defined as the solution of the following minimization problem:

h∗ = arg min
h∈F

I(h) = arg min
h∈F

(J (h) +R(h)) . (1.1)

Assuming thatI is sufficiently regular, its first variation ath ∈ F in the direction of

k ∈ F is defined by

δI(h,k) = lim
ε→0

I(h + εk)− I(h)
ε

=
dI(h + εk)

dε

∣∣∣∣
ε=0

.

If a minimizerh∗ of I exists, thenδI(h∗,k) = 0 must hold for everyk ∈ F . The

equationsδI(h∗,k) = 0 are called the Euler-Lagrange equations associated with the

energy functionalI. Assuming thatF is a linear subspace of a Hilbert spaceH,

endowed with a scalar product(·, ·)H , we define the gradient∇HI(h) of I by requiring

that

∀k ∈ F ,
dI(h + εk)

dε

∣∣∣∣
ε=0

= (∇HI(h),k)H .
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The Euler equations are then equivalent to∇HI(h∗) = 0. Rather than solving them

directly (which is usually impossible), the search for a minimizer ofI is done using

a “gradient descent” strategy. Given an initial estimateh0 ∈ H, we introduce time

and a differentiable function, also notedh from the interval[0, T ] into H (we say that

h ∈ C1([0, T ]; H)) and we solve the following initial value problem:




dh
dt

= −∇HI(h) = −
(
∇HJ (h) +∇HR(h)

)
,

h(0)(·) = h0(·).
(1.2)

That is, we start from the initial fieldh0 and follow the gradient of the functionalI (the

minus sign is because we are minimizing). The solution of the matching problem is

then taken as the asymptotic state (i.e. whent →∞) of h(t), provided thath(t) ∈ F
for a sufficiently larget.

The boundary conditions, i.e. the values ofh(t)(·) in ∂Ω, must also be specified.

This will be done along with the choice of the spaceF of admissible functions in Chap-

ter 3. We assume for the moment (since this is the case we shall treat) that∇HR(h)
is a linear application from a linear subspace ofH into H. In Chapter 3, concrete

functional spacesF andH will be chosen and two families of regularization operators

will be studied.

The computation and study of the properties of∇HJ (h) for a set of statistical

dissimilarity measures will be the object of Part II of this manuscript. In the following

chapter, we study the existence and uniqueness of a solution of (1.2) from an abstract

viewpoint, by borrowing tools from the theory of semigroups generated by unbounded

linear operators on a Hilbert space.





Chapter 2

Study of the Abstract Matching
Flow

In the previous chapter,∇HI was defined by assuming thath belongs to a Hilbert

space denotedH. Consequently, equation (1.2) may be viewed as a first-order ordinary

differential equation with values inH. It turns out that studying it from such an abstract

viewpoint allows to prove the existence and uniqueness of several types of solutions

(mild, strong, classical) of (1.2), by borrowing tools from functional analysis and the

theory of semigroups of linear operators. We refer to the books of Brezis [18] and Pazy

[68] for formal studies of these subjects. In the present chapter, we study the generic

minimization flow (1.2) within this abstract framework. The linear operator−∇HR(h)
defined by the regularization term will be simply notedA and the non-linear matching

term−∇HJ will be generically notedF . The unknown of the problem is anH valued

functionh : [0, +∞[→ H defined onR+. The goal of this chapter is to establish the

properties required byA andF in order for equation (1.2), which is now written as a

semilinear abstract initial value problem of the form




dh
dt
−Ah(t) = F (h(t)), t > 0

h(0) = u0 ∈ H,

(2.1)

to have a unique solution (in a sense to be defined). That these conditions are met will

be the object of Chapter 3 concerning two different families of linear regularization

operatorsA, and of Chapter 6 concerning six different matching functionsF .

2.1 Definitions and Notations

We begin by introducing some definitions and notations.H will denote a complex

Hilbert space with scalar product(·, ·)H ∈ C, i.e. satisfying foru and v in H,
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(u, v)H = (v, u)∗H , whereλ∗ denotes the complex conjugate ofλ. The real and

imaginary parts ofλ ∈ C will be noted Re(λ) and Im(λ). The norm ofH, induced by

the Hilbert product, will be noted‖ · ‖H = (·, ·)1/2
H .

If E andF denote two Banach spaces, a linear operator is any linear application

A : D(A) ⊂ E → F from its domainD(A), a linear subspace ofE, into F . We shall

restrict ourselves to densely defined linear operators, i.e. for whichD(A) is dense in

E. In the following, we consider a linear operatorA : D(A) ⊂ H → H.

The range ofA is the linear subspace ofH

Ran(A) = {f ∈ H : f = Au, u ∈ D(A)}

and its graph is the set of pairs

Γ(A) = {[u,A u], u ∈ D(A)} ⊂ H ×H.

A is said to beclosedif Γ(A) is a closed subset ofH ×H. It is said to beboundedif

there existsc ≥ 0 such that

‖Au‖H ≤ c ‖u‖H , ∀u ∈ D(A).

The smallest suchc will be denoted‖A‖. The graph norm ofA is the norm||| · |||A
defined, foru ∈ D(A), as

|||u|||A = ‖u‖H + ‖A u‖H

and its numerical range is the set

Q(A) = {(Au, u)H , ‖u‖H = 1} ⊂ C.

A is said to beinvertible if, for all f ∈ H, there exists a uniqueu ∈ D(A) such that

Au = f . It implies that Ran(A) = H. We noteu = A−1f and readily verify that

A−1 is a linear application fromH intoD(A). If an invertible operatorA is closed, it

follows (Proposition 2.3) thatA−1 is a bounded linear operator.

Finally, if I denotes the identity operator onH, the resolvent setρ(A) of a closed

linear operatorA is the set of allλ ∈ C for whichλI−A is invertible, i.e.(λI−A)−1

is a bounded linear operator. The family

R(λ : A) = (λI −A)−1, λ ∈ ρ(A)

of bounded linear operators is called the resolvent ofA.

2.2 Basic Properties

We now state some basic properties of densely defined closed linear operators that will

be useful in the sequel. In all this section,A denotes a densely definedclosedlinear

operator fromD(A) ⊂ H into H.
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Proposition 2.1 D(A), endowed with the graph norm ofA, is a Banach space.

Proof : Consider a Cauchy sequence{un} in D(A), i.e. such that

‖un − up‖H + ‖Aun −Aup‖H
n,p→∞−→ 0. (2.2)

We must prove that{un} converges tou ∈ D(A). Because of (2.2), we have that

‖un − up‖H → 0 and‖Aun − Aup‖H → 0, i.e. we have two Cauchy sequences in

H, which are convergent sinceH is complete. We therefore have[un, Aun] → [u, f ],
whereu ∈ H andf ∈ H. SinceΓ(A) is closed, we have that[u, f ] ∈ Γ(A). This

means that (a)f = Au, which implies that|||un − u|||A → 0, and (b)u ∈ D(A)
which completes the proof.2

We next recall the closed graph theorem.

Theorem 2.2 (Closed graph theorem)Let E and F be two Banach spaces and let

T : E → F be a linear operator. If the graph ofT is closed then there existsc > 0
such that‖Tu‖F ≤ c ‖u‖E , i.e.T is continuous.

Proof : The proof can be found for example in Theorem II.7 of the book of

Brezis [18].2

The closed graph theorem allows to prove the following.

Proposition 2.3 If A is invertible thenA−1 is a bounded linear operator.

Proof : We haveA−1 : H → D(A) is a linear application. SinceA is closed,D(A)
endowed with the graph norm ofA is a Banach space (Proposition 2.1). Now since

Ran(A) = H and∀f ∈ H, A−1Af = f , we have that

Γ(A) = {[u,Au], u ∈ D(A)} = {[A−1f, f ], f ∈ H} = Γ(A−1)

and thusA−1 is closed. We therefore can apply the closed graph theorem toA−1,

which says that there existsc > 0 such that

‖A−1u‖H + ‖u‖H ≤ c ‖u‖H .

This implies that

‖A−1u‖H ≤ c ‖u‖H

and thusA−1 is a bounded linear operator.2

From Proposition 2.3, the following result readily follows.

Proposition 2.4 If A is invertible then there existsc > 0 such that

‖Au‖H ≥ c ‖u‖H , ∀u ∈ D(A).
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Proof : SinceA is invertible,A−1 is a bounded linear operator. Therefore there exists

c > 0 such that

‖A−1 Au‖H ≤ c ‖Au‖H , ∀u ∈ D(A).

This completes the proof sinceA−1 Au = u. 2

As a direct consequence of Proposition 2.4, we have the following useful result.

Proposition 2.5 If A is invertible then the graph norm ofA, ||| · |||A and the norm

‖A · ‖H are equivalent, i.e. there existc1 > 0 andc2 > 0 such that

|||u|||A c1 ≤ ‖Au‖H ≤ c2 |||u|||A, ∀u ∈ D(A).

Proof : We have|||u|||A = ‖Au‖H + ‖u‖H and therefore the right part of the

inequality is obvious (c2 = 1). For the left part, sinceA is invertible we apply

Proposition 2.4 toA which says that there existsc > 0 such that‖Au‖H ≥ c ‖u‖H .

Adding c‖Au‖H to both sides of this inequality yields the desired estimate.2

2.3 Semigroups of Linear Operators

Consider a one-parameter familyS(t), 0 ≤ t ≤ +∞ of bounded linear operators from

H to H. This family is said to be aC0 semigroup of bounded linear operators if

Definition 2.1

1. S(0) = I,

2. S(t1 + t2) = S(t1) S(t2), ∀ t1, t2 ≥ 0. (the semigroup property)

3. limt→0+ S(t)u = u, ∀ u ∈ H.

The Hille-Yosida theorem says that there is a one-to-one correspondence betweenC0

semigroups of contractions (‖S(t)‖ ≤ 1, ∀t ≥ 0) and maximal monotone operators in

a Hilbert space. A linear operatorA is maximal monotone if and only if

1. A is monotone: Re(Au, u)H ≥ 0, ∀u ∈ D(A),

2. and maximal: Ran(I + A) = H. That is, a linear operatorA is maximal if

∀f ∈ H, ∃u ∈ D(A) such that u + A u = f.

if −A is a maximal monotone operator,A is said to be the infinitesimal generator of

the correspondingC0 semigroup notedSA(t), t ≥ 0. The relation betweenA and

SA(t) is the following. Givenu0 ∈ D(A), consider the initial value problem,




dh
dt
−Ah(t) = 0, t > 0

h(0) = u0.

(2.3)
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if −A is a maximal monotone operator, the Hille-Yosida theorem asserts that there

exists a unique solution of (2.3), i.e. a unique functionh : [0, +∞[→ H such that:

1. h(t) is continuous andh(t) ∈ D(A) for t ≥ 0.

2. h(t) is continuously differentiable fort ≥ 0.

3. h(t) satisfies (2.3) fort ≥ 0.

Moreover, the solution satisfies‖h(t)‖H ≤ ‖u0‖H for t ≥ 0. The first two points

above are summarized by saying that

h ∈ C([0, +∞[,D(A)) ∩ C1([0, +∞[, H).

The linear applicationSA(t), D(A) → D(A) is defined bySA(t)u0 = h(t), where

h(t) is the solution of (2.3) at timet. Since‖SA(t)u0‖H ≤ ‖u0‖H , it is possible,

using the Hahn-Banach theorem and the fact thatH is a Hilbert space [18], to extend

SA(t) by continuity and density to a linear continuous operatorH → H. This family

of operators, also notedSA(t), is theC0 semigroup of contractions corresponding toA.

A property of theC0 semigroups of bounded operators that we will need later is

given next.

Proposition 2.6 For all u ∈ D(A), SA(t)u ∈ D(A) and

d

dt
SA(t) u = A SA(t) u = SA(t) A u.

Proof : The proof can be found for example in Theorem 1.2.4 of the book of

Pazy [68]. 2

We will also make use of analytic semigroups of operators, which are defined as fol-

lows. For more details, the interested reader is referred to [68].

Definition 2.2 Let ∆ = {z ∈ C : ϕ1 < arg z < ϕ2, ϕ1 < 0 < ϕ2} and for

z ∈ ∆, let S(z) be a bounded linear operator. The familyS(z), z ∈ ∆ is an analytic

semigroup in∆ if

1. z → S(z) is analytic in∆.

2. S(0) = I and lim
z → 0

z ∈ ∆

S(z)u = u, ∀u ∈ H.

3. S(z1 + z2) = S(z1) S(z2) ∀z1, z2 ∈ ∆. (the semigroup property)

A semigroupS(t) will be calledanalytic if it is analytic in some sector∆ containing

the nonnegative real axis (Figure 2.1). Clearly, the restriction of an analytic semigroup

to the real axis is aC0 semigroup.

We will make use of the following characterization of the infinitesimal generator

of an analytic semigroup.
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∆

ϕ2

ϕ1

0

C

Re

Figure 2.1: The complex plane and the sector∆ of Definition 2.2, containing[0, +∞[.
A semigroupS(t) will be called analytic if it is analytic in∆.

Theorem 2.7 Let A be the infinitesimal generator of a uniformly boundedC0 semi-

groupS(t) and assume0 ∈ ρ(A). The following statements are equivalent.

1. S(t) can be extended to an analytic semigroup in a sector∆δ = {z : | arg z| <
δ} and‖S(z)‖ is uniformly bounded in every closed sub-sector∆̄δ′ , δ′ < δ, of

∆δ.

2. There exist0 < δ < π/2 andM > 0 such that

ρ(A) ⊃ Σδ = {λ : | arg λ| < π

2
+ δ} ∪ {0}

and

‖R(λ : A)‖ ≤ M

|λ| for λ ∈ Σδ, λ 6= 0.

Proof : The proof is found in Theorem 2.5.2 of the book of Pazy [68].2

Figure 2.2 illustrates the relation between the sectorsΣδ and∆δ of Theorem 2.7.

Im

δ

C

∆δ

δ

δ

δ

Σδ ⊂ ρ(A)

0 Re

Figure 2.2: The complex plane and the sectors∆δ andΣδ defined in Theorem 2.7. A

C0 semigroupS(t) can be extended to an analytic semigroup in∆δ if the resolvent set

ρ(A) of A includes the sectorΣδ for some0 < δ < π/2.
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2.4 Solutions of the Abstract Matching Flow

We now consider the initial value problem (2.1):





dh
dt
−Ah(t) = F (h(t)), t > 0

h(0) = u0 ∈ H,

(2.4)

and start by defining four different kinds of solutions.

Definition 2.3 (Global classical solution)A functionh : [0, +∞[→ H is a global

classical solution of(2.4) if

h ∈ C([0, +∞[; H) ∩ C1(]0, +∞[;H) ∩ C(]0, +∞[;D(A)),

and(2.4) is satisfied fort > 0.

Definition 2.4 (Local classical solution)A functionh : [0, T [→ H is a local classi-

cal solution of(2.4) if

h ∈ C([0, T [;H) ∩ C1(]0, T [;H) ∩ C(]0, T [;D(A)),

and(2.4) is satisfied for0 < t < T .

Definition 2.5 (Strong solution) A functionh which is differentiable almost every-

where on[0, T ] such thatdh/dt ∈ L1(]0, T [;H) is called a strong solution of the

initial value problem(2.4) if h(0) = u0 anddh/dt−Ah(t) = F (h(t)) almost every-

where on[0, T ].

Definition 2.6 (Mild solution) A continuous solutionh of the integral equation

h(t) = SA(t)u0 +
∫ t

0
SA(t− s)F (h(s)) ds (2.5)

is called a mild solution of the initial value problem(2.4).

The last definition is motivated by the following argument. If (2.4) has a classical

solution then theH valued functionk(s) = SA(t − s)h(s) is differentiable for0 <

s < t and (Proposition 2.6):

dk
ds

= −ASA(t− s)h(s) + SA(t− s)h′(s) =

−ASA(t− s)h(s) + SA(t− s)Ah(s) + SA(t− s)F (h(s)) =

SA(t− s)F (h(s)). (2.6)



48 Chapter 2: Study of the Abstract Matching Flow

If F ◦ h ∈ L1([0, T [; H) thenSA(t − s)F (h(s)) is integrable and integrating (2.6)

from 0 tot yields

k(t)− k(0) = h(t)− SA(t)u0 =
∫ t

0
SA(t− s)F (h(s)) ds,

hence

h(t) = SA(t)u0 +
∫ t

0
SA(t− s)F (h(s)) ds.

Definition 2.6 is thus natural.

The main goal of this chapter is to establish sufficient conditions onA (in view of

the regularization operators that will be studied in the next chapter) and onF in order

for the initial value problem (2.4) to have a uniqueglobal classical solution.

2.4.1 Mild and Strong Solutions

Sufficient conditions onA andF for (2.4) to have a unique mild solution are given by

the following theorem.

Theorem 2.8 LetF : H → H be uniformly Lipschitz continuous onH and let−A be

a maximal monotone operator. Then the initial value problem(2.4)has a unique mild

solutionh ∈ C([0, T ]; H) (given by equation(2.5)). Moreover, the mappingu0 → h
is Lipschitz continuous fromH into C([0, T ]; H).

Proof : The proof can be found for example in Theorem 6.1.2 of [68].

2

SinceH is a Hilbert space, taking an initial valueu0 ∈ D(A) suffices to obtain exis-

tence and uniqueness of a strong solution.

Theorem 2.9 Let F , A andh be those of Theorem 2.8. Then, ifu0 ∈ D(A), h is the

unique strong solution of(2.4).

Proof : This is a direct consequence of Theorem 6.1.6 in [68] sinceH, being a

Hilbert space, is a reflexive Banach space.2

2.4.2 Classical Solution

To show the existence of a classical solution of (2.4), we will make use of analytic

semigroups. If−A generates an analytic semigroup of operators and0 ∈ ρ(A) (i.e.A

is invertible), it is shown in Section 2.2.6 of the book of Pazy [68] thatAα can be

defined for0 < α ≤ 1 and thatAα is a closed linear invertible operator with domain

dense inH.
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The closedness ofAα implies that its domain, endowed with the graph norm of

Aα, is a Banach space (Proposition 2.1). Moreover, sinceAα is invertible, its graph

norm is equivalent to the norm‖ · ‖α = ‖Aα · ‖H (Proposition 2.5). ThusD(Aα),
equipped with the norm‖ · ‖α, is a Banach space which we denote byHα.

Proposition 2.10 Let Hα be the Banach space defined above. ThenHα ⊂ H with

continuous embedding.

Proof : SinceAα is a densely defined closed linear invertible operator fromD(Aα) ⊂
H intoH, we may apply Proposition 2.4 toAα, which says that there existsc > 0 such

that‖Aαu‖H ≥ c ‖u‖H , ∀u ∈ D(Aα). Therefore there existsc > 0 such that

‖u‖H ≤ c ‖u‖α, ∀u ∈ Hα. (2.7)

2

The importance of the continuous embedding ofHα into H lies in the fact that if the

functionF in (2.4) is Lipschitz continuous inH, i.e. if it satisfies for someLF > 0:

‖F (u1)− F (u2)‖H ≤ LF ‖u1 − u2‖H , ∀u1, u2 ∈ H,

then it follows from equation (2.7) that it is also Lipschitz continuous inHα. Moreover,

if F is bounded inH, i.e. if it satisfies for someKF > 0:

‖F (u)‖H ≤ KF , ∀u ∈ H,

thenF is well defined inHα. The main result that we will use is the following, which

is a special case of Theorems 6.3.1 and 6.3.3 in [68].

Theorem 2.11 Assume thatA generates an analytic semigroupS(t) satisfying

‖S(t)‖ ≤ M and that0 ∈ ρ(A), so that the Banach spaceHα above is well de-

fined. Assume further that for someLF > 0 andKF > 0 and for0 ≤ α0 < α < 1,

the functionF satisfies

1. ‖F (u1)− F (u2)‖H ≤ LF ‖u1 − u2‖α ∀u1, u2 ∈ Hα.

2. ‖F (u)‖H ≤ KF ∀u ∈ Hα.

Then for everyu0 ∈ Hα, the initial value problem (2.4) has a unique global classical

solution

h ∈ C([0, +∞[; H) ∩ C(]0, +∞[;D(A)) ∩ C1(]0, +∞[;H).

Moreover, the functiont → dh/dt from ]0, +∞[ into Hα is Hölder continuous.
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Proof : This follows directly from Theorem 6.3.1 (existence of a local classical

solution) and Theorem 6.3.3 (extension to a global solution using the boundedness

of F ) in [68], with k(t) = KF in Theorem 6.3.3. The Ḧolder continuity follows

from corollary 6.3.2 in [68] which also shows that the Hölder exponentβ verifies

0 < β < 1− α. 2

We are thus interested in the possibility of definingAα, i.e. that of extending a givenC0

semigroup to an analytic semigroup in some sector around the nonnegative real axis.

In order to do that, we will use Theorem 2.7 on page 46, together with the following

one.

Theorem 2.12 Let A be a densely defined closed linear operator inH. LetQ(A) be

the closure inC of the numerical range ofA andΣ its complement, i.e.Σ = C\Q(A).
If Σ0 is a connected component ofΣ satisfyingρ(A) ∩ Σ0 6= ∅ thenρ(A) ⊇ Σ0 and

‖R(λ : A)‖ ≤ 1
d(λ : Q(A))

,

whered(λ : Q(A)) is the distance ofλ fromQ(A).

Proof : The proof is found in Theorem 1.3.9 of [68].2

In view of the regularization operators studied in the next chapter, the following the-

orem establishes sufficient assumptions forA to be the infinitesimal generator of an

analytic semigroup.

Theorem 2.13 LetA be the infinitesimal generator of aC0 semigroup of contractions

on H (i.e. let−A be a maximal monotone operator). We assume thatA is invertible,

i.e. that0 ∈ ρ(A) and that:

1. (Au, v)H = (u,Av)H , ∀u, v ∈ D(A) (A is called symmetric).

2. Re(Au, u)H ≤ −c ‖u‖H for somec > 0 (coerciveness).

ThenA is the infinitesimal generator of an analytic semigroup of operators onH.

Proof : From the two assumptions about(Au, u)H , it follows that the numerical

rangeQ(A) = {(Au, u)H , ‖u‖H = 1} of A is a subset of the interval(−∞,−c] for

somec > 0 (since the first assumption implies, by the definition of the scalar product,

that(Au, u)H ∈ R, ∀u ∈ H). Choosing0 < δ < π/2 and denotingΣδ = {λ ∈ C :
|argλ| < π/2 + δ} (see Figure 2.3 on the facing page), there exists a constantCδ such

that

d(λ : Q(A)) ≥ Cδ |λ| for all λ ∈ Σδ. (2.8)

This is clear from Figure 2.3, where we see thatd(λ : Q(A)) ≥ d1 ≥ d0 = |λ| cos δ,

so we can setCδ = cos δ. Moreover,d(0 : Q(A)) = c and thereforeΣδ ⊂ C\Q(A).
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Figure 2.3: The complex plane and the sectorsΣδ and∆δ defined in Theorem 2.13.

The fact that0 ∈ ρ(A) shows thatΣδ, which contains0, is a connected component

ofC\Q(A) that has a nonempty intersection withρ(A). This implies by Theorem 2.12

on the facing page thatρ(A) ⊇ Σδ and that for everyλ in Σδ, λ 6= 0,

‖R(λ : A)‖ ≤ 1
d(λ : Q(A))

≤ 1
Cθ|λ| .

We can therefore apply Theorem 2.7 on page 46, which allows us to conclude that the

C0 semigroup generated byA can be extended to an analytic semigroupS(z) in the

sector∆δ = {z ∈ C : |argz| < δ} (see Figure 2.3), and that‖S(z)‖ is uniformly

bounded in every closed sub-sector∆̄δ′ , δ′ < δ, of ∆δ. 2

As a summary of the results of this chapter, we end it by stating the main result

arrived at in the form of a single theorem.

Theorem 2.14 (Main result) If the following assumptions are satisfied,

1. The linear operatorA : D(A) ⊂ H → H is the infinitesimal generator of aC0

semigroup of contractions onH (−A is maximal monotone) andA is invertible.

2. ∀u, v ∈ D(A), (Au, v)H = (v, Au)H and there existsc > 0 such that

(Au, u)H ≤ −c ‖u‖H .

3. F is bounded and Lipschitz continuous inH.

then, for eachu0 ∈ Hα, the initial value problem(2.4) has a unique global classical

solution as defined in Definition 2.3 on page 47.
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Proof : Assumptions 1 and 2 are the assumptions of Theorem 2.13 and therefore

A generates an analytic semigroupS(t) satisfying‖S(t)‖ ≤ M . This is the first

assumption of Theorem 2.11 and, since we assume thatA is invertible, we also have

that 0 ∈ ρ(A). Now assumption 3 together with equation (2.7) implies the two

remaining assumptions of Theorem 2.11 and the proof is complete.2



Chapter 3

Regularization Operators

This chapter studies the regularization part of the initial value problem (1.2), i.e. the

term∇HR(h). Two families of regularization operators are considered, including one

which encourages the preservation of edges of the displacement field along the edges

of the reference image. In view of the results of the previous chapter, we choose con-

crete functional spacesF andH and specify the domain of the regularization opera-

tors. We then show that these operators satisfy the properties ofA which are sufficient

to assert the existence of a classical solution of (2.1) according to the main result of

the previous chapter.

3.1 Functional Spaces

We begin by a brief description of the functional spaces that will be appropriate

for our purposes. In doing this, we will make reference to Sobolev spaces, denoted

W k,p(Ω). We refer to the books of Evans [33] and Brezis [18] for formal definitions

and in-depth studies of the properties of these functional spaces.

For the definition of∇HI, we use the Hilbert space

H = L2(Ω) = (W 0,2(Ω))n
.

The regularization functionals that we consider are of the form

R(h) = α

∫

Ω
ϕ(Dh(x)) dx, (3.1)

whereDh(x) is the Jacobian ofh at x, ϕ is a quadratic form of the elements of

the matrixDh(x) andα > 0. Therefore the set of admissible functionsF will be

contained in the space

H1(Ω) = (W 1,2(Ω))n
.
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Additionally, the boundary conditions forh will be specified inF . Assuming for

definiteness thath = ∂ih = 0 almost everywhere on∂Ω, we set

F = H1
0(Ω) = (W 1,2

0 (Ω))
n
.

As will be seen, due to the special form ofR(h), the regularization operators are

second order differential operators, and we therefore will need the space

H2(Ω) = (W 2,2(Ω))n

for the definition of their domain.

3.2 Notations

We introduce in this section some notations that will be used in the sequel. Recall

the general form ofR(h) given by (3.1). The quadratic formϕ : Mn×n → R+ is

defined on the setMn×n of n × n matrices with real coefficients. The components

of a vectorx ∈ Rn will be notedxi, and∂if will denote theith partial derivative of

a scalar functionf , so that its gradient∇f is given by∇f = [∂1f, . . . , ∂nf ]T . The

mappingϕ(Dh(x)) is given by

ϕ(Dh(x)) =
∑

i,j,k,l

aijkl(x) ∂ihj(x) ∂khl(x),

whereaijkl aren4 scalar functions defined inΩ. The divergence of a vector field

h : Rn → Rn is denoted div(h) = ∇ · h =
∑

i ∂ihi. For a matrixT ∈ Mn×n,

composed of row vectorst{1} . . . t{n}, i.e. T = [t{1} . . . t{n}]T , we note

div(T) = [∇ · t{1}, . . . , ∇ · t{n}]T ,

so that the following relations hold:




div
(
DhT

)
= div

(
(∇ · h) Id

)
= ∇(∇ · h)

,

div
(
Dh

)
= [∆h1, . . . , ∆hn]T ≡ ∆h.

(3.2)

GivenR(h) as in (3.1), the computation of∇HR(h) is standard:

∇HR(h) = −α div(Dϕ(Dh)).

3.3 Image Driven Anisotropic Diffusion

The first regularization functional that we consider is defined by

ϕ1(Dh) =
1
2

Tr
(
Dh TIσ

1
DhT

)
, (3.3)
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whereTIσ
1

is an × n symmetric matrix defined at every point ofΩ by the following

expression:

Tf =
(λ + |∇f |2)Id−∇f∇fT

(n− 1)|∇f |2 + nλ
, for f : Rn → R.

This matrix is a regularized projector in the plane perpendicular to∇f . It was first

proposed by Nagel and Enkelmann [62] for computing optical flow while preserving

the discontinuities of the deforming template. As pointed out by Alvarez et al. [6],

applying the smoothness constraint to the reference image (hereIσ
1 ) instead of the

deforming one (hereIσ
2 ) allows to avoid artifacts which appear when recovering large

displacements. The matrixTf has one eigenvector equal to∇f , while the remaining

eigenvectors span the plane perpendicular to∇f . Its eigenvaluesλi verify
∑

i λi = 1
independently of∇f .

It is straightforward to verify that

div(Dϕ1(Dh)) =




div(TIσ
1
∇h1)

...

div(TIσ
1
∇hn)


 .

Thus, the regularization operator∇HR(h) yields a linear diffusion term withTf as

diffusion tensor. In regions where∇hi is small compared to the parameterλ in Tf ,

the diffusion tensor is almost isotropic and so is the regularization. At the edges off ,

where|∇f | >> λ, the diffusion takes place mainly along these edges. This operator is

thus well suited for encouraging large variations ofh along the edges of the reference

imageIσ
1 .

We define our first regularization operator as follows.

Definition 3.1 The linear operatorA1 : D(A1) → H is defined as




D(A1) = H1
0(Ω) ∩H2(Ω),

A1h =




div(TIσ
1
∇h1)

...

div(TIσ
1
∇hn)


 .

We now check that−A1 is a symmetric maximal monotone invertible operator, apply-

ing the standard variational approach [33].

Proposition 3.1 The operator(I−A1) defines a bilinear formB1 on the spaceH1
0(Ω)

which is continuous and coercive (elliptic).

Proof : Because of the form of the operatorA1, it is sufficient to work on one of the

coordinates and consider the operatora1 : D(a1) → L2(Ω) defined by

a1 u = div(TIσ
1
∇u),
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and to show that the operatoru → (u − a1u) defines a bilinear formb1 on the space

H1
0 (Ω) which is continuous and coercive. Indeed, we define

b1(u, v) =
∫

Ω

(
uv − vdiv(TIσ

1
∇u)

)
dx.

We integrate by parts the divergence term, use the fact thatv ∈ H1
0 (Ω), and obtain

b1(u, v) =
∫

Ω

(
uv +∇vTTIσ

1
∇u

)
dx.

Because the coefficients ofTIσ
1

are all bounded, we obtain, by applying Cauchy-

Schwarz:

|b1(u, v)| ≤ c1‖u‖H1(Ω)‖v‖H1(Ω),

wherec1 is a positive constant, hence continuity.

Because the eigenvalues of the symmetric matrixTIσ
1

are strictly positive, we have

TIσ
1
≥ cTId, wherecT is a positive constant. This implies that

∫

Ω
∇uTTIσ

1
∇u dx = b1(u, u)− ‖u‖2

L2(Ω) ≥ cT‖∇u‖2
L2(Ω),

from which it follows that

b1(u, u) ≥ c3‖u‖2
H1(Ω),

for some positive constantc3 > 0 and hence we have coerciveness.2

We can therefore apply the Lax-Milgram theorem and state the existence and unique-

ness of a weak solution inH1
0(Ω) to the equationh − A1h = f for all f ∈ L2(Ω).

SinceΩ is regular (in particularC2), the coefficients ofTIσ
1

in C1(Ω), the solution is

in H1
0(Ω) ∩H2(Ω) and is a strong solution (see e.g. [33]).

Proposition 3.2 −A1 is a maximal monotone self-adjoint operator fromD(A1) =
H1

0(Ω) ∩H2(Ω) into L2(Ω).

Proof : Monotonicity follows from the coerciveness ofB1 proved in the previous

proposition. Maximality also follows from the proof of proposition 3.1. According to

the same proposition, we haveD(A1) = H1
0(Ω) ∩H2(Ω) and Ran(Id − A1) = H

(application of the Lax-Milgram theorem). In order to prove that the operator is

self-adjoint, it is sufficient, since it is maximal monotone, to prove that it is symmetric

([18], proposition VII.6), i.e. that(−A1h,k)L2(Ω) = (h,−A1k)L2(Ω) and this is

obvious from the proof of proposition 3.1.2

Lemma 3.3 The linear operatorαA1 is invertible for allα > 0.
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Proof : It is sufficient to show that the equationαA1h = f has a unique solution for

all f ∈ L2(Ω). The proof of proposition 3.1 shows that the bilinear form associated

to the operatorαA1 is continuous and coercive inH1(Ω), hence the Lax-Milgram

theorem tells us that the equationαA1h = f has a unique weak solution inH1
0(Ω) for

all f ∈ L2(Ω). SinceΩ is regular the weak solution is inH1
0(Ω) ∩ H2(Ω) and is a

strong solution.2

3.4 The Linearized Elasticity Operator

The second regularization operator that we propose is inspired from the equilibrium

equations of linearized elasticity (we refer to Ciarlet [27] for a formal study of three-

dimensional elasticity theory), which are of the form:

µ ∆h + (λ + µ) ∇(∇ · h) = 0. (3.4)

The constantsλ andµ are known as the Laḿe coefficients. Rather than modeling

the domainΩ as an elastic material1, the idea in this section is simply to view the left-

hand side of (3.4) as a kind of “diffusion” operator and use it as an instance of∇HR(h)
in (1.2). What interests us is the flexibility gained by the relative weight which we can

give to the two operators∆h and∇(∇·h), so that a single parameter (controlling this

weight) is a priori needed. Also, in order to assert the existence of a minimizer of the

functionalI obtained, it is desirable to defineϕ(Dh) in such a way that it is convex

in the variableDh. To this end, we consider the one-parameter family (1
2 < ξ ≤ 1) of

functions of the form

ϕ2(Dh) =
1
2

(
ξ Tr(DhT Dh) + (1− ξ) Tr(Dh2)

)
, (3.5)

for which we have

div(Dϕ2(Dh)) = ξ ∆h + (1− ξ) ∇(∇ · h).

Thus, we define the second regularization operator as follows.

Definition 3.2 The linear operatorA2 : D(A2) → H is defined as





D(A2) = H1
0(Ω) ∩H2(Ω),

A2h = ξ ∆h + (1− ξ) ∇(∇ · h).

for 1
2 < ξ ≤ 1.

1This would require a more complex modeling since true elasticity is always non-linear [27].



58 Chapter 3: Regularization Operators

We now check that−A2 is a symmetric maximal monotone invertible operator.

Proposition 3.4 The operator(I − A2) defines a bilinear formB2 on the spaceH1
0

which is continuous and coercive (elliptic).

Proof : We consider the bilinear formC2 defined as

C2(h,k) = −
∫

Ω
kT A2h dx,

whereh andk are functions inH1
0. Integrating by parts, we find

C2(h,k) =
∫

Ω

(
ξ Tr(DhT Dk) + (1− ξ) Tr(Dh Dk)

)
dx,

andB2(h,k) = C2(h,k) +
∫

Ω
h(x) · k(x) dx. We have

|C2(h,k)| ≤
∑

ijkl

|aijkl|
∫

Ω
|∂ihj ∂khl| dx,

where the constantsaijkl are all bounded. Thus, by applying several times Cauchy-

Schwarz, we find that

|C2(h,k)| ≤ c2‖h‖H1(Ω)‖k‖H1(Ω), c2 > 0,

and hence, using Cauchy-Schwarz again,

|B2(h,k)| ≤ b2‖h‖H1(Ω)‖k‖H1(Ω), b2 > 0.

This proves the continuity ofB2. Next we note that

B2(h,h) ≥ ξ‖h‖2
H1(Ω),

which proves the coerciveness ofB2. 2

Proposition 3.5 −A2 is a maximal monotone self-adjoint operator fromD(A2) =
H1

0(Ω) ∩H2(Ω) into L2(Ω).

Proof : Monotonicity follows from the coerciveness ofB2 proved in the previous

proposition. More precisely, since(−A2h,h)L2(Ω) = C2(h,h), the proof shows that

(−A2h,h)L2(Ω) ≥ ξ
∫
Ω Tr(DhT Dh) dx ≥ 0.

Regarding maximality, proposition 3.4 shows that the bilinear formB2 associated

to the operatorId−A2 is continuous and coercive inH1(Ω). We can therefore apply

the Lax-Milgram theorem and state the existence and uniqueness of a weak solution

in H1
0(Ω) of the equationh − A2h = f for all f ∈ L2(Ω). SinceΩ is regular (in
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particularC2), the solution is inH1
0(Ω)∩H2(Ω) and is a strong solution (see e.g. [27],

Theorem 6.3-6).

Therefore we haveD(A2) = H1
0(Ω) ∩H2(Ω) and Ran(I − A2) = H. Finally,

−A1 is self-adjoint for the same reasons as those indicated in the proof of proposition

3.5. 2

Lemma 3.6 The linear operatorαA2 is invertible for allα > 0.

Proof : It is sufficient to show that the equationαA2h = f has a unique solution for

all f ∈ L2(Ω). The proof of proposition 3.4 shows that the bilinear form associated

to the operatorαA2 is continuous and coercive inH1(Ω), hence the Lax-Milgram

theorem tells us that the equationαA2h = f has a unique weak solution inH1
0(Ω) for

all f ∈ L2(Ω). SinceΩ is regular the weak solution is inH1
0(Ω) ∩ H2(Ω) and is a

strong solution.2

3.5 Existence of Minimizers

Having defined the regularization functionals, we discuss in this section the existence

of minimizers of the global energy functional

I(h) = J (h) + α

∫

Ω
ϕ(Dh(x)) dx, (3.6)

whereϕ is eitherϕ1 defined in Equation (3.3) orϕ2 defined in Equation (3.5). We

assume thatJ (h) is continuous inh, and bounded below. These properties will be

shown for the statistical dissimilarity functionalsJ (h) that we study in Part II. In the

following, we use the notion of weak convergence, defined as follows (see e.g. [33]).

Definition 3.3 LetE be a Banach space and letE∗ be its dual. We say that a sequence

{hk} ⊂ E weakly converges toh ∈ E, written

hk ⇀ h,

if
〈
k∗,hk

〉 → 〈
k∗,h

〉
for each bounded linear functionalk∗ ∈ E∗.

The main result that we will use is given by the following theorem, found in Ciar-

let [27].

Theorem 3.7 Let Ω be a bounded open subset ofRn and β ∈ R. Assume that the

functionϕ : Ω× Rµ → [β,∞] satisfies the following two conditions:

1. ϕ(x, ·) : u ∈ Rµ → ϕ(x,u) is convex and continuous for almost allx ∈ Ω.
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2. ϕ(·,u) : x ∈ Ω → ϕ(x,u) is measurable for allu ∈ Rµ.

Then

uk ⇀ u in L1(Ω) ⇒
∫

Ω
ϕ(u) dx ≤ lim inf

k→∞

∫

Ω
ϕ(uk) dx.

Proof : The proof is found in Theorem 7.3-1 of [27].2

The following theorem is a slight modification of Theorem 7.3-2 in [27], which

assumes thatJ (h) is a linear continuous functional.

Theorem 3.8 GivenI(h) as in (3.6), assume thatϕ is convex and coercive, i.e. that

there existα > 0 andβ such that

ϕ(F) ≥ α||F||2 + β, for all F ∈Mn×n.

Assume further thatJ (h) is continuous inh and bounded below, and that

infk∈H1
0(Ω) I(k) < ∞.

Then there exists at least one functionh ∈ H1
0(Ω) satisfying

h = infk∈H1
0(Ω) I(k).

Proof : First, by the coerciveness of the functionϕ and the fact thatJ (h) is bounded

below, we have (using the inequality of Poincaré)

I(h) ≥ c ‖h‖2
H1(Ω) + d,

for all h ∈ H1
0(Ω) and some constantsc > 0 andd.

Let {hk} be a minimizing sequence forI, i.e.

hk ∈ H1
0(Ω) ∀k, and lim

k→∞
I(hk) = infk∈H1

0(Ω) I(k) = m.

The assumption thatm < ∞ and the relationI(k) → ∞ as‖k‖H1(Ω) → ∞ imply

together that{hk} is bounded in the reflexive Banach spaceH1(Ω). Hence{hk}
contains a subsequence{hp} that weakly converges to an elementh ∈ H1(Ω). The

closed convex setH1
0(Ω) is weakly closed and thus the weak limith belongs toH1

0(Ω).
The fact thathp ⇀ h in H1(Ω) implies thatDhp ⇀ Dh in L2(Ω) and, sinceΩ is

bounded (which implies thatL∞(Ω) ⊂ L2(Ω)), we have

Dhp ⇀ Dh in L2(Ω) ⇒ Dhp ⇀ Dh in L1(Ω).

We conclude from Theorem 3.7 on the preceding page that
∫

Ω
ϕ(Dh) dx ≤ lim inf

p→∞

∫

Ω
ϕ(Dhp) dx.
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SinceJ is continuous,J (h) = lim
p→∞J (hp) and thusI(h) ≤ lim inf

p→∞ I(hp) = m.

But sinceh ∈ H1
0(Ω), we also haveI(h) ≥ m and consequently

I(h) = m = infk∈H1
0(Ω) I(k).

2

We now check thatϕ1 andϕ2 satisfy the hypotheses of Theorem 3.8. For the

case ofϕ1, we consider each of its scalar components since this separation is possible.

As pointed out in [6], because of the smoothness of∂iI
σ
1 , TIσ

1
has strictly positive

eigenvalues and therefore, clearly,

Proposition 3.9 The mapping

ϕ1 : Rn 7→ R+

X 7→ XTIσ
1
XT

is convex.

The coerciveness ofϕ1 readily follows.

Proposition 3.10 The functional

R1(h) =
∫

Ω
ϕ1(Dh(x)) dx,

satisfies the coerciveness inequality, i.e.∃ c1 > 0, c2 ≥ 0 such that:

ϕ1(Dh(x)) ≥ c1|Dh|2 − c2.

Proof : We have

∇uTTIσ
1
∇u ≥ θ|∇u|2 ∀x ∈ Ω

Whereθ > 0 is the smallest eigenvalue ofTIσ
1

. 2

We now turn toϕ2.

Proposition 3.11 The mapping

ϕ2 : Mn×n 7→ R+

X 7→ ξ Tr(XTX) + (1− ξ) Tr(X2),

is convex.
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Proof : We writeϕ2 as a quadratic form of the componentsXk of X,

ϕ2(X) =
n2∑

i

n2∑

j

aij Xi Xj

and notice that the smallest eigenvalue of the matrixaij is equal to2ξ − 1. The result

follows from the fact that12 < ξ ≤ 1. 2

Proposition 3.12 The functional

R2(h) =
∫

Ω
ϕ2(Dh(x)) dx,

satisfies the coerciveness inequality, i.e.∃ c1 > 0, c2 ≥ 0 such that:

ϕ2(Dh(x)) ≥ c1|Dh|2 − c2.

Proof : We choosec1 equal to the smallest eigenvalue ofϕ2 andc2 = 0. 2



Part II

Study of Statistical Similarity
Measures





Chapter 4

Definition of the Statistical
Measures

As mentioned before, a general way of comparing the intensities of two images is by

using some statistical or information-theoretic similarity measures. Among numerous

criteria, the cross correlation, the correlation ratio and the mutual information provide

us with a convenient hierarchy in the relation they assume between intensities [75, 73].

The cross correlation has been widely used as a robust comparison function for

image matching. Within recent energy-minimization approaches relying on the com-

putation of its gradient, we can mention for instance the works of Faugeras and Keriven

[36], Cachier and Pennec [21] and Netsch et al. [64]. The cross correlation is the most

constrained of the three criteria, as it is a measure of theaffinedependency between

the intensities.

The correlation ratio was introduced by Roche et.al [76, 77] as a similarity mea-

sure for multi-modal registration. This criterion relies on a slightly different notion of

similarity. From its definition given two random variablesX andY ,

CR =
Var[E[X|Y ]]

Var[X]
, (4.1)

the correlation ratio can intuitively be described as the proportion of energy inX which

is “explained” by Y . More formally, this measure is bounded (0 ≤ CR ≤ 1)) and

expresses the level offunctionaldependence betweenX andY :

{
CR = 1 ⇔ ∃φ X = φ(Y )
CR = 0 ⇔ E[X|Y ] = E[X].

The concept of mutual information is borrowed from information theory, and was

introduced in the context of multi-modal registration by Viola and Wells III [88]. Given
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two random variablesX andY , their mutual information is defined as

MI = H[X] +H[Y ]−H[X,Y ] ,

whereH stands for the differential entropy. The mutual information is positive and

symmetric, and measures how the intensity distributions of two images fail to be inde-

pendent.

We analyze these criteria from two different perspectives, namely that of comput-

ing them globally for the entire image, or locally within corresponding regions. Both

types of similarity functionals are based upon the use of an estimate of the joint prob-

ability of the grey levels in the two images. This joint probability, notedPh(i1, i2), is

estimated by the Parzen window method [67]. It depends upon the mappingh since

we estimate the joint probability distribution between the imagesIσ
2 ◦ (Id + h) and

Iσ
1 . To be compatible with the scale-space idea and for computational convenience, we

choose a Gaussian window with varianceβ > 0 as the Parzen kernel. We will often

use the notationi ≡ (i1, i2) and

Gβ(i) = gβ(i1)gβ(i2) =
1

2πβ
exp

(
−|i|

2

2β

)
=

1√
2πβ

exp(− i21
2β

)
1√
2πβ

exp(− i22
2β

).

Notice thatGβ and all its partial derivatives are bounded and Lipschitz continuous. We

will need in Chapter 6 the infinite norms‖gβ‖∞ and‖g′β‖∞. For conciseness, we will

sometimes use the following notation when making reference to a pair of grey-level

intensities at a pointx:

Ih(x) ≡ (Iσ
1 (x), Iσ

2 (x + h(x))).

4.1 Global Criteria

We noteXIσ
1

the random variable whose samples are the valuesIσ
1 (x) andXIσ

2 ,h the

random variable whose samples are the valuesIσ
2 (x + h(x)).

The joint probability density function ofXg
Iσ
1

andXg
Iσ
2 ,h (the upper indexg stands

for global) is defined by the functionPh : R2 → [0, 1]:

Ph(i) =
1
|Ω|

∫

Ω
Gβ(Ih(x)− i) dx. (4.2)

Notice that the usual property
∫
R Ph(i)di = 1 holds true.

With the help of the estimate (4.2), we define the cross correlation between the two

imagesIσ
2 ◦ (Id + h) andIσ

1 , notedCCg(h), the correlation ratio, notedCRg(h) and

the mutual information, notedMI g(h). In order to do this we need to introduce more

random variables besidesXg
Iσ
1

andXg
Iσ
2 ,h. They are summarized in Table 4.1. We

have introduced in this table the conditional law ofXg
Iσ
2 ,h with respect toXg

Iσ
1

, noted

Ph(i2|i1):
Ph(i2|i1) =

Ph(i)
p(i1)

, (4.3)
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Random variable Value PDF

(Xg
Iσ
1
, Xg

Iσ
2 ,h) (i) Ph(i)

Xg
Iσ
1

i1 p(i1) =
∫

R
Ph(i) di2

Xg
Iσ
2 ,h i2 ph(i2) =

∫

R
Ph(i) di1

E[Xg
Iσ
2 ,h|Xg

Iσ
1
] µ2|1(i1,h) ≡

∫

R
i2Ph(i2|i1) di2 p(i1)

Var[Xg
Iσ
2 ,h|Xg

Iσ
1
] v2|1(i1,h) ≡ p(i1)

∫

R
i22 Ph(i2|i1) di2 − µ2|1(i1,h)2

Table 4.1: Random variables: global case.

and the conditional expectationE[Xg
Iσ
2 ,h|Xg

Iσ
1
] of the intensity in the second image

Iσ
2 (Id + h) conditionally to the intensity in the first imageIσ

1 . We note the value of

this random variableµ2|1(i1,h), indicating that it depends on the intensity valuei1

and on the fieldh. Similarly the conditional variance of the intensity in the second

image conditionally to the intensity in the first image is notedVar[Xg
Iσ
2 ,h|Xg

Iσ
1
] and

its value is abbreviatedv2|1(i1,h). The mean and variance of the images will also be

used. Note that these are not random variables and that, for the second image, they are

functions ofh:

µ2(h) ≡
∫

R
i2 ph(i2) di2, (4.4)

v2(h) ≡
∫

R
i22 ph(i2) di2 − (µ2(h))2. (4.5)

Their counterparts for the first image do not depend onh:

µ1 ≡
∫

R
i1 p(i1) di1, (4.6)

v1 ≡
∫

R
i21 p(i1) di1 − (µ1)2. (4.7)

The covariance ofXg
Iσ
1

andXg
Iσ
2 ,h will be noted

v1,2(h) ≡
∫

R2

i1 i2 Ph(i) di − µ1 µ2(h). (4.8)
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The three similarity measures may now be defined in terms of these quantities1:

CCg(h) =
v1,2(h)2

v1 v2(h)
, (4.9)

CRg(h) = 1− 1
v2(h)

∫

R
v2|1(i1,h) p(i1) di1, (4.10)

MI g(h) =
∫

R2

Ph(i) log
Ph(i)

p(i1)ph(i2)
di. (4.11)

The three criteria are positive and should be maximized with respect to the fieldh.

Therefore we propose the following definition.

Definition 4.1 The three global dissimilarity measures based on the cross correlation,

the correlation ratio and the mutual information are as follows:

JCCg(h) = −CCg(h),

JCRg(h) = −CRg(h) + 1,

JMI g(h) = −MI g(h).

Note that this definition shows that the mappingsh → JCCg(h), h → JCRg(h) and

h → JMI g(h) are not of the formh → ∫
Ω L(h(x)) dx, for some smooth functionL :

Rn → R. Therefore the Euler-Lagrange equations will be slightly more complicated

to compute than in this classical case.

4.2 Local Criteria

An interesting generalization of the ideas developed in the previous section is to make

the estimator (4.2) local. This allows us to take into account non-stationarities in the

distributions of the intensities. We weight our estimate (4.2) with a spatial Gaussian

of varianceγ > 0 centered atx0. This means that for each pointx0 in Ω we have

two random variables, notedX l
Iσ
1 ,x0

andX l
Iσ
2 ,x0,h (the upper indexl stands for local)

whose joint pdf is defined by:

Ph(i,x0) =
1

Gγ(x0)

∫

Ω
Gβ(Ih(x)− i)Gγ(x− x0) dx, (4.12)

where

Gγ(x− x0) =
1

(
√

2πγ)n
exp(−|x− x0|2

2γ
),

and

Gγ(x0) =
∫

Ω
Gγ(x− x0) dx ≤ |Ω|Gγ(0). (4.13)

1Note that instead of using the original definition ofCR, we use the total variance theorem to obtain

CR = 1− E[Var[X|Y ]]
Var[Y ]

. This transformation was suggested in [77], and turns out to be more convenient.
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i1

i2

Joint local intensity distributionP (i1, i2,x0)

I2

I1

0 A

A

Figure 4.1: Local joint intensity distribution.

The pdf defined by expression (4.12) is in the line of the ideas discussed by Koenderink

and Van Doorn in [47], except that we now have a bidimensional histogram calculated

around each point (see figure 4.1). With the help of this estimate, we define at every

pointx0 of Ω the local cross correlation between the two imagesIσ
1 andIσ

2 ◦ (Id+h),
notedCCl(h,x0), the local correlation ratio, notedCRl(h,x0) and the local mutual

information, notedMI l(h,x0). In order to do this, just as in the global case, we need

to introduce more random variables besidesX l
Iσ
1 ,x0

andX l
Iσ
2 ,x0,h. We summarize our

notations and definitions in Table 4.2.

As in the global case, we define the mean and variance ofX l
Iσ
1 ,x0

(note that they

are not random variables but they are functions ofx0):

µ1(x0) ≡
∫

R
i1 ph(i1,x0) di1, (4.14)

v1(x0) ≡
∫

R
i21 ph(i1,x0) di1 − (µ1(x0))2, (4.15)

the mean and variance ofX l
Iσ
2 ,x0,h (note that these quantities depend additionally on

the displacement fieldh):

µ2(h,x0) ≡
∫

R
i2 ph(i2,x0) di2, (4.16)
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Random variable Value PDF

(X l
Iσ
1 ,x0

, X l
Iσ
2 ,x0,h) (i) Ph(i1, i2,x0)

X l
Iσ
1 ,x0

i1 p(i1,x0) =∫

R
Ph(i1, i2,x0) di2

X l
Iσ
2 ,x0,h i2 ph(i2,x0) =∫

R
Ph(i1, i2,x0) di1

E[X l
Iσ
2 ,x0,h|X l

Iσ
1 ,x0

] µ2|1(i1,h,x0) ≡ p(i1,x0)∫

R
i2Ph(i2,x0|i1) di2

Var[X l
Iσ
2 ,x0,h|X l

Iσ
1 ,x0

] v2|1(i1,h,x0) ≡ p(i1,x0)∫

R
i22Ph(i2,x0|i1) di2

−µ2|1(i1,h,x0)2

Table 4.2: Random variables: local case.

v2(h,x0) ≡
∫

R
i22 ph(i2,x0) di2 − (µ2(h,x0))2, (4.17)

as well as their covariance:

v1,2(h,x0) ≡
∫

R
i1 i2 Ph(i2,x0) di− µ1(x0) µ2(h,x0). (4.18)

The semi-local similarity measures (i.e. depending onx0) can be written in terms of

these quantities:

CCl(h,x0) =
v1,2(h,x0)2

v1(x0) v2(h,x0)
, (4.19)

CRl(h,x0) = 1− 1
v2(h,x0)

∫

R
v2|1(i1,h,x0) p(i1,x0) di1, (4.20)

MI l(h,x0) =
∫

R2

Ph(i,x0) log
Ph(i,x0)

p(i1,x0)ph(i2,x0)
di. (4.21)
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We define global similarity functionals by aggregating these local measures:

CCl(h) =
∫

Ω
CCl(h,x0) dx0,

CRl(h) =
∫

Ω
CRl(h,x0) dx0,

MI l(h) =
∫

Ω
MI l(h,x0) dx0.

The three criteria are positive and should be maximized with respect to the fieldh.

In order to define a minimization problem, we propose the following definition.

Definition 4.2 The three local dissimilarity measures based on the cross correlation,

the correlation ratio and the mutual information are as follows:

JCCl(h) = −CCl(h),

JCRl(h) = −CRl(h) + |Ω|,

JMI l(h) = −MI l(h).

Note that, just as in the global case, this definition shows that the mappingsh →
JCCl(h), h → JCRl(h) andh → JMI l(h) are not of the formh → ∫

Ω L(h(x)) dx,

for some differentiable functionL : Rn → R. Therefore the Euler-Lagrange equations

will be more complicated to compute than in this classical case. This will be the object

of the next chapter.

4.3 Continuity of MI g and MI l

Recall that the existence of minimizers forI(h) was discussed in the end of Chapter 3

by assuming continuity and boundedness ofJ (h). This is proved in Theorems 6.29

on page 104 and 6.61 on page 117 for the cross correlation in the global and local

cases, respectively, and in Theorems 6.21 on page 100 and 6.53 on page 115 for the

correlation ratio in the global and local cases, respectively. In the case of the mutual

information, we have the following.

Proposition 4.1 Let hn, n = 1, · · · ,∞ be a sequence of functions ofH such that

hn → h almost everywhere inΩ. ThenMI g(hn) → MI g(h).

Proof : BecauseIσ
2 andgβ are continuous,Gβ(ihn(x)− i) → Gβ(ih(x)− i) a.e. in

Ω×R2. SinceGβ(ihn(x)− i) ≤ gβ(0)2, the dominated convergence theorem implies
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thatPhn(i) → Ph(i) for all i ∈ R2. A similar reasoning shows thatphn(i2) → ph(i2)
for all i2 ∈ R. Hence, the logarithm being continuous,

Phn(i) log
Phn(i)

p(i1)phn(i2)
→ Ph(i) log

Ph(i)
p(i1)ph(i2)

∀i ∈ R2.

We next consider three cases to find an upper bound forPhn(i)
∣∣∣log Phn (i)

p(i1)phn(i2)

∣∣∣:

i2 ≤ 0
This is the case where

0 ≤ |i2| ≤ |i2 − Iσ
2 (x + hn(x))| ≤ |i2 −A| n ≥ 1.

Hence

gβ(i2 −A) ≤ gβ(i2 − Iσ
2 (x + hn(x))) ≤ gβ(i2) n ≥ 1.

This yields
gβ(i2 −A)

gβ(i2)
≤ Phn(i)

p(i1)phn(i2)
≤ gβ(i2)

gβ(i2 −A)

and ∣∣∣∣log
Phn(i)

p(i1)phn(i2)

∣∣∣∣ ≤ log
gβ(i2)

gβ(i2 −A)
,

and therefore

Phn(i)
∣∣∣∣log

Phn(i)
p(i1)phn(i2)

∣∣∣∣ ≤ gβ(i2)p(i1) log
gβ(i2)

gβ(i2 −A)
.

The function on the right-hand side is continuous and integrable inR×]−∞,A].

0 ≤ i2 ≤ A
We have

0 ≤ |i2 − Iσ
2 (x + hn(x))| ≤ A n ≥ 1.

Hence

gβ(A) ≤ gβ(i2 − Iσ
2 (x + hn(x))) ≤ gβ(0) n ≥ 1.

This yields
gβ(A)
gβ(0)

≤ Phn(i)
p(i1)phn(i2)

≤ gβ(0)
gβ(A)

,

and ∣∣∣∣log
Phn(i)

p(i1)phn(i2)

∣∣∣∣ ≤ log
gβ(0)
gβ(A)

,

and therefore

Phn(i)
∣∣∣∣log

Phn(i)
p(i1)phn(i2)

∣∣∣∣ ≤ gβ(0)p(i1) log
gβ(0)
gβ(A)

.

The function on the right-hand side is continuous and integrable inR× [0,A].
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i2 ≥ A
This is the case where

0 ≤ i2 −A ≤ i2 − Iσ
2 (x + hn(x)) ≤ i2 n ≥ 1.

Hence

gβ(i2) ≤ gβ(i2 − Iσ
2 (x + hn(x))) ≤ gβ(i2 −A) n ≥ 1.

This yields
gβ(i2)

gβ(i2 −A)
≤ Phn(i)

p(i1)phn(i2)
≤ gβ(i2 −A)

gβ(i2)
,

and ∣∣∣∣log
Phn(i)

p(i1)phn(i2)

∣∣∣∣ ≤ log
gβ(i2 −A)

gβ(i2)
,

and therefore

Phn(i)
∣∣∣∣log

Phn(i)
p(i1)phn(i2)

∣∣∣∣ ≤ gβ(i2 −A)p(i1) log
gβ(i2 −A)

gβ(i2)
.

The function on the right-hand side is continuous and integrable inR×]A,+∞].

The dominated convergence theorem implies that

MI g(hn) =
∫

R2

Phn(i) log
Phn(i)

p(i1)phn(i2)
di →

MI g(h) =
∫

R2

Ph(i) log
Ph(i)

p(i1)ph(i2)
di.

2

Concerning the local case, a similar result holds true.

Proposition 4.2 Let hn, n = 1, · · · ,∞ be a sequence of functions ofH such that

hn → h almost everywhere inΩ thenMI l(hn) → MI l(h).

Proof : The proof is similar to that of proposition 4.12





Chapter 5

The Euler-Lagrange Equations

In this chapter, the computation of the first variation of the statistical dissimilarity mea-

sures defined in the previous chapter is carried out by considering the variations of the

joint density estimates. This provides us with a simple way to quantify the contribu-

tion of local infinitesimal variations ofh to these intrinsically non-local dissimilarity

criteria.

5.1 Global Criteria

We start with the global criteria, studying them in decreasing order of generality,

i.e. starting with mutual information.

5.1.1 Mutual Information

We do an explicit computation of the first variation ofJMIg(h) (definition 4.1

on page 68). For this purpose, we recall that the first variation is defined as
∂
∂εJMIg(h + εk)

∣∣
ε=0

. From the definition ofJMIg(h), we readily have

∂JMIg(h + εk)
∂ε

= −
∫

R2

∂

∂ε

[
Ph+εk(i) log

Ph+εk(i)
p(i1) ph+εk(i2)

]
di

= −
∫

R2

(
1 + log

Ph+εk(i)
p(i1) ph+εk(i2)

)
∂Ph+εk(i)

∂ε
di1 di2

−
∫

R2

Ph+εk(i)
ph+εk(i2)

∂ph+εk(i2)
∂ε

di.
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We notice that the second term on the right-hand side is zero, since we have
∫

R

∂ph+εk(i2)
∂ε

1
ph+εk(i2)

∫

R
Ph+εk(i) di1

︸ ︷︷ ︸
ph+εk(i2)

di2 =
∂

∂ε

∫

R
ph+εk(i2) di2

︸ ︷︷ ︸
1

= 0.

Thus, we may write the first variation ofJMIg(h) as

∂JMIg(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

R2

EMI
h (i)

∂Ph+εk(i)
∂ε

∣∣∣∣
ε=0

di, (5.1)

where

EMI
h (i) = −

(
1 + log

Ph(i)
p(i1) ph(i2)

)
.

The functionPh+εk(i) is given by equation (4.2):

Ph+εk(i) =
1
|Ω|

∫

Ω
Gβ(Ih+εk(x)− i) dx, (5.2)

and therefore

∂Ph+εk(i)
∂ε

=
1
|Ω|

∫

Ω
∂2 Gβ(Ih+εk(x)− i) ∇Iσ

2 (x + h(x) + εk(x)) · k(x) dx.

Thus, we finally have

∂JMIg(h + εk)
∂ε

∣∣∣∣
ε=0

=

1
|Ω|

∫

R2

∫

Ω
EMI

h (i) ∂2Gβ(I(x)h − i)∇Iσ
2 (x + h(x)) · k(x) dx di.

A convolution appears with respect to the intensity variablei. This convolution com-

mutes with the derivative∂2 with respect to the second intensity variablei2, and there-

fore

∂JMIg(h + εk)
∂ε

∣∣∣∣
ε=0

=
1
|Ω|

∫

Ω

(
Gβ ? ∂2 EMI

h

)(
Ih(x)

) ∇Iσ
2 (x + h(x)) · k(x) dx.

By identifying this expression with a scalar product inH = L2(Ω), we define the

gradient ofJMIg(h), denoted∇HJMIg(h), with the property that:

∂JMIg(h + εk)
∂ε

∣∣∣∣
ε=0

= (∇HJMIg(h), k)L2(Ω).

Thus,

∇HJMIg(h)(x) =
1
|Ω|

(
Gβ ? ∂2 EMI

h

)(
Ih(x)

)∇Iσ
2 (x + h(x)),

where

∂2 EMI
h (i) = −

(
∂2 Ph(i)
Ph(i)

− p′h(i2)
ph(i2)

)
.
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We define the functionR2 → R:

Lg
MI ,h(i) ≡ 1

|Ω| ∂2 EMI
h (i).

The gradient ofJMIg(h) is a smoothed version of this function, evaluated at the inten-

sity pairIh(x), times the vector pointing to the direction of local maximum increase

of i2, namely∇Iσ
2 (x+h(x)). It is therefore of interest to interpret the behavior of this

function. Given a pointx, the pairIh(x) lies somewhere in the square[0,A] within

the domain of intensities, i.e.R2 (see Figure 5.1). The first term inLg
MI ,h, namely

∂2 Ph(i)
Ph(i) , tries to make the intensityi2 move closer to a local maximum ofPh. It thus

tends to clusterPh. On the contrary, the second term, namely−p′h(i2)

ph(i2) , tries to prevent

the marginal lawph(i2) from becoming too clustered, i.e keepXIσ
2 ,h as unpredictable

as possible. The fact that only the value ofi2 is changed implies that these movements

take place only along one of the axes. This lack of symmetry is a general problem

coming from the way in which the problem is posed. We refer to the works of Trouvé

and Younes [83], Cachier and Rey [22], Christensen and He [24] and Alvarez et al. [1]

for some recent approaches to overcome this lack of symmetry. The red sketch in

Figure 5.1 depicts a possible state of the functionPh after minimization ofJMIg(h).

conditionals

i1i1i1 Joint intensity distributionP (i1, i2)

i2

i2

i2I2(x)
marginals

I1(x)

p(i1|I2(x))

p(i2|I1(x))

p(i1)

p(i2)

Figure 5.1: Sketch of a possible state of the joint pdf of intensities after minimization

of JMIg(h) (see text).
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5.1.2 Correlation Ratio

In this section, we compute the first variation ofJCRg(h) (definition 4.1 on page 68).

To do this, we note

w(h) ≡ E[Var[XIσ
2 ,h|XIσ

1
]] =

∫

R
v2|1(i1,h) p(i1) di1,

so that

JCRg(h) =
w(h)
v2(h)

=
1

v2(h)

(∫

R2

i22 Ph(i) di−
∫

R
µ2|1(i1,h)2 p(i1) di1

)
,

where

µ2|1(i1,h) =
∫

R
i2

Ph(i)
p(i1)

di2.

Thus, we readily have

∂JCRg(h + εk)
∂ε

=
1

v2(h + εk)

(
∂w(h + εk)

∂ε
− JCRg(h + εk)

∂v2(h + εk)
∂ε

)
,

where

∂w(h + εk)
∂ε

=
∫

R2

i22
∂Ph+εk(i)

∂ε
di−

∫

R
2µ2|1(i1,h + εk)

∫

R
i2

∂Ph+εk(i)
∂ε

di,

and

∂v2(h + εk)
∂ε

=
∫

R2

i22
∂Ph+εk(i)

∂ε
di− 2µ2(h + εk)

∫

R2

i2
∂Ph+εk(i)

∂ε
di. (5.3)

Similarly to the case of the mutual information (see equation (5.1)), the first variation

of JCRg(h) can be put in the form

∂JCRg(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

R2

ECR
h (i)

∂Ph+εk(i)
∂ε

∣∣∣∣
ε=0

di,

where

ECR
h (i) =

i2
v2(h)

(
i2 − 2µ2|1(i1,h)− JCRg(h)(i2 − 2µ2(h))

)
.

The discussion starting before equation (5.2) remains identical in this case. Thus, the

gradient ofJCRg(h) is given by:

∇HJCRg(h)(x) =
1
|Ω|

(
Gβ ? ∂2 ECR

h

)(
Ih(x)

)∇Iσ
2 (x + h(x)),

where

∂2 ECR
h (i) =

2
v2(h)

(
µ2(h)− µ2|1(i1,h) + CRg(h) (i2 − µ2(h))

)
.
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As for the mutual information, we define the functionR2 → R:

Lg
CR,h(i) ≡ 1

|Ω| ∂2 ECR
h (i),

and interpret its behavior as an intensity comparison function. The functionµ2|1(i1,h)
gives the “backbone” of Ph. We see that trying to decrease the value ofJCRg(h)
amounts to makingi2 lie as close as possible toµ2|1(i1,h), while keeping this back-

bone as “complex” as possible (away fromµ2(h)). The red sketch in Figure 5.2 depicts

a possible state of the functionPh after minimization ofJCRg(h).

conditionals

i1i1i1 Joint intensity distributionP (i1, i2)

i2

i2

i2I2(x)
marginals

I1(x)

p(i1|I2(x))

p(i2|I1(x))

p(i1)

p(i2)

Figure 5.2: Sketch of a possible state of the joint pdf of intensities after minimization

of JCRg(h) (see text).

5.1.3 Cross Correlation

In this section, we compute the first variation ofJCCg(h) (definition 4.1 on page 68).

This case is extremely similar to the previous two. From the definition ofJCCg(h),
we readily have

∂JCCg(h + εk)
∂ε

=
−1

v1 v2(h + εk)
(
2 v1,2(h + εk)

∂v1,2(h + εk)
∂ε

− CCg(h + εk) v1
∂v2(h + εk)

∂ε

)
,
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where

∂v1,2(h + εk)
∂ε

=
∫

R2

i1 i2
∂Ph+εk(i)

∂ε
di− µ1

∫

R2

i2
∂Ph+εk(i)

∂ε
di,

and ∂
∂εv2(h + εk) is given by equation (5.3). Thus, one more time, we may put the

first variation ofJCCg(h) in the form

∂JCCg(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

R2

ECC
h (i)

∂Ph+εk(i)
∂ε

∣∣∣∣
ε=0

di,

where

ECC
h (i) =

−1
v1 v2(h)

(
2 v1,2(h) i2 (i1 − µ1)−CCg(h) v1 i2 (i2 − 2µ2(h))

)
.

Again, the discussion starting before equation (5.2) remains valid, and therefore the

gradient ofJCCg(h) is given by:

∇HJCCg(h)(x) =
1
|Ω|

(
Gβ ? ∂2 ECC

h

)(
Ih(x)

) ∇Iσ
2 (x + h(x)),

where

∂2 ECC
h (i) = −2

[
v1,2(h)
v2(h)

(
i1 − µ1

v1

)
−CCg(h)

(
i2 − µ2(h)

v2(h)

)]
.

Notice that in this simple case the convolution may be applied formally, yielding the

same expression (since only linear terms are involved), so that in fact

∇HJCCg(h)(x) =
1
|Ω|∂2 ECC

h

(
Ih(x)

) ∇Iσ
2 (x + h(x)).

As for the previous two criteria, we define the functionR2 → R:

Lg
CC,h(i) ≡ 1

|Ω| ∂2 ECR
h (i),

and interpret its behavior as an intensity comparison function. Decreasing the value of

JCCg(h) amounts to making the pair of intensities lie on a non-vertical straight line

in R2 (not necessarily passing through the origin). Again, the lack of symmetry in the

problem limits the change of intensities to a single direction. The red sketch in Figure

5.3 depicts a possible state of the functionPh after minimization ofJCCg(h).

5.2 Local Criteria

We now analyse the case of the local criteria. As will be noticed, the reasoning is

completely analog to that of the global case, but the functions obtained are significantly

more complex.
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conditionals

i1i1i1 Joint intensity distributionP (i1, i2)

i2

i2

i2I2(x)
marginals

I1(x)

p(i1|I2(x))

p(i2|I1(x))

p(i1)

p(i2)

Figure 5.3: Sketch of a possible state of the joint pdf of intensities after minimization

of JCCg(h) (see text).

5.2.1 Mutual Information

We compute the first variation ofJMIl(h) (definition 4.12 on page 68). From this

definition, we have

∂JMIl(h + εk)
∂ε

= −
∫

Ω

∫

R2

∂

∂ε

(
Ph+εk(i,x0) log

Ph+εk(i,x0)
p(i1,x0)ph+εk(i2)

)
di dx0

= −
∫

Ω

∫

R2

(
1 + log

Ph+εk(i,x0)
p(i1,x0) ph+εk(i2,x0)

)
∂Ph+εk(i,x0)

∂ε
di dx0

−
∫

Ω

∫

R2

Ph+εk(i,x0)
ph+εk(i2,x0)

∂ph+εk(i2,x0)
∂ε

didx0

︸ ︷︷ ︸
Q

.

We notice that

Q =
∫

R

∂ph+εk(i2,x0)
∂ε

1
ph+εk(i2,x0)

∫

R
Ph+εk(i,x0) di1

︸ ︷︷ ︸
ph+εk(i2,x0)

di2 =

∂

∂ε

∫

R
ph+εk(i2,x0) di2

︸ ︷︷ ︸
1

= 0.
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Thus, the first variation ofJMIl(h) may be written as

∂JMIl(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

Ω

∫

R2

EMI
h (i,x0)

∂Ph+εk(i,x0)
∂ε

∣∣∣∣
ε=0

di dx0,

where

EMI
h (i,x0) = −

(
1 + log

Ph(i,x0)
p(i1,x0) ph(i2,x0)

)
.

The lawPh+εk(i,x0) is given by equation (4.12):

Ph+εk(i,x0) =
1

Gγ(x0)

∫

Ω
Gβ(Ih+εk(x)− i) Gγ(x− x0) dx. (5.4)

Therefore

∂Ph+εk(i,x0)
∂ε

=

1
Gγ(x0)

∫

Ω
Gγ(x− x0)∂2Gβ(Ih+εk(x)− i)∇Iσ

2 (x + h(x) + εk(x)) · k(x) dx.

Thus, we finally have

∂JMIl(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

Ω

∫

R2

∫

Ω

1
Gγ(x0)

EMI
h (i,x0) Gγ(x−x0) ∂2Gβ(Ih(x)−i)

∇Iσ
2 (x + h(x)) · k(x) dx di dx0.

Two convolutions appear, one with respect to the space variablex and the other one

with respect to the intensity variablei. This last convolution commutes with the partial

derivative∂2 with respect to the second intensity variablei2, and therefore

∂JMIl(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

Ω

(
Gγ ?

(
Gβ ? 1

Gγ
∂2E

MI
h

))(
Ih(x),x

) ∇Iσ
2 (x + h(x)) · k(x) dx.

This expression gives the gradient ofJMIl(h):

∇HJMIl(h)(x) =
(
Gγ ?

(
Gβ ? 1

Gγ
∂2E

MI
h

))(
Ih(x),x

) ∇Iσ
2 (x + h(x)),

where

∂2E
MI
h (i,x) = −

(
∂2Ph(i,x)
Ph(i,x)

− p′h(i2,x)
ph(i2,x)

)
.

We define the functionR2 × Rn → R:

Ll
MI ,h(i,x) ≡ 1

Gγ(x)
∂2 EMI

h (i,x),

which plays exactly the same role as its global counterpart,Lg
MI ,h(i).



5.2 Local Criteria 83

5.2.2 Correlatio Ratio

In this section, we compute the first variation ofJCRl(h) (definition 4.12 on page 68).

If we write

w(h,x0) ≡
∫

R
v2|1(i1,h,x0) p(i1,x0) di1,

so that

JCRl(h) =
∫

Ω

w(h,x0)
v2(h,x0)

dx0 =
∫

Ω

(
1

v2(h,x0)

(∫

R2

i22 Ph(i,x0) di−
∫

R
µ2|1(i1,h,x0)2 p(i1,x0) di1

))
dx0,

we immediately see that we are in a situation completely analog to the global case, with

the same modification as that of mutual information in the previous section, i.e. that

we can write the first variation ofJCRl(h) as

∂JCRl(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

Ω

∫

R2

ECR
h (i,x0)

∂Ph+εk(i,x0)
∂ε

∣∣∣∣
ε=0

di dx0,

where

ECR
h (i,x0) =

i2
v2(h,x0)

(
i2 − 2µ2|1(i1,h,x0)− w(h,x0)

v2(h,x0)
(i2 − 2µ2(h,x0))

)
.

The discussion starting before equation (5.4) applies directly to this case. Thus, the

gradient ofJCRl(h) is given by:

∇HJCRl(h)(x) =
(
Gγ ?

(
Gβ ? 1

Gγ
∂2E

CR
h

))(
Ih(x),x

) ∇Iσ
2 (x + h(x)),

where

∂2 ECR
h (i,x) =

2
v2(h,x)

(
µ2(h,x)− µ2|1(i1,h,x) + CRl(h,x)

(
i2 − µ2(h,x)

))
.

We define the functionR2 × Rn → R:

Ll
CR,h(i,x) ≡ 1

Gγ(x)
∂2 ECR

h (i,x).

which plays exactly the same role as its global counterpart,Lg
CR,h(i).

5.2.3 Cross Correlation

Again, the situation is quite similar in the case ofJCCl(h) (definition 4.1 on page 68).

We can put its first variation in the form

∂JCCl(h + εk)
∂ε

∣∣∣∣
ε=0

=
∫

Ω

∫

R2

ECC
h (i,x0)

∂Ph+εk(i,x0)
∂ε

∣∣∣∣
ε=0

di dx0,
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where

ECC
h (i,x0) =

−1
v1(x0) v2(h,x0)

(
2 v1,2(h,x0) i2 (i1 − µ1(x0))−CCl(h,x0) v1(x0) i2 (i2 − 2µ2(h,x0))

)
.

The discussion starting at equation (5.4) remains valid, and therefore the gradient of

JCCl(h) is given by:

∇HJCCl(h)(x) =
(
Gγ ?

(
Gβ ? 1

Gγ
∂2E

CC
h

))(
Ih(x),x

) ∇Iσ
2 (x + h(x)),

where

∂2 ECC
h (i,x) = −2

[
v1,2(h,x)
v2(h,x)

(
i1 − µ1(x)

v1(x)

)
−CCl(h,x)

(
i2 − µ2(h,x)

v2(h,x)

)]
.

Like in the global case, the convolution in the intensity domain yields the same expres-

sion (since it is linear ini). Thus,

∇HJCCl(h)(x) =
(
Gγ ?

1
Gγ

∂2 ECC
h

)
(Ih(x),x)∇Iσ

2 (x + h(x)).

We define the functionR2 × Rn → R:

Ll
CC,h(i,x) ≡ 1

Gγ(x)
∂2 ECC

h (i,x).

which plays the same role as its global counterpart,Lg
CC,h(i).

5.3 Summary

We now summarize the results of this chapter by defining the functions that will be

used to specify the functionF in the generic matching flow (equation (2.4) on page 47),

depending on the various dissimilarity criteria.

Theorem 5.1 The infinitesimal gradient of the global dissimilarity criteria is given by

F g(h)(x) = ∇HJ g(h)(x) = (Gβ ? Lg
h)(Ih(x)) ∇Iσ

2 (x + h(x)), (5.5)

where the functionLg
h(i) is equal to

Lg
MI,h(i) = − 1

|Ω|
(

∂2Ph(i)
Ph(i)

− p′h(i2)
ph(i2)

)
(5.6)

in the case of the mutual information, to

Lg
CR,h(i) =

µ2(h)− µ2|1(i1,h) + CRg(h)
(
i2 − µ2(h)

)
1
2 |Ω| v2(h)

(5.7)
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in the case of the correlation ratio and to

Lg
CC,h(i) = − 2

|Ω|
(

v1,2(h)
v2(h)

(
i1 − µ1

v1

)
−CCg(h)

(
i2 − µ2(h)

v2(h)

))
(5.8)

in the case of the cross correlation. This last case is especially simple since

Gβ ? Lg
CC,h = Lg

CC,h,

so that no convolution is required.

This defines three functionsH → H:

F g
MI(h) = (Gβ ? Lg

MI,h)(Iσ
1 , Iσ

2 (Id + h)) ∇Iσ
2 (Id + h),

F g
CR(h) = (Gβ ? Lg

CR,h)(Iσ
1 , Iσ

2 (Id + h)) ∇Iσ
2 (Id + h),

F g
CC(h) = Lg

CC,h(Iσ
1 , Iσ

2 (Id + h)) ∇Iσ
2 (Id + h).

(5.9)

Proof : The only point that has not been proved is the fact that the functionsF g
MI (h),

F g
CR(h) andF g

CC(h) belong toH. This is a consequence of theorems 6.13, 6.25 and

6.31, respectively.2

It is worth clarifying how equation (5.5) is interpreted. The functionLg
h : R2 → R

is convolved with the 2D gaussianGβ and the result isevaluatedat the intensity pair

(Iσ
1 (x), Iσ

2 (x + h(x))). The value of the gradient at the pointx is then obtained by

multiplying this value by the gradient of the second image at the pointx + h(x). For

the global cross correlation, no convolution is required.

The case of the local criteria is very similar.

Theorem 5.2 The infinitesimal gradient of the local criteria is given by

F l(h)(x) = ∇HJ l(h)(x) = (Gγ ? (Gβ ? Ll
h))(Ih(x),x) ∇Iσ

2 (x + h(x)), (5.10)

where the functionLl
h(i1, i2,x) is equal to

Ll
MI,h(i,x) = − 1

Gγ(x)

(
∂2Ph(i,x)
Ph(i,x)

− p′h(i2,x)
ph(i2,x)

)
, (5.11)

in the case of the mutual information, to

Ll
CR,h(i,x) =

µ2(h,x)− µ2|1(i1,h,x) + CRl(h,x)
(
i2 − µ2(h,x)

)
1
2 Gγ(x) v2(h,x)

(5.12)

in the case of the correlation ratio, and to

Ll
CC,h(i,x) =

− 2
Gγ(x)

(
v1,2(h,x)
v2(h,x)

(
i1 − µ1(x)

v1(x)

)
−CCl(h,x)

(
i2 − µ2(h,x)

v2(h,x)

))
(5.13)
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in the case of the cross correlation. The case of the cross correlation is especially

simple since

Gβ ? Ll
CC,h = Ll

CC,h,

so that only the spatial convolution is necessary.

This defines three functionsH → H:

F l
MI(h) = (Gγ ? Gβ ? Ll

MI,h)(Iσ
1 , Iσ

2 (Id + h), Id) ∇Iσ
2 (Id + h),

F l
CR(h) = (Gγ ? Gβ ? Ll

CR,h)(Iσ
1 , Iσ

2 (Id + h), Id) ∇Iσ
2 (Id + h),

F l
CC(h) = (Gγ ? Ll

CC,h)(Iσ
1 , Iσ

2 (Id + h), Id) ∇Iσ
2 (Id + h).

(5.14)

Proof : The fact thatF l
MI (h), F l

CR(h) andF l
CC(h) belong toH is a consequence of

theorems 6.41, 6.57 and 6.64, respectively.2

It is worth clarifying how equation (5.10) is interpreted. The functionLl
h : R2×Rn →

R is convolved with the 2D gaussianGβ for the first two variables (intensities) and the

nD gaussianGγ for the remainingn variables (spatial), and the result isevaluatedat

the point((Iσ
1 (x), Iσ

2 (x + h(x))),x) of R2 × Rn. The value of the gradient at the

pointx is then obtained by multiplying this value by the gradient of the second image

at the pointx + h(x). For the local cross correlation, only the spatial convolution is

required.



Chapter 6

Properties of the Matching Terms

This chapter is devoted to showing that the gradients of the statistical criteria com-

puted in the previous chapter satisfy the Lipschitz-continuity conditions established in

Chapter 2, necessary to assert the well-posedness of the evolution equations.

6.1 Preliminary Results

We begin by some elementary results on Lipschitz-continuous functions that will be

used very often in the sequel.

Proposition 6.1 LetH be a Banach space and let us denote its norm by‖.‖H. Let

fi, i = 1, 2 : H −→ R be two Lipschitz continuous functions. We have the following:

1. f1 + f2 is Lipschitz continuous.

2. If f1 andf2 are bounded then the productf1f2 is Lipschitz continuous.

3. If f2 > 0 and iff1 andf2 are bounded, then the ratiof1

f2
is Lipschitz continuous.

Proof : We prove only 2 and 3. Leth andh′ be two vectors ofH:

|f1(h)f2(h)− f1(h′)f2(h′)| =
|(f1(h)− f1(h′))f2(h) + f1(h′)(f2(h)− f2(h′)| ≤

|f2(h)| |f1(h)− f1(h′)|+ |f1(h′)| |f2(h)− f2(h′)|,
from which point 2 above follows. Similarly

∣∣∣∣
f1(h)
f2(h)

− f1(h′)
f2(h′)

∣∣∣∣ =
|f1(h)f2(h′)− f2(h)f1(h′)|

f2(h)f2(h′)
≤

|f1(h)− f1(h′)|f2(h′) + |f1(h′)| |f2(h)− f2(h′)|
f2(h)f2(h′)

.
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If f2 > 0, there existsa > 0 such thatf2 > a. Hence
∣∣∣∣
f1(h)
f2(h)

− f1(h′)
f2(h′)

∣∣∣∣ ≤ 1
a2
|f1(h) − f1(h′)|f2(h′) + |f1(h′)| |f2(h) − f2(h′)|,

from which point 3 above follows.2

In the following, we will need the following definitions and notations.

Definition 6.1 We noteH1 = [0,A] ×H andH2 = [0,A]2 ×H the Banach spaces

equipped with the norms‖(z,h)‖H1 = |z|+‖h‖H and‖(z1, z2,h)‖H2 = |z1|+ |z2|+
‖h‖H , respectively.

We will use several times the following result.

Lemma 6.2 Letf : H2 −→ R be such that(z1, z2) −→ f(z1, z2,h) is Lipschitz con-

tinuous with a Lipschitz constantlf independent ofh and such thath −→ f(z1, z2,h)
is Lipschitz continuous with a Lipschitz constantLf independent of(z1, z2). Thenf is

Lipschitz continuous.

Proof : We have

|f(z1, z2,h)− f(z′1, z
′
2,h

′)| ≤
|f(z1, z2,h)− f(z′1, z

′
2,h)|+ |f(z′1, z

′
2,h)− f(z′1, z

′
2,h

′)| ≤
lf (|z1 − z′1|+ |z2 − z′2|) + Lf‖h− h′‖H ≤

max(lf , Lf )(|z1 − z′1|+ |z2 − z′2|+ ‖h− h′‖H).

2

In Section 6.3, we will need a slightly more general version of this lemma.

Lemma 6.3 Letf : [0,A]2×H×Ω −→ R be such that(z1, z2) −→ f(z1, z2,h,x) is

Lipschitz continuous with a Lipschitz constantlf independent ofx andh and such that

h −→ f(z1, z2,h,x) is Lipschitz continuous with a Lipschitz constantLf independent

of (z1, z2,x). Thenf is Lipschitz continuous on[0,A]2 ×H uniformly onΩ.

Proof : Indeed,

|f(z1, z2,h,x)− f(z′1, z
′
2,h,x′)| ≤

|f(z1, z2,h,x)− f(z′1, z
′
2,h,x)|+ |f(z′1, z

′
2,h,x)− f(z′1, z

′
2,h

′)| ≤
lf (|z1 − z′1|+ |z2 − z′2|) + Lf‖h− h′‖H ≤

max(lf , Lf )(|z1 − z′1|+ |z2 − z′2|+ ‖h− h′‖H) ∀x ∈ Ω,

and the Lipschitz constantmax(lf , Lf ) is independent ofx ∈ Ω. 2
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6.2 Global Criteria

We show in this section the Lipschitz continuity of the gradients of the global criteria,

as defined in (5.9).

6.2.1 Mutual Information

We first prove that in the mutual information case, there is a neat separation in the

definition of the functionF between its local and global dependency in the fieldh.

More precisely we have the following.

Proposition 6.4 The functionqh : R→ R defined by

qh(i2) =
p′h(i2)
ph(i2)

satisfies the following equation:

qh(i2) = a(i2,h)− i2
β

,

where the function0 ≤ a(i2,h) ≤ A
β .

Proof : ph is defined by

ph(i2) =
∫

Ω
gβ(Iσ

2 (x + h(x))− i2) dx,

hence

p′h(i2) =
1

β Ω

∫

Ω
(Iσ

2 (x + h(x))− i2)gβ(Iσ
2 (x + h(x))− i2) dx.

The functiona(i2,h) is equal to

a(i2,h) =
1
β

∫

Ω
Iσ
2 (x + h(x))gβ(Iσ

2 (x + h(x))− i2) dx
∫

Ω
gβ(Iσ

2 (x + h(x))− i2) dx
, (6.1)

and the result follows from the fact thatIσ
2 (x + h(x)) ∈ [0,A]. 2

A simple variation of the previous proof shows the truth of the following.

Proposition 6.5 The functionQh : R2 → R defined by

Qh(i) =
∂2Ph(i)
Ph(i)
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satisfies the following equation:

Qh(i) = A(i,h)− i2
β

,

where function

A(i,h) =
1
β

∫

Ω
Iσ
2 (x + h(x)) Gβ(Ih(x)− i) dx

∫

Ω
Gβ(Ih(x)− i) dx

, (6.2)

satisfies0 ≤ A(i,h) ≤ A
β .

In the following, we will use the functionLg
MI ,h(i) : R2 → R defined as (see theorem

5.1)

Lg
MI ,h(i) = − 1

|Ω|(Qh(i)− qh(i2)) = − 1
|Ω|(A(i,h)− a(i2,h)). (6.3)

We then consider the resultfg
MI of convolvingLg

MI ,h with Gβ, i.e. the two functions

b : R×H −→ R defined as

b(z2,h) = (gβ ? a)(z2,h) =
∫

R
gβ(z2 − i2)a(i2,h) di2, (6.4)

andB : R2 ×H −→ R defined as

B(z1, z2,h) = (Gβ ? A)(z,h) =
∫

R2

Gβ(z− i)A(i,h) di. (6.5)

We prove a series of propositions.

Proposition 6.6 The functionR −→ R+ defined byz2 −→ b(z2,h) is Lipschitz con-

tinuous with a Lipschitz constantlgb which is independent ofh. Moreover, it is bounded

by Aβ .

Proof : The second part of the proposition follows from the fact that0 ≤ a(i2,h) ≤
A
β ∀i2 ∈ R and∀h ∈ H (proposition 6.4).

In order to prove the first part, we prove that the magnitude of the derivative of the

function is bounded independently ofh. Indeed

|b′(z2,h)| = 1
β

∣∣∣∣
∫ +∞

−∞
(z2 − i2)gβ(z2 − i2)a(i2,h)di2

∣∣∣∣ ≤

A
β

∫ +∞

−∞
|z2 − i2|gβ(z2 − i2)di2.

The function on the right-hand side of the inequality is independent ofh and

continuous on[0,A], therefore upperbounded.2
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Proposition 6.7 The functionh −→ b(z2,h) : L2(Ω) −→ R is Lipschitz continuous

onL2(Ω) with Lipschitz constantLg
b , which is independent ofz2 ∈ [0,A].

Proof : We consider

b(z2,h1)− b(z2,h2) =
∫

R
gβ(z2 − i2) (a(i2,h1)− a(i2,h2)) di2 (6.6)

According to equation (6.1),a(i2,h) is the ratioN(i2,h)/D(i2,h) of the two func-

tions

N(i2,h) =
∫

Ω
Iσ
2 (x + h(x))gβ(Iσ

2 (x + h(x))− i2) dx,

and

D(i2,h) =
∫

Ω
gβ(Iσ

2 (x + h(x))− i2) dx.

We ignore the factor1/β which is irrelevant in the proof. We write

|b(z2,h1)− b(z2,h2)| ≤∫

R
gβ(z2 − i2)

|N(i2,h2)| |D(i2,h2)−D(i2,h1)|
D(i2,h1)D(i2,h2)

di2+
∫

R
gβ(z2 − i2)

D(i2,h2) |N(i2,h2)−N(i2,h1)|
D(i2,h1)D(i2,h2)

di2, (6.7)

and consider the first term of the right-hand side.

D(i2,h2)−D(i2,h1) =∫

Ω
(gβ(i2 − Iσ

2 (x + h2(x)) )− gβ(i2 − Iσ
2 (x + h1(x)) )) dx

We use the first order Taylor expansion with integral remainder of theC1 functiongβ.

This says that

gβ(i + t) = gβ(i) + t

∫ 1

0
g′β(i + tα) dα,

as the reader will easily verify. We can therefore write

gβ(i2 − Iσ
2 (x + h2(x)) )− gβ(i2 − Iσ

2 (x + h1(x)) ) =

( Iσ
2 (x + h1(x)) − Iσ

2 (x + h2(x)) )
∫ 1

0
g′β

(
i2 −

(
α Iσ

2 (x + h2(x))+

(1− α) Iσ
2 (x + h1(x))

))
dα

We use the fact thatIσ
2 is Lipschitz continuous and write

|D(i2,h2)−D(i2,h1)| ≤

Lip(Iσ
2 )

∫

Ω

(
|h1(x)− h2(x)|

∣∣∣∣
∫ 1

0
g′β(i2 − (α Iσ

2 (x + h2(x)) + (1− α) Iσ
2 (x + h1(x)) )) dα

∣∣∣∣
)

dx
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Schwarz inequality implies

|D(i2,h2)−D(i2,h1)| ≤ Lip(Iσ
2 )‖h1 − h2‖H

(∫

Ω

(∫ 1

0
g′β(i2 − (α Iσ

2 (x + h2(x)) + (1− α) Iσ
2 (x + h1(x)) )) dα

)2

dx

) 1
2

We introduce the function

r(i2,h1,h2) =
(∫

Ω

(∫ 1

0
|i2 −

(
α Iσ

2 (x + h2(x)) + (1− α) Iσ
2 (x + h1(x))

)
|

gβ

(
i2 −

(
α Iσ

2 (x + h2(x)) + (1− α) Iσ
2 (x + h1(x))

))
dα

)2
dx

) 1
2

We notice that

(∫

Ω

(∫ 1

0
g′β(i2 − (α Iσ

2 (x + h2(x)) + (1− α) Iσ
2 (x + h1(x)) )) dα

)2

dx

) 1
2

≤ 1
β

r(i2,h1,h2).

So far we have
∫

R
gβ(z2 − i2)

|N(i2,h2)| |D(i2,h2)−D(i2,h1)|
D(i2,h1)D(i2,h2)

di2 ≤
Lip(Iσ

2 )
β

‖h1 − h2‖H

(∫

R
gβ(z2 − i2)

|N(i2,h2)| rH(i2,h1,h2)
D(i2,h1)D(i2,h2)

di2

)
(6.8)

We study the function ofz2 that is on the right-hand side of this inequality. First we

note that the function is well defined since no problems occur wheni2 goes to infinity

because ”there are three gaussians in the numerator and two in the denominator”. We

then show that this function is bounded independently ofh1 andh2 for all z2 ∈ [0,A].
We consider three cases:

i2 ≤ 0
This is the case where

0 ≤ |i2| ≤ |i2 − Iσ
2 (x + hj(x))| ≤ |i2 −A| j = 1, 2

0 ≤ |i2| ≤ |i2 − (αIσ
2 (x + h2(x)) +

(1− α)Iσ
2 (x + h1(x)))| ≤ |i2 −A| 0 ≤ α ≤ 1

Hence

gβ(i2 −A) ≤ gβ(i2 − Iσ
2 (x + hj(x))) ≤ gβ(i2) j = 1, 2

gβ(i2 −A) ≤ gβ(i2 − (αIσ
2 (x + h2(x)) +

(1− α)Iσ
2 (x + h1(x)))) ≤ gβ(i2) 0 ≤ α ≤ 1
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This yields

∫ 0

−∞
gβ(z2 − i2)

|N(i2,h2)| r(i2,h1,h2)
D(i2,h1)D(i2,h2)

di2 ≤

|Ω|1/2A
∫ 0

−∞
gβ(z2 − i2)|i2 −A|

(
gβ(i2)

gβ(i2 −A)

)2

di2,

The integral on the right-hand side is well-defined and defines a continuous func-

tion of z2.

0 ≤ i2 ≤ A

0 ≤ |i2 − Iσ
2 (x + hj(x))| ≤ A j = 1, 2

0 ≤|i2 − (αIσ
2 (x + h2(x)) + (1− α)Iσ

2 (x + h1(x)))| ≤ A 0 ≤ α ≤ 1

Hence

gβ(A) ≤ gβ(i2 − Iσ
2 (x + hj(x))) ≤ gβ(0) j = 1, 2

gβ(A) ≤ gβ(i2 − (αIσ
2 (x + h2(x)) +

(1− α)Iσ
2 (x + h1(x)))) ≤ gβ(0) 0 ≤ α ≤ 1

This yields

∫ A

0
gβ(z2 − i2)

|N(i2,h2)| r(i2,h1,h2)
D(i2,h1)D(i2,h2)

di2 ≤

|Ω|1/2

(Agβ(0)
gβ(A)

)2 ∫ A

0
gβ(z2 − i2) di2,

The integral on the right-hand side is convergent and defines a continuous func-

tion of z2.

i2 ≥ A
This is the case where

0 ≤i2 −A ≤ i2 − Iσ
2 (x + hj(x)) ≤ i2 j = 1, 2

0 ≤i2 −A ≤ i2 − (αIσ
2 (x + h2(x)) +

(1− α)Iσ
2 (x + h1(x))) ≤ i2 0 ≤ α ≤ 1

Hence

gβ(i2) ≤ gβ(i2 − Iσ
2 (x + hj(x))) ≤ gβ(i2 −A) j = 1, 2

gβ(i2) ≤ gβ(i2 − (αIσ
2 (x + h2(x)) +

(1− α)Iσ
2 (x + h1(x)))) ≤ gβ(i2 −A) 0 ≤ α ≤ 1
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This yields

∫ +∞

A
gβ(z2 − i2)

|N(i2,h2)| r(i2,h1,h2)
D(i2,h1)D(i2,h2)

di2 ≤

|Ω|1/2A
∫ +∞

A
gβ(z2 − i2)i2

(
gβ(i2 −A)

gβ(i2)

)2

di2,

The integral on the right-hand side is convergent and defines a continuous func-

tion of z2.

In all three cases, the functions ofz2 appearing on the right-hand side are continuous,

independent ofh1 andh2, therefore upperbounded on[0,A] by a constant independent

of h1 andh2. Returning to inequality (6.8), we have proved that there existed a positive

constantC independent ofz2 such that

∫

R
gβ(z2 − i2)

|N(i2,h2)| |D(i2,h2)−D(i2,h1)|
D(i2,h1)D(i2,h2)

di2 ≤

C‖h1 − h2‖H ∀z2 ∈ [0,A] ∀h1, h2 ∈ H

A similar proof can be developed for the second term in the right-hand side of the

inequality (6.7). In conclusion we have proved that there existed a constantLg
b , inde-

pendent ofz2 such that

|b(z2,h1)− b(z2,h2)| ≤ Lg
b‖h1 − h2‖H ∀z2 ∈ [0,A] ∀h1, h2 ∈ H

2

Thus, we can state the following.

Proposition 6.8 The functionb : H1 → R is Lipschitz continuous.

Proof : The proof follows from propositions 6.6, 6.7 and lemma 6.2.2

We now proceed with showing the same kind of properties for the functionB.

Proposition 6.9 The function[0,A]2 −→ R+ defined by(z1, z2) −→ B(z1, z2,h) is

Lipschitz continuous with a Lipschitz constantlgB which is independent ofh. Moreover,

it is bounded byAβ .

Proof : The second part of the proposition follows from the fact that,∀i1, i2 ∈ R2

and∀h ∈ H, we have (proposition 6.5):

0 ≤ A(i1, i2,h) ≤ A
β

.

The first part follows the same pattern as the proof of proposition 6.6.2
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Proposition 6.10 The functionh −→ B(z1, z2,h), H −→ R is Lipschitz continuous

with a Lipschitz constantLg
B which is independent of(z1, z2) ∈ [0,A]2.

Proof : The proof follows the same pattern as the one of proposition 6.7.2

Therefore we can state the following result.

Proposition 6.11 The functionB : H2 → R is Lipschitz continuous.

Proof : The proof follows of propositions 6.9, 6.10 and lemma 6.2.2

From propositions 6.8, 6.11 and 6.1 we obtain the following.

Corollary 6.12 The function fg
MI : H2 −→ R defined by (z1, z2,h) −→

− 1
|Ω|(B(z1, z2,h) − b(z2,h)) is Lipschitz continuous and bounded by2A/β|Ω|. We

noteLip(fg
MI) the corresponding Lipschitz constant.

We can now state the main result of this section:

Theorem 6.13 The functionF g
MI : H −→ H defined by

F g
MI(h) = fg

MI(I
σ
1 , Iσ

2 (Id + h),h)∇Iσ
2 (Id + h) =

− 1
|Ω|(B(Iσ

1 , Iσ
2 (Id + h),h)− b(Iσ

2 (Id + h),h))∇Iσ
2 (Id + h),

is Lipschitz continuous and bounded.

Proof : Boundedness comes from the fact thatb andB are bounded (propositions 6.6

and 6.9, respectively) and that|∇Iσ
2 | is bounded. This implies thatF g

MI (h) ∈ H =
L2(Ω) ∀h ∈ H.

We consider theith componentF g i
MI of F g

MI :

F g i
MI (h1)(x)− F g i

MI (h2)(x) = − 1
|Ω|(S1T1 − S2T2),

with

Sj = B(Iσ
1 (x), Iσ

2 (x + hj(x)),hj)− b(Iσ
2 (x + hj(x)),hj)

Tj = ∂iI
σ
2 (x + hj(x)),

andj = 1, 2. We continue with

|F g i
MI (h1)(x)− F g i

MI (h2)(x)| ≤ 1
|Ω|(|S1 − S2||T1|+ |S2||T1 − T2|)

Because∂iI
σ
2 is bounded,|Tj | ≤ ‖∂iI

σ
2 ‖∞. Because of propositions 6.6 and 6.9,

|S2| ≤ 2Aβ . Because∂iI
σ
2 is Lipschitz continuous|T1 − T2| ≤ Lip(∂iI

σ
2 )|h1(x) −

h2(x)|.
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Finally, because of corollary 6.12 and the fact thatIσ
2 is Lipschitz continuous,

|S1 − S2| ≤ Lip(fg
MI ) (Lip(Iσ

2 )|h1(x)− h2(x)|+ ‖h1 − h2‖H) .

Collecting all terms we obtain

|F g i
MI (h1)(x)− F g i

MI (h2)(x)| ≤ Ci(|h1(x)− h2(x)|+ ‖h1 − h2‖H),

for some positive constantCi, i = 1, · · · , n. The last inequality yields, through the

application of Cauchy-Schwarz:

‖F g
MI (h1)− F g

MI (h2)‖H ≤ Lg
F ‖h1 − h2‖H

for some positive constantLg
F and this completes the proof.2

The following proposition will be needed later.

Proposition 6.14 The functionΩ → Rn such thatx → F g
MI(h(x)) satisfies

|F g
MI(h(x))− F g

MI(h(y))| ≤ K(|x− y|+ |h(x)− h(y)|),

for some constantK > 0.

Proof : We write

F g
MI(h(x))− F g

MI(h(y)) =

fg
MI(h(x))∇Iσ

2 (x + h(x))− fg
MI(h(x))∇Iσ

2 (y + h(y))+

fg
MI(h(x))∇Iσ

2 (y + h(y))− fg
MI(h(y))∇Iσ

2 (y + h(y)).

Hence

|F g
MI(h(x))− F g

MI(h(y))| ≤
|fg

MI(h(x))| |∇Iσ
2 (x + h(x))−∇Iσ

2 (y + h(y))|+
|∇Iσ

2 (y + h(y))| |fg
MI(h(x))− fg

MI(h(y))|.

Corollary 6.12 and the fact that the functionsIσ
1 , Iσ

2 and its first order derivative, are

Lipschitz continuous imply

|F g
MI(h(x))− F g

MI(h(y))| ≤
2A
β|Ω| Lip(∇Iσ

2 )(|x− y|+ |h(x)− h(y)|) + ‖|∇Iσ
2 |‖∞Lip(fg

MI )|h(x)− h(y)|,

hence the result.2
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6.2.2 Correlation Ratio

We produce a simple expression ofCRg(h) in terms of the two imagesIσ
1 andIσ

2 and

use it to prove that the correlation ratio is Lipschitz continuous as a function ofh. In

the sequel, we drop the upper indexg. We begin with some estimates.

Lemma 6.15

0 ≤ µ2(h) = E[XIσ
2 ,h] =

1
|Ω|

∫

Ω
Iσ
2 (x + h(x)) dx ≤ A (6.9)

β ≤ v2(h) = Var[XIσ
2 ,h] = β + θ(h) ≤ β +A2, (6.10)

where

θ(h) =
1
|Ω|

∫

Ω
Iσ
2 (x + h(x))2 dx−

(
1
|Ω|

∫

Ω
Iσ
2 (x + h(x)) dx

)2

. (6.11)

Proof : Because of equation (4.4) we have

µ2(h) =
1
|Ω|

∫

R
i2

(∫

Ω
gβ(i2 − Iσ

2 (x + h(x))) dx
)

di2 =
1
|Ω|

∫

Ω
Iσ
2 (x + h(x)) dx.

This yields the first part of the lemma. For the second part, we use equation (4.5):

v2(h) =

Var[XIσ
2 ,h] =

∫

R
i22

(
1
|Ω|

∫

Ω
gβ(i2 − Iσ

2 (x + h(x))) dx
)

di2 − µ2(h)2,

and hence

Var[XIσ
2 ,h] = β +

1
|Ω|

∫

Ω
Iσ
2 (x + h(x))2 dx−

(
1
|Ω|

∫

Ω
Iσ
2 (x + h(x)) dx

)2

,

from which the upper and lower bounds of the lemma follow.2

We next take care ofE[Var[XIσ
2 ,h|XIσ

1
]] with the following lemma.

Lemma 6.16

E[Var[XIσ
2 ,h|XIσ

1
]] = β +

1
|Ω|

∫

Ω
Iσ
2 (x + h(x))2 dx−M(h),

where

M(h) =
∫

Ω×Ω
f(x,x′)Iσ

2 (x + h(x))Iσ
2 (x′ + h(x′)) dx dx′,

and

f(x,x′) =
1
|Ω|2

∫

R

gβ(i1 − Iσ
1 (x))gβ(i1 − Iσ

1 (x′))
p(i1)

di1,

is such that
∫
Ω f(x,x′) dx =

∫
Ω f(x,x′) dx′ = 1

|Ω| .
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Proof : According to Table 4.1 we havev2|1(i1,h) = S(i1)− T 2(i1) and

E[Var[XIσ
2 ,h|XIσ

1
]] =

∫

R
v2|1(i1,h)p(i1) di1,

with

S(i1) =
∫

R
i22

Ph(i)
p(i1)

di2,

and

T (i1) =
∫

R
i2

Ph(i)
p(i1)

di2 = µ2|1(i1,h).

It is straightforward to show that
∫

R
S(i1)p(i1) di1 = β +

1
|Ω|

∫

Ω
Iσ
2 (x + h(x))2 dx.

It is also straightforward to show that

T (i1) =
1

|Ω|p(i1)

∫

Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x)) dx,

and hence that
∫

R
T 2(i1)p(i1) di1 =

1
|Ω|2

∫

R

1
p(i1)

(∫

Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x)) dx

)2

di1.

We next write

(∫

Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x)) dx

)2

=
∫

Ω×Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x))gβ(i1 − Iσ

1 (x′))Iσ
2 (x′ + h(x′)) dx dx′,

commute the integration with respect toi1 with that with respect tox andx′ to obtain

the result. 2

We pursue with another lemma.

Lemma 6.17 The functionM : H −→ R defined in lemma 6.16 is bounded and

Lipschitz continuous.

Proof : For the first part,|M(h)| ≤ A2
∫
Ω×Ω f(x,x′) dx dx′ = A2, according to

lemma 6.16. For the second part we compute

M [h1]−M [h2] =∫

Ω×Ω
f(x,x′)

(
Iσ
2 (x + h1(x))Iσ

2 (x′ + h1(x′)) −

Iσ
2 (x + h2(x))Iσ

2 (x′ + h2(x′))
)

dx dx′.
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|M [h1]−M [h2]| ≤∫

Ω×Ω
f(x,x′)(|Iσ

2 (x + h1(x))− Iσ
2 (x + h2(x))|Iσ

2 (x′ + h1(x′))+

|Iσ
2 (x′ + h1(x′))− Iσ

2 (x′ + h2(x′))|Iσ
2 (x + h2(x))) dx dx′.

BecauseIσ
2 is Lipschitz continuous and bounded

|M [h1]−M [h2]| ≤

‖Iσ
2 ‖∞Lip(Iσ

2 )
∫

Ω×Ω
f(x,x′)

(|h1(x)− h2(x)|+ |h1(x′)− h2(x′)|
)

dx dx′ =

‖Iσ
2 ‖∞Lip(Iσ

2 )
|Ω|

(∫

Ω
|h1(x)− h2(x)| dx +

∫

Ω
|h1(x′)− h2(x′)| dx′

)
=

2‖Iσ
2 ‖∞Lip(Iσ

2 )
|Ω|

∫

Ω
|h1(x)− h2(x)| dx.

The previous to the last equality is obtained from lemma 6.16. Therefore we have from

Cauchy-Schwarz:

|M [h1]−M [h2]| ≤ 2‖Iσ
2 ‖∞Lip(Iσ

2 )
|Ω|1/2

‖h1 − h2‖H .

2

Lemma 6.18 The functionsH −→ R+ defined by

h −→ 1
|Ω|

∫

Ω
Iσ
2 (x + h(x)) dx and h −→ 1

|Ω|
∫

Ω
Iσ
2 (x + h(x))2 dx

are bounded and Lipschitz continuous.

Proof : Boundedness has been proved in lemma 6.15 for the first function. For the

second we have
1
|Ω|

∫

Ω
Iσ
2 (x + h(x))2 dx ≤ A2.

Next, for Lipschitz continuity:

∣∣∣∣
1
|Ω|

∫

Ω
Iσ
2 (x + h1(x)) dx− 1

|Ω|
∫

Ω
Iσ
2 (x + h2(x)) dx

∣∣∣∣ ≤

Lip(Iσ
2 )

1
|Ω|

∫

Ω
|h1(x)− h2(x)| dx,

becauseIσ
2 is Lipschitz, and hence (Cauchy-Schwarz):

∣∣∣∣
1
|Ω|

∫

Ω
Iσ
2 (x + h1(x)) dx− 1

|Ω|
∫

Ω
Iσ
2 (x + h2(x)) dx

∣∣∣∣ ≤
Lip(Iσ

2 )
|Ω|1/2

‖h1 − h2‖H .
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Similarly (Cauchy-Schwarz),

∣∣∣∣
1
|Ω|

∫

Ω
Iσ
2 (x + h1(x))2 dx− 1

|Ω|
∫

Ω
Iσ
2 (x + h2(x))2 dx

∣∣∣∣ ≤

2
ALip(Iσ

2 )
|Ω|1/2

‖h1 − h2‖H .

2

From this lemma, proposition 6.1 and lemma 6.15 we deduce the following.

Corollary 6.19 The functionH −→ R defined byh −→ Var[XIσ
2 ,h] is Lipschitz

continuous.

We also prove the following.

Lemma 6.20 The functionH −→ R defined byh −→ E[Var[XIσ
2 ,h|Xg

Iσ
1
]] is

bounded and Lipschitz continuous.

Proof : This follows from lemmas 6.16, 6.17, and 6.18.2

We can now prove the important intermediary result that the correlation ratio, as a

function of the fieldh, is Lipschitz continuous.

Theorem 6.21 The functionH −→ R defined byh −→
E[Var[XIσ

2 ,h|Xg
Iσ
1

]]

Var[XIσ
2 ,h] is Lipschitz

continuous.

Proof : This follows from proposition 6.1 and from lemmas 6.20, 6.15 and corollary

6.19. 2

We pursue with another lemma.

Lemma 6.22 The functionfg
CR = Gβ ? Lg

CR : H2 −→ R, whereLg
CR is given by

equation (5.7), is equal to the following expression:

fg
CR(z1, z2,h) =

2
|Ω| v2(h)

(µ2(h)− d(z1,h) + CR(h)(z2 − µ2(h))) ,

where

d(z1,h) =
∫

R
gβ(z1 − i1)

(∫
Ω gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x)) dx∫

Ω gβ(i1 − Iσ
1 (x)) dx

)
di1.
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Proof : We use equation (5.7) and apply the convolution to it. The value ofd is

obtained from:

d(z1,h) =
∫

R
gβ(z1 − i1)µ2|1(i1,h) di1 =

∫

R

gβ(z1 − i1)
p(i1)

(∫

R
i2Ph(i) di2

)
di1 =

∫

R

gβ(z1 − i1)
p(i1)

(∫

Ω
Iσ
2 (x + h(x))gβ(i1 − Iσ

1 (x)) dx
)

di1.

2

We next prove the following.

Lemma 6.23 The functiond : H1 −→ R is bounded and Lipschitz continuous.

Proof : The proof of the first part uses exactly the same ideas as those of the second

part of proposition 6.7. For the second part, we first prove that the functionH −→ R,

h −→ d(z1,h) is Lipschitz continuous with a Lipschitz constantLd that is indepen-

dent ofz1 ∈ [0,A] and second prove that the function[0,A] −→ R, z1 −→ ∂d
∂z1

is

upperbounded independently ofh ∈ H. Indeed,

|d(z1,h1)− d(z1,h2)| ≤∫

R
gβ(z1 − i1)

(∫
Ω gβ(i1 − Iσ

1 (x))|Iσ
2 (x + h1(x))− Iσ

2 (x + h2(x))| dx∫
Ω gβ(i1 − Iσ

1 (x)) dx

)
di1.

BecauseIσ
2 is Lipschitz continuous and of Schwarz inequality, we have

|d(z1,h1)− d(z1,h2)| ≤

|Ω|Lip(Iσ
2 )‖h1 − h2‖H

∫

R
gβ(z1 − i1)




(∫
Ω gβ(i1 − Iσ

1 (x))2 dx
) 1

2

∫
Ω gβ(i1 − Iσ

1 (x)) dx


 di1.

The function ofz1 that appears on the right-hand side of this inequality does not depend

onh, is continuous and therefore bounded on[0,A].
We now notice that

∂d

∂z1
=

1
β

∫

R
(i1 − z1)gβ(z1 − i1)

(∫
Ω gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x)) dx∫

Ω gβ(i1 − Iσ
1 (x)) dx

)
di1,

and, since ∫
Ω gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x)) dx∫

Ω gβ(i1 − Iσ
1 (x)) dx

≤ A,

∣∣∣∣
∂d

∂z1

∣∣∣∣ ≤
A
β

∫

R
|z1 − i1|gβ(z1 − i1) di1.
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The right-hand side of this inequality is equal to2Aβ
∫ +∞
0 z gβ(z) dz, from where the

conclusion follows.2

This allows us to prove the following result.

Theorem 6.24 The functionfg
CR : H2 −→ R is Lipschitz continuous and bounded.

Proof : The denominator|Ω|v2(h) is > 0 and bounded (lemma 6.15), and Lipschitz

continuous onH andK (corollary 6.19).

The numerator is bounded becauseCR(h) is bounded by 1,d is bounded (lemma

6.23) andµ2(h) is bounded (lemma 6.15).

The productµ2(h)CR(h) is Lipschitz continuous onH as the product of two

bounded Lipschitz continuous functions (proposition 6.1 and theorem 6.21). Hence

we have proved the boundedness offg
CR.

The functiond : H1 → R is Lipschitz continuous (lemma 6.23).

The functionr : H1 −→ R defined by(z2,h) −→ z2CR(h) is Lipschitz contin-

uous because of theorem 6.21 and

|z2CR(h)− z′2CR(h′)| =
|z2(CR(h)−CR(h′)) + CR(h′)(z2 − z′2)| ≤

A|CR(h)−CR(h′)|+ |z2 − z′2|.

Hence the numerator is also Lipschitz continuous and, from proposition 6.1, so isfg
CR.

2

We finally obtain the main result of this section.

Theorem 6.25 The functionF g
CR : H −→ H defined by

F g
CR(h) = fg

CR(I
σ
1 , Iσ

2 (Id + h))∇Iσ
2 (Id + h)

is Lipschitz continuous and bounded.

Proof : The boundedness follows from theorem 6.24 and the fact that|∇Iσ
2 | is

bounded. It implies thatF g
CR(h) ∈ H ∀h ∈ H. The rest of the proof follows exactly

the same pattern as the proof of theorem 6.13 and uses theorem 6.24.2

We finish this section with the following proposition.

Proposition 6.26 The functionΩ → Rn such thatx → F g
CR(h(x)) satisfies

|F g
CR(h(x))− F g

CR(h(y))| ≤ K(|x− y|+ |h(x)− h(y)|),

for some constantK > 0.
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Proof : The proof is similar to that of proposition 6.14 and follows from theorem 6.24

and the fact that the functionsIσ
1 , Iσ

2 and all its derivatives, are Lipschitz continuous.

2

6.2.3 Cross Correlation

The goal of this section is to prove the Lipschitz-continuity of the functionF g
CC(h)

(equation (5.9)).

Lemma 6.27 The following inequalities are verified forµ1 andv1.

0 ≤ µ1 ≤ A
β ≤ v1 ≤ β +A2.

Proof : We have

µ1 =
∫

R2

i1

(
1
|Ω|

∫

Ω
Gβ(Ih(x)− i) dx

)
di1 di2 =

1
|Ω|

∫

Ω
Iσ
1 (x) dx, (6.12)

and the first inequality follows from the fact thatIσ
1 (x) ∈ [0,A]. Similarly, for v1 we

have

v1 =
∫

R2

i21

(
1
|Ω|

∫

Ω
Gβ(Ih(x)− i) dx

)
di1 di2 − µ2

1 =

β +
1
|Ω|

∫

Ω
Iσ
1 (x)2 dx−

(
1
|Ω|

∫

Ω
Iσ
1 (x) dx

)2

, (6.13)

from which the second inequality follows.2

Proposition 6.28 The functionH −→ R defined byh 7→ v1,2(h) is bounded and

Lipschitz continuous.

Proof : We have

v1,2(h) =
∫

R2

(i1 − µ1) (i2 − µ2(h))
1
|Ω|

∫

Ω
Gβ(Ih(x)− i) dx di1 di2

=
1
|Ω|

∫

Ω

(∫

R
(i1 − µ1) gβ(Iσ

1 (x)− i1) di1

∫

R
(i2 − µ2(h)) gβ(Iσ

2 (x + h(x))− i2) di2

)
dx

=
1
|Ω|

∫

Ω
(Iσ

1 (x)− µ1) (Iσ
2 (x + h(x))− µ2(h)) dx,
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that is

v1,2(h) =
1
|Ω|

∫

Ω
Iσ
1 (x) Iσ

2 (x + h(x)) dx− µ1 µ2(h). (6.14)

Hence, we have|v1,2(h)| ≤ A2, which proves the first part of the proposition. For the

second part, sinceµ2(h) is Lipschitz continuous (lemma 6.18), it suffices to show the

Lipschitz continuity of the first term in the right-hand side. For this term, we have

1
|Ω|

∣∣∣∣
∫

Ω
Iσ
1 (x) Iσ

2 (x + h1(x)) dx −
∫

Ω
Iσ
1 (x) Iσ

2 (x + h2(x)) dx
∣∣∣∣

≤ 1
|Ω|

∫

Ω
|Iσ

1 (x)| |Iσ
2 (x + h1(x))− Iσ

2 (x + h2(x))| dx

≤ A Lip(Iσ
2 )

|Ω|
∫

Ω
|h1(x)− h2(x) | dx

Hence (Cauchy-Schwarz)

1
|Ω|

∣∣∣∣
∫

Ω
Iσ
1 (x) Iσ

2 (x + h1(x)) dx−
∫

Ω
Iσ
1 (x) Iσ

2 (x + h2(x)) dx
∣∣∣∣

≤ A Lip(Iσ
2 )

|Ω|1/2
||h1 − h2||H .

2

Theorem 6.29 The functionH −→ R defined byh 7→ CCg(h) is bounded and

Lipschitz continuous.

Proof : CCg(h) is bounded by 1. The mappingh 7→ CCg(h) is Lipschitz because

we have

CCg(h) =
v1,2(h)2

v1 v2(h)
, (6.15)

with v1 ≥ β > 0 (proposition 6.27),v1,2(h) bounded and Lipschitz (proposition 6.28),

v2(h) Lipschitz (corollary 6.19) andv2(h) ≥ β (lemma 6.15), which allows us to

apply proposition 6.1.2

Theorem 6.30 The functionfg
CC : H2 −→ R defined by

(z1, z2,h) 7→ −2
|Ω|

[
v1,2(h)
v2(h)

(
z1 − µ1

v1

)
−CCg(h)

(
z2 − µ2(h)

v2(h)

)]
.

is bounded and Lipschitz continuous.
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Proof : Taking into account the properties mentioned in the proof of the previ-

ous proposition, plus the boundedness and Lipschitz continuity ofCCg(h) (propo-

sition 6.29) and ofµ2 (lemma 6.18), we see thatfg
CC may be written as

fg
CC(z1, z2,h) = f1(h) z1 + f2(h) z2 + f3(h),

where the functionsH −→ R f1, f2 andf3 are Lipschitz continuous and bounded

(proposition 6.1). The result readily follows since

|zi fi(h)− z′i fi(h′)| = |zi (fi(h)− fi(h′)) + fi(h′) (zi − z′i)|
≤ A |fi(h)− fi(h′)|+ ‖fi‖∞ |zi − z′i|
≤ A Lip(fi)‖h− h′‖H + ‖fi‖∞ |zi − z′i| i = 1, 2.

2

Theorem 6.31 The functionF g
CC : H −→ H, defined by

F g
CC(h) = fg

CC(Iσ
1 , Iσ

2 (Id + h)) ∇Iσ
2 (Id + h)

is Lipschitz continuous and bounded.

Proof : The boundedness follows from theorem 6.30 and the fact that|∇Iσ
2 | is

bounded. It implies thatF g
CC(h) ∈ H ∀h ∈ H. The rest of the proof follows exactly

the same pattern as the proof of theorem 6.13 and uses theorem 6.30.2

We finish this section with the following proposition.

Proposition 6.32 The functionΩ → Rn such thatx → F g
CC(h(x)) satisfies

|F g
CC(h(x))− F g

CC(h(y))| ≤ K(|x− y|+ |h(x)− h(y)|),

for some constantK > 0.

Proof : The proof is similar to that of proposition 6.14 and follows from theorem 6.30

and the fact that the functionsIσ
1 , Iσ

2 and all its derivatives, are Lipschitz continuous.

2

6.3 Local Criteria

We now study the Lipschitz continuity of the gradients of the local criteria, as defined

in (5.14).
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The analysis of the local criteria follows pretty much directly from the analysis of

the global ones and from theorem 5.2. The main difference with the global case is that

we have an extra spatial dependency. In the next lemma we introduce a constant that

is needed in the sequel.

Lemma 6.33 Let diam(Ω) be the diameter of the open bounded setΩ:

diam(Ω) = sup
x ,y∈Ω

‖x− y‖.

We noteGγ(diam(Ω)) the valueinfx ,y∈Ω Gγ(x− y) and define

KΩ =
Gγ(0)

Gγ(diam(Ω))
. (6.16)

We say that ∫

Ω
Gγ(x− x0)

1
Gγ(x0)

dx0 ≤ KΩ ∀x ∈ Ω.

Proof : SinceGγ(x0) =
∫
Ω Gγ(y − x0) dy, we haveGγ(x0) ≥ |Ω|Gγ(diam(Ω)).

Therefore
∫

Ω
Gγ(x− x0)

1
Gγ(x0)

dx0 ≤ 1
|Ω|Gγ(diam(Ω))

∫

Ω
Gγ(x− x0)dx0 ≤

1
|Ω|Gγ(diam(Ω))

× |Ω|Gγ(0) = KΩ.

2

We notekΩ ≡ |Ω|Gγ(diam(Ω)), i.e. the constant such that∀x ∈ Ω, Gγ(x) ≥ kΩ.

6.3.1 Mutual Information

The functionsqh andQh defined in propositions 6.4 and 6.5 are now functions ofx0

but the propositions are unchanged. The functiona(i2,x0,h), the local version of

equation (6.1), is given by

a(i2,x0,h) =
1
β

∫

Ω
Iσ
2 (x + h(x))gβ(Iσ

2 (x + h(x))− i2) Gγ(x− x0) dx
∫

Ω
gβ(Iσ

2 (x + h(x))− i2) Gγ(x− x0) dx
, (6.17)

while the functionA(i,h,x0), the local version of equation (6.2), is given by

A(i,h,x0) =
1
β

∫

Ω
Iσ
2 (x + h(x))Gβ(Ih(x)− i) Gγ(x− x0) dx

∫

Ω
Gβ(Ih(x)− i)Gγ(x− x0) dx

. (6.18)

Similarly, the functionLg
MI ,h(i) defined by equation (6.3) must be modified as follows:

Ll
MI ,h(i,x0) = − 1

Gγ(x0)
(A(i,x0,h)− a(i2,x0,h)), (6.19)
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as well as the functionb of equation (6.4):

b(z2,h,x) = (Gγ ? gβ ?
a

Gγ
)(z2,h,x) =

∫

Ω

∫

R
Gγ(x− x0)gβ(z2 − i2)

1
Gγ(x0)

a(i2,x0,h) di2 dx0, (6.20)

and the functionB of equation (6.5):

B(z,h,x) = (Gγ ? Gβ ?
A

Gγ
)(z,h,x) =

∫

Ω

∫

R2

Gγ(x− x0)Gβ(z− i)
1

Gγ(x0)
A(i,x0,h) di dx0. (6.21)

This being done, propositions 6.6 and 6.7 can be adapted to the present case as follows.

Proposition 6.34 The functionR −→ R+ defined byz2 −→ b(z2,h,x) is Lipschitz

continuous with a Lipschitz constantllb which is independent ofh andx. Moreover, it

is bounded byAβ .

Proof : We give the proof in this particular simple case to give the flavor of the ideas

which extend to the more complicated cases that come later.

The second part of the proposition follows from the fact that0 ≤ a(i2,h,x) ≤
A
β ∀i2 ∈ R and∀h ∈ H (local version of proposition 6.4) and lemma 6.33.

In order to prove the first part, we prove that the magnitude of the derivative of the

function is bounded independently ofh andx. Indeed

∣∣∣∣
∂(z2,h,x)

∂z2

∣∣∣∣ =

1
β

∣∣∣∣
∫

Ω

∫

R
(i2 − z2)Gγ(x− x0)

1
Gγ(x0)

gβ(z2 − i2)a(i2,x0,h)di2 dx0

∣∣∣∣ ≤
AKΩ

β

∫

R
|z2 − i2|gβ(z2 − i2) di2.

In order to derive the last inequality we have used the local version of proposition

6.4 and lemma 6.33. The function on the right-hand side of the last inequality is

independent ofh andx and continuous on[0,A], therefore bounded.2

Proposition 6.35 The functionH −→ R defined byh −→ b(z2,h,x) is Lipschitz

continuous with a Lipschitz constantLl
b which is independent ofz2 ∈ R andx ∈ Ω.

Proof : The proof is similar to that of proposition 6.7.2

We also have the following.
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Proposition 6.36 The functionΩ → R defined byx → b(z2,h,x) is Lipschitz con-

tinuous uniformly onH1.

Proof : Because of equation (6.20) and proposition 6.34 we have

|b(z2,h,x)− b(z2,y,h)| ≤
A
β

∫

Ω

∫

R

|Gγ(x− x0)−Gγ(y − x0)|
Gγ(x0)

gβ(z2 − i2) di2 dx0.

The proof of lemma 6.33 allows us to write

|b(z2,h,x)− b(z2,y,h)| ≤
A

β|Ω|Gγ(diam(Ω))

∫

Ω

∫

R
|Gγ(x− x0)−Gγ(y − x0)|gβ(z2 − i2) di2 dx0,

and therefore

|b(z2,h,x)− b(z2,y,h)| ≤ ALip(Gγ)
βGγ(diam(Ω))

|x− y|.

2

As a consequence of lemma 6.3 we can state the following.

Proposition 6.37 The functionb : H1 × Ω → R is Lipschitz continuous onH1 uni-

formly onΩ.

Proof : The proof follows from lemma 6.3 and proposition 6.34 and 6.35.2

Similarly we have the

Proposition 6.38 The functionΩ → R defined byx → B(z1, z2,h,x) is Lipschitz

continuous uniformly onH2.

Proof : The proof is similar to that of proposition 6.36.2

The following proposition is also needed.

Proposition 6.39 The functionB : H2 × Ω → R is Lipschitz continuous onH2

uniformly onΩ. It is bounded byAβ .

Proof : The proof is similar to that of proposition 6.37.2

And therefore
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Corollary 6.40 The functionf l
MI : H2 × Ω −→ R defined by

(z1, z2,h,x) −→ −(B(z1, z2,h,x)− b(z2,h,x))

is Lipschitz continuous onH2 uniformly onΩ and bounded.

From this follows the local version of theorem 6.13

Theorem 6.41 The functionF l
MI : H −→ H defined by

F l
MI(h) = f l

MI(I
σ
1 , Iσ

2 (Id + h), Id,h) ∇Iσ
2 (Id + h) =

− (B(Iσ
1 , Iσ

2 (Id + h), Id,h)− b(Iσ
2 (Id + h), Id,h))∇Iσ

2 (Id + h)

is Lipschitz continuous and bounded.

Proof : Boundedness follows from corollary 6.40 and the fact that|∇Iσ
2 | is bounded.

It implies thatF l
MI (h) ∈ H ∀h ∈ H.

We next consider theith componentF l i
MI of F l

MI :

F l i
MI (h1)(x)− F l i

MI (h2)(x) = S1T1 − S2T2,

with

Sj = −(B(Iσ
1 (x), Iσ

2 (x + hj(x)),hj ,x)− b(Iσ
2 (x + hj(x)),hj ,x))

Tj = ∂iI
σ
2 (x + hj(x)) j = 1, 2,

j = 1, 2. We continue with

|F l i
MI (h1)(x)− F l i

MI (h2)(x)| ≤ |S1 − S2||T1|+ |S2||T1 − T2|
Because∂iI

σ
2 is bounded,|Tj | ≤ ‖∂iI

σ
2 ‖∞. Because of propositions 6.34 and 6.39,

|S2| ≤ 2Aβ . Because∂iI
σ
2 is Lipschitz continuous|T1 − T2| ≤ Lip(∂iI

σ
2 )|h1(x) −

h2(x)|. Finally, because of corollary 6.40 and the fact thatIσ
2 is Lipschitz continuous,

|S1 − S2| ≤ Lip(f l
MI ) (Lip(Iσ

2 )|h1(x)− h2(x)|+ ‖h1 − h2‖H) .

The conclusion of the theorem follows from these inequalities through the same

procedures as in the proof of theorem 6.13.2

We finish this section with the

Proposition 6.42 The functionΩ → Rn such thatx → F l
MI(h(x)) satisfies

|F l
MI(h(x))− F l

MI(h(y))| ≤ K(|x− y|+ |h(x)− h(y)|),
for some constantK > 0.

Proof : The proof is similar to that of proposition 6.14 and uses propositions 6.36

and 6.38. 2
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6.3.2 Correlation Ratio

In this case also, the proofs follow pretty much the same pattern as those in the global

case. In detail, the analog of lemma 6.15 is the

Lemma 6.43

0 ≤ µ2(h,x0) =
1

Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))Gγ(x− x0) dx ≤ A (6.22)

β ≤ v2(h,x0) = β + θ(h,x0) ≤ β +A2, (6.23)

where

θ(h,x0) =
1

Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))2Gγ(x− x0) dx−

(
1

Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))Gγ(x− x0) dx

)2

. (6.24)

Proof : Because of equation (4.16) we have

µ2(h,x0) =
∫

R
i2

(
1

Gγ(x0)

∫

Ω
gβ(i2 − Iσ

2 (x + h(x)))Gγ(x− x0) dx
)

di2 =

1
Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))Gγ(x− x0) dx.

This yields the first part of the lemma. For the second part, we use equation (4.17):

v2(h,x0) =
∫

R
i22

(
1

Gγ(x0)

∫

Ω
gβ(i2 − Iσ

2 (x + h(x))Gγ(x− x0) dx
)

di2 − µ2(x0,h)2,

and hence

v2(h,x0) = β +
1

Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))2Gγ(x− x0) dx−

(
1

Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))Gγ(x− x0) dx

)2

,

from which the upper and lower bounds of the lemma follow.2

We next take care ofE[Var[XIσ
2 ,h|XIσ

1
](x0)] with the analog of lemma 6.16

Lemma 6.44

E[Var[XIσ
2 ,h|XIσ

1
](x0)] = β+

1
Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))2Gγ(x− x0) dx−M [x0,h],
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where

M [x0,h] =
∫

Ω×Ω
f(x0,x,x′)Iσ

2 (x + h(x))Iσ
2 (x′ + h(x′)) dx dx′,

and

f(x0,x,x′) =
Gγ(x− x0)Gγ(x′ − x0)

Gγ(x0)2

∫

R

gβ(i1 − Iσ
1 (x))gβ(i1 − Iσ

1 (x′))
p(i1,x0)

di1,

is such that
∫

Ω
f(x0,x,x′) dx =

Gγ(x′ − x0)
Gγ(x0)∫

Ω
f(x0,x,x′) dx′ =

Gγ(x− x0)
Gγ(x0)

.

and ∫

Ω×Ω
f(x0,x,x′) dx dx′ = 1.

Proof : According to Table 4.2 we havev2|1(i1,h,x0) = S(i1,x0)− T 2(i1,x0) and

E[Var[XIσ
2 ,h|XIσ

1
](x0)] =

∫

R
v2|1(i1,h,x0)p(i1,x0) di1,

with

S(i1,x0) =
∫

R
i22

Ph(i1, i2,x0)
p(i1,x0)

di2,

and

T (i1,x0) =
∫

R
i2

Ph(i1, i2,x0)
p(i1,x0)

di2 = µ2|1(i1,h,x0).

It is straightforward to show that

∫

R
S(i1,x0)p(i1,x0) di1 = β +

1
Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))2Gγ(x− x0) dx.

It is also straightforward to show that

T (i1,x0) =
1

Gγ(x0)p(i1,x0)

∫

Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x))Gγ(x− x0) dx,

and hence that

∫

R
T 2(i1,x0)p(i1,x0) di1 =

1
Gγ(x0)2

∫

R

1
p(i1)

(∫

Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x))Gγ(x− x0) dx

)2

di1. (6.25)
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We next write

(∫

Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x))Gγ(x− x0) dx

)2

=
∫

Ω×Ω
gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x))Gγ(x− x0)

gβ(i1 − Iσ
1 (x′))Iσ

2 (x′ + h(x′))Gγ(x′ − x0) dx dx′,

commute the integration with respect toi1 with that with respect tox andx′ to obtain

the result. 2

We continue with the analog of lemma 6.22:

Lemma 6.45 The functionhl
CR = Gβ ? Ll

CR : H2 × Ω −→ R, whereLl
CR is given by

equation (5.12), is equal to the following expression

hl
CR(z1, z2,h,x0) =

2
Gγ(x0) v2(h,x0)(
µ2(h,x0)− d(z1,h,x0) + CRl(h,x0)(z2 − µ2(h,x0))

)
,

where

d(z1,h,x0) =
∫

R
gβ(z1 − i1)

(∫
Ω gβ(i1 − Iσ

1 (x))Iσ
2 (x + h(x))Gγ(x− x0) dx∫

Ω gβ(i1 − Iσ
1 (x))Gγ(x− x0) dx

)
di1.

Proof : We use equation (5.12) and apply the convolution to it. The value ofd is

obtained from:

d(z1,h,x0) =
∫

R
gβ(z1 − i1)µ2|1(i1,h,x0) di1 =

∫

R

gβ(z1 − i1)
p(i1,x0)

(∫

R
i2Ph(i1, i2,x0) di2

)
di1 =

∫

R

gβ(z1 − i1)
Gγ(x0)p(i1,x0)

(∫

Ω
Iσ
2 (x + h(x))gβ(i1 − Iσ

1 (x))Gγ(x− x0) dx
)

di1

from where the result follows.2

Our goal is to prove thatf l
CR = Gγ ? hl

CR, a function fromH2 × Ω in R is Lipschitz

continuous inH2 uniformly onΩ.

In order to prove this, it is sufficient to prove that the numerator and the denomi-

nator ofhl
CR are bounded and Lipschitz continuous inH2 uniformly onΩ, and that the

denominator is strictly positive.

Indeed, we have the following
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Lemma 6.46 Let N : H2 × Ω → R be bounded and Lipschitz continuous inH2

uniformly onΩ. Let alsoD : H2 × Ω → R+ be bounded, strictly positive, and

Lipschitz continuous inH2 uniformly onΩ. Then the functionGγ ? N
D : H2 ×Ω → R

is Lipschitz continuous inH2 uniformly onΩ.

Proof : We form

∣∣∣∣
∫

Ω
Gγ(x− x0)

(
N(x0)[z′,h′]
D(x0)[z′,h′]

− N(x0)[z,h]
D(x0)[z,h]

)
dx0

∣∣∣∣ ≤

Gγ(0)
∫

Ω

|N(x0)[z′,h′]−N(x0)[z,h]|
D(x0)[z′,h′]

dx0+

Gγ(0)
∫

Ω

|N(x0)[z,h]| |D(x0)[z′,h′]−D(x0)[z,h]|
D(x0)[z′,h′]D(x0)[z,h]

dx0

According to the hypotheses, there existsa > 0 such thata ≤ D(x0)[z,h]∀z,x0,h,

there existsKN ≥ 0 such that|N(x0)[z,h]| ≤ KN∀z,x0,h, and there existsLN and

LD such that

|N(x0)[z′,h′]−N(x0)[z,h]| ≤ LN (|z− z′|+ ‖h− h′‖H) and

|D(x0)[z′,h′]−D(x0)[z,h]| ≤ LD(|z− z′|+ ‖h− h′‖H) ∀z, z′,x0,h,h′.

We therefore have through Cauchy-Schwarz inequality:

∣∣∣∣
∫

Ω
Gγ(x− x0)

(
N(x0)[z′,h′]
D(x0)[z′,h′]

− N(x0)[z,h]
D(x0)[z,h]

)
dx0

∣∣∣∣ ≤

C(|z− z′|+ ‖h− h′‖H)

for some positive constantC. 2

We prove these properties for the numerator and the denominator ofhl
CR.

Lemma 6.47 We have

|Ω|diam(Ω)β ≤ Gγ(x0) v2(h,x0) ≤ |Ω|Gγ(0)(β +A2)

Proof : The proof is a direct consequence of the definition ofG(x0) and of lemma

6.43. 2

We then prove the following

Lemma 6.48 The functionH × Ω → R+ such that(h,x0) → Gγ(x0) v2(h,x0) is

Lipschitz continuous inH uniformly inΩ.
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Lemma 6.49 The functionH2 × Ω → R such that

(z,h,x0) → µ2(h,x0)− d(z1,h,x0) + CRl(h,x0)(z2 − µ2(h,x0)),

is bounded by3A.

Proof : This is because0 ≤ CR(h,x0) ≤ 1, 0 ≤ µ2(h,x0) ≤ A, and, according to

lemma 6.45, because0 ≤ d(z1,h,x0) ≤ A. 2

At this point we can prove the following

Proposition 6.50 The functionΩ → Rn such thatx → f l
CR(z,h,x) is Lipschitz

continuous uniformly inH2.

Proof : With the notations of lemma 6.46 we have

|Gγ ? hl
CR(x)−Gγ ? hl

CR(y)| ≤
∫

Ω
|Gγ(x− x0)−Gγ(y − x0)| |N(x0)[z,h]|

D(x0)[z,h]
dx0

Because of lemmas 6.47 and 6.49 we have

|Gγ ? hl
CR(x)−Gγ ? hl

CR(y)| ≤
3A

|Ω|diam(Ω)β

∫

Ω
|Gγ(x− x0)−Gγ(y − x0)| dx0 ≤

3ALip(Gγ)
diam(Ω)β

|x− y|,

hence the result.2

We also have the analog of lemmas 6.23, 6.18, and theorem 6.21.

Lemma 6.51 The functiond : H1 ×Ω −→ R is bounded and Lipschitz continuous in

H1 uniformly inΩ.

Lemma 6.52 The functionsH × Ω −→ R defined by

(h,x0) −→ 1
Gγ(x0)

∫

Ω
Iσ
2 (x + h(x)) Gγ(x− x0) dx

and

(h,x0) −→ 1
Gγ(x0)

∫

Ω
Iσ
2 (x + h(x))2 Gγ(x− x0) dx

are bounded and Lipschitz continuous inH uniformly inΩ.
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Theorem 6.53 The functionH × Ω −→ R defined by

(h,x0) −→
E[Var[XIσ

2 ,h|X l
Iσ
1
](x0)]

v2(h,x0)

is Lipschitz continuous inH uniformly inΩ.

From which we deduce the

Theorem 6.54 The functionH2 × Ω → R such that

(z,h,x0) → µ2(h,x0)− d(z1,h,x0) + CRl(h,x0)(z2 − µ2(h,x0)),

is Lipschitz continuous inH2 uniformly inΩ.

We can now prove the

Theorem 6.55 The functionf l
CR : H2 ×Ω → R such that(z,h,x) → f l

CR(z,h,x) is

Lipschitz continuous inH2 uniformly inΩ.

Proof : The proof is just an application of lemma 6.46 tof l
CR. 2

The combination of proposition 6.50 and theorem 6.55 yields the following

Theorem 6.56 The functionf l
CR : H2 ×Ω → R such that(z,h,x) → f l

CR(z,h,x) is

Lipschitz continuous.

And we can conclude with the following theorem and proposition.

Theorem 6.57 The functionF l
CR : H −→ H defined by

F l
CR(h) = f l

CR(I
σ
1 , Iσ

2 (Id + h), Id)∇Iσ
2 (Id + h)

is Lipschitz continuous and bounded.

Proof : The proof follows exactly the same pattern as the proof of theorem 6.41 and

uses theorem 6.55.2

Proposition 6.58 The functionΩ → Rn such thatx → F l
CR(h(x)) satisfies

|F l
CR(h(x))− F l

CR(h(y))| ≤ K(|x− y|+ |h(x)− h(y)|),

for some constantK > 0.

Proof : The proof is similar to that of proposition 6.26 and follows from theorem 6.56

and the fact that the functionsIσ
1 , Iσ

2 and all its derivatives, are Lipschitz continuous.

2
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6.3.3 Cross Correlation

In this section we prove the Lipschitz-continuity of the mappingH → H defined by

F l
CC(h) (equation (5.14)). The reasoning is completely analog to that of the global

case. We start with some estimates which guaranty that the variance ofXIσ
1 ,x0 is

strictly positive.

Lemma 6.59 ∀x0 ∈ Ω, the following inequalities are verified

0 ≤ µ1(x0) ≤ A,

β ≤ v1(x0) ≤ β +A2.

Proof :

µ1(x0) =
∫

R2

i1

(
1

Gγ(x0)

∫

Ω
Gβ(Ih(x)− i) Gγ(x− x0) dx

)
di1 di2 =

1
Gγ(x0)

∫

Ω
Iσ
1 (x) Gγ(x− x0) dx (6.26)

and the first inequalities follow from the fact thatIσ
1 (x) ∈ [0,A]. Similarly, forv1(x0),

we have

v1(x0) =
∫

R2

i21

(
1

Gγ(x0)

∫

Ω
Gβ(Ih(x)− i) Gγ(x− x0) dx

)
di1 di2−µ2

1(x0) =

β +
1

Gγ(x0)

∫

Ω
Iσ
1 (x)2 Gγ(x− x0) dx−

(
1

Gγ(x0)

∫

Ω
Iσ
1 (x) Gγ(x− x0) dx

)2

, (6.27)

from which the second inequalities follow.2

We now show the boundedness and Lipschitz-continuity of the covariance of

XIσ
1 ,x0 andXIσ

2 ,x0,h.

Proposition 6.60 The functionH × Ω → R defined by(h,x0) 7→ v1,2(h,x0) is

bounded and Lipschitz continuous inH, uniformly inΩ.

Proof : Indeed, we have

v1,2(h,x0) =
∫

R2

(i1 − µ1(x0)) (i2 − µ2(h,x0))

1
Gγ(x0)

∫

Ω
Gβ(Ih(x)− i) Gγ(x− x0) dx di1 di2.

Hence

v1,2(h,x0) =
1

Gγ(x0)

∫

Ω

(∫

R
(i1 − µ1(x0)) gβ(Iσ

1 (x)− i1) di1

)

(∫

R
(i2 − µ2(h,x0)) gβ(Iσ

2 (x + h(x))− i2) di2

)
Gγ(x− x0) dx,
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that is

v1,2(h,x0) =
1

Gγ(x0)∫

Ω
(Iσ

1 (x)− µ1(x0)) (Iσ
2 (x + h(x))− µ2(h,x0)) Gγ(x− x0) dx

=
1

Gγ(x0)

∫

Ω
Iσ
1 (x) Iσ

2 (x + h(x)) Gγ(x− x0) dx− µ1(x0) µ2(h,x0). (6.28)

Thus we have,∀x0 ∈ Ω, |v1,2(h,x0)| ≤ A2, which proves the first part of the propo-

sition. For the second part, sinceµ2(h,x0) is Lipschitz continuous uniformly inΩ
(lemma 6.52), it suffices to show the Lipschitz continuity of the first term in the right-

hand side. For this term we have,

1
Gγ(x0)

∣∣∣∣
∫

Ω
Iσ
1 (x) Iσ

2 (x + h1(x))Gγ(x− x0) dx −
∫

Ω
Iσ
1 (x) Iσ

2 (x + h2(x))Gγ(x− x0) dx
∣∣∣∣

≤ 1
Gγ(x0)

∫

Ω
|Iσ

1 (x)| |Iσ
2 (x + h1(x))− Iσ

2 (x + h2(x))|Gγ(x− x0) dx

≤ A Lip(Iσ
2 ) Gγ(0) kΩ

∫

Ω
|h1(x)− h2(x) | dx.

Hence (by Cauchy-Schwarz):

1
Gγ(x0)

∣∣∣∣
∫

Ω
Iσ
1 (x) Iσ

2 (x + h1(x))Gγ(x− x0) dx −
∫

Ω
Iσ
1 (x) Iσ

2 (x + h2(x))Gγ(x− x0) dx
∣∣∣∣ ≤ L ||h1 − h2||H ,

where the constantL is independent ofx0 ∈ Ω. 2

Theorem 6.61 The functionH ×Ω → R defined by(h,x) 7→ CCl(h,x) is bounded

and Lipschitz continuous inH, uniformly inΩ.

Proof : The cross-correlation functionCCl is bounded by 1. Moreover, we have

CCl(h,x) =
v1,2(h,x)2

v1(x) v2(h,x)
, (6.29)

with:

• v1,2(h,x) bounded and Lipschitz-continuous inH uniformly in Ω (proposi-

tion 6.60).
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• v2(h,x) bounded and Lipschitz-continuous inH, uniformly in Ω (readily seen

from lemmas 6.15 and 6.52).

• v2(h,x) > 0 (lemma 6.15).

• v1(x) bounded and> 0 (lemma 6.59).

We may therefore apply proposition 6.1.2

Theorem 6.62 The functionH2 × Ω −→ R defined by

(z1, z2,h,x) 7→ Ll
CC,h(z1, z2,x)

is bounded and Lipschitz continuous inH2, uniformly inΩ.

Proof : We have

Ll
CC,h(z1, z2,x) =

−2
Gγ(x)[

v1,2(h,x)
v2(h,x)

(
z1 − µ1(x)

v1(x)

)
−CCg(h,x)

(
z2 − µ2(h,x)

v2(h,x)

)]
.

Taking into account the properties mentioned in the proof of proposition 6.61,

the boundedness and Lipschitz continuity ofCCl (proposition 6.61) and ofµ2

(lemma 6.52), plus the fact thatGγ(x) > 0, we see thatLl
CC,h may be written as

Ll
CC,h(z1, z2,x) = f1(h,x) z1 + f2(h,x) z2 + f3(h,x),

where the functionsH×Ω −→ R f1, f2 andf3 are bounded and Lipschitz continuous

in H uniformly in Ω, from where the result readily follows.2

Theorem 6.63 The functionf l
CC : H2 × Ω −→ R, defined by

f l
CC(z,x) =

(
Gγ ? Ll

CC,h

)
(z,x)

is bounded and Lipschitz continuous.

Proof : Indeed, letf : H2×Ω −→ R be bounded byBf and Lipschitz continuous in

H2 uniformly in Ω, of constantLf (these hypotheses are verified byLl
CC,h according

to theorem 6.62). We have

∣∣∣∣
∫

Ω
Gγ(x− x0)

(
f(z,h,x0)− f(z′,h′,x0)

)
dx0

∣∣∣∣ ≤

Gγ(0) |Ω| Lf

(|z− z′|+ ‖h− h′‖H

)
,
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and

|Gγ ? f(z,h,x)−Gγ ? f(z,h,y)| ≤∫

Ω
|Gγ(x− x0)−Gγ(y − x0)||f(z,h,x0)| dx0 ≤ Bf Lip(Gγ)|Ω| |x− y|,

hence the result.

2

Theorem 6.64 The functionF l
CC : H −→ H defined by

F l
CC(h) = f l

CC(Iσ
1 , Iσ

2 (Id + h), Id)∇Iσ
2 (Id + h)

is Lipschitz continuous and bounded.

Proof : The proof follows exactly the same pattern as the proof of theorem 6.41 and

uses theorem 6.63.2

Proposition 6.65 The functionΩ → Rn such thatx → F l
CC(h(x)) satisfies

|F l
CC(h(x))− F l

CC(h(y))| ≤ K(|x− y|+ |h(x)− h(y)|),

for some constantK > 0.

Proof : The proof is similar to that of proposition 6.26 and follows from theorem 6.63

and the fact that the functionsIσ
1 , Iσ

2 and all its derivatives, are Lipschitz continuous.

2





Part III

Implementation Aspects





Chapter 7

Numerical Schemes

This chapter describes the numerical schemes employed in discretizing the continu-

ous evolution equations (see equation (1.2) on page 39) for the different matching and

regularization operators. We use spatial difference schemes to evaluate differential

operators and an explicit forward discretization in time (Euler method). Parzen win-

dow estimates are computed by recursive filtering [31] of the discrete joint intensity

histogram. These elements are detailed in the following sections.

7.1 Regularization Operators

We begin by describing the schemes for the differential operators used for regulariza-

tion. We use a schematic notation for the description of the finite-difference schemes.

For instance, let us denote byLi,j,k
p andhi,j,k

p , the components (p = 1, 2, 3) of ∆h and

h at a grid point (i, j, k) in the discrete image domain. The voxel size in all directions

is assumed to be equal to one. A possible scheme forα∆h would be

Li,j
p = α

(
hi+1,j

p + hi−1,j
p + hi,j−1

p + hi,j+1
p − 4 hi,j

p

)
, (7.1)

in the 2D case(p = 1, 2) and

Li,j,k
p = α

(
hi+1,j,k

p + hi−1,j,k
p + hi,j−1,k

p + hi,j+1,k
p +

hi,j,k−1
p + hi,j,k+1

p − 6 hi,j,k
p

)
, (7.2)

int the 3D case(p = 1, 2, 3), which we write schematically as
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Li,j
p =

1

1 −4 1

1

hp × α

and Li,j,k
p =

1

1

1 −6 1

1

1

hp × α

respectively. In this notation, the tables represent the discrete grid and contain the

weights associated to each pixel (voxel). The weight is zero if the voxel is empty.

The function to which the grid corresponds is written at the bottom, together with

any global weight (for examplehp × α above means the grid is that ofhp, weighted

globally by α). In each table, the indexi is assumed to increase from left to right

and the indexj from top to bottom, the center being the coordinates(i, j). In the 3D

case, each of the three stacked tables represents a different indexk, which increases

in the bottom-up direction, the one in the middle being that of indexk. Although less

compact than the notations (7.1) and (7.2), these schematic representations have the

advantage of clearly showing the position of the weights within the neighborhood of

each voxel.

7.1.1 The Linearized Elasticity Operator

In this section, we describe our numerical schemes for computing the linearized elas-

ticity operator:

A = c
(
ξ∆h + (1− ξ)∇(∇ · h)

)
. (7.3)

Our schemes are based on a first order Taylor expansion of (7.3). Forn = 2, it

yields the following scheme:

Ai,j
1 =

1

1 −4 1

1

h1 × ξ

+
1 −2 1

h1 × (1− ξ)

+

1 −1

−1 1

h2 × 1
4
(1− ξ)

,

Ai,j
2 =

1

1 −4 1

1

h2 × ξ

+

1

−2

1

h2 × (1− ξ)

+

1 −1

−1 1

h1 × 1
4
(1− ξ)

.
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Similarly, for n = 3 we obtain:

Ai,j,k
1 =

1

1

1 −6 1

1

1

h1 × ξ

+
1 −2 1

h1 × (1− ξ)

+

1 −1

−1 1

h2 × 1
4
(1− ξ)

+

−1 1

1 −1

h3 × 1
4
(1− ξ)

,

Ai,j,k
2 =

1

1

1 −6 1

1

1

h2 × ξ

+

1

−2

1

h2 × (1− ξ)

+

1 −1

−1 1

h1 × 1
4
(1− ξ)

+

1

−1

−1

1

h3 × 1
4
(1− ξ)

and

Ai,j,k
3 =

1

1

1 −6 1

1

1

h3 × ξ

+

1

−2

1

h3 × (1− ξ)

+

−1 1

1 −1

h1 × 1
4
(1− ξ)

+

−1

1

1

−1

h2 × 1
4
(1− ξ)

.
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7.1.2 The Nagel-Enkelmann Operator

2D case

Our implementation corresponds to the scheme proposed by Alvarez et al [5]. Let now

A = div(TIσ
1
Dh), where

TIσ
1

=

(
a b

c d

)
.

The scheme is the following, forp = 1, 2:

Ai,j
p =

1 1

1
2
a

∗ −1 1

hp

+
1 1

1
2
a

∗ 1 −1

hp

+

1

1

1
2
c

∗

1

−1

hp

+
1

1

1
2
c

∗ −1

1

hp

+
1

1

1
4
b

∗ −1

1

hp

+

1

1

1
4
b

∗

1

−1

hp

−

1

1

1
4
b

∗

1

−1

hp

− 1

1

1
4
b

∗ −1

1

hp

.

3D case

This scheme generalizes readily to the 3D case. In order to write explicitly the 3D

scheme in a compact way, we take profit of the very simple form of this scheme to

introduce a more compact notation. We shall write

S 1
2
(a, x+) ≡ 1 1

1
2
a

∗ −1 1

hp

,

wherex+ indicates the direction defined by the voxels with non-null weights, starting

at the center. With this notation, we write the 2D Nagel-Enkelmann operator above as

Ai,j
p = S 1

2
(a, x+) + S 1

2
(a, x−) + S 1

2
(c, y+) + S 1

2
(c, y−)

+ S 1
4
(b, x+y+) + S 1

4
(b, x−y−) − S 1

4
(b, x+y−) − S 1

4
(b, x−y+).
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In the 3D case, we have

TIσ
1

=




a b c

b d e

c e f


 ,

and the corresponding scheme is, forp = 1, 2, 3,

Ai,j,k
p = S 1

2
(a, x+) + S 1

2
(a, x−) + S 1

2
(d, y+) + S 1

2
(d, y−) + S 1

2
(f, z+) +

S 1
2
(f, z−) + S 1

4
(b, x+y+) + S 1

4
(b, x−y−) − S 1

4
(b, x+y−) − S 1

4
(b, x−y+)

+ S 1
4
(c, x+z+) + S 1

4
(c, x−z−) − S 1

4
(c, x+z−) − S 1

4
(c, x−z+)

+ S 1
4
(e, y+z+) + S 1

4
(e, y−z−) − S 1

4
(e, y+z−) − S 1

4
(e, y−z+).

7.2 Dissimilarity Terms

This section discusses implementation issues concerning the three global matching

functionsF g
MI (h), F g

CR(h) andF g
CC(h) as defined in (5.9) on page 85, and the local

matching functionF l
CC(h) as defined in (5.14) on page 86. The remaining two func-

tions will be treated in section 7.3. The reason for this separation is that the global

functions andF l
CC(h) can be computed as direct estimations of their respective defi-

nitions, whileF l
MI (h) andF l

CR(h) require two convolutions, which makes them very

hard to implement with limited memory.

By observing their respective definitions, it appears that some specific operations

are required to implement the global functions andF l
CC(h). These operations are the

following.

• Convolutions

The convolutions by a Gaussian kernel are approximated by recursive filtering

using the smoothing operator introduced by Deriche [31]. Given a discrete 1D

input sequencex(n), n = 1, ..., M , its convolution by the smoothing operator

Sα(n) = k (α|n|+ 1) e−α|n| is calculated efficiently as (see [31]):

y(n) = (Sα ? x)(n) = y1(n) + y2(n),

where




y1(n) = k
(

x(n) + e−α (α− 1) x(n− 1)
)

+ 2 e−α y1(n− 1) − e−2α y1(n− 2),

y2(n) = k
(

e−α (α + 1) x(n + 1) − e−2α x(n + 2)
)

+ 2 e−α y2(n + 1) − e−2α y2(n + 2).

The normalization constantk is chosen by requiring that
∫
R Sα(t) dt = 1, which

yieldsk = α/4. This scheme is very efficient since the number of operations
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required is independent of the smoothing parameterα. The smoothing filter can

be readily generalized ton dimensions by defining the separable filterTα(x) =∏n
i=1 Sα(xi).

We can determine an optimal value ofα to approximate a Gaussian of variance

β. Requiring thatGβ(t) andSα(t) have the sameL2 norm yields the relation

α =
16

5
√

π β
' 1.8/

√
β,

while minimizing theL2 norm of(Gβ(t)− Sα(t)) yields

α ' 1.695/
√

β.

As showed by Alvarez et al. in [2], the recursive procedure above can be seen

as a numerical implementation of the heat equation. The convolution bySα

presents the advantage of being computable exactly by a recursive filter of order

two, giving very precise results and fast computations.

By computing the derivative ofSα(t),

S′α(t) = −1
4 α3 t e−α|t|,

we obtain a derivative filter of which a recursive realization can be similarly

obtained:

y(n) = (S′α ? x)(n) = (Sα ? x′)(n) = −1
4 α3 e−α(y1(n) + y2(n)),

where now




y1(n) = x(n− 1) + 2 e−α y1(n− 1) − e−2α y1(n− 2),

y2(n) = x(n + 1) + 2 e−α y2(n + 1) − e−2α y2(n + 2).

• Interpolation

Terms of the form∇Iσ
2 (x + h(x)) are calculated as follows. Convolution ofI2

with the derivative filter is used to compute the components of∇Iσ
2 on Ωi,j,k.

Then their value for an arbitrary position (not necessarily on the grid) is com-

puted using a trilinear interpolation scheme, defined as follows. Letf be the

function to be evaluated at(i + x, j + y, k + z), where (i, j, k) is a point on the

grid and(x, y, z) ∈ [0, 1]3. We set

V1 = f(i, j, k), V2 = f(i + 1, j, k),
V3 = f(i + 1, j + 1, k), V4 = f(i, j + 1, k),
V5 = f(i, j, k + 1), V6 = f(i + 1, j, k + 1),
V7 = f(i + 1, j + 1, k + 1), V8 = f(i, j + 1, k + 1).
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Then the valuef(i + x, j + y, k + z) is estimated as

V = V1 (1− x)(1− y)(1− z) + V2 x (1− y)(1− z)

V3 x y (1− z) + V4 (1− x) y (1− z) +

V5 (1− x)(1− y) z + V6 x (1− y) z +

V7 x y z + V8 (1− x) y z.

The same interpolation scheme is used for estimating the value ofIσ
2 (x+h(x)).

• Density estimation

Parzen density estimates are obtained by smoothing the discrete joint histogram

of intensities. To describe this procedure, we define the piecewise constant func-

tionv : Ω → [0, N ]2 ⊂ N2 by quantification ofIh(x) intoN +1 intensity levels

(bins):

v(x) =




bζIσ
1 (x)c

bζIσ
2 (x + h(x))c


 =





(0, 0)T on Ω0,0

...

(N,N)T on ΩN,N ,

whereζ = N/A, b·c denotes the floor operator inR+, i.e. the functionR+ → N
such thatbxc = max{n ∈ N : n ≤ x}, and{Ωk,l}(k,l)∈[0,N ]2 is a partition ofΩ.

We then compute, settingβ′ = ζ2β,

Ph(i) =
1
|Ω|

∫

Ω
Gβ(Ih(x)− i) dx

=
ζ

|Ω|
∫

Ω
Gβ′

(
ζ (Ih(x)− i)

)
dx ' ζ

|Ω|
∫

Ω
Gβ′

(
v(x)− ζi

)
dx

=
ζ

|Ω|
N∑

k=0

N∑

l=0

∫

Ωk,l

Gβ′(k − ζi1, l − ζi2) dx

= ζ
N∑

k=0

N∑

l=0

|Ωk,l|/|Ω|︸ ︷︷ ︸
H(k,l)

Gβ′(k − ζi1, l − ζi2) = ζ
(
H ? Gβ′

)
(ζi),

H being the discrete joint histogram. The convolution is performed by recursive

filtering as described above. Note that this way of computingPh is quite efficient

since only one pass on the images is required, followed by the convolution.

These basic tools being described, we now state pseudo-algorithms of the way the

different matching functions are computed.



130 Chapter 7: Numerical Schemes

Algorithm 7.1 (F g
MI (h))

• EstimatePh(i) and its marginals.

• EstimateLg
MI ,h(i) (equation (5.6) on page 84) using centered finite-differences

for the derivatives.

• Estimatefg
MI (i,h) = Gβ ? Lg

MI ,h(i) by recursive smoothing.

• EstimateF g
MI (h)(x) = fg

MI (Ih(x),h) ∇Iσ
2 (x + h(x)).

Algorithm 7.2 (F g
CR(h))

• EstimatePh(i) and its marginals.

• Estimateµ2(h), v2(h), µ2|1(i1,h) and CRg(h) using equations (4.3), (4.4),

(4.5), (4.10) and table 4.1, on pages 66–68. Here the integrals are estimated

by finite sums on the interval[0,A].

• EstimateLg
CR,h(i) (equation (5.7) on page 84).

• Estimatefg
CR(i,h) = Gβ ? Lg

CR,h(i) by recursive smoothing.

• EstimateF g
CR(h)(x) = fg

CR(Ih(x),h) ∇Iσ
2 (x + h(x)).

Algorithm 7.3 (F g
CC(h))

• Estimate the valuesµ2(h) andv2(h) using equations (6.9), (6.10) and (6.11)

on page 97 and the valuesµ1, v1, v1,2(h) andCCg(h) using equations (6.12),

(6.13), (6.14) and (6.15) on pages 103–104.

• EstimateLg
CC,h(i) (equation (5.8) on page 85).

• EstimateF g
CC(h)(x) = Lg

CC,h(Ih(x)) ∇Iσ
2 (x + h(x)).

Algorithm 7.4 (F l
CC(h))

• Estimate the functionGγ(x) using equation (4.13) on page 68, the functions

µ2(h,x) andv2(h,x) using equations (6.22), (6.23) and (6.24) on page 110 and

the functionsµ1(x), v1(x), v1,2(h,x) and CCl(h,x) using equations (6.26),

(6.27), (6.28) and (6.29) on pages 116–117. These estimations are computed by

convolutions using recursive filtering.
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• Estimate(Gγ ? Ll
CC,h)(i,x) (see equation (5.13) on page 85) as:

(Gγ ? Ll
CC,h)(i,x) = (Gγ ? f1)(x) i1 + (Gγ ? f2)(x) i2 + (Gγ ? f3)(x),

where 



f1(x) =
−2 v1,2(h,x)

Gγ(x) v1(x) v2(h,x)
,

f2(x) =
2 CCl(h,x)
Gγ(x) v2(h,x)

,

f3(x) = −
(
f1(x) µ1(x) + f2(x) µ2(h,x)

)
.

• EstimateF l
CC(h)(x) = (Gγ ? Ll

CC,h)(Ih(x),x) ∇Iσ
2 (x + h(x)).

Note that algorithm 7.4 is similar to the algorithm proposed by Cachier and Pennec

in [21], modulo the adding of a positive multiple ofβ in all the denominators. This

factor is crucial for the Lipschitz-continuity ofF l
CC(h).

7.3 Approximate Implementations ofF l
MI (h) and F l

CR(h)

This section discusses the implementation of the functionsF l
MI (h) andF l

CR(h), de-

fined in theorem 5.2 on page 86. These two functions are much more difficult to

compute than those of the previous section. The reason for this is that they involve

two convolutions, one with respect to the intensity variablei and the other with respect

to the space variablex. A possible way to implement them would be to estimate the

functionsLl
MI ,h andLl

CR,h, and then “smooth” these functions, e.g. by recursive filter-

ing. The problem is that this would require a dense data structure of dimension(n+1)
for Ll

CR,h and(n + 2) for Ll
MI ,h. With 3D images, it becomes extremely difficult to

maintain these four and five-dimensional structures due to memory space limitations,

not counting the computational effort of smoothing them, which has to be done at each

iteration of the minimization flow. Our implementations rely on using directly the “un-

smoothed” versions ofLl
MI ,h andLl

CR,h, i.e. on eliminating both convolutions. We note

the two functions obtained̃F l
MI (h) andF̃ l

CR(h). Their implementation is described in

more detail in the following sections.

7.3.1 Mutual Information

We defineF̃ l
MI (h) by eliminating the convolutions in the definition ofF l

MI (h). It

remains to estimate the functionLl
MI ,h(Iσ

1 , Iσ
2 (Id + h), Id), which is done using

equations (6.17), (6.18) and (6.19), starting on page 106. Note that clearly, since

all the denominators involved are strictly positive and bounded, the functionh −→
Ll

MI ,h(Iσ
1 , Iσ

2 (Id + h), Id) is also Lipschitz-continuous, and therefore so isF̃ l
MI (h).
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Note however that the integrals involved can no longer be approximated by recursive

filtering. The filtering becomes non-stationary. We therefore propose the following

algorithm.

Algorithm 7.5 (F̃ l
MI (h))

• Estimate for eachy on the discrete grid the value ofa(Iσ
2 (y+h(y)),y,h) using

equation (6.17) on page 106, approximating the integrals by a finite sum on a

sufficiently large1 neighborhood aroundy.

• Estimate in a similar way the value ofA(Iσ
1 (y), Iσ

2 (y + h(y)),y,h) using

equation (6.18) on page 106, ofGγ(x) using equation (4.13) on page 68 and

of Ll
MI ,h(Iσ

1 (y), Iσ
2 (y + h(y)),y) using equation (6.19) on page 106.

• EstimateF̃ l
MI (h)(y) = Ll

MI ,h(Iσ
1 (y), Iσ

2 (y + h(y)),y) ∇Iσ
2 (y + h(y)).

7.3.2 Correlation Ratio

Similarly to the previous case, we eliminate the two convolutions in the definition

of F l
CR(h). It remains to estimate the functionLl

CR,h(Iσ
1 , Iσ

2 (Id + h), Id), where

µ2|1(i1,h,x0) is given by (see lemma 6.45 on page 112):

µ2|1(i1,h,x0) =

∫

Ω
gβ(i1 − Iσ

1 (x)) Iσ
2 (x + h(x)) Gγ(x− x0) dx

∫

Ω
gβ(i1 − Iσ

1 (x)) Gγ(x− x0) dx
. (7.4)

However, there is still another difficulty in this case. The value ofCRl(h,x), which

is needed in the computation ofLl
CR,h, requires itself a convolution with respect to the

intensity variable (see e.g. the proof of lemma 6.44 and in particular equation (6.25) on

page 111). For this reason, we make another approximation, namely that of replacing

CRl(h,x) =
∫

R

v2|1(i1,h,x)
v2(h,x)

p(i1) di1

in the definition ofLl
CR,h, by the function

θ1(i1,h,x) =
v2|1(i1,h,x)

v2(h,x)
, (7.5)

where the functionv2|1(i1,h,x) is given by (see the proof of lemma 6.44 on page 111):

v2|1(i1,h,x) = S(i1,h,x)− µ2|1(i1,h,x)2. (7.6)

1In practice we useγ = 5 and a neighborhood of size19× 19.
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The functionS(i1,h,x) is given by

S(i1,h,x0) =
1

p(i1,x0)

∫

R
i22 Ph(i) di2

= β +

∫

Ω
gβ(i1 − Iσ

1 (x)) Iσ
2 (x + h(x))2 Gγ(x− x0) dx

∫

Ω
gβ(i1 − Iσ

1 (x)) Gγ(x− x0) dx
. (7.7)

With these approximations, we define

L̃l
CR,h(i,x) =

1
1
2 Gγ(x) v2(h,x)(

µ2(h,x)− µ2|1(i1,h,x) + θ1(i1,h,x)
(
i2 − µ2(h,x)

))
, (7.8)

and

F̃ l
CR(h) = L̃l

CR,h(Iσ
1 , Iσ

2 (Id + h), Id) ∇Iσ
2 (Id + h).

Again, we notice that the Lipschitz-continuity of̃F l
CR(h) is preserved. We also have

in this case a non-stationary filtering process. We therefore propose the following

algorithm.

Algorithm 7.6 (F̃ l
CR(h))

• Estimate for eachy on the discrete grid the value ofGγ(y) using equation (4.13)

on page 68, ofµ2(h,y) andv2(h,y) using equations (6.22), (6.23) and (6.24)

on page 110, ofS(Iσ
1 (y),h,y) using equation (7.7), and ofµ2|1(Iσ

1 (y),h,y)
using equation (7.4), approximating the integrals by a finite sum on a sufficiently

large2 neighborhood aroundy.

• Estimatev2|1(Iσ
1 (y),h,y) using equation (7.6),θ1(Iσ

1 (y),h,y) using equa-

tion (7.5), andL̃l
CR,h(Iσ

1 (y), Iσ
2 (y + h(y)),y) using equation (7.8).

• EstimateF̃ l
CR(h)(y) = L̃l

CR,h(Iσ
1 (y), Iσ

2 (y + h(y)),y) ∇Iσ
2 (y + h(y)).

7.3.3 Parallel Implementation

Algorithms 7.5 and 7.6 are very well adapted to parallelization, as they both describe

a non-stationary filtering procedure. The operations required for computingF̃ l
MI (h)

andF̃ l
CR(h) at each voxel are defined from the knowledge of the functionsIσ

1 , Iσ
2 and

h in a relatively large neighborhood around it.

2In practice we useγ = 5 and a neighborhood of size19× 19.
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We have implemented these two algorithms using the MPI library for parallel exe-

cution using a cluster ofNp processors. A master-slave architecture is used, i.e. one of

the processors handles a certain amount of global work, and distributes local work to

the remainingNp − 1 processors. The distributed work is the computation ofF̃ l
MI (h)

andF̃ l
CR(h) at each iteration. The remaining operations (mainly the computation of

the regularization term and the time-step update) are handled by the master processor.

The execution flows for the master processor and for a slave processor are illustrated

in figures 7.1 and 7.2. It is assumed that all the processors have access to the data

corresponding toIσ
1 , Iσ

2 andh at each iteration. This is achieved in practice by special

synchronization routines of the MPI library. With this architecture and using a clus-

ter of 24 processors, we have achieved 15 times faster execution times than with the

sequential version.

Do global work
for the iteration

Have
all the voxels
been treated?

Is this
the last

iteration?

End

Yes

Computation of F l
MI (h) and F l

CR(h)

Give the nextNv voxels

to treat to the current

free processor

Output result

Wait for the results of the next free processor

Do initialization work

Begin

to each of theNp − 1

GiveNv voxels to treat

slave processors

Yes

No

No

Figure 7.1: Execution flow for the master processor in the parallel implementation of

the matching flow.
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over?

Is the
minimizationBegin

End

Apply algorithm

7.5 or 7.6 to each

of the voxels

to treat

Wait for the next

task: a set

of Nv voxels

to treat

Yes

No

Figure 7.2: Execution flow for each slave processor in the parallel implementation of

the matching flow.





Chapter 8

Determining Parameters

This chapter discusses the way in which the different parameters of the algorithms

are determined, particularly the smoothing parameter for the Parzen window estimates.

The matching algorithms use the following parameters.

• γ: This parameter is fixed to 5 with a local window size of 19x19 for the mutual

information and the correlation ratio. For the cross correlation, the value of this

parameter does not affect the computation time. This important property is due

the fact that the local statistics are calculated using the recursive smoothing filter.

Thanks to this property, we have conducted some experiments with different

values of this parameter, which have shown that the algorithms are not very

sensitive to it. This is the reason why we have fixed it for the mutual information

and the correlation ratio. Qualitatively speaking, the local window has to be

large enough for the statistics to be significant, and small enough to account for

non-stationarities of the density. The value chosen has given good results in

practice.

• β: This is the smoothing parameter for the Parzen estimates. Unlike the param-

eterγ, determining a good value for this parameter is crucial for the matching

results. The determination of this parameter is discussed in more detail in the

next section.

• α: This parameter determines the weight given to the regularization term in the

energy functional. Since the range of the different matching functions varies

considerably, we replace this parameter by another one, notedC such that

α = C κ,

whereκ is given by

κ = ‖F (h0)‖∞,
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h0 being the initial field andF any of the matching functions.

• σ: This is the scale parameter. We adopt a multi-resolution approach, smooth-

ing the images at each stage by a small amount. Within each stage of the

multi-resolution pyramid, the parameterσ is fixed to a small value, typically

0.25 voxels.

Besides these global parameters, one extra parameter is needed for each family of

regularization operators.

• ξ: This is the parameter controlling the behavior of the linearized elasticity op-

erator. Forξ close to 1, the Laplacian operator becomes dominant, while the

operator∇(div(h)) becomes dominant forξ close to zero. Two experiments in

the next chapter show qualitatively the behavior of the elasticity operator with

respect to that of the Laplacian. In practice, we fix the value ofξ to 0.5, giving

thus the same weight to both operators.

• λ: This is the parameter controlling the anisotropic behavior of the Nagel-

Enkelmann tensor. We adopt the method proposed by Alvarez et al. [6]. Given

s, which in practice is fixed to 0.1, we take the value ofλ such that

s =
∫ λ

0
H|∇Iσ

1 |(z) dz

whereH|∇Iσ
1 |(z) is the normalized histogram of|∇Iσ

1 |.

8.1 Determining the Smoothing Parameter

The parameterβ of the gaussian kernel is determined automatically. A very large

amount of literature has been published on the problem of determining an adequate

value for β (we refer to [17] for a recent comprehensive study on non-parametric

density estimation, containing many references to the forementioned literature).

We adopt a cross-validation method technique based on an empirical maximum

likelihood method. We note{ik} a set ofm intensity pair samples (k = 1 . . .m) and

take the value ofβ which maximizes the empirical likelihood:

L(β) =
m∏

k=1

P̂β,k(ik)

where

P̂β,k(ik) =
1

m− nk

∑

{s: is 6=ik}
Gβ(ik − is)
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andnk is the number of data samples for whichis = ik.

We present two examples of the determination ofβ by maximization of the

empirical likelihood. Figures 8.1 and 8.2 show the value of the empirical likelihood of

the estimated density as a function of the parameterβ for two different images. Note

how different the optimal values are for these two examples.

The parameterβ for the joint intensity function is taken as max(β1, β2), whereβ1

(resp.β2) is the optimal value obtained by maximization of the empirical likelihood

for Iσ
1 (resp.Iσ

2 ).
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Figure 8.1: Density estimation: example of using maximization of the empirical like-

lihood. The curve in the second row shows the value of the empirical likelihood of

the estimated density, as a function of the parameterβ which attains a maximum for

β ' 8. The bottom row presents the raw histogram of the image on the left, and its

smoothed version with the optimal value ofβ on the right.
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Figure 8.2: Density estimation: second example using maximization of the empirical

likelihood. The curve in the second row shows the value of the empirical likelihood as

a function of the parameterβ, which reaches a maximum forβ ' 30. The bottom row

presents the raw histogram of the image on the left, and its smoothed version with the

optimal value ofβ on the right.
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Experimental Results

This chapter presents experimental results for all the described algorithms using both

real and synthetic data. Examples include 2D images for applications in computer

vision and 3D images concerning different medical image modalities.

9.1 Classification

We present a total of eight experiments. The six dissimilarity criteria and the two

regularization operators are tested. Both 2D and 3D problems are included. Some

of the experiments are completely synthetic, some others are completely real and yet

some others are partly synthetic. Table 9.1 on the following page summarizes how

each of these categories are represented in the eight experiments shown. We use the

following abbreviations to refer to the three global criteria: GMI, GCR, GCC, the three

local criteria: LMI, LCR, LCC and the two regularization operators: LE (linearized

elasticity) and AD (anisotropic diffusion using the Nagel-Enkelmann tensor).

9.2 Description of the Experiments

Experiment 9.1

Similarity measure used : GMI.

Intensity transformation : known.

Geometric transformation : unknown.

Regularization used : LE, AD.

Parameters : α = 10, number of scales = 3.

Computation time : ' 3 minutes.

Matching program : MatchPDE.

Related figures : 9.1 – 9.4.
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Experiment: 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8

2D • • • • •
3D • • •
Known geometric transformation • •
Known intensity transformation • • •
Global mutual information • • •
Global correlation ratio • •
Global cross correlation • •
Local mutual information •
Local correlation ratio •
Local cross correlation • •
Linearized elasticity • • • • • •
Anisotropic diffusion • • • •

Table 9.1: Summary of the characteristics of each of the experiments.

Comments:

This experiment shows the behavior of the two different families of regularization

operators. Figure 9.1 shows on the first row the imagesI1 (on the left) andI2 (on the

right), and on the second row the imageI2 ◦ (Id + h∗), whereh∗ is the displacement

field obtained with linearized elasticity (on the left) and anisotropic diffusion (on the

right). The displacement fields are shown in figure 9.2. Figure 9.3 shows the result

obtained with the linearized elasticity operator with a value ofξ close to 1
2 on the

left, and close to1 on the right. Finally, 9.4 shows the determinant of the Jacobian of

(Id + h∗), whereh∗ is the field of figure 9.3 on the left. The interest in this function

is that if it is everywhere positive, then the transformation function:x → Id + h∗(x)
is invertible. This is the case for all the displacement fields shown in this experiment.

This experiment shows

Experiment 9.2

Similarity measure used : GCR.

Intensity transformation : unknown.

Geometric transformation : unknown.

Regularization : LE.

Parameters : α = 20, number of scales: 3.

Computation time : ' 10 minutes.

Matching program : MatchPDE.

Related figures : 9.5–9.8.
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Figure 9.1: Experiment showing the behavior of the two regularization operators. See

explanation of experiment 9.1 on page 143.
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Figure 9.2: Displacement field obtained with linearized elasticity (left) and anisotropic

diffusion (right).

Figure 9.3: Displacement field obtained with linearized elasticity with a value ofξ

close to1
2 (left), and close to one (right).
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Figure 9.4: Determinant of the Jacobian of(Id + h∗), for the displacement field of

figure 9.3 on the left.
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Comments:

This experiment shows matching of a 2D plane extracted from a 3D proton-density

image (PD) a similar T2-weighted 2D plane. An artificial warp was applied to the

T2-weighted 2D plane. The deformation is well recovered using global correlation

ratio.

Figure 9.5: Proton density image matching against T2-weighted MRI.
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Figure 9.6: Deformation field recovered in the experiment of figure 9.5.

−5

−4

−3

−2

−1

0

1

2

3

4

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

−4

−3

−2

−1

0

1

2

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Figure 9.7: Components of the deformation field recovered in the experiment of figure

9.5.
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Figure 9.8: Determinant of the Jacobian of the deformation field recovered in the

experiment of figure 9.5.

Experiment 9.3

Similarity measure used : LMI, LCR.

Intensity transformation : known.

Geometric transformation : known.

Regularization : LE.

Parameters : α = 10, number of scales: 2.

Computation time : ' 30 minutes (12 processors).

Matching program : mpi9pde

Related figures : 9.9–9.13.

Comments:

This experiment shows the result of the local mutual information and local correlation

ratio on synthetic data. The reference and target image where both taken from the

same 2D plane in a MRI data volume. The reference imageJ was then transformed in

the following way (|Ω|
x

is the size of the domain in thex direction):

J ′(x, y) = sin (2π J(x, y))− cos
(

2 π
|Ω|

(
x + y |Ω|

x

))

and then linearly renormalized in[0, 1]. Notice that the effect of this manipulation

produces a bias in the intensities of the reference image which resembles the real image

modality of experiment 9.4, plus a sort of spatial bias. A non-rigid smooth deformation
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was then applied to the target image. As expected, the global algorithms failed to align

these two images, due to the severe non-stationarity in the intensity distributions.

Figure 9.9: Matching with local mutual information and correlation ratio. Reference

image (left), deformed image (right).

Figure 9.10: Realigned image and its superposition with the reference image in the

experiment of figure 9.9.

Experiment 9.4

Similarity measure : GMI

Intensity transformation : unknown

Geometric transformation : unknown

Regularization : LE.

Parameters : α = 10, Ns = 4
Computation time : 25 minutes

Command line : MatchPDE3D

Related figure : 9.14.
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Figure 9.11: Components of the deformation field applied in the experiment of figure

9.9.
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Figure 9.12: Components of the deformation field recovered in the experiment of fig-

ure 9.9.
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Figure 9.13: Determinant of the Jacobian for the deformation field recovered in the

experiment of figure 9.9.

Comments:

This example shows an experiment with real MR data of the brain of a macaque mon-

key. The reference image is a T1-weighted anatomical volume and the target image

is a functional, mion contrast MRI (fMRI). The contrast in this modality is related to

blood oxygenation level. The figure shows the result of the global algorithms. Notice

that the alignment of main axis of the volume has been corrected.

Experiment 9.5

Similarity measure : LCC

Intensity transformation : unknown

Geometric transformation : unknown

Regularization : LE.

Parameters : α = 10, number of scales: 4.

Computation time : 25 minutes

Command line : MatchPDE3D

Related figure : 9.15.

Comments:

Matching of T2-weighted anatomical MRI against EPI functional MRI, using local

cross correlation. We obtain deformations of an amplitude up to 5 voxels, mostly in
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Figure 9.14: Global mutual information with fMRI data. Top row: reference anatom-

ical MRI. Middle row: initial fMRI volume. Bottom row: final (corrected) fMRI

volume. The two columns show two different points in the volumes.
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the phase-encoding direction (horizontal axis of the lower-right view). This solution

seems consistent with previous results obtained by Kybic, Thévenaz et al. [49] on the

same dataset.

Figure 9.15: Matching of T2-weighted anatomical MRI against EPI functional MRI,

using local cross correlation (images are courtesy of Jan Kybic, data provided by Arto

Nirkko, Inselspital Bern). Top row: reference and deformed image. Bottom row :

reference and realigned image.

Experiment 9.6

Similarity measure : LMI, LCR

Intensity transformation : unknown

Geometric transformation : unknown

Regularization : LE.

Parameters : α = 10, number of scales: 1.

Computation time : 30 minutes (24 processors).

Command line : mpi9pde.

Related figure : 9.16.
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Comments:

Our next experiment shows the result of the local algorithms with real 3D MR data.

The reference image is a T1 weighted anatomical MRI of a human brain. The target

image is an MRI from the same patient which is acquired using a special magnetic

field gradient as part of the process of obtaining an image of the water diffusion tensor

at each point. Notice that the intensities in this modality are qualitatively close to our

simulated experiment. The estimated deformation field has a dominanty component,

a property which is physically coherent with the applied gradient. BothMI andCR
yielded similar results in this case.

Figure 9.16: Matching of anatomical vs diffusion-tensor-related MRI, using local mu-

tual information and correlation ratio.
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Experiment 9.7

Similarity measure : GMI

Intensity transformation : known.

Geometric transformation : unknown.

Regularization : LE, AD.

Parameters : α = 10, number of scales: 5.

Computation time : 25 minutes.

Command line : MatchPDE.

Related figures : 9.17–9.20.

Comments:

This experiment shows a real stereo pair in which the intensities in one of the images

were artificially transformed using a sine function. The matching is performed using

global mutual information.

Figure 9.17: Sterao matching using global mutual information.

Experiment 9.8

Similarity measure : LCC, GCC.

Intensity transformation : unknown.

Geometric transformation : unknown.

Regularization : LE, AD.

Parameters : α = 10, number of scales: 3.

Computation time : 3 minutes.

Command line : MatchPDE

Related figures : 9.21, 9.25.

Comments:

This last experiment shows the use of the global and local cross correlation r criteria

to perform template matching of human faces. In this case the illuminating conditions
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Figure 9.18: Deformed image with the displacement field obtained, and its superposi-

tion with the reference image.
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Figure 9.19: Components of the obtained deformation field in the experiment of figure

9.17.
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Figure 9.20: Determinant of the Jacobian for the obtained deformation field in the

experiment of figure 9.17.

are the same in both photographs. If different, the local algorithms should be used.

The different albedos of the two skins create a “multimodal” situation and the trans-

formation is truly non rigid due to the different shapes of the noses and mouths. Notice

the excellent matching of the different features. This result was obtained completely

automatically with the same sets of parameters as the rest of the experiments, using

global mutual information.
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Figure 9.21: Human template matching. Reference (left) and target (right) images.

Figure 9.22: Reference image and deformed target image using the obtained deforma-

tion field in the experiment of figure 9.21.
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Figure 9.23: Some corresponding points using the obtained deformation field in the

experiment of figure 9.21.
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Figure 9.24: Components of the obtained deformation field in the experiment of figure

9.21.
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Figure 9.25: Determinant of the Jacobian for the obtained deformation field in the

experiment of figure 9.21.



Appendix A

Other Applications

The gradients of the statistical similarity measures studied in the previous chapters may

be used in other contexts where the same criteria are applicable. In this appendix we

focus on two such applications, namely image segmentation by entropy minimization

(Section A.1) and diffeomorphic matching (Section A.2). The goal is more to give

the flavour of how the gradients are used in these contexts than to propose specific

methods.

A.1 Entropy Minimization for Image Segmentation

The minimization of the entropy associated to an image yields an algorithm which can

be viewed as a mean-shift process [29], useful for segmentation purposes. Although

we restrict the discussion to global entropy in order to keep it as simple as possible, it

can be generalized to the local case in a straightforward manner, yielding an algorithm

which is very close to bilateral filtering [82]. The experimental results are shown using

the local version of the energy.

Given an image (we restrict to the scalar case)I : Ω → R, we may associate it

a random variableXI , whose values are notedi and whose samples are given by the

values ofI(x), for x ∈ Ω. The probability density ofXI may be estimated by

P (i) = 1
|Ω|

∫
Ω Gβ(I(x)− i) di,

this definition being in agreement with the usual property

∫
R P (i) di = 1

|Ω|
∫
Ω

∫
RGβ(I(x)− i) di︸ ︷︷ ︸

1

dx = 1.

The entropy ofXI is given by

Ent(XI) = − ∫
R P (i) log(P (i)) di.
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This quantity is now viewed as a functional ofI, and the segmentation problem may

be defined as finding the functionI∗ : Ω → R satisfying

I∗ = arg min
I∈F

Ent(I).

Clearly the global minimum is attained for a constant image, but rather than adding

a data-attachment term, we use the non-convexity of this energy to find the closest

local minimum, starting with the initial imageI0 as first estimate. Computing the first

variation of Ent(I), we have

∂Ent(I + εJ)
∂ε

∣∣∣∣
ε=0

=
∫
R(1 + log(P (i)))

∫
Ω G′

β(I(x)− i) J(x) dx di

=
∫
Ω

(
Gβ ? P ′(i)

P (i)

)

︸ ︷︷ ︸
∇H(Ent(I))

J(x) dx.

At the steady state,∇H(Ent(I)) = 0 and thus, necessarily,P
′(i)

P (i) = 0 for all i ∈ R.

Now since we have

P ′(i)
P (i)

=
1
β2

(
i−

∫
Ω I(x) Gβ(I(x)− i) dx∫

Ω Gβ(I(x)− i) dx

)
,

we may try to solve the minimization problem by introducing time and a differentiable

functionI : R+ × Ω → R, and defining the solution as the steady state of the initial

value problem




∂I

∂t
(t,y) = I(t,y)−

∫
Ω I(t,x) Gβ(I(t,x)− I(t,y)) dx∫

Ω Gβ(I(t,x)− I(t,y)) dx
, ∀y ∈ Ω.

I(0, ·) = I0(·).
The second term on the right-hand side of the evolution equation is a weighted mean

around the image intensity aty. Using an explicit time discretization with time-

step equal to one, the resulting algorithm describes a mean-shift process [29]. Fig-

ures A.1, A.2 and A.3 show the results obtained by applying this procedure to two

different images. The results are shown with the local version of the algorithm so that

two parameters must be specified:σ, controlling the size of the local window, and

β, the smoothing parameter of the Parzen window estimate. The results shown are

obtained after convergence for the specified parameters.

A.2 Diffeomorphic Matching

The contents of this section is described in more detail in Chefd’hotel et al. [23]. The

gradients of the statistical criteria computed in Chapter 5 may be used in the context

of the template matching equations introduced by Christensen [26] and recently gen-

eralized by Trouv́e [84]. (We also refer to the work of Miller and Younes [58], who
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Figure A.1: Segmentation example: From left to right: original image, noisy image,

result withσ = 1, β = 5.

Figure A.2: Segmentation example: From left to right: original image, noisy image,

result withσ = 5, β = 5.

describe a general framework related to this type of approach). In this context, the un-

known is considered to be the transformationφ = Id+h, rather than the displacement

field h. The matching problem is then solved by constructing a one-parameter family

of diffeomorphismsφ(t) (0 ≤ t ≤ ∞) and takingφ(∞) as the solution. This family

of diffeomorphisms is constructed as the solution to the initial value problem





∂φ

∂t
= Dφ · v, φ(0) = Id,

v(t) = ψ ? Fφ(t),

(A.1)

whereψ is a smoothing kernel which ensures the appropriate regularity of the time-

dependent vector fieldv andFφ is the gradient of the similarity criterion, i.e. may

be replaced by one of the matching functions that we have studied (Equations (5.9)

and (5.14) at the end of Chapter 5). Intuitively, one can construct this family by consid-

ering at each iterationk the deformed templateIσ
2
′ ≡ Iσ

2 ◦φk and computingF k
φ |φ=Id

betweenIσ
1 andIσ

2
′. After the regularization which yieldsvk = ψ ? F k

φ and for a

sufficiently smallδt, the transformationId + δt vk is a diffeomorphism. Composing

φk (by right-composition) with this transformation gives an efficient scheme which is
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Figure A.3: Segmentation example: From left to right: original image, result with

σ = 0.5, β = 5.

consistent with the continuous flow A.1:

φk+1 = φk ◦ (Id + δt vk).

In summary, we have the following algorithm.

1. Setk = 0, φ0 = Id.

2. SetIσ
2

k = Iσ
2 ◦ φk.

3. Setbk = Fcrit(Iσ
1 , Iσ

2
k)|h=0 for some statistical criterion “crit”.

4. Setvk = ψ ? bk (letting for instanceψ be a Gaussian kernel).

5. Setφk+1 = φk ◦ (Id + δt vk).

6. Setk = k + 1 and go to step 2.

Figures A.4 to A.7 show the result of applying this algorithm for two different criteria,

namely local mutual information and local cross correlation. The first experiment

(Figure A.4) is the same as Experiment 9.3, using local mutual information. As shown

in the figure, the applied displacements are well recovered.

Figures A.5, A.6 and A.7 show results obtained with the local cross correlation

criterion in conjunction with the algorithm described above. Three different random

smooth deformations are applied to an inverse recovery echo planar image of the brain

of a macaque monkey. This deformed image is superimposed in green over the anatom-

ical MRI of the same monkey (in magenta). As shown in the figures, large displace-

ments are consistently recovered with this approach.
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Figure A.4: Diffeomorphic matching using local mutual information. First row: refer-

ence and target images. Second row: corrected target image (left) and its superposition

with the reference image (right). Third and fourth rows: horizontal and vertical com-

ponents of the estimated (left) and true (right) deformations fields (iso-level 3.4 is

outlined).
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Figure A.5: Diffeomorphic matching using local cross correlation. Left: first random

smooth deformation used as initial state. Right: deformed template after convergence

of the algorithm.

Figure A.6: Diffeomorphic matching using local cross correlation. Left: second ran-

dom smooth deformation used as initial state. Right: deformed template after conver-

gence of the algorithm.
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Figure A.7: Diffeomorphic matching using local cross correlation. Left: third random

smooth deformation used as initial state. Right: deformed template after convergence

of the algorithm.





Appendix B

Library Description

The algorithms described in this work are programmed in C++. They form a part of a

complete library providing the basic tools and methods within a coherent framework.

This chapter is intended as a description for this library which is composed of about

120 classes and a total of more than 15000 lines of code. The global philosophy of the

entire library is to provide tools allowing the user to program a in a few lines a great

variety of image processing applications. This is the reason why it is accompanied by

a large numbers of small examples in the form of stand-alone executables, which at

the same time illustrate the use of the specific classes they use and perform a useful

task. The idea is that the same building blocks may be used in other applications, and

actually the matching algorithms described in this thesis are high-level blocks using

many of these low-level components.

B.1 General Remarks

All the source code is templated to abstract arrays and written in the source header.

This presents the advantage of being completely accessible and at the same time guar-

antees optimum performance through in-lining. The only external library that is need

in X11, the graphics library in unix systems.

There are mainly three different types of containers, adapted to different uses. The

first type is just a basic 3D array. The second type, derives from the first type and

adds the capability to access any coordinates, so that it actually behaves like an infinite

array. The class Image derives from this type of array, basically adding input-output

routines and common basic image manipulation routines. The final type of array is

an array adopted for PDE, and is actually a graph. The library contains a graphic

visualization tool called Xhandler. The numerical schemes are isolated from all the

aspects pertaining to the type of container in which the data is stored. They are in the
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end he most important part of a PDE code so having the scheme isolated from all the

rest presents the advantage of making it completely stand alone.

B.2 C++ Listing: Global Mathching Functions

This section contains the listing for the computation of the three global matching func-

tions. They use the basic tools provided by the C++ library described at the begining

of this appendix.

B.2.1 Mutual Information

TexC++Code/MutualInfodEdI:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef MUTUALINFO DE DI H

#define MUTUALINFO DE DI H

#include <Image.H>

#include <GeneralMetric.H>

10

template<class array>

struct MutualInfodEdI : public GeneralMetric<array> {

Image<float> dist, Dist;
float criter, norm, beta; int NG;

virtual ˜MutualInfodEdI() {}

MutualInfodEdI ( const array & I1, const array & I2,
const float betaArg = 10.0, 20

const int ng = 256 ) : beta(betaArg), NG(ng) {
dist.SetSize(I1.dimx(),I1.dimy(),I1.dimz());

}

void Init ( const array & I1, const array & I2) {

Dist.SetSize(NG,NG);

Image<float,const NeumannBC> H, Hy, Dist, P, h, hy, h1, p;
H.SetSize(NG,NG); Hy.SetSize(NG,NG); Dist.SetSize(NG,NG); 30

P.SetSize(NG,NG);
h.SetSize(NG); hy.SetSize(NG); h1.SetSize(NG);
p.SetSize(NG);
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H=double(0); Map(I1,x) H((int )I1[x],(int )I2[x])++;

H.SelfRecSmoothZeroBC(beta);

float sH=0.0; Map(H,x) sH += H[x]; H /= sH; 40

MapY(H,y) {
float sum = 0;
MapX(H,x) {

sum += H(x,y);
}
h(y) = sum;

}

MapX(H,x) { 50

float sum = 0;
MapY(H,y) {

sum += H(x,y);
}
h1(x) = sum;

}

MapXY(H,x,y) Hy(x,y) = (H(x,y+1)−H(x,y−1))/2.0;
Map(h,y) hy(y) = (h(y+1)−h(y−1))/2.0;

60

Map(P,x) P[x] = H[x] ? Hy[x] / H[x] : Hy[x];
Map(p,x) p[x] = h[x] ? hy[x] / h[x] : hy[x];

MapXY(Dist,x,y) Dist(x,y) = P(x,y) − p(y);

Dist.SelfRecSmoothZeroBC(beta);

float s1 = 0;
MapXY(H,x,y) if (H(x,y)) s1 += H(x,y) * log(H(x,y)/(h1(x)*h(y)));

70

criter = −s1;

norm = 0;
Map(I1,x) {

const float val = Dist(I1[x],I2[x]) ;
dist[x] = val;
norm += val * val;

}

norm /= I1.size(); 80

dist /= −I1.size();
}

float operator() (const int x, const int y, const int z=0) const {
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return dist(x,y,z);
}

float operator[ ] (const int x) { return dist[x]; }
90

float E() const { return criter; }

int SaveE(const char *name) const {

Image<float> mi(dist.domain()); mi = criter;
return mi.SaveINR(name);

}

float GetNorm() const { return norm; } 100

double AbsMax() const { return dist.AbsMax(); }

Image<float> & Ima() { return dist; }
};
#endif

B.2.2 Correlation Ratio

TexC++Code/CorrelRatiodEdI:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef CORRELRATIO DE DI H

#define CORRELRATIO DE DI H

#include <Image.H>

#include <SecondOrderRecFilter.H>

#include <ExponentialMask.H> 10

#include <GeneralMetric.H>

template<class array>

struct CorrelRatiodEdI :public GeneralMetric<array> {

Image<float> dist;
float criter, norm; float beta; int NG;

virtual ˜CorrelRatiodEdI() {}
20

CorrelRatiodEdI( const array & I1, const array & I2,
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const float betaArg = 10.0,
const int ng = 256 ) : beta(betaArg), NG(ng) {

dist.SetSize(I1.dimx(),I1.dimy(),I1.dimz());
}

void Init ( const array & I1, const array & I2) {

Image<float> H,Dist,h,V,S0,S1,S2; 30

H.SetSize(NG,NG); Dist.SetSize(NG,NG);
h.SetSize(NG); V.SetSize(NG);
S0.SetSize(NG); S1.SetSize(NG); S2.SetSize(NG);

typedef SecondOrderRecFilter F;
ExponentialMask<float> M(beta);

H = double(0); Map(I1,x) H((int )I1[x],(int )I2[x])++;
MapY(H,y) F::Apply(M,&H(0,y),&H(0,y),H.dimx(),1);
MapX(H,x) F::Apply(M,&H(x,0),&H(x,0),H.dimy(),H.dimx()); 40

float sH=0.0; Map(H,x) sH += H[x]; H /= sH;

MapX(H,x) {
float s0=0.0,s1=0.0,s2=0.0;
MapY(H,y) {

s0 += H(x,y);
s1 += H(x,y) * y;
s2 += H(x,y) * y * y;

}
S0(x) = s0; 50

S1(x) = s1;
S2(x) = s2;

}

Map(h,x) {
float mean = S0[x] ? S1[x]/S0[x] : 0.0;
float var = mean ? S2[x]/S0[x] − mean*mean: 0.0;
h[x] = mean;
V[x] = var;

} 60

float I2mean=0; Map(h,x) I2mean += S1[x];
float sum2 = 0; Map(S2,x) sum2 += S2[x];
float VarI2 = sum2− I2mean*I2mean;
float EVarI2I1 = 0;
Map(V,x) EVarI2I1 += V[x]*S0[x];
float CR = 1.0 − EVarI2I1/VarI2;

MapXY(Dist,x,y) Dist(x,y) = y−h(x) + (CR−1.0) * (y−I2mean);
MapY(Dist,y) F::Apply(M,&Dist(0,y),&Dist(0,y),Dist.dimx(),1); 70

MapX(Dist,x) F::Apply(M,&Dist(x,0),&Dist(x,0),
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Dist.dimy(),Dist.dimx());
Map(Dist,x) Dist[x] *= −2.0/VarI2;

criter = 0;
Map(I1,x) {

const float val = Dist(I1[x],I2[x]);
dist[x] = val;
norm += val;

} 80

criter = −CR;
norm /= I1.size();
dist /= −I1.size();

}

template <class point>

float operator() (const point &m) const {

return dist(m.x,m.y);
} 90

float operator() (const int x, const int y,const int z=0) const {

return dist(x,y,z);
}

float E() const { return criter; }

int SaveE(const char *name) const {
100

Image<float> cr(dist.domain()); cr = criter;
return cr.SaveINR(name);

}

float GetNorm() const { return norm; }

double AbsMax() const { return dist.AbsMax(); }

Image<float> & Ima() { return dist; }
}; 110

#endif
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B.2.3 Cross Correlation

TexC++Code/CrossCorreldEdI:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef CCGCOMPARISONH

#define CCGCOMPARISONH

#include <Image.H>

#include <GeneralMetric.H> 10

template<class array>

struct CrossCorreldEdI :public GeneralMetric<array> {

Image<float> dist;
float criter, norm;
float beta;

public:
20

virtual ˜CrossCorreldEdI() {}

CrossCorreldEdI( const array & I1, const array & I2,
const float betaArg = 10) :

beta(betaArg) {
dist.SetSize(I1.dimx(),I1.dimy(),I1.dimz());

}

void Init ( const array & I1, const array & I2) {
30

typedef float real;

Domain Omega= I1.domain();

float m1=0, v1=0, m2=0, v2=0, v12=0;
Map(Omega,x) {

const real i1 = I1[x];
const real i2 = I2[x];
m1 += i1; m2 += i2;
v1 += i1 * i1; v2 += i2 * i2; 40

v12 += i1 * i2;
}

m1 /= Omega.size(); m2 /= Omega.size();
v1 = beta + v1 / Omega.size() − m1 * m1;
v2 = beta + v2 / Omega.size() − m2 * m2;
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v12 = v12 / Omega.size() − m1 * m2;

const float f1 = v12 / (v2 * v1);
criter = v12 * f1; 50

const float f2 = −criter / v2;
const float f3 = −(f2 * m2 + f1 * m1);

Map(Omega,x) {
dist[x] = 2.0 * ( f1 * I1[x] + f2 * I2[x] + f3 );

}

criter = −criter;
dist /= −Omega.size();

} 60

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

}

float E() const { return criter; }

int SaveE(const char *name) const {

Image<float> cc(dist.domain()); cc = criter; 70

return cc.SaveINR(name);
}

double AbsMax() const { return dist.AbsMax(); }

Image<float> & Ima() { return dist; }
};
#endif

B.3 C++ Listing: Local Mathching Functions

This section contains the listing for the computation of the three local matching func-

tions. They use the basic tools provided by the C++ library described at the begining

of this appendix.
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B.3.1 Mutual Information

TexC++Code/LocalMIdEdI:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef MILCOMPARISON H

#define MILCOMPARISON H

#include <Image.H>

#include <GeneralMetric.H> 10

template<class array>

struct MILComparison : public GeneralMetric<array> {

typedef Image<float> Function; Function dist,mi;
float criter, norm; float sigma, beta;
static const int ws = 19;
static const int hws = 9;

public: 20

virtual ˜MILComparison() {}

MILComparison ( const array & I1, const array & I2,
const float sigmaArg = 5, const float betaArg = 10) :

sigma(sigmaArg), beta(betaArg) {

dist.SetSize(I1.dimx(),I1.dimy(),I1.dimz());
mi.SetSize(I1.dimx(),I1.dimy(),I1.dimz());

} 30

void Init ( const array & I1, const array & I2 ) {

Domain Omega= I1.domain();

Function GB(300), R(ws,ws);
Map(GB,x) GB[x] = ( 1.0/sqrt(2*M PI*beta*beta) *

exp(−x*x/(2*beta*beta)) );
MapXY(R,x,y) R(x,y) = ( 1.0/(2*M PI*beta*beta) *

exp(−((x−hws)*(x−hws) + 40

(y−hws)*(y−hws))/(2*sigma*sigma)) );

criter = 0; norm = 0; int pixel=0;
MapY(Omega,y) {

const int yy = y−hws;
MapX(Omega,x) {



180 Appendix B: Library Description

const int xx = x−hws;
const float ii = I1[pixel];
const float jj = I2[pixel];
float S1=0,W1=0,S2=0,W2=0,W3=0; 50

int count=0;
MapY(R,Y) {

const int py = yy+Y;
MapX(R,X) {

const int px = xx+X;
const float i = I1(px,py);
const float j = I2(px,py);
const float w1 = GB[abs(int (i−ii ))];
const float w2 = GB[abs(int (j−jj ))];
const float wx = R[count++]; 60

const float ww2 = w2 * wx;
const float ww1 = ww2 * w1;
S1 += j * ww1;
S2 += j * ww2;
W1 += ww1;
W2 += ww2;
W3 += w1 * wx;

}
}
const float di = (S1 / W1 − S2 / W2) / W3; 70

const float mix = (W1 − W2) / W3;
mi[pixel] = mix;
dist[pixel++] = −di;
criter += mix;
norm += di * di;

}
}
criter /= Omega.size();
norm /= Omega.size();

} 80

float e (const int x, const int y, const int z=0) const {

return mi(x,y,z);
}

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

} 90

float E() const { return criter; }

int SaveE(const char *name) const { return mi.SaveINR(name); }

double AbsMax() const { return dist.AbsMax(); }
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Function & Ima() { return dist; }
};
#endif 100

B.3.2 Correlation Ratio

TexC++Code/LocalCRdEdI:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef CRLCOMPARISON H

#define CRLCOMPARISON H

#include <Image.H> 10

#include <GeneralMetric.H>

template<class array>

struct CRLComparison :public GeneralMetric<array> {

typedef Image<float> Function; Function dist,cr;
float criter, norm; float sigma, beta, Beta;
static const int ws = 19;
static const int hws = 9;

20

public:

virtual ˜CRLComparison() {}

CRLComparison( const array & I1, const array & I2,
const float sigmaArg = 5, const float betaArg = 20) :

sigma(sigmaArg), beta(betaArg), Beta(betaArg*betaArg) {

dist.SetSize(I1.dimx(),I1.dimy(),I1.dimz());
cr.SetSize(I1.dimx(),I1.dimy(),I1.dimz()); 30

}

void Init ( const array & I1, const array & I2 ) {

Domain Omega= I1.domain();

Function GB(300), R(ws,ws);
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Map(GB,x) GB[x] = ( 1.0/sqrt(2*M PI*beta*beta) *
exp(−x*x/(2*beta*beta)) ); 40

MapXY(R,x,y) R(x,y) = ( 1.0/(2*M PI*beta*beta) *
exp(−((x−hws)*(x−hws) +

(y−hws)*(y−hws))/(2*sigma*sigma)) );

criter = 0; norm = 0; int pixel=0;
MapY(Omega,y) {

const int yy = y−hws;
MapX(Omega,x) {

const int xx = x−hws;
const float ii = I1[pixel]; 50

const float jj = I2[pixel];
float S1=0,W1=0,S2=0,W2=0,S3=0,W3=0,S4=0,W4=0;
int count=0;
MapY(R,Y) {

const int py = yy+Y;
MapX(R,X) {

const int px = xx+X;
const float i = I1(px,py);
const float j = I2(px,py);
const float w1 = R[count++]; 60

const float w2 = w1 * GB[abs(int (i−ii ))];
S1 += w1*j; W1 += w1;
S2 += w1*j*j; W2 += w1;
S3 += w2*j; W3 += w2;
S4 += w2*j*j; W4 += w2;

}
}
const float mu2 = S1/W1;
const float var2 = Beta + S2/W2 − mu2 * mu2;
const float mu21 = S3/W3; 70

const float var21 = Beta + S4/W4 − mu21 * mu21;
const float theta1 = var21 / var2;
const float di = (

2.0 / var2 * ( mu2 − mu21 + theta1 * (jj − mu2) ) );
dist[pixel++] = di;
criter += theta1;
norm += di*di;

}
}

80

criter /= Omega.size();
norm /= Omega.size();

}

float e (const int x, const int y, const int z=0) const {

return cr(x,y,z);
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}
90

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

}

float E() const { return criter; }

int SaveE(const char *name) const { return cr.SaveINR(name); }

double AbsMax() const { return dist.AbsMax(); }
100

Function & Ima() { return dist; }
};
#endif

B.3.3 Cross Correlation

TexC++Code/AutoCorreldEdI:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef CCLCOMPARISON H

#define CCLCOMPARISON H

#include <Image.H>

#include <GeneralMetric.H> 10

template<class array>

struct CLComparison :public GeneralMetric<array> {

Image<float> dist,cc;
float criter, norm;
float sigma, beta;

public:
virtual ˜CLComparison() {} 20

CLComparison(const array & I1, const array & I2,
const float sigmaArg = 20, const float betaArg = 1e−13) :

sigma(sigmaArg), beta(betaArg) {

dist.SetSize(I1.dimx(),I1.dimy(),I1.dimz());
cc.SetSize(I1.dimx(),I1.dimy(),I1.dimz());
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}

void Init ( const array & I1, const array & I2) { 30

typedef float real;

Image<float>
mu1(I1.domain()), mu2(I1.domain()),
v1(I1.domain()), v2(I1.domain()),
v12(I1.domain()), f1(I1.domain()),
f2(I1.domain()), f3(I1.domain());

Map(I1,x) { 40

const real i1 = I1[x];
const real i2 = I2[x];

mu1[x] = i1; v1[x] = i1 * i1;
mu2[x] = i2; v12[x] = i1 * i2;
v2[x] = i2 * i2;

}

mu1.SelfRecSmoothZeroBC(sigma); v1.SelfRecSmoothZeroBC(sigma);
mu2.SelfRecSmoothZeroBC(sigma); v2.SelfRecSmoothZeroBC(sigma); 50

v12.SelfRecSmoothZeroBC(sigma);

criter = 0;
Map(v1,x) {

const real u1 = mu1[x];
const real u2 = mu2[x];
const real vv1 = v1[x] + beta− u1 * u1;
const real vv2 = v2[x] + beta− u2 * u2;
const real vv12 = v12[x] − u1 * u2; 60

const real ff1 = vv12 / (vv1 * vv2);
const real CC = vv12 * ff1;
const real ff2 = − CC / vv2;
const real ff3 = − (ff2 * u2 + ff1 * u1);

f1[x] = ff1; f2[x] = ff2; f3[x] = ff3;
cc[x] = −CC;
criter += −CC;

} 70

f1.SelfRecSmoothZeroBC(sigma);
f2.SelfRecSmoothZeroBC(sigma);
f3.SelfRecSmoothZeroBC(sigma);

norm = 0;
Map(f1,x) {
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const float val = 2.0 * ( f1[x] * I1[x] +
f2[x] * I2[x] +
f3[x] ) ; 80

dist[x] = −val;
norm += val * val;

}
}

float e (const int x, const int y, const int z=0) const {

return cc(x,y,z);
} 90

float operator() (const int x, const int y, const int z=0) const {
return dist(x,y,z);

}

float E() const { return criter; }

int SaveE(const char *name) const { return cc.SaveINR(name); }

double AbsMax() const { return dist.AbsMax(); } 100

Image<float> & Ima() { return dist; }
};
#endif

B.4 C++ Listing: 2D Matching Flow

This section contains the listing for a generic 2D matching flow using the six matching

functions described. Only the 2D case is illustrated.

TexC++Code/MatchFlow:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#ifndef MATCH FLOW H

#define MATCH FLOW H

#include <Image.H>

#include <Xhandler.H>

#include <Schemes.H> 10

#include <ImageMetric.H>
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typedef Image<float> image;

struct Handler {
bool stop; Handler() : stop(false) {}
void Stop(Xhandler *xw) { stop=true; }

};

template <class real, bool visual=false, bool verbose=false> 20

struct MatchFlow {

Xhandler X; Handler H;
MatchFlow() { X.SetButton(3,&H,&Handler::Stop); }

void operator () ( const image &I1o, const image &I2o,
image &u, image &v,
const real sigma, const real alpha,
real dt, int iter, const char* metric ) {

30

image I1, I2, I2w, dispx, dispy, I2x, I2y;
I1o >> I1 >> I2 >> I2w >> dispx >> dispy >> I2x >> I2y;

I1 = I1o; I1.Smooth(1.695/sigma);
I2 = I2o; I2.Smooth(1.695/sigma);
I2x = I2o; I2x.Smooth(1.695/sigma,1,0);
I2y = I2o; I2y.Smooth(1.695/sigma,0,1);

float dto=0, criter = 0, Oldcriter = 0;
40

ImageMetric<image> D(I1,I2,metric);
D.Init(I1,I2);

const float lambda = D.AbsMax();
float C = alpha * lambda;
dto = dt / C;

Rmap(it,iter) {

MapXY(I2w,x,y) I2w(x,y) = I2(x+u(x,y),y+v(x,y)); 50

D.Init(I1,I2w);

int p = 0;
MapXY(dispx,x,y) {

const double di = −D(x,y);
const Schemes::Vector

Elas = Schemes::Elasticity(u,v,x,y,0.8);
dispx[p] = di * I2x(x+u(x,y),y+v(x,y)) + C * Elas.x;
dispy[p] = di * I2y(x+u(x,y),y+v(x,y)) + C * Elas.y;
p++; 60

}
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Oldcriter = criter;
criter = 0;
Map(u,x) {

const float du = dispx[x] * dto;
const float dv = dispy[x] * dto;
float & uu = u[x];
float & vv = v[x];
criter += uu * uu + vv * vv; 70

uu += du;
vv += dv;

}
criter /= I1.size();

if (verbose) printf("%.13f\n" ,criter);
if (visual) X(I2w);
if (H.stop) return ;

}
} 80

};
#endif

B.5 C++ Listing: Main Program and Multiscale Handling

This section contains the listing for the main matching program, including multiscale

handling.

TexC++Code/MatchPDE:

/*

Author : Gerardo Hermosillo

Copyright (c) INRIA 1997 - 2002

*/

#include <Image.H>

#include <Usage.H>

#include <MatchFlow.H>

#include <MultiScale.H>

10

typedef Image<float> image;
typedef MatchFlow<float,true,true> Matcher;

int main(int argc, char **argv) {

char *n1, *n2; float alpha; int Nzoom;
float sigma=0.25, dt; int iter;
char *metric;
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Usage Call( argc, argv, "I1 I2 dt iter alpha Nzoom metric" , 20

n1, n2, dt, iter, alpha, Nzoom, metric );

Call(); image I1[Nzoom+1], I2[Nzoom+1], u[Nzoom+1], v[Nzoom+1];
I1[0]=n1; I2[0]=n2;

I1[0]>>u[0]>>v[0]; u[0]=v[0]=0.0;

for ( int zoom = 1; zoom < Nzoom+1; zoom ++ ) {
30

MultiScale::Zoom( I1[zoom−1], I1[zoom] );
MultiScale::Zoom( I2[zoom−1], I2[zoom] );
MultiScale::Zoom( u[zoom−1], u[zoom] );
MultiScale::Zoom( v[zoom−1], v[zoom] );

}

for ( int zoom = Nzoom; zoom >= 0; zoom −− ) {

Matcher M; 40

M ( I1[zoom],I2[zoom],u[zoom],v[zoom],sigma,alpha,dt,iter,metric );

if ( zoom ) {
MultiScale::DeZoom( u[zoom], u[zoom−1] );
MultiScale::DeZoom( v[zoom], v[zoom−1] );
u[zoom−1] *= 2.0;
v[zoom−1] *= 2.0;

}
}

50

u[0].SaveINR("U.inr" ); v[0].SaveINR("V.inr" );
}
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