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Abstract. Matching images of different modalities can be achieved by the maximization of suitable statistical
similarity measures within a given class of geometric transformations. Handling complex, nonrigid deformations
in this context turns out to be particularly difficult and has attracted much attention in the last few years. The thrust
of this paper is that many of the existing methods for nonrigid monomodal registration that use simple criteria
for comparing the intensities (e.g. SSD) can be extended to the multimodal case where more complex intensity
similarity measures are necessary. To this end, we perform a formal computation of the variational gradient of a
hierarchy of statistical similarity measures, and use the results to generalize a recently proposed and very effective
optical flow algorithm (L. Alvarez, J. Weickert, and J. Sánchez, 2000, Technical Report, and IJCV 39(1):41–56) to
the case of multimodal image registration. Our method readily extends to the case of locally computed similarity
measures, thus providing the flexibility to cope with spatial non-stationarities in the way the intensities in the two
images are related. The well posedness of the resulting equations is proved in a complementary work (O.D. Faugeras
and G. Hermosillo, 2001, Technical Report 4235, INRIA) using well established techniques in functional analysis.
We briefly describe our numerical implementation of these equations and show results on real and synthetic data.

Keywords: image matching, cross correlation, correlation ratio, mutual information, partial differential equations,
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1. Introduction

The problem of establishing correspondences between
two or more images is fundamental in computer vi-
sion. It is one of the building blocks for a number of
challenging problems such as 3D reconstruction, cam-
era motion estimation, template matching and camera
calibration. When images have been acquired through
similar sensors, they can be realigned by a direct com-
parison of their intensities. This results in matching al-
gorithms that essentially look for the geometric trans-
formation between two images which minimizes the

∗Part of this work was done while the second author was visiting the
MIT Artificial Intelligence Laboratory.

sum of the squared differences between their intensity
values.

There are several situations in which the hypothesis
of the invariance of the intensity is no longer valid. One
may consider for instance varying illumination condi-
tions, or sensors with different spectral sensitivities.
The same situation is encountered in medical imaging,
where several acquisition modalities must be realigned
to allow for an accurate fusion of complementary in-
formation. To cope with this new difficulty, statisti-
cal similarity measures between the image intensities
have been proposed. Two such similarity measures are
the mutual information, proposed by Viola and Wells
(1997) and independently by Maes et al. (1997) and
the correlation ratio, proposed by Roche et al. (1998a).
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Initially, these criteria were used through their maxi-
mization over a low-dimensional space of parametric
transformations, e.g. rigid or affine. Recent extensions
to larger sets of deformations rely on more complex
parametric models (Meyer et al., 1998; Rückert et al.,
1998) or block-matching strategies (Maintz et al., 1998;
Hata et al., 1998; Gaens et al., 1998). Another in-
teresting approach to multimodal, nonrigid matching
was proposed by Roche et al. (2000a), where paramet-
ric intensity corrections are combined with standard
monomodal algorithms.

In this paper, we propose to extend these approaches
by analyzing three statistical criteria in a variational
setting. The idea is to recover the underlying deforma-
tion by estimating a dense displacement field through
the maximization of the similarity measures over a suit-
able, infinite-dimensional functional space. We believe
that this approach opens the possibility of generalizing
many nonrigid matching algorithms that are expressed
under similar formalisms to the case of multimodal
matching. Our main contribution in this paper is the
derivation of the Euler-Lagrange equations for the sta-
tistical criteria, a task which is nontrivial due to their
intricate definition. We consider the cases of mutual in-
formation, correlation ratio and cross correlation since
they provide a suitable hierarchy of statistical crite-
ria going from the most robust (cross correlation) to
the most general (mutual information) (Roche et al.,
2000b). Our approach relies on smooth estimates of
the joint probability density function (pdf) of the in-
tensities in the first and the warped second image. We
extend our previous work reported in Chefd’hotel et al.
(2001) by also considering locally estimated pdfs, thus
accounting for possible spatial non-stationarities in the
intensity relations.

The paper is organized as follows. Section 2 dis-
cusses the variational formalism and its application to
defining the matching problem. Section 3 describes the
choice of a suitable functional to perform regulariza-
tion. In Section 4, we start with a simple registration
method which assumes that the joint intensity pdf be-
tween different modalities is known (e.g. learned from
sample datasets). This idea is extended in Section 5 to
the minimization of statistical dissimilarity measures
when the joint intensity distribution is unknown. The-
oretical results on the existence and uniqueness of a
generic matching flow which embodies both the dis-
similarity and the regularization components are pre-
sented in Section 6. In Section 7 we briefly describe
the numerical implementation of the flows and show

results of experiments on synthetic and real images in
Section 8. In Section 9, we conclude and provide some
perspectives.

2. Dense Matching and the Variational
Framework

We now state our modeling assumptions and define
the matching problem in the context of the calculus
of variations. We consider two images I σ

1 = I1 � Gσ

and I σ
2 = I2 � Gσ at a given scale σ , i.e. resulting

from the convolution of two square-integrable func-
tions I1 : R

n → R and I2 : R
n → R with a Gaus-

sian kernel of standard deviation σ (we restrict our-
selves to the cases n = 2, 3). Given a region of interest
�, a bounded region of R

n , we look for a function
h: � → R

n assigning to each point x in � a displace-
ment vector h(x) ∈ R

n . This function is searched for in
a set F of admissible functions such that it minimizes
an energy functional I : F → R of the form

I(h) = J (h) + R(h).

Generally speaking, the set F is assumed to be a linear
subspace of a Hilbert space H , the scalar product of
which is denoted (·, ·)H .

The term J (h) is designed to measure the “dis-
similarity” between the reference image (I σ

1 ) and the
h-warped second image (I σ

2 (Id + h)), Id denoting the
identity mapping of R

n . The term R(h) is designed to
penalize fast variations of the function h. To summa-
rize, we define the matching problem as that of mini-
mizing I with respect to h, the matching being a solu-
tion ĥ of this minimization problem:

ĥ = arg min
h∈F

I(h) = arg min
h∈F

(J (h) + R(h)).

Assuming thatI is sufficiently regular, its first variation
at h ∈ F in the direction of k ∈ F is defined by (see
e.g. Courant, 1946)

δkI(h) = ∂I(h + εk)

∂ε

∣∣∣∣
ε=0

. (1)

The gradient ∇HI(h) of I is defined1 by requiring the
equality

δkI(h) = (∇HI(h), k)H

to hold for every k ∈ F . If a minimizer ĥ of I
exists, then the set of equations δkI(ĥ) = 0 must hold
for every k ∈ F , which is equivalent to ∇HI(ĥ) = 0.
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These are called the Euler-Lagrange equations associ-
ated with the energy functional I. Rather than solving
them directly (which is usually impossible), the search
for a minimizer of I is done using a “gradient descent”
strategy. Given an initial estimate h0 ∈ H , a time-
dependent, differentiable function (also noted h) from
the interval [0, +∞[ into H is computed as the solution
of the following initial value problem:

{
dh
dt = −(∇HJ (h) + ∇HR(h)),

h(0)(·) = h0(·). (2)

The asymptotic state (i.e. when t → ∞) of h(t) is
then chosen as the solution of the matching problem,
provided that h(t) ∈ F for all t’s.

3. Partial Differential Equations
for Image Matching

In this section, we summarize a method for optical flow
estimation that was recently proposed by Alvarez et al.
(2000) and point out its relation with the previously
described framework. We then give some examples of
differential operators ∇HR(h).

Assuming the images have been acquired through
similar sensors (possibly corrupted by a Gaussian
noise), a suitable dissimilarity functional is given by
the sum of squared differences of the image intensities
(Toga, 1998):

J (h) =
∫

�

(
I σ
1 (x) − I σ

2 (x + h(x))
)2

dx.

Besides, one of the simplest ways of penalizing fast
variations of h is by defining

R(h) = α

∫
�

|Dh|2 dx.

In this case, Eq. (2) yields a set of reaction-diffusion
partial differential equations (PDEs) with initial con-
dition h0 and isotropic diffusion:

{
∂h
∂t (t, x) = F(h)(x) + α�h(x)

h(0, x) = h0(x),
(3)

where

F(h)(x) = (
I σ
1 (x)−I σ

2 (x+h(x))
)∇ I σ

2 (x+h(x)). (4)

Considering a more general regularization functional
of the form

R(h) = α

∫
�

Tr(Dh TDhT ) dx

yields a anisotropic diffusion term α div(TDh).
Alvarez et al. (2000) proposed an optical flow esti-
mation method using this type of PDEs. They propose
an image-driven anisotropic diffusion term based on
previous work by Nagel and Enkelmann (1986). Their
diffusion tensor is designed to prevent fast variations
of h across the contours of I σ

1 . We propose here a
n-dimensional generalization of this tensor

TI σ
1

=
(
λ + ∥∥∇ I σ

1

∥∥2)
I − ∇ I σ

1 ∇ I σ T
1

(n − 1)
∥∥∇ I σ

1

∥∥2 + nλ
. (5)

It has one eigenvector equal to ∇ I σ
1 , while the remain-

ing eigenvectors span the plane perpendicular to ∇ I σ
1 .

The corresponding eigenvalues are respectively

κn = λ

(n − 1)
∥∥∇ I σ

1

∥∥2 + nλ

and

κ1 , . . . , n−1 = λ + ∥∥∇ I σ
1

∥∥2

(n − 1)
∥∥∇ I σ

1

∥∥2 + nλ
.

In homogeneous regions, as ‖∇ I σ
1 ‖  λ, all the

eigenvalues tend to 1/n and the diffusion is nearly
isotropic. Along the contours of I σ

1 , when ‖∇ I σ
1 ‖ � λ,

we have κn → 0, while the remaining eigenvalues tend
to 1/(n − 1). The diffusion becomes anisotropic in this
case, taking place mainly along the contours.

As in Christensen et al. (1994), another possible reg-
ularization term is obtained by minimizing an approxi-
mate strain energy borrowed from linear elasticity. This
approach yields a regularization operator of the form

λ�h + (µ + λ)∇(∇ · h). (6)

The constants λ and µ are known as the Lamé coeffi-
cients.

In the following two sections, we generalize Eq. (3)
to the case of nonrigid multimodal registration by fo-
cusing on the matching term F(h). We replace it by
a set of functions designed for the minimization of
statistical dissimilarity measures.
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4. Supervised Registration

Our approach relies on regarding the intensity values
of two different modalities as samples of two random
processes. Within this probabilistic framework, the link
between the two modalities is characterized by their
joint probability density function (pdf).

In this section, we assume that reference templates,
or sets of manually pre-registered images are available
to estimate the real joint pdf P , which is assumed to
be differentiable and strictly positive. From this knowl-
edge, we can derive a supervised registration principle
(SR). We borrow from information theory the notion
of uncertainty or information, defined for an event with
respect to a probability measure. In this case, an event
is the co-occurrence of two intensity values i1 = I σ

1 (x)
and i2 = I σ

2 (x + h(x)) at any point x ∈ �. For con-
ciseness, we will use the notations i = (i1, i2) and
Ih(x) = (I σ

1 (x), I σ
2 (x + h(x))). The amount of infor-

mation conveyed by this event is given by − log P(i).
A global dissimilarity measure follows by computing
the total amount of information for a given displace-
ment field h:

JSR(h) =
∫

�

− log P(Ih(x)) dx.

This expression can be viewed as a continuous form
of the maximum likelihood principle developed by
Leventon and Grimson in Leventon and Grimson
(1998). By applying (1), the first variation of JSR is
readily found to be

δkJSR(h) =
∫

�

−∂2 P(Ih(x))

P(Ih(x))
∇ I σ

2 (x + h(x)) · k(x) dx,

where ∂2 P denotes the partial derivative of P with re-
spect to its second variable. Choosing H as the set of
vector-valued square integrable functions on �, this
expression is of the form

δkJSR(h) = (∇HJSR(h), k)H .

We define the function

LSR(i) = −∂2 P(i)/P(i)

so that the gradient ∇HJSR of our first dissimilarity
measure JSR is given by

∇HJSR(h)(x) = LSR(Ih(x))∇ I σ
2 (x + h(x)). (7)

The mapping LSR : R
2 → R plays the role of an in-

tensity comparison function. It is the so-called score
function, often encountered in the derivation of max-
imum likelihood principles. Notice that a functional
dependence between the intensities is not required.
Any intensity in the first image may have several cor-
responding intensities in the second one, and con-
versely. The knowledge of the nearest most likely
intensity correspondence is implicitly given by this
function.

Let us now assume that we do not have any training
set available for the learning process. One can develop
the following argument: if the initial pose is close to
the solution (small deformations), a sufficiently robust
estimate of their joint intensity distribution may be a
good approximation of the real joint density for these
two modalities. The incorrectly matched image values
are considered as noise. Subsequently, h could be re-
covered from this initial joint density estimate. This is
one of the underlying ideas of the methods presented
in the following section.

5. Statistical Dissimilarity Functionals

In this section, we drop the assumption of the prior
knowledge of the function P and compute the vari-
ational gradient of three statistical dissimilarity func-
tionals. Among many possible criteria, the cross corre-
lation, the correlation ratio and the mutual information
provide us with a convenient hierarchy because of the
relation they can enforce between the intensities of the
two images (see Fig. 1). To be able to evaluate these
criteria for a given field h, we consider a nonparamet-
ric Parzen estimator (Parzen, 1962) for the joint pdf as
described below. We call X the random variable associ-
ated to the intensity values of I σ

1 and Yh that associated
to the values of I σ

2 (Id + h).

5.1. Density Estimation

Our estimator is based on a normalized Gaussian kernel
of variance β, noted Gβ(i):

P(i, h) = 1

|�|
∫

�

Gβ(Ih(x) − i) dx.

Note that for each pair of intensities i ∈ R
2, the value

of the estimated joint pdf is a nonlinear functional of h.
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Figure 1. The three criteria provide a hierarchy of dependence-levels between two random variables. The cross correlation (CC) measures
their affine dependence so that maximizing this criterion amounts to finding an affine function best fitting the joint pdf. This is illustrated in the
left figure by the straight line superimposed over the schematic joint pdf P , where dark values represent high probabilities. The correlation ratio
(CR) measures their functional dependence so that the optimal density can have the shape of a nonlinear function (middle). Finally, the mutual
information (MI) gives an estimate of the statistical dependence and maximizing this criterion tends to cluster P (right).

Its first variation is obtained by applying (1):

δk P(i, h) = 1

|�|
∫

�

∂2Gβ(Ih(x) − i)

∇ I σ
2 (x + h(x)) · k(x) dx. (8)

An interesting generalization is to make the density
estimator local, since it allows to take into account non-
stationarities in the relation between intensities. To do
this, we build an estimate in the neighborhood of each
point x0 in �. This is achieved by weighting our pre-
vious estimate with a normalized Gaussian of variance
γ . This means that to each point x0 we associate a joint
pdf defined by:

P(i, h, x0) = 1

Gγ (x0)

∫
�

Gβ(Ih(x) − i)Gγ (x − x0) dx,

where

Gγ (x0) =
∫

�

Gγ (x − x0) dx.

This new pdf is along the line of the ideas discussed
in Koenderink and van Doorn (1999), except that we
now have a bidimensional local histogram at each
point.

5.2. Mutual Information

Using these tools, we first consider the maximization
of mutual information, a concept which is borrowed
from information theory. Given two random variables
X and Y , their mutual information is defined as

MI(X, Y ) = H(X ) + H(Y ) − H(X, Y ),

whereH stands for the differential entropy. The mutual
information is positive and symmetric, and measures
how the intensity distributions of two images fail to be
independent. It can be defined in terms of the joint pdf P
and its marginals p(i1) = ∫

R
P(i, h) di2 and p(i2, h) =∫

R
P(i, h) di1. The following short notation will be

useful:

EMI(i, h) = − log
P(i, h)

p(i1)p(i2, h)
. (9)

The dissimilarity functional based on mutual informa-
tion is then defined as the expected value of the function
EMI:

JMIg (h) = −MI(X, Yh) =
∫

R
2

P(i, h)EMI(i, h) di.

We do an explicit computation of its first variation by
directly applying (1). Using the fact that∫

R
2
δk P(i, h) di =

∫
R

δk p(i2, h) di2 = 0,

this yields

δkJMIg (h) =
∫

R
2
δk P(i, h)EMI(i, h) di. (10)

We then apply (8) to obtain

δkJMIg (h) = 1

|�|
∫

R
2

∫
�

EMI(i, h)

∂2Gβ(Ih(x) − i)∇ I σ
2 (x + h(x)) · k(x) dx di.

A convolution with respect to the intensity variable i
appears in this expression. It commutes with the deriva-
tive ∂2 with respect to the second intensity variable i2,
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and therefore

δkJMIg (h) = 1

|�|
∫

�

(Gβ � ∂2 EMI)(Ih(x), h)

∇ I σ
2 (x + h(x)) · k(x) dx.

We define the function R
2 × H → R:

Lg
MI(i, h) = 1

|�|Gβ � ∂2 EMI(i, h)

= − 1

|�|Gβ �

(
∂2 P(i, h)

P(i, h)
− p′(i2, h)

p(i2, h)

)
.

The variational gradient ∇HJMIg (h) of our second dis-
similarity functional JMIg is thus given by

∇HJMIg (h)(x) = Lg
MI(Ih(x), h)∇ I σ

2 (x + h(x)).

Similarly to the case of supervised registration
(recall equation (7)), the function Lg

MI plays the
role of an intensity comparison function. Its first
term ∂2 P(i, h)/P(i, h) tends to cluster the joint pdf,
while the term −p′(i2, h)/p(i2, h) tries to prevent the
marginal law p(i2, h) from becoming too clustered;
i.e. keeps the intensities of I σ

2 (Id+h) as unpredictable
as possible.

5.2.1 Extension to Locally Estimated Densities.
The extension of the previous dissimilarity criterion us-
ing the local version of the density estimate is carried
out in a straightforward manner. All the definitions re-
main unchanged, up to their dependence on the position
x. For example, Eq. (9) becomes

EMI(i, h, x) = − log
P(i, h, x)

p(i1, x) p(i2, h, x)
.

The local version of the dissimilarity functional based
on mutual information is then defined as

JMIl (h) =
∫

�

JMI(h, x) dx

=
∫

�

∫
R

2
P(i, h, x)EMI(i, h, x) di dx.

The computation of its first variation is carried out
in the same way as that of JMIg in the previous sec-
tion. The only difference is the additional integral in
the space variable which, combined with Gγ , yields a

spatial convolution. The intensity comparison function
becomes a function from R

2 × H × � into R:

Ll
MI(i, h, x)

= Gγ � Gβ �
1

Gγ (x)

(
∂2 P(i, h, x)

P(i, h, x)
− p′(i2, h, x)

p(i2, h, x)

)
.

5.3. Correlation Ratio

We now consider the correlation ratio. This criterion
relies on a slightly different notion of similarity. Given
two random variables X and Y , the correlation ratio is
defined as

CR(X, Y ) = Var(E(Y |X ))

Var(Y )
.

From this formula, the correlation ratio can be de-
scribed as the proportion of energy in Y which is “ex-
plained” by X . More formally, this measure is bounded
(0 ≤ CR ≤ 1) and expresses the level of functional de-
pendence between Y and X :{

CR(X, Y ) = 1 ⇔ ∃φ : Y = φ(X )

CR(X, Y ) = 0 ⇔ E(Y |X ) = E(Y ).

To define the dissimilarity functional based on the
correlation ratio and compute its variational gradient,
we need the conditional expectation E(Yh | X ). We
note the value of this random variable µ2 | 1(i1, h),
indicating that it depends on the intensity value i1 and
on the field h:

µ2 | 1(i1, h) =
∫

R

i2
P(i, h)

p(i1)
di2.

We also use the conditional variance Var[E(Yh | X )],
which is again a random variable. Its value is abbrevi-
ated v2 | 1(i1, h):

v2 | 1(i1, h) =
∫

R

i2
2

P(i, h)

p(i1)
di2 − µ2 | 1(i1, h)2.

Finally, the mean and variance of Yh will also be used:

µ2(h) =
∫

R

i2 p(i2, h) di2,

v2(h) =
∫

R

i2
2 p(i2, h)di2 − µ2(h)2.

Instead of working with the original definition of CR,
we use the total variance theorem to obtain

CR(X, Y ) = 1 − E(Var(Y | X ))

Var(Y )
.
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This transformation was suggested by Roche et al.
(1998b). We then define the dissimilarity measure
based on the correlation ratio as

JCRg (h) = w(h)

v2(h)
,

where

w(h) =
∫

R

v2 | 1(i1, h)p(i1) di1.

The basic apparatus for computing the first variation
of JCRg is similar to the one we use for the mutual
information. We have

δkJCRg (h) = δkw(h) − JCRg (h)δkv2(h)

v2(h)
,

where

δkw(h) =
∫

R
2

(
i2
2 − 2i2µ2|1(h)

)
δk P(i, h) di

and

δkv2(h) =
∫

R
2

(
i2
2 − 2i2µ2(h)

)
δk P(i, h) di.

As in (10), the first variation of JCRg (h) is of the form

δkJCRg (h) =
∫

R
2
δk P(i, h)ECR(i, h) di.

The discussion starting at Eq. (10) remains identical in
this case and therefore

∇HJCRg (h)(x) = Lg
CR(Ih(x), h)∇ I σ

2 (x + h(x)),

Table 1. Comparison functions.

Method Global intensity comparison Lg(i, h)

MI Lg
MI(i, h) = Gβ �

1

|�|
(

∂2 P(i, h)

P(i, h)
− p′(i2, h)

p(i2, h)

)

CR Lg
CR(i, h) = Gβ �

µ2(h) − µ2|1(i1, h) + (1 − JCRg (h))(i2 − µ2(h))
1
2 v2(h)|�|

CC Lg
CC(i, h) = − 2

|�|

[
v1,2(h)

v2(h)

(
i1 − µ1

v1

)
+ JCCg (h)

(
i2 − µ2(h)

v2(h)

)]

Local intensity comparison Ll (i, h, x)

MI Ll
MI(i, h, x) = Gγ � Gβ � 1

Gγ (x)

(
∂2 P(i, h, x)

P(i, h, x)
− p′(i2, h, x)

p(i2, h, x)

)

CR Ll
CR(i, h, x) = Gγ � Gβ �

µ2(h, x) − µ2|1(i1, h, x) + (1 − JCR(h, x))(i2 − µ2(h, x))
1
2 v2(h, x)Gγ (x)

CC Ll
CC(i, h, x) = −Gγ � 2

Gγ (x)

(
v1,2(h, x)

v2(h, x)

(
i1 − µ1(x)

v1(x)

)
+ JCC(h, x)

(
i2 − µ2(h, x)

v2(h, x)

))

where

Lg
CR(i, h) = 1

|�|Gβ � ∂2 ECR(i, h).

The expanded expression of the function Lg
CR and its

extension using the local version of the joint pdf are
given in Table 1. Like in the previous two cases, Lg

CR
plays the role of an intensity-comparison function.
Minimizing JCRg amounts to making i2 lie as close
as possible to µ2|1(i1, h) (which gives the “backbone”
of P), while keeping the value of µ2|1(i1, h) away from
µ2(h).

5.4. Cross Correlation

To conclude this section, we consider the case of the
cross correlation, which has been widely used as a ro-
bust comparison function for image matching. Within
recent energy-minimization approaches relying on the
computation of its gradient, we can mention for in-
stance the works of Faugeras and Keriven (1998),
Cachier and Pennec (2000), and Netsch et al. (2001).
The cross correlation, being a measure of the affine
dependency between the intensities, is the most con-
strained of the three criteria. Besides the quantities al-
ready introduced, its definition relies on the mean and
variance of X :

µ1 =
∫

R

i1 p(i1) di1, v1 =
∫

R

i2
1 p(i1) di1 − µ2

1,



336 Hermosillo, Chefd’hotel and Faugeras

as well as on the covariance of X and Yh, noted v1,2(h):

v1,2(h) =
∫

R
2

i1i2 P(i, h)di − µ1µ2(h).

The dissimilarity functional based on the cross corre-
lation is simply defined in terms of these quantities:

JCCg (h) = −v1,2(h)2

v1v2(h)
.

Its gradient has the same general expression

∇HJCCg (h)(x) = Lg
CC(Ih(x), h)∇ I σ

2 (x + h(x)),

where

Lg
CC(i, h) = 1

|�|Gβ � ∂2 ECC(i, h)

and

ECC(i, h) = −1

v1v2(h)
(2v1,2(h)i2(i1 − µ1)

+JCCg (h)v1i2(i2 − 2µ2(h))).

The expanded expression of Lg
CC and that of its exten-

sion using the local version of the joint pdf (Ll
CC) are

given in Table 1. Notice that in this case the convolution
with respect to the intensity variable yields the same
expression and is thus not required, since only linear
terms are involved. Again, the LCC functions play the
role of comparing intensities. They show that minimiz-
ing JCCg amounts to making the pair of intensities lie
on a straight line in R

2 (not necessarily passing through
the origin).

6. Well-Posedness

The main idea that we have pushed forward is that many
of the methods already developed for dense, nonrigid
matching which assume the invariance of the intensities
can be generalized to the case where this assumption
is no longer valid. This has been achieved by comput-
ing the variational gradient of some statistical similarity
measures, which have been shown to be very well suited
for solving the rigid, multimodal registration problem.
We have proposed a general framework for formally
computing this variational gradient (i.e. through non-
parametric local and global joint pdf estimates) and

carried over these calculations in the case of three sta-
tistical dissimilarity measures which, in our opinion,
provide a convenient trade-off between flexibility and
robustness.

We have used these results to generalize a recently
proposed and very effective optical flow estimation
method (Alvarez et al., 2000) based on solving a set of
partial differential equations of the type of (3). These
equations have the general form

{
dh
dt + Ah(t) = F(h(t))

h(0)(·) = h0(·),

where the linear operator A corresponds to the regular-
ization term and F is the (nonlinear) matching func-
tion. Our study of statistical measures yields a set of
matching functions given by

F(h)(x) = L(Ih(x), h, x)∇ I σ
2 (x + h(x))

where L(i, h, x) is an intensity comparison term whose
expression for the different criteria is summarized in
Table 1.

Alvarez et al. showed the well-posedness of their
method by proving that the set of PDEs they consider
has a unique generalized solution. The proof relies on
showing two conditions:

1. A is a maximal monotone operator from a linear
subspace of H into H .

2. The function F : H → H is bounded, and Lipschitz
continuous.

We have extended their work to the cases considered
in this paper for the six different matching functions
and the two regularization criteria. One of the difficul-
ties of this generalization is the fact that in our case
equations (2) are not PDEs since F(h)(x) depends not
only of the value of h(x) as in (4) but on its values in a
neighborhood of x (which can be as large as the whole
image in the case of the global criteria). Moreover we
have shown that the unique solution of the initial value
problem (2) is classical and regular, i.e. more than a
generalized solution. Showing these properties (espe-
cially the Lipschitz-continuity) for the matching func-
tions that we present here is an important aspect of our
work. The proofs are however quite long and techni-
cal and we refer the interested reader to Faugeras and
Hermosillo (2001).
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7. Numerical Implementation

The numerical implementation of the described con-
tinuous matching flows involves estimating the match-
ing term, which depends on one of the six intensity-
comparison functions of Table 1, and the regularization
operator, which in our case is either div(TI σ

1
Dh) with

TI σ
1

given by Eq. (5) or the elasticity operator, given
by Eq. (6). For the discretization in time, we adopt an
explicit forward scheme. Implicit schemes are difficult
to devise due to the high nonlinearity of the matching
functions.

7.1. Regularization Operators

Alvarez et al. (2000) propose a very efficient scheme
for estimating the Nagel-Enkelmann operator which
we adopt in our experiments. Concerning that of lin-
ear elasticity, we use standard centered finite-difference
schemes based on first-order Taylor expansions of �h
and ∇(∇·h). Assuming the pixel size in both directions
to be equal to one, the corresponding scheme for �h
in 2D is

Li j
k = 1

4

(
hi+1, j

k + hi−1, j
k + hi, j−1

k + hi, j+1
k − 4hi, j

i

)
,

where Li, j
k and hi, j

k denote respectively the components
(k = 1, 2) of �h and h at a grid point (i, j). Using a
stencil notation, this scheme may be written as

Li, j
k = 1

4

0 1 0
1 −4 1
0 1 0︸ ︷︷ ︸

hk

,

where i increases from left to right and j from top
to bottom. The labeled under-brace indicates the grid
is that of the component hk of h. Using this notation,
our scheme for ∇(∇ · h) in 2D, whose components we
denote as Ai, j

k is:

Ai, j
1 = 0 0 0

1 −2 1
0 0 0︸ ︷︷ ︸

h1

+ 1
4

1 0 −1
0 0 0

−1 0 1︸ ︷︷ ︸
h2

,

Ai, j
2 = 0 1 0

0 −2 0
0 1 0︸ ︷︷ ︸

h2

+ 1
4

1 0 −1
0 0 0

−1 0 1︸ ︷︷ ︸
h1

.

7.2. Intensity Comparison Functions

Concerning the intensity comparison functions, we ap-
proximate convolutions by a Gaussian kernel through
recursive filtering using the smoothing operator intro-
duced in Deriche (1990). Terms of the form ∇ I σ

2 (x +
h(x)) and I σ

2 (x + h(x)) are calculated by tri-linear in-
terpolation. The global functions Lg

MI, Lg
CR and Lg

CC
are estimated by explicitly computing the global den-
sity estimate P(i, h) through recursive smoothing of
the discrete joint histogram of intensities as detailed in
Section 7.3. Values such as µ2(h) are then estimated
using finite sums on P . For the local functions, spe-
cial implementations have been developed as detailed
in Sections 7.4 and 7.5.

7.3. Density Estimation

Parzen density estimates are obtained by smoothing the
discrete joint histogram of intensities. We define the
piecewise constant function v : � → [0, N ]2 ⊂ N

2 by
quantification of Ih(x) into N +1 intensity levels (bins)
between O and A:

v(x) =
(

�ζ I σ
1 (x)�

�ζ I σ
2 (x + h(x))�

)

=




(0, 0)T on �0,0
...
(N , N )T on �N ,N ,

where ζ = N/A, �·� denotes the floor operator in R
+,

i.e. the function R
+→N such that �x� = max{n ∈ N :

n ≤ x}, and {�k,l}(k,l)∈[0,N ]2 is a partition of �. We then
compute, setting β ′ = ζ 2β,

P(i, h) = 1

|�|
∫

�

Gβ(Ih(x) − i) dx

= ζ

|�|
∫

�

Gβ ′ (ζ (Ih(x) − i)) dx

� ζ

|�|
∫

�

Gβ ′ (v(x) − ζ i) dx

= ζ

|�|
N∑

k=0

N∑
l=0

∫
�k,l

Gβ ′ (k − ζ i1, l − ζ i2) dx

= ζ

N∑
k=0

N∑
l=0

|�k,l |/|�|︸ ︷︷ ︸
K (k,l)

Gβ ′ (k − ζ i1, l − ζ i2)

= ζ (K � Gβ ′ )(ζ i),
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K being the discrete joint histogram. The convolution
is performed by recursive filtering. Note that this way
of computing P is quite efficient since only one pass
on the images is required, followed by the convolution.

7.4. Implementation of Ll
CC

The function Ll
CC is estimated as

Ll
CC(i, x) = (Gγ � f1)(x)i1 + (Gγ � f2)(x)i2

+ (Gγ � f3)(x),

where

f1(x) = −2v1,2(h, x)/(Gγ (x)v1(x)v2(h, x)),

f2(x) = −2JCC(h, x)/(Gγ (x)v2(h, x))

and

f3(x) = −( f1(x)µ1(x) + f2(x)µ2(h, x)).

All the required space dependent quantities like µ1(x)
are computed through recursive spatial smoothing. This
algorithm is similar to the one proposed in Cachier and
Pennec (2000).

7.5. Approximate Implementations of Ll
MI and Ll

CR

The functions Ll
MI and Ll

CR are much more difficult to
compute than Ll

CC because they involve two convolu-
tions, one with respect to the intensity variable i and
the other with respect to the space variable x. Applying
a smoothing filter would require a dense data structure
of dimension (n +1) for Ll

CR and (n +2) for Ll
MI. With

3D images, it becomes extremely difficult to maintain
these four and five-dimensional structures. Our imple-
mentations rely on computing “un-smoothed” versions
of these functions i.e. on eliminating both convolu-
tions. Although the resulting functions are no longer
the gradient of the considered dissimilarity functionals,
this approximation makes the computation tractable
and has given good results in practice. Quantities like
µ2(h, x) are estimated using sums, weighted by gaus-
sian functions, over a large neighborhood around each
pixel. This corresponds to a non-stationary filtering
procedure which is very computationally expensive.
However, the resulting algorithms are very well adapted
to parallelization and we have implemented them using
the MPI library for parallel execution using a cluster

of up to thirty processors, obtaining up to twenty times
faster execution with respect to the sequential version.
We refer the interested reader to Hermosillo (2002) for
more details concerning implementation issues.

7.6. Parameters

We now discuss the way in which the different param-
eters of the algorithms are determined.

• γ : This is the variance of the spatial Gaussian for
local density estimates. In the case of the cross cor-
relation, its value does not affect the computation
time since the local statistics are calculated using the
recursive smoothing filter. Thanks to this, we have
conducted some experiments with different values of
this parameter, which have shown that the algorithms
are not very sensitive to it. Qualitatively speaking, the
local window has to be large enough for the statis-
tics to be significant, and small enough to account
for non-stationarities of the density. It is fixed to 5
with a local window size of 19 × 19 for the mutual
information and the correlation ratio.

• β: This is the variance of the Gaussian for the Parzen
estimates. Unlike γ , determining a good value for β

is important for obtaining good results. In our case,
it is determined automatically as follows (we refer
to Bosq (1998)) for a recent comprehensive study on
nonparametric density estimation). We adopt a cross-
validation technique based on an empirical maxi-
mum likelihood method. We note {ik} a set of m in-
tensity pair samples (k = 1 . . . m) and take the value
of β which maximizes the empirical likelihood:

L(β) =
m∏

k=1

P̂β,k(ik)

where

P̂β,k(ik) = 1

m − nk

∑
{s:is �=ik }

Gβ(ik − is)

and nk is the number of data samples for which
is = ik .

• α: This parameter determines the weight of the reg-
ularization term in the energy functional. Since the
range of the different matching functions varies con-
siderably, we replace it by another one, noted C such
that

α = Cκ,
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where κ is given by

κ = ‖F(h0)‖∞,

h0 being the initial field and F any of the matching
functions.

• σ : This is the scale parameter. We adopt a multi-
resolution approach, smoothing the images at each
stage by a small amount. Within each stage of the
multi-resolution pyramid, the parameter σ is fixed
to a small value, typically 0.25 voxels.

Besides these global parameters, one extra parameter
is needed for each family of regularization operators.

• ξ : Instead of the Lamé coefficients in the linear elas-
ticity operator (Eq. (6)), we use a single parameter ξ

controlling the relative weight between the two oper-
ators �h and ∇(∇ ·h) as ξ�h+ (1−ξ )∇(∇ ·h). For
ξ close to 1, the Laplacian operator becomes domi-
nant, while the operator ∇(∇ · h) becomes dominant
for ξ close to zero. In practice, we fix the value of ξ

to 0.5, giving thus the same weight to both operators.
• λ: This is the parameter controlling the anisotropic

behavior of the Nagel-Enkelmann tensor. We adopt
the method proposed by Alvarez et al. (2000). Given
s, which in practice is fixed to 0.1, we take the value
of λ such that

s =
∫ λ

0
H|∇ I σ

1 |(z)dz,

where H|∇ I σ
1 |(z) is the normalized histogram of

|∇ I σ
1 |.

8. Experiments

We present results of experiments using the previously
described algorithms. To recover large deformations,
we use a multi-resolution approach by applying the
gradient descent to a set of smoothed and subsampled
images. Since the considered functionals are not con-
vex, this coarse-to-fine strategy helps avoiding irrele-
vant extrema while reducing the computational cost of
the algorithms.

8.1. Supervised Registration Method (Fig. 2)

In this experiment, a synthetic learning set is produced
by applying a sin function and adding Gaussian noise
(zero mean with 0.1 variance) to four images (whose
intensity has been normalized on [0, 2π ]). We use the

Figure 2. SR matching: image mosaics (a) and (b) represent the
learning sets: 4 pairs of 256 × 256 images. (c) is the reference im-
age I σ

1 and (d) the image to register I σ
2 . The surface (e) represents

the estimated score function LSR(i) = −∂2 P(i)/P(i). (f) shows the
resulting image I σ

2 (Id + ĥ). (g) and (h) represent the contours of I σ
2

and I σ
2 (Id + ĥ) superimposed on I σ

1 .

comparison function estimated from this learning set to
match two views of a face. The functional dependence
between these two intensity maps is clearly recovered
from the estimated comparison function, and a visually
correct realignment is achieved. Some small artefacts
appear, mainly due to some elements in the background
which are not present in both views.
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8.2. Different Regularization Operators (Fig. 3)

In this example, we use the global mutual information
criterion to compute the displacement field between
two synthetic images. Two experiments are carried out,
one using linear elasticity regularization (second row of
Fig. 3) and the other one using the Nagel-Enkelmann
operator (third row). In this case, we clearly see the ad-
vantage of the latter regularization method. It preserves
the natural discontinuities of the displacement field.
This example underlines the role of the prior knowledge
which is embedded in the regularization functional. It
also illustrates the fact that validating with synthetic de-
formation fields may not always be appropriate, since
the solution depends on assumed properties of the field.
Another interesting feature of this experiment is the
fact that the discrete histogram (i.e. before Gaussian
smoothing) contains only six non-zero entries, which
underlines the importance of the Parzen-window regu-
larization.

Figure 3. Global MI criterion with a synthetic example. The first
row shows the reference image (256 × 256)I σ

1 on the left and the
image to register I σ

2 . The second and third rows represent the warped
image I σ

2 (Id + ĥ), and the corresponding displacement field ĥ, for
two different types of regularization operators (linear elasticity model
for the second row, geometry-driven anisotropic diffusion for the
third row).

Figure 4. PD/T2 MRI registration using the global CR comparison
function. The first row shows the reference image I σ

1 on the left
and the image to register I σ

2 . The second row represents the warped
image I σ

2 (Id + ĥ), and the corresponding displacement field ĥ. The
last row represents the contours of I σ

2 and I σ
2 (Id + ĥ) superimposed

on I σ
1 .

8.3. Global Correlation Ratio (Fig. 4)

We use the global correlation ratio criterion to realign
two slices from a Proton Density (PD) and a T2 MRI
volume (same patient). An artificial geometric distor-
tion (based on a set of three Gaussian kernels) has been
applied to the original pre-registered dataset. In order
to evaluate the accuracy of the realignment, we super-
imposed some contours of the T2 image (initial and re-
covered pose) over the reference image (PD). It gives a
good qualitative indication of the quality of the registra-
tion. Most of the anatomical structures seem correctly
realigned.

8.4. Registration Between MRI and fMRI Modalities
Using Global Mutual Information (Fig. 5)

This example shows an experiment with real MR data
of the brain of a macaque monkey. The reference image
is a T1-weighted anatomical volume and the image to
register is a functional, mion contrast MRI (fMRI). The



Variational Methods for Multimodal Image Matching 341

Figure 5. MRI-fMRI registration using the global MI criterion. The
two columns show two different regions of interest within the image
volume. The first and second rows show the reference, anatomical
MRI and the initial fMRI volume, respectively, while the third row
shows the final, corrected fMRI (to be compared with the second
row).

contrast in this modality is related to blood oxygena-
tion level. This registration was obtained using global
mutual information. Notice that the alignment of the
main axis of the volume has been corrected.

8.5. Local Mutual Information and Correlation
Ratio (Fig. 6)

This experiment shows results using the dissimilarity
measures based on the local mutual information and the
local correlation ratio on synthetic data. The reference
and deformed image where both taken from the same
2D plane in a MRI data volume. The reference image
J was then transformed as:

J ′(x, y) = sin (2π J (x, y)) − cos

(
2π (x + y

√|�|)
|�|

)
.

A nonrigid smooth deformation was then applied to the
second image. As expected, the global similarity crite-
ria failed to align these two images, due to the severe

Figure 6. Matching using local mutual information and correlation
ratio. The first row shows I σ

1 on the left and I σ
2 on the right. The

second row shows I σ
2 (Id + ĥ) on the left and its superposition with

I σ
1 on the right. The third and fourth rows show respectively the

applied and recovered displacement fields (x component on the left).
Similar results were obtained using both criteria.

non-stationarity in the intensity distributions, while a
correct realignment was obtained using the local ver-
sions. Similar results were obtained using mutual in-
formation and correlation ratio.

8.6. Face Template Matching Using Local Cross
Correlation (Fig. 7)

This last experiment shows template matching of hu-
man faces. The different albedos of the two skins cre-
ate a “multimodal” situation and the transformation is
truly nonrigid due to the different shapes of the noses
and mouths. Notice the excellent matching of the dif-
ferent features. This result was obtained using local
cross correlation. The running time was approximately
five minutes on a PC at 900 MHz. With the correspon-
dences, one can interpolate the displacement field and
the texture to perform fully automatic morphing.
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Figure 7. Human face template matching: the left column shows
the reference image (I σ

1 ) with some reference points at the bottom.
The right column shows from top to bottom: I σ

2 , I σ
2 (Id + ĥ) and the

corresponding reference points according to the found displacement
field ĥ. Local cross correlation was used as similarity criterion.

9. Conclusion

In this paper, we proposed a variational framework
to address the problem of dense matching between
images when the hypothesis of intensity preservation
is not valid. Our approach relies on the computation of
the first variation of a hierarchy of statistical criteria,
computed either globally or locally within correspond-
ing regions. We illustrated the efficiency of the algo-
rithms that we propose trough several real and synthetic
examples.

Our main contributions consist in:

1. Modeling a real problem as a variational problem.
2. Deriving the necessary equations satisfied by the

solutions (if any) of this variational problem.

3. Showing that the resulting equations are well-posed
(existence and uniqueness of a solution).

4. Showing that the resulting computational theory
provides interesting predictions (results) on real
images.

Our undergoing research concerns the application of
these results in the context of the diffeomorphic match-
ing framework described by Trouvé (1998), in which
large deformations are more naturally handled.
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Note

1. The uniqueness of ∇HI(h) is guaranteed by the Riesz representa-
tion theorem (Evans, 1998). It depends on the choice of the scalar
product (·, ·)H , a fact which explains our notation.
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