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Abstract. The aim of this paper is to propose new regularization and filtering techniques for dense and sparse
vector fields, and to focus on their application to non-rigid registration. Indeed, most of the regularization energies
used in non-rigid registration operate independently on each coordinate of the transformation. The only common
exception is the linear elastic energy, which enables cross-effects between coordinates. Cross-effects are yet essential
to give realistic deformations in the uniform parts of the image, where displacements are interpolated.

In this paper, we propose to find isotropic quadratic differential forms operating on a vector field, using a known
theorem on isotropic tensors, and we give results for differentials of order 1 and 2. The quadratic approximation
induced by these energies yields a new class of vectorial filters, applied numerically in the Fourier domain. We
also propose a class of separable isotropic filters generalizing Gaussian filtering to vector fields, which enables fast
smoothing in the spatial domain. Then we deduce splines in the context of interpolation or approximation of sparse
displacements. These splines generalize scalar Laplacian splines, such as thin-plate splines, to vector interpolation.
Finally, we propose to solve the problem of approximating a dense and a sparse displacement field at the same time.
This last formulation enables us to introduce sparse geometrical constraints in intensity based non-rigid registration
algorithms, illustrated here on intersubject brain registration.
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1. Introduction

The goal of this paper is to propose new regulariza-
tion and filtering techniques for dense or sparse vec-
tor fields. Although the scope of this study is general,
we focus here more precisely on its application to non-
rigid registration. Non-rigid registration is a fundamen-
tal task of image processing, which consists in deform-
ing one image into the geometry of the other, so that
similar structures correspond. Non-rigid registration is
used e.g. for pattern recognition, object tracking, im-
age sequence compression, and in the medical area, for
atlas generation or matching and for follow-up studies.

There are two main non-rigid registration methods.
The first one is the geometric feature based approach.
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Some geometric features, such as points, lines or sur-
faces, are extracted beforehand in the images; then, a
geometric distance D is used to match these two sets.
The second one is the intensity-based approach. An
intensity similarity is used as a distance D between
the images. Points are moved so that this similarity
increases.

In both cases, it is not sufficient to rely only on ge-
ometric or intensity features, because this does not en-
sure any spatial correlation between the displacement
of close points. Spatial correlation is a strong a pri-
ori knowledge that enables a much better estimation of
the displacement. In the case of the geometric feature
approach, spatial correlation should also give the possi-
bility to extrapolate the displacement to non-segmented
points. One has thus to choose a motion model to en-
force this continuity constraint—which besides may
allow occasional discontinuities.
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This paper focuses on motion models based on a reg-
ularization energy R (also sometimes called stabilizer),
that is minimized in a weighted sum with the distance
D. Interestingly, this regularization energy can be re-
lated to a prior probability distribution on the trans-
formation that depends on its smoothness [23]. When
this energy is quadratic, convolutions filters and splines
can be deduced for regularizing resp. dense and sparse
vector fields.

Most of the time, this regularization energy is sim-
ply a sum of energies depending on one coordinate of
the transformation, e.g. R(f) = r ( fx ) + r ( fy) in 2D.
Practically, this means that the filters or splines men-
tioned above are scalar and applied to each coordinate
independently. However, this does not let the possibil-
ity of coupling coordinates, which is yet essential to
yield realistic motions: in a real material, a constraint
along an axis would also affect the position of points
along the other axes.

A common exception is the linear elastic energy,
used since long in non-rigid registration [2]. This is the
kind of energy we are interested in, since its two param-
eters enable to control both the regularization strength
and the coupling between coordinates. However the
linear elastic energy is not satisfactory for at least two
reasons: firstly, the impulse response of its associated
convolution filter has a very strong discontinuity in its
derivative, which may yield quite unsmooth regularized
fields; secondly, there is not spline associated to this en-
ergy, even if substitutes have been designed [8], so this
energy cannot be used for point landmark registration.

In this paper, we propose to find vector field reg-
ularization energies. We will restrict ourselves to dif-
ferential quadratic forms (DQF), with the additional
constraint that they should be isotropic, i.e. invari-
ant by rotation and mirror symmetry. This might
sound restrictive. However, isotropic DQFs are often
used as is for fast regularization. Furthermore, more
complex regularization techniques are often based on
isotropic DQFs—for example, one can easily intro-
duce anisotropy [1], non-uniformly weights [24], M-
estimators [12], a Mumford-Shah formulation [25],
etc., to obtain more complex, non-quadratic regular-
ization energies.

There has been few papers going in that direction.
The work closest to ours has been done by Gabrani
[11]. In this framework, motion fields are derived as
being the gradient of a scalar functionnal (Airy’s stress
function), on which the regularization energy actually
holds. The authors are then able to derive splines with

explicit formulas for point-landmark registration. An-
other related work has been done by Davis et al. [8],
where the autors attempt to extend the work of Duchon
[10] to linear elasticity.

It is worth noting that our goal is quite different
from general vector image regularization, e.g. for color
images—see for example [3, 7, 15, 21]. Conceptually,
the main problem for vector image regularization is not
how to propagate the value of vectors (intuitively, the
same value will be propagated with a weight decreas-
ing with distance), but to which extent to propagate
them according to the local structure of the image. The
main problem addressed by these techniques is thus
how to extract structure information for “edge preserv-
ing”, non-linear smoothing.

In our case, we work with vector fields, for which
vectors have exactly the same dimension as the im-
age. Our problem is not a particular case of the pre-
vious one, but an orthogonal one: it really addresses
the question of how to propagate the displacement of a
point to its neighbors. The propagated value is not nec-
essarily a rescaling of the original value: coordinates
may be combined, leading to rotation of the vector. By
contrast, if one has to smooth a red object on a black
background, creation of other colors such as blue or
green is generally not desirable. The work proposed
here is therefore not applicable to general vector im-
age regularization if vectors do not carry a motion-like
information. However, one could extend the work in-
troduced here to non-linear regularization using tech-
niques similar to the previous papers.

In Section 2, we propose to find all possible isotropic
differential quadratic forms (IDQFs) of vector fields
using a known theorem on isotropic tensors, and apply
it to IDQFs of order 1 and 2.

In Section 3, we deduce vector convolution filters
from the previous IDQFs. Contrary to conventional
scalar filters, these vector filters allow cross-effects
between coordinates, yielding more realistic displace-
ments. We also give a set of fast, separable filters that
generalizes Gaussian filtering to vectors.

Similarly, in Section 4, we deduce splines from
IDQFs. Again, contrary to conventional scalar splines
or radial basis functions, these vectorial splines allow
cross-effects between coordinates. These splines gen-
eralize Laplacian splines such as the thin plate spline.

In Section 5, we finally propose to merge dense
and sparse approximation problems, and show that
their solutions are linear combinations of filters and
splines. This regularization technique turns out to be
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extremely useful for introducing geometrical land-
marks in intensity-based registration algorithm, which
is illustrated in this paper on intersubject brain
registration.

2. Isotropic Differential Quadratic
Forms (IDQF)

In this section, we aim at finding differential quadratic
forms (DQF) that are isotropic. DQFs are sums of
products of two partial derivatives of a vector field;
therefore, their number increases exponentially with
the space dimension and with the differential order.
However, only a small number of them are isotropic.
A theorem on isotropic tensors helps us to find them.

2.1. Mathematical Definitions and Notations

We note R
d the real vector space of dimension d,M(d)

the group of linear functions of R
d in itself, and O(d) ∈

M(d) its subgroup composed of orthogonal functions
R, such that RT R = R RT = Idd . Also, to avoid long
mathematical expressions, we use in the following a
simplified1 Einstein summation convention, for which
every index repeated twice in a product is implicitly
summed all over its range.

Definition 1 (Tensor). A tensor T of order n ≥ 1 in
a space of dimension d ≥ 1 has dn components, noted
Ti1i2...in , ik ∈ [[1; d]], ∀ k ∈ [[1; n]], which transform
under the action of A = (ai j ) ∈ M(d) in the following
way: if A � T is the resulting tensor, then

A � T i1...in = ai1 j1 . . . ain jn Tj1... jn

We note T (n, d) the set of these tensors.

Definition 2 (Differential tensor). The partial deriva-
tives ∂i1...in fin+1 of a vector field f of dimension d form
a tensor of T (n +1, d) called the n-th order differential
tensor of f.

Definition 3 (Quadratic form of tensors). We note
Q(n, d) the set of quadratic form of tensors
T ∈ T (n, d), which can be represented by d2n numbers
qi1...in j1... jn , (ik, jk) ∈ [[1; d]]2, ∀ k ∈ [[1; n]], so that

q(T ) = qi1...in j1... jn Ti1...in Tj1... jn

with qi1...in j1... jn = q j1... jn i1...in .

Property 1. If q ∈ Q(n, d), T ∈ T (n, d) and A ∈
M(d),

q(A � T )

= qi1...in j1... jn ai1k1 . . . ainkn a j1l1 . . . a jnln Tk1...kn Tl1...ln

The qi1...in j1... jn therefore form a tensor of order 2n.

2.2. Isotropy

Definition 4 (Isotropic tensors). A tensor T ∈ T (n, d)
is isotropic if it is invariant by an orthogonal change
of the tensor, i.e. if for any orthogonal function R =
(ri j ) ∈ O(d),

R � T = T

or more explicitely, if

Ti1...in = ri1 j1 . . . rin jn Tj1... jn ∀(i1 . . . in) ∈ [[1; d]]n

Definition 5 (IDQF). Isotropic quadratic forms of
the n-th order differential tensor of a vector field are
called isotropic differential quadratic forms (IDQFs).
Their coefficients form an isotropic tensor of order
2n + 2.

Theorem 1 (Isotropic tensors). An isotropic tensor of
order n, n even, can be written as a linear combination
of the n!/(2n/2(n/2)!) products of Kronecker tensors
δir is . The only isotropic tensor of order n, n odd, is the
null tensor.

The demonstration of this result can be found in [13,
26].

2.3. First Order IDQFs

According to Theorem 1, an isotropic tensor of order 4
is a linear combination of the three following tensors:

δi1i2δi3i4 δi1i3δi2i4 δi1i4δi2i3

Therefore, a first order IDQF q, which can be seen
as a tensor of order 4, is a linear combination of the
tensors ∂i fi∂ j f j , ∂i f j∂i f j and ∂i f j∂ j fi .
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Property 2. For any IDQF q of the first derivative of
a vector field f, we can find three coefficients a1, a2, a3

so that

q(f) = a1 · tr(∇fT ∇f) + a2 · tr(∇f∇f) + a3 · tr2(∇f)

(1)

with tr(∇fT ∇f) = ∂i f j∂i f j , tr(∇f∇f) = ∂i f j∂ j fi and
tr2(∇f) = ∂i fi∂ j f j

Linear elasticity is the particular case where a1 = λ/2
and a2 = a3 = µ/2, where λ and µ are Lamé coeffi-
cients.

2.4. Positive First Order IDQFs

A quadratic regularization energy should be positive, in
order to penalize non-smooth estimations. Therefore,
one should find the conditions on a1, a2 and a3 under
which the IDQF remains positive for any set of partial
derivatives.

The linear function Q : Mn → Mn associated to q
given by Eq. (1) is defined by:

Q(M) = a1 Mi, j · E (i, j) + a2 Mi, j E ( j,i) + a3 Mi,i E ( j, j)

where E (i, j) is the matrix of Mn whose only non-zero
element is E (i, j)

i, j = 1. Its eigenmatrices are reported in
the following array:

Eigenmatrix Eigenvalue

Id a1 + a2 + da3

E (i, j) + E ( j,i), (i, j) ∈ [[1; d]]2, i �= j a1 + a2

E (i, j) − E ( j,i), (i, j) ∈ [[1; d]]2, i �= j a1 − a2

Fi , i ∈ [[2; d]] a1 + a2

where F1 = Id and (F1, . . . , Fd ) is an orthogonal basis
of the space generated by the set {E (i,i), i ∈ [[1; d]]}.
All these eigenmatrices are orthogonal, and we have
exactly 1+d(d −1)/2+d(d −1)/2+ (d −1) = d2 of
them, so there does not exist any other eigenvalue than
the three listed above.

Therefore, a first order IDQF q is positive if we si-
multaneously have a1 + a2 ≥ 0, a1 − a2 ≥ 0 and
a1 + a2 + da3 ≥ 0.

2.5. Second Order IDQFs

According to Theorem 1, an isotropic tensor of order 6
is a linear combination of products of Kronecker ten-
sors of the form δir is δit iu δiv iw . There are 15 such tensors.

This set of generators can nonetheless be reduced.
First, it is known that the isotropic tensors given by
Theorem 1 are not independent. A minimal, indepen-
dent set of isotropic tensors that generates all isotropic
tensors by linear combination can be found for exam-
ple in [22]. Second, the quadratic forms we are inter-
ested in are tensors with specific symmetries, due to the
commutation of multiplication and differentiation as-
sumed here: this also reduces the number of functions
necessary to generate second order isotropic quadratic
energies. This is done in Appendix A, and leads to the
following result:

Property 3. For any second order IDQF of a vector
field f, we can find five coefficients a1, a2, a3, a4, a5 so
that

q(f) = a1 Q1(f) + a2 Q2(f) + a3 Q3(f) + a4 Q4(f)

+ a5 Q5(f)

with Q1(f) = ∂i j fk∂i j fk , Q2(f) = ∂i j f j∂ik fk , Q3(f) =
∂i i f j∂kk f j , Q4(f) = ∂i j fk∂k j fi and Q5(f) = ∂i i f j∂k j fk .

2.6. Conclusion

Theorem 1 is convenient to find IDQFs almost auto-
matically. However, this set being non linearly inde-
pendent, one may want to reduce it; this task is less
trivial because of the special symmetries of IDQFs.
Furthermore, apart from first order IDQFs, it is also
not trivial to compute conditions of positiveness on the
IDQF coefficients, which are yet essential for regular-
ization purposes. However, as shown in next sections,
one can overcome these problems by dealing directly
with the filters or splines associated with these energies.

3. Isotropic Convolution Filters for Vector Fields

Filters can be deduced from quadratic regularization
energies R by looking at the closed-form solution of the
homogeneous dense approximation problem, which
consists in approximating a possibly noisy vector field
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g by a smooth vector field f by minimizing the energy

E(f) =
∫

‖f − g‖2 + R(f) (2)

Solving this problem in the Fourier space, we obtain a
closed form equation for f

f̂ = M−1ĝ

where ·̂ denotes the Fourier transform, and M−1 is a
d ×d symmetric matrix which is the Fourier transform
of the convolution filter we are looking for.

3.1. First Order Isotropic Filters

3.1.1. Functional Derivatives of First Order IDQFs.
The functional derivatives w.r.t. f of the generating el-
ements of first order IDQFs given by Property 2 are
reported in the following array.

Quadratic form Derivative

∂i f j∂i f j −→ −2�f

∂i f j∂ j fi −→ −2∇∇T f

∂i fi∂ j f j −→ −2∇∇T f

where � denotes the Laplacian. Now, the differentia-
tion of the approximation energy (2) w.r.t f, when R is
a first order IDQF given by (1), yields

α�f + β∇∇T f = g − f (3)

with α = a1 and β = a2 + da3. This equation (3) cor-
responds to a linear elastic PDE, with external forces
g − f corresponding to linear springs attracting f to-
wards g. According to Section 2.4, we should choose
a1, a2 and a3 so that a1 + a2 ≥ 0, a1 − a2 ≥ 0 and
a1 + a2 + da3 ≥ 0. Combining these inequalities, we
find that α ≥ 0 and β ≥ −α.

3.1.2. On the Number of Degrees of Freedom. It
appears that two out of the three generating IDQFs
have the same functional derivatives. Therefore, here
we have only two degrees of freedom (corresponding
to α and β) to shape the regularization process.

This situation is similar to the scalar case, for which
there exist several isotropic quadratic regularization en-
ergies at any order of derivation, but all of them having
the same derivatives [17]. Brady and Horn [4] showed
that boundary conditions are critical to tell these ener-
gies apart: they potentially contain the other DOF.

When using Fourier transform, the implicit boundary
conditions are periodicity, i.e. we consider that opposite

image borders are connected. With these assumptions,
there is no other degree of freedom that those given by
the derivative.

3.1.3. Resolution in the Fourier Domain. The linear
differential equation (3) can be solved in the Fourier
space. We have the following equivalence between spa-
tial and Fourier domains:

Spatial domain Fourier domain

�f(x) ←→ −(wT w)f̂(w)

(∇∇T )f(x) ←→ −(wwT )f̂(w)

where x = (x1, . . . , xd ) and w = (w1, . . . , wd ) are
the canonical coordinates of resp. the spatial and the
Fourier domain. Equation (3) transforms in the Fourier
domain as:

[(1 + αwT w)Id + βwwT ]︸ ︷︷ ︸
M1

f̂ = ĝ

For homogeneity reasons explained in Section 3.3.3,
we replace the parameters α and β by α = λ and
β = λκ , so that λ can be identified to a regularization
strength and κ to a cross-effect strength; positiveness
conditions become λ ≥ 0 and κ ≥ −1. We invert M1

to solve the previous equation:

M−1
1 = 1

1 + λwT w

[
Id − λκ

1 + λ(1 + κ)wT w
wwT

]
(4)

Now, to fit f to g with the approximation energy (2)
where R is a first order IDQF, we proceed in three steps:
(1), compute the Fourier transform of g; (2), multiply
this Fourier transform by Eq. (4); (3), compute the in-
verse Fourier transform of this product, yielding the
solution.

3.1.4. Impulse Response. We show three examples of
first order isotropic filters, depending on the sign of the
cross-effect parameterκ , which acts as the Poisson ratio
ν of the theory of elasticity. Here, the vector field g to be
smoothed is a simple impulse along the horizontal axis
(Fig. 1). The results shown in Fig. 2 can be considered
as the impulse response of their respective filter.

The first filter, Fig. 2(a), does not present any cross-
effect (κ = 0) and corresponds to a membrane model.
Without cross effects, horizontal lines stay straight:
there is no motion along the vertical axis because the
input impulse itself has no vertical component.
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Figure 1. Impulse responses are obtained here by applying filters
to this vector field, which is null except for the central point which
is moved to the right.

The second filter, Fig. 2(b), presents cross-effects
(κ > 0); the tissue gets closer to an incompressible
model and the material is less deformed: this can be
interesting for registration purposes, for example if the
organs to be registered are nearly incompressible, such
as the brain.

The last filter, Fig. 2(c), also has cross-effects (κ <

0), but its behavior is somewhat counter-intuitive as the
impulse tends to inflate the material behind it. Although
some rare materials do have this kind of behavior, e.g.
foams with negative Poisson ratio [16], the choice of
a negative κ for registration has more to do with a
prior knowledge on the displacement (e.g. inflations or
contractions).

For any value of λ or κ , there exists a discontinuity in
the derivative of the impulse response, at the tip of the
sharp peak. In non-rigid registration, external forces are
dense, and applied at every pixel of the image, therefore
such peaks may appear frequently in the image. This
is particularly annoying if a further processing uses
a differential analysis of the computed displacement
field, e.g. a Jacobian based segmentation as in [18].
For this purpose, we need filters of order higher than
these linear elastic filters.

Figure 2. Impulse response of three different first order isotropic filters.

3.1.5. Isotropy vs. Rotation Invariance. As a remark,
let us highlight that the symmetry invariance is essen-
tial, and that rotation invariance alone, which is suffi-
cient in the scalar case [4, 17], is not sufficient anymore
in the vectorial case.

In Fig. 3, we give the impulse response of a first
order rotation invariant but non-isotropic filter. The ro-
tation invariance ensures that if the initial impulse is ro-
tated, then the impulse response is rotated by the same
amount. The symmetry invariance would ensure a pla-
nar symmetry of the impulse response; without this
constraint, the impulse response may bend on either
side, as if the material was undergoing an internal tor-
sion. These kind of effects are generally not desirable.

3.2. Second Order Isotropic Filters

3.2.1. Functional Derivatives of Second Order
IDQFs. We follow the same strategy and begin by
differentiating the basis of second order IDQF:

Quadratic form Derivative

∂i j fk∂i j fk −→ 2�2f

∂i j f j∂ikfk −→ 2�∇∇T f

∂i i f j∂kkf j −→ 2�2f

∂i j fk∂k j fi −→ 2�∇∇T f

∂i i f j∂k j fk −→ 2�∇∇T f

So the functional derivative of Eq. (2), where now R is
a second order IDQF, is

α�2f + β�∇∇T f = f − g (5)

Although we did not characterized positive second
order IDQFs, we can ensure a proper regularization by
finding a particular IDQF whose functional derivative
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Figure 3. Impulse response of a rotation-invariant but non-isotropic
filter.

yields Eq. (5), and whose positiveness conditions are
simpler to compute than in the general case. Indeed,
the left member of (5) is (proportional to) the derivative
of the second order IDQF α∂i j fk∂i j fk + β∂i j fk∂k j fi ,
whose related linear function is

Q(Ti, j,k) = αTi, j,k E (i, j,k) + βTi, j,k E (i, j,k)

where E (i, j,k) is the tensor whose single non-zero ele-
ment is E (i, j,k)

i, j,k = 1. The eigentensors and eigenvalues
of this linear function are

Eigentensor Eigenvalue

E (i, j,k) − E (k, j,i), ∀ (i, j, k) ∈ [[1; d]]3, i > k α − β

E (i, j,k) + E (k, j,i), ∀ (i, j, k) ∈ [[1; d]]3, i > k α + β

E (i, j,k), ∀ (i, j) ∈ [[1; d]]2 α + β

There are d2(d − 1)/2 + d2 + d2(d − 1)/2 = d3 such
eigenvectors, which are orthogonal, therefore there is
no any other eigenvalue.

Thus, the quadratic form is positive if α + β ≥ 0
and α − β ≥ 0, i.e. if α ≥ 0 and β ≥ −α. These are
exactly the same conditions as in the first order case.

3.2.2. Resolution in the Fourier Domain. We have
the following correspondences between the spatial do-
main and the Fourier domain:

Spatial domain Fourier domain

�2f(x) ←→ (wT w)2 f̂(w)

�∇∇T f(x) ←→ wT w(wwT )f̂(w)

Thus, in the Fourier domain, the differential equation
(5) becomes:

[(1 + λ(wT w)2)Id + λκ(wT w)(wwT )]︸ ︷︷ ︸
M2

f̂ = ĝ

with λ = α ≥ 0 and κ = β/α ≥ −1. We now invert
M2, yielding:

M−1
2 = 1

1 + λ(wT w)2

[
Id − λκ

1 + λ(1 + κ)(wT w)2
wwT

]

This leads to an implementation identical to the first
order case, Section 3.1.3.

3.2.3. Impulse Response. In Fig. 4, we present the
impulse response of the second order filter for three
different values of κ , one without any cross-effect (κ =
0) corresponding to a thin-plate model, and two others
with positive and negative cross-effects. The impact of
κ on the filter is similar as in the first order case, i.e.
that of a Poisson ratio. However, impulse responses are
much smoother, which makes differential analysis and
one-to-one mapping easier to achieve in practice.

3.3. Generalization

3.3.1. Higher-Order Isotropic Filters. Given the re-
sults obtained for first and second order isotropic reg-
ularization energies, we are tempted to generalize the
linear PDE to higher order regularization. Even though
we did not characterize the n-th order IDQFs, we can
set the PDE for the n-th order regularization as:

(−1)n[α�nf + β�n−1∇∇T f] = f − g

which is indeed isotropic, since it is related to the func-
tional derivative of the following isotropic quadratic
form:

En(f) = α · ∂i1...in fin+1∂i1...in fin+1

+ β · ∂i1...in fin+1∂in+1i2...in fi1 (6)

The linear function associated to this quadratic form is

Q(T ) = αTi1,...in+1 E (i1,...in+1) + βTi1,...in+1 E (in+1,i2,...in ,i1)

where E (i1,...in+1) is the tensor whose only non-zero ele-
ment is E (i1,...in+1)

i1,...in+1
= 1. Its eigentensors and associated
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Figure 4. Impulse response of three different second order isotropic filters.

eigenvalues are:

Eigentensor Eigenvalue

E (i1,...in+1) + E (in+1,i2,...in ,i1), i1 . . . in+1 α + β

∈ [[1; d]], i1 > in+1

E (i1,...in+1) − E (in+1,i2,...in ,i1), i1 . . . in+1 α − β

∈ [[1; d]], i1 > in+1

E (k,i2,...in ,k), k, i2, . . . , in ∈ [[1; d]] α − β

All these dn tensors are orthogonal. Therefore, there ex-
ists no additional eigenvalue, and as for the first and sec-
ond order regularization, positiveness conditions are
α ≥ 0 and β ≥ −α.

We have the following correspondences between the
spatial domain and the Fourier domain:

Spatial domain Fourier domain

�nf(x) ←→ (−1)n(wT w)n f̂(w)

�n−1(∇∇T )f(x) ←→ (−1)n(wT w)n−1(wwT )f̂(w)

The differential equation becomes (setting α = λ and
β = λκ):

[(1 + λ(wT w)n)Id + λκ(wT w)n−1(wwT )]︸ ︷︷ ︸
Mn

f̂ = ĝ

To solve this equation, we invert the matrix Mn:

M−1
n = 1

1 + λ(wT w)n

×
[

Id − λκ

1 + λ(1 + κ)(wT w)n
wwT

]
(7)

3.3.2. Multi-Order Filters. A regularization energy
may include several or even all orders of derivation.

Let us consider linear combinations of energies (6)

∞∑
n=1

αn∂i1...in fin+1∂i1...in fin+1 + βn∂i1...in fin+1∂in+1i2...in fi1

(8)

The associated regularization PDE is

∞∑
n=1

(−1)n[αn�
nf + βn�

n−1∇∇T f] = f − g

with two scalar αn ≥ 0 and βn ≥ −αn to choose per
order of derivation, corresponding approximately to its
strength and its shear. In the Fourier domain, the pre-
vious PDE becomes[(

1 +
∞∑

n=1

αn(wT w)n

)
Id +

∞∑
n=1

βn(wT w)n−1(wwT )

]
︸ ︷︷ ︸

M

× f̂ = ĝ

As previously, one should invert matrix M and apply it
to the Fourier transform of g to obtain the solution.

3.3.3. A Note on the Regularization Strength. Ener-
gies (8) are designed for regularization. Therefore, we
should be able to control their weight relatively to an-
other energy, e.g. an intensity similarity measure, via a
regularization parameter λ.

In the case of quadratic approximation, choosing λ

as a global multiplicative factor, λR(f), gives coun-
terintuitive results, because λ changes the shape of the
impulse response instead of just rescaling it. If we want
a regularization strength λ that corresponds to a scale
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factor of the impulse response, as for Gaussian filters,
we have to put it inside the energy

R(f, λ) =
∞∑

n=1

λn
[
αn∂i1...in fin+1∂i1...in fin+1

+ βn∂i1...in fin+1∂in+1i2...in fi1

]
Now λ is a parameter of the regularization energy. Of
course, if the regularization energy uses only one order
of differentiation, which is quite frequent in non-rigid
registration, both approaches are equivalent.

3.4. Separable Isotropic Filters

Previous vectorial convolution filters are applied in the
Fourier domain—this is indeed generally the faster way
to proceed, especially in 3D and for large kernels. How-
ever, the computation can be even faster in the real
domain, if the kernel is separable.

3.4.1. Definitions

Definition 6 (Isotropic filters). A scalar convolution
kernel f (x) : R

d → R is isotropic if f (RT x) =
f (x), ∀R ∈ O(d). A vector convolution kernel
F(x) = F(x1, . . . , xd ) : R

d → Md is isotropic
ifRF(RT x)RT = F(x), ∀R ∈ O(d).

Definition 7 (Separable filters). A scalar convolution
kernel f (x) = f (x1, . . . , xd ) : R

d → R is separa-
ble if there exists d functions fk , k ∈ [[1; d]], such that
f (x) = f1(x1) f2(x2) . . . fd (xd ) = ∏d

k=1 fk(xk). A vec-
tor convolution kernel F(x) = F(x1, . . . , xd ) : R

d →
Md is separable if each of its element Fi, j is separable.

Note that there are other possible definitions of sepa-
rability for vectorial filters. The property of separability
is very interesting from a numerical point of view, be-
cause n-dimensional convolutions then boil down to
a sequence of 1-D convolutions, which can be imple-
mented efficiently for instance using recursive filtering.

The choice of separable filters is drastically reduced
if we also impose the isotropy property. For scalars, it
is known that the only isotropic separable kernels are
the family of Gaussians [14]. However, to the best of
our knowledge, there is no similar theorem for vector
filters. We propose the following result, easy to verify:

Proposition 1. The vector filter Gσ,κ defined by

Gσ,κ (x) = 1

(σ
√

2π )
d
(1 + κ)

(
Idd + κ

σ 2
xxT

)
e− xT x

2σ2

(9)

is separable and isotropic.

The normalization coefficient (σ
√

2π )
d
(1 + κ) is cho-

sen so that a constant vector field is unchanged by con-
volution with Gσ,κ . As previously, the coefficient κ act
as a Poisson ratio. When κ is set to zero, the matrix
Gσ,0 is diagonal and we obtain a classical Gaussian fil-
tering, independently on each component of the vector
field.

There exist separable isotropic filters that are not part
of this previous family, as this filter in 2D:

1

(σ
√

2π )
2
(1 − κ)

(
1 − κy2/σ 2 κxy/σ 2

κxy/σ 2 1 − κx2/σ 2

)
· e− x2+y2

2σ2

However we could not find counter examples in higher
dimension. The filters Gσ,κ given by (5) might be the
only separable isotropic filters in dimension greater
than or equal to 3, but this has yet to be proven.

3.4.2. Computation with Classical Gaussian Filters

Property 4. If we note Gσ (x) = exp(−xT x/

(2σ 2))/(σ
√

2π )d the normalized, d-dimensional
scalar Gaussian kernel, and HGσ its Hessian matrix
composed of its second order derivatives, the following
relation holds:

Gσ,κ (x) = Gσ (x)Id + σ 2κ

1 + κ
HGσ (x)

Because Gσ (x)Id andHGσ (x) are also separable, the
convolution with Gσ,κ can be computed as a weighted
sum of convolutions with a one-dimensional Gaussian,

and its first and second derivatives. There exist many
efficient techniques to implement these filters—for ex-
ample Deriche’s recursive filters [9],which have a com-
putation time independent of the size of the Gaussian
kernel.

3.4.3. Impulse Response. Figure 5 shows the impulse
responses of the separable isotropic filter (9) for three
different values of parameter κ . Their behavior is some-
what similar to second order filters, Fig. 4, although
here the impulse response is even smoother, as the un-
derlying energy is of infinite order.
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Figure 5. Impulse response of three different separable isotropic vector filters Gσ,κ , Eq. (9) generalizing the classical scalar Gaussian filtering
to vectors.

3.5. An Application to Image Registration

In the experiment reported in Fig. 6, two circles have
been moved apart. They have been registered with
PASHA [5], a fast intensity-based non-rigid registra-
tion algorithm, using the separable isotropic filters de-
scribed in Section 3.4, and a simple sum of squared
differences as the intensity similarity measure. We ran
the algorithm without (κ = 0) and with cross-effects
(κ > 0).

Without cross-effects, horizontal lines stay horizon-
tal between the circles; there is no noticeable vertical
deformation. Choosing κ > 0 gives a more realistic ex-
trapolation of the displacement, as the material between
both circles is bending towards the center. Depending
on prior knowledge we have on the material, this latter
behavior may be more appropriate.

4. Isotropic Vectorial Splines for Point Matching

In the previous section, quadratic approximation of
dense vector fields using isotropic energies gave us a

Figure 6. Two circles initially closed to each other are moved apart. Result of registration, using filters without (left) and with (right) cross-effects.
Without cross-effects, horizontal lines stay horizontal outside the circles, and there is no noticeable vertical deformation. With cross-effects, the
material between the circles is compressing vertically to compensate the horizontal dilatation.

new family of convolution filters. In this section, we
now deal with quadratic approximation of sparse vector
fields, which yields a new class of splines generalizing
Laplacian splines such as the thin plate spline.

4.1. Interpolation and Approximation
of Sparse Points

The vector interpolation and approximation problems
are a straightforward extension of the scalar ones [10].
Given two sets of points xi and gi of R

d , the vector
interpolation problem consists in finding a vector field
f : R

d → R
d which minimizes a regularization energy

R(f) under the constraint that f(xi ) = gi . The vector
approximation problem consists in seeking an approx-
imation f∗ which is solution of

f∗ = arg min
f

∑
i

‖gi − f(xi )‖2 + λR(f)

When λ → 0, the approximation solution tends toward
the interpolation solution. More elaborate approxima-
tion problems are sometimes useful, where for example
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the isotropic distance ‖gi − f(xi )‖2 is replaced by an
anisotropic distance depending on the index i [20].

4.2. Vectorial Laplacian Splines

For vector interpolation and approximation, the most
common solution in the field of non-rigid registration
consists in interpolating or approximating every com-
ponent independently with isotropic scalar kernel, such
as Laplacian splines or radial basis functions. A no-
table exception is the elastic body spline of Davis et al.
[8], which is based on linear elasticity. Unfortunately,
the exact interpolation kernel of linear elasticity is ill-
defined as it tends toward infinity at its center. There-
fore, there is a need of higher-order splines having tun-
able cross-effects.

For vector interpolation or approximation problems,
we propose to generalize Laplacian splines using the
IDQFs given by (for simplicity, we drop one of the two
energy parameters of Eq. (6) since splines are defined
up to a global multiplicative coefficient):

En(f) = ∂i1...in fin+1∂i1...in fin+1 + κ∂i1i2...in fin+1∂in+1i2...in fi1

As for the scalar case [10], if n > d/2, we note Sn the
solution of

(−1)n[�n Sn + κ�n−1∇∇T Sn] = δId (10)

then the solution f of the vector interpolation or ap-
proximation problem has the following form

f(x) = p(x) +
∑

i

Sn(x − xi )αi (11)

where p is a polynomial such that En(p) = 0, and
αi ∈ R

d are coefficients that can be found by solving
a set of linear equations.

4.2.1. Closed-Form Formulas. As in the scalar case,
it is possible to get closed-form formulas for Sn . Getting
into the Fourier domain, the PDE (10) becomes

[(wT w)nId + κ(wT w)n−1wwT ]Ŝn = Id

and we find that

Ŝn = 1

(wT w)n
Id − κ

(1 + κ)(wT w)n+1
wwT

The Fourier transform of the scalar Laplacian spline
sn is precisely 1

(wT w)n . Thus, we can express Sn as a
function of sn and sn+1:

Sn = snId + κ

1 + κ
Hsn+1

where Hsn+1 is the Hessian matrix of sn+1.

4.2.2. Example: Vectorial Thin Plate Spline Inter-
polation. Up to a multiplicative coefficient, the 2-D
second order Laplacian spline (or thin plate spline) is
s2(x, y) = r2 ln r2, and the 2-D third-order Laplacian
spline is s3(x, y) = r4 ln r2 [10], where r2 = x2 + y2.
One can thus calculate Hs3, and find the close form
formula of S2 in 2D: (S2)1,1 = r2 ln r2 + κ

1+κ
[2(3x2 +

y2) ln r2 + 7x2 + y2], (S2)1,2 = 2 κ
1+κ

xy(2 ln r2 + 3).
In Fig. 7, we compare the results of the interpolation

of displacement using scalar and vectorial thin plate
splines. In the original position, the four points were
placed at each corner of a square. The upper point has
then been forced to move to the center of the square. The
scalar thin-plate spline interpolation applied on each
component independently, Fig. 7(a), does not present
any horizontal displacement, and thus vertical lines re-
main straight. It possesses a strong accumulation of
matter just under the point that has been moved. The
vectorial Laplacian spline interpolation, Fig. 7(b), is
more realistic thanks to a better distribution of the re-
sulting displacements into both vertical and horizontal
components; the previous accumulation of matter has
disappear.

5. Merging Filters and Splines

In this section, we merge the two previous problems of
dense (Section 3) and sparse (Section 4) vector approxi-
mation: we are searching for a vector field f : R

d → R
d

that approximates both a dense vector field g1, and a
set of discrete pairings g2. The energy to minimize is

E(f) =
∫

‖f − g1‖2

+ γ
∑

i=1...p

‖f(xi ) − g2(xi )‖2 + R(f) (12)

It is shown in Appendix B that the optimal solution f
is a linear combination of a smoothed vector field and
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Figure 7. Interpolation of displacement using splines. One of four points initially forming a square is forced to move downwards. Without
cross effects, vertical lines remain vertical and straight, and the material present a strong accumulation of matter in front of the translated point.
When using cross-effects, the displacement field involves both vertical and horizontal components, producing a more realistic result.

a sum of splines

f(x) = K ∗ g1(x) +
∑

i

K (x − xi )αi (13)

where K is the smoothing kernel associated to R,
as those found in Section 3, and αi ∈ R

d are co-
efficients found by solving a set of linear equations.
Note that the same kernel is used both as a smoothing
kernel to smooth C1, and as a spline to approximate
the sparse correspondences C2. Contrary to the vecto-
rial Laplacian splines of Section 4.2, these splines are
bounded and decrease towards zero at infinity.

This formulation turns out to be very useful in the
context of non-rigid registration, when one wants to add
sparse geometric constraints to an intensity based al-
gorithm, because the intensity similarity measure gives
dense pairings g1, while geometric constraint gives
sparse pairings g2.

We successfully applied this technique to the difficult
problem of intersubject brain registration [6]. Because
of the high variability of the cortex topology between
different subjects, it is difficult to obtain valid regis-
tration results using the intensity alone. On the other
hand, geometric features provided for instance by a set
of sulcal lines extracted on the cortex, are too sparse to
provide a dense and accurate non-rigid registration field
everywhere. The idea developed in [6] is to combine
intensity-based and feature-based registration with the
above presented technique. The geometric features cor-
respond to a set of sulcal lines automatically labeled
by the Rivière-Mangin et al. algorithm [19], which we
added to the PASHA registration scheme, presented in
[5]. We present one of these results, because we believe
it provides a nice illustration of the concepts developed
in this article on a set of real images.

We show in Figs. 8(a) and (b) the position of 3 im-
portant cortical sulci extracted from the images of 5
different brains resp. before non-rigid registration (i.e.
only a global affine alignment is applied to each brain
with a reference one) and after. An important param-
eter is γ which allows the user to adjust the influence
of feature-based pairings on the deformation field. One
can see that it is possible to obtain a good geometric
correspondence while preserving a smooth and one-to-
one deformation field (Fig. 8(c)).

6. Conclusion

In this paper we introduced some new techniques for
regularizing vector fields. We first studied isotropic
quadratic energies, and then used these energies to
deduce vector filters and splines to approximate re-
spectively dense and sparse vector fields. We also
introduced a separable vector filter that generalizes
Gaussian filtering to vectors and enables a particularly
efficient smoothing, using recursive filtering. Finally,
we combined both sparse and dense approximation
problems, and showed that the interesting closed-form
solution can be applied successfully to real problems.

The original feature of vector regularization is the
possibility to have cross-effects between coordinates,
which is not possible using standard scalar regulariza-
tion on each component separately. This new parame-
ter makes it possible to more finely tune the solution
of our problem, in the context of non-rigid registration
for example, depending on our prior knowledge. Future
quantitative analysis should demonstrate improvement
of the motion recovery using the models proposed in
this paper depending on the nature of the deformed
material.



Isotropic Energies, Filters and Splines for Vector Field Regularization 263

a.  Before registration b.  After registration c.  Deformation sample

Figure 8. Results of interpatient brain registration based on intensity and geometric features, using Eq. (12) for regularization. Bright, medium
and dark ribbons correspond resp. to precentral, central and temporal sulci of the 5 brains used in this registration experiment. Our registration
scheme enables to strongly reduce the interindividual sulcal variability while keeping estimated transformations smooth and one-to-one, as
shown on the right on one of the transformations. Images published originally in [5].

Appendix

A. Reduction of Second Order IDQF Generators

According to Theorem 1, the 15 quadratic forms
that generate the set of second order IDQFs
are

∂i i f j∂ jk fk (14) ∂i i f j∂k j fk (19) ∂i i f j∂kk f j (24)

∂i j fi∂ jk fk (15) ∂i j fi∂k j fk (20) ∂i j fi∂kk f j (24)

∂i j f j∂ik fk (16) ∂i j fk∂i j fk (21) ∂i j fk∂ik f j (25)

∂i j f j∂ki fk (17) ∂i j fk∂ j i fk (22) ∂i j fk∂ki f j (26)

∂i j f j∂kk fi (18) ∂i j fk∂ jk fi (23) ∂i j fk∂k j fi (27)

Because we suppose that the derivation commutes
with itself, some of these 15 quadratic forms are equal.
It is straightforward to see that (14) = (19), (15) =
(20), (16) = (17), (21) = (22), (23) = (28) and (26) =
(27). Renaming i → j and j → i , we also find (16) =
(20), (18) = (25) and (26) = (28). We now have only
6 quadratic forms:

∂i j f j∂ik fk (29) ∂i j fk∂i j fk (31) ∂i j fi∂kk f j (33)

∂i i f j∂k j fk (30) ∂i i f j∂kk f j (32) ∂i j fk∂k j fi (34)

Now, because the multiplication commutes, two of
these 6 quadratic forms are also equal. Renaming k →
i and i → k, we see that (30) = (33). We finally have
only 5 independent quadratic forms:

∂i j f j∂ik fk ∂i i f j∂k j fk ∂i j fk∂i j fk ∂i i f j∂kk f j

∂i j fk∂k j fi

B. Sparse-and-Dense Approximation

For sparse and dense approximation, we minimize the
energy (12), which we first rewrite in the Fourier do-
main:

E(f) =
∫

‖f̂ − ĝ1‖2 + γ
∑

i=1...p

‖f(xi ) − g2(xi )‖2

+
∫

P(w) · ‖f̂‖2

where P(w) is a polynomial matrix related to the IDQF
R, and which is a linear combination of the terms
λ(wT w)n + λκ(wT w)n−1wwT if R is on the form (8).
Since f(xi ) = ∫

f̂(w) exp(2π i · wT xi ), the formal dif-
ferentiation of this energy w.r.t. f̂ leads to

(f̂ − ĝ1) + γ
∑

i=1...p

(f(xi ) − g2(xi )) exp(−2π iwT xi )

+ P(w) · f̂ = 0

The solution of this equation is

f̂ = M−1ĝ1 + γ
∑

i=1...p

exp(−2π iwT xi )M−1

× (g2(xi ) − f(xi ))

where M−1 is the invert matrix of M = Id + P(w),
with the same notation of Section 3.3.2.

Let us note K the inverse Fourier transform of
M−1. In the real domain, the first term M−1ĝ1

transforms as K ∗ g1, as in Section 3. Further-
more, exp(−2π iwT xi )M−1 is the Fourier transform
of K (x − xi ), so the second term transforms as
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γ
∑

i K (x − xi )(g2(xi ) − f(xi )). The solution to this
approximation problem is thus of the form

f(x) = K ∗ g1(x) +
∑

i=1...p

K (x − xi )αi

where αi = γ (g2(xi ) − f(xi )) ∈ R
d is a set of multi-

plicative coefficient that solve the set of equation:

K ∗ g1(xi ) +
∑

j

K (xi − x j )α j = g2(xi ) − αi/γ

∀i ∈ [[1; p]]

This linear system can be rewritten as(
1

γ
Id + W

)
α = β

with α being the vector of size pd of all the coefficient

α = (
αT

1 , . . . ,αT
p

)T

W the pd × pd matrix

W = (K (xi − x j ))

=




K (x1 − x1) K (x1 − x2) · · · K (x1 − xp)

K (x2 − x1)
. . .

...
...

. . .
...

K (xp − x1) · · · · · · K (xp − xp)




and β the vector of size pd

β = ((g2(x1) − K ∗ g1(x1))T , . . . , (g2(xp) − K ∗ g1(xp))T
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Note

1. Here, we will not distinguish between covariant and contravariant
coordinates.
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