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Received 17 December 2002; accepted 17 December 2002

Abstract

In this paper, we first propose a new subdivision of the image information axis used for the

classification of nonrigid registration algorithms. Namely, we introduce the notion of iconic

feature based (IFB) algorithms, which lie between geometrical and standard intensity based

algorithms for they use both an intensity similarity measure and a geometrical distance. Then

we present a new registration energy for IFB registration that generalizes some of the existing

techniques. We compare our algorithm with other registration approaches, and show the ad-

vantages of this energy. Besides, we also present a fast technique for the computation of local

statistics between images, which turns out to be useful on pairs of images having a complex,

nonstationary relationship between their intensities, as well as an hybrid regularization scheme

mixing elastic and fluid components. The potential of the algorithm is finally demonstrated on

a clinical application, namely deep brain stimulation of a Parkinsonian patient. Registration

of pre- and immediate postoperative MR images allow to quantify the range of the deforma-

tion due to pneumocephalus over the entire brain, thus yielding to measurement of the defor-

mation around the preoperatively computed stereotactic targets.
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1. Introduction

Nonrigid image registration is an important task of image processing. In medical

image analysis, it is a fundamental step as soon as we want to quantify the evolution

of a patient in a follow-up study, or when comparing two different patients. Conse-
quently, it is a very creative field of research; techniques are numerous and inspired

from a wide range of theories or techniques: statistics and information theory, theory

of continuum mechanics or viscoelastic fluids, theory of thermodynamics, optical

flow, splines, wavelets, block matching, and so on.

To get a better understanding of the different technical choices one faces when de-

signing a registration algorithm, several classifications have been proposed

[8,36,38,61]. One major axis shared by all these classifications is the image feature

axis, i.e., the kind of information that drives the registration process.
Most, if not all, classifications split this axis into two parts: on the one hand, geo-

metric algorithms, which use a geometric distance between segmented features in the

images; on the other hand, intensity based algorithms, which use a similarity mea-

sure between the image intensities.

However, we found that the group of intensity based algorithms includes two dif-

ferent registration approaches that behave very differently, independently of the sim-

ilarity measure or the deformation model. We formalize their difference in Section 2

by introducing the notion of iconic (i.e., image intensity related) feature based reg-
istration and show how it changes the standard classification of registration algo-

rithms. In Section 3, we propose a new registration energy for iconic feature based

registration. We show that this energy generalizes the ‘‘demons’’ algorithm, as well

as Feldmar�s ‘‘generalized ICP,’’ and enables a better insight of the behavior of these

algorithms. Based on this energy, we develop the PASHA2 algorithm. This energy is

general and may use different similarity or regularization energies: in this respect, we

present Gaussian-weighted local similarity measures in Section 4, which are effi-

ciently computed using an original convolution based technique, as well as an origi-
nal mixed elastic/fluid regularization in Section 5. We compare PASHA to close

algorithms in Section 6. Finally, we present in Section 7 a clinical application of

PASHA for brain motion recovery during deep brain stimulation of Parkinsonian

patients, and show how our algorithm recovers and propagates deformation in

the brain with smooth, realistic displacement fields.

2. A new classification

Despite the large number of techniques used in registration, the main classifica-

tions found in the literature all use at least the following two major axes:

• The deformation model, used to regularize the registration problem. It expresses

the prior knowledge we have on the shape of the transformation.

2
PASHA: Pair-And-Smooth, Hybrid energy based Algorithm.
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• The image features used by the algorithm to guide the deformation model towards

(hopefully) the desired transformation.

We first briefly detail in Section 2.1 the different kinds of deformation models; we

then present in Section 2.2 our original classification of the image features.

2.1. Deformation models

It is necessary to impose a deformation model to the registration algorithm, other-

wise the motion of a point would be estimated independently of the motion of neigh-

boring points, thus yielding a very discontinuous and unlikely displacement field.

The deformation model should constrain the estimated transformation as much as

possible using our prior knowledge on the transformation. Therefore, the deforma-

tion model greatly depends on the goal of registration: not surprisingly, one uses dif-
ferent models when the misalignment of the original images is due to physical

deformations, to specific spatial distortions due to the image modality, or to a simple

Cartesian coordinate change.

In image registration, we find three major deformation models: parametric, com-

petitive, and incremental models, that we now shortly describe.

2.1.1. Parametric models

The parametric approach constrains the estimate T of the transformation to be-

long to some low dimensional transformation space T . Mathematically, if

DðI ; J ; T Þ is some registration distance between the images I and J to be registered

by a transformation T , a parametric approach solves the following minimization

problem:

min
T2T

DðI ; J ; T Þ:

Among the most popular choices of transformation space, we find rigid and affine
groups, kernels such as thin plate splines [50] or tensor products of B-splines [59],

and the first elements of some deformation basis such as the Fourier basis [4],

wavelets [68], principal components of a training set of deformations [51], or ei-

genfunctions of linear operators [17].

2.1.2. Competitive regularization

Competitive models rely on the use of a regularization energy R depending on T .
Whereas parametric regularization is a binary prior penalization—no transforma-

tion outside the transformation space is allowed, all the transformations inside are

equiprobable—the competitive approach penalizes a transformation proportionally

to its irregularity measured by the regularization energy [58]. Competitive algorithms

puts in competition (hence the name) D and R by solving the following problem:

min
8T

DðI ; J ; T Þ þ RðT Þ ð1Þ

with eventual additional boundary constraints. A popular choice of regularization

energy in image registration is the energy of linear elasticity
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RðT Þ ¼ k
2
½divðT Þ	2 þ lkdTk2 � l

2
krotðT Þk

one can then speak of (linear) elastic registration.

2.1.3. Incremental regularization

Incremental (or ‘‘fluid’’) models also rely on the use of a regularization energy

R. This time, however, this energy does not depend on the transformation itself,

but on its evolution. The simplest case occurs when the regularization energy de-

pends on the difference between the current and the last estimate of the transfor-
mation: at iteration n, the estimate Tn of the transformation is found by

minimizing

min
8Tn

DðI ; J ; TnÞ þ RðTn � Tn�1Þ:

These methods thus intrinsically depend on the initial estimate T0. The typical ex-

ample of an incremental approach is the viscoelastic algorithm of Christensen [18].

Recently, incremental models have been generalized by Miller and Younes [42] and

Trouv�ee [62] using a geodesic formulation of image registration, which appears to

have nice properties such as topology preservation.

Let us conclude this section by observing that a deformation model may combine

several of these approaches. For example, so-called biomechanical models are often
a mix of parametric and competitive regularization via finite elements [27]. Tech-

niques based on principal deformations also often use an energy to advantage the

first elements of the basis.

2.2. Image features

When classified according to the image features (or ‘‘registration basis’’ in [38])

used to recover the transformation, registration algorithms are usually parted into
two groups: geometric feature based (GFB) algorithms, and intensity based (IB) al-

gorithm. However, IB algorithms include two groups that have little in common, ex-

cept the use of an intensity similarity measure. We therefore propose to split this

group into two new groups: on the one hand, standard intensity based (SIB) algo-

rithms; on the other hand, iconic feature based (IFB) algorithms.

2.2.1. Geometric feature based registration

GFB algorithms rely on a segmentation of part or all of the images, done gener-
ally before the registration process itself. The segmented geometrical objects corre-

spond generally to anatomical or mathematical invariants, like organ boundaries

or differential invariants. Once extracted, these sets are registered by minimizing a

geometrical distance between them. This distance often needs to compute explicitly

a set of correspondences C between points of the two sets. Then, a transformation T
that interpolates or approximates these correspondences C is found using a geomet-

rical distance between C and T as the distance function D to be minimized, and one

of the deformation models of Section 2.1.
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2.2.2. Standard intensity based registration

Image intensity is another widely used information for registering images. The dis-

tance D between two images is then one of the many existing intensity similarity mea-

sure S, such as the sum of squared differences (SSD), the correlation coefficient (CC),

the correlation ratio (CR), or the mutual information (MI) of the intensities of im-
ages I and J . Given a transformation T , the intensity similarity measure is computed

between points lying at the same position: because of the density of the intensity in-

formation, we implicitly pair a point p with T ðpÞ.

2.2.3. Iconic feature based registration

Some algorithms relying on an intensity similarity measure do not quite work the

previous way. Let us take for example block matching based rigid registration [45]:

at each iteration, the intensity similarity measure is used to find correspondences be-
tween blocks only; the rigid transformation itself is found by minimizing a geometric

distance (between paired blocks). The choice of this geometric distance gives us an-

other degree of freedom; in that work, the geometric distance is an M-estimator,

yielding excellent geometric robustness. Therefore, we need to have a third category

of algorithms, which we call IFB, that use explicitly a geometrical distance in addi-

tion to the intensity similarity measure.

In this respect, iconic feature based algorithms are really intermediate between the

two previous categories. On the one hand, as for GFB registration, we use a geomet-
ric distance to fit the transformation to a set of correspondences C between features.

On the other hand, as for SIB registration, there is no segmentation of the images, as

we use an intensity similarity measure to pair features.

In short, IFB algorithms pair points, lines, or regions, according to their intensity,

and fit geometrically a transformation to these pairings. Examples of IFB algorithms

are

• Using point features, the ‘‘demons’’ algorithm [60] and its extensions [6,14,30], as

well as the ‘‘generalized ICP’’ [26].

Table 1

Our classification applied to a panel of registration algorithms

SIB GFB IFB

Rigid/affine [20,67] [48,63] [1,45]

Splines [40,52] [50]

B-splines [43,59] [24,56]

Other param. [4,51,68] [5]

Competitive [31,41] [23,35] [30,60]

[12,22]

[65]

Incremental [7,17,37] [2] [14,46]

Geodesic [62] [16]
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• Using hyperplane features, algorithms based on the optical flow constraint [34,32],

which is related to the distance of a point p to the hyperplane rIðpÞ  x ¼
JðpÞ � IðpÞ.

• Using volume or region features, block matching algorithms [21,38,45].

Finally, as for deformation models, an algorithm may combine different kinds of
information. Combinations of geometric features with intensity or iconic features

seem particularly promising [12,22,65] (see Table 1).

3. An energy for iconic feature based registration

Looking at the existing IFB algorithms, one remarks that they generally do not

minimize a global energy. IFB algorithms like the ‘‘demons’’ or block matching, pro-
ceed in alternating two steps. In a first step, they search for a set of correspondences C,
using an intensity similarity measure. In a second step, they search for a transforma-

tion T that approximates this set of correspondences, using one of the regularization

techniques presented in Section 2.1. However, even if each of these steps corresponds

to an energyminimization, there is generally no global energy involved. Consequently,

the analysis of these algorithms is difficult.

In this section, we propose to minimize the following energy for competitive, ico-

nic point feature based registration of two 2- or 3-D images I and J :

EðC; T Þ ¼ SðI ; J ;CÞ þ rkC � Tk2 þ krRðT Þ: ð2Þ

This registration energy E depends on two variables, C and T , that are both vector

fields, with one vector per pixel. C is a set of pairings between points: for each point
of I , it gives a corresponding point in J that attracts this point. T is the estimate of

the transformation: it is a smooth vector field (constrained by the regularization

energy R) that is attracted by the set of correspondences C. In this energy, S is

an intensity similarity energy, used to find the correspondences C, and R is a

regularization energy, depending on T . Parameters r and k are explained later in

Section 3.2.

3.1. Alternating minimization of Eq. (2): the PASHA algorithm

The energy (2) depends on two vector fields, C and T . One could minimize this

energy with respect to C and T simultaneously. However, when the regularization

energy R is quadratic, the alternating minimization w.r.t. C and T is appealing, be-

cause both partial minimizations are quite fast, especially the regularization part

which is then solved by convolution.

PASHA is designed on that principle. It minimizes the energy (2) alternatively

w.r.t. C and T . We start from T0 ¼ Id at iteration 0 (after a possible rigid or affine
initialization); then, at iteration n, we iteratively

• Find Cn by minimizing SðI ; J ;CnÞ þ rkCn � Tn�1k2. This is done in PASHA using

gradient descent [14].
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• Find Tn by minimizing kCn � Tnk2 þ kRðTnÞ. This minimization step has a closed-

form solution, using a single convolution with Cn [11].

3.2. On the number of parameters for nonrigid registration

Nonrigid registration algorithms generally have only one parameter in their min-

imization formulation, be it the multiplicative factor of the regularization energy for

competitive or incremental approaches, or the dimension of the transformation

space for parametric approaches. But the choice of this regularization parameter

is influenced by two distinct components: on the one hand, the noise level in the im-

ages (and more generally the confidence we have in the intensity relationship model

assumed by our intensity similarity measure); on the other hand, the expected

smoothness of the recovered transformation.
Our energy (2) contains two registration parameters r and k. They make it possi-

ble to separate to some extent these two different prior knowledge. k influences the

smoothness of the deformation, since it is directly related to the size of the convolu-

tion kernel used to compute T . As for r, it is related to the noise level in the images: it

penalizes the pairing of two distant points if the intensity similarity is of the order of

the noise. The distinction between these two prior knowledge enables a more rele-

vant choice of the parameters; however, the link between the optimal choice of k
and r and the actual level of noise or the smoothness of the real transformation is
not as simple as we would expect [10].

3.3. Pyramidal approach

Finally, the whole minimization process is embedded into a pyramidal frame-

work, which consists in computing, for each input image, a sequence of smaller

and smaller images, and then to register all these images, starting from the smallest

one. This classical technique has two advantages. Firstly, the registration algorithm
is much less sensitive to initial alignment and can go beyond local minima. Secondly,

the cost of the pyramidal approach is relatively small, since the extra images are

much smaller than the original one. We chose to use a Gaussian pyramid with a fac-

tor of 2 between each dimensions; actually some of the dimensions might be un-

changed if the resulting image is more isotropic (a typical situation with CT

scanners having a low axial resolution). The subsampling process is carried on while

image dimensions are above some threshold (32 by default).

The overall registration process is thus quite fast. PASHA takes typically between
10 and 30min to register nonrigidly two 256� 256� 128 images on a 450MHz

Pentium.

4. Local statistic based similarity measures

In the previous section, we introduced a registration energy (2) without specifying

any similarity or regularization energy. Indeed, registration algorithms seldom have
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a unique set of tools: most are flexible and propose a panel of energies to better suit

any registration problem [49]. This is also the case with PASHA.

In this section, we present similarity measures based on local statistics, as they are

implemented in PASHA. We believe that our technique could be interesting for a wide

range of applications and algorithms.

4.1. Local vs. global similarity

Standard similarity measures, such as the sum of squared differences, the cross-

correlation, or the correlation ratio, are based on stationary hypothesis: they assume

that the intensities of I and J are globally related by some function f , i.e., I ¼ f � J .
Even mutual information, which does not rely on a functional relational model, also

makes stationary assumptions [49].
By contrast, local measures assume that the link between I and J is valid only lo-

cally. We evaluate a function f for some number of regions, whose size should be

small enough for stationary assumptions to hold inside these regions, but large en-

ough to estimate f precisely.

There may be at least two good reasons for using local measures. Firstly, stationa-

rity may be an unrealistic assumption; for example, nonuniform biases often corrupt

MR images. Secondly, with little effort we gain in robustness towards the assumption

of the similarity measure; this is particularly striking when comparing the respective
capabilities of the correlation and the local correlation, which can be used for mul-

timodal registration [44,66].

Unfortunately, local measures are generally much less efficient than standard

measures. For example, one has to build a local joint histogram everytime the local

mutual information is computed around a voxel. However, we have developed a fast

computation method based on convolution for local statistics that makes them very

efficient. We will briefly present the method; a longer study can be found in [13,9].

4.2. Local statistics

Let W : Rd ! R be a symmetric and normalized window function, and let Wp be

its translation around point p. Let I and J be two images. We define the local mean

of I , the local correlation between I and J , the local variance of I , and the local cor-

relation coefficient between I and J—all these statistics being centered around point

p—by

�IIp ¼
Z

WpðxÞ  IðxÞdx;

hI ; Jip ¼
Z

WpðxÞ  ðIðxÞ � �IIpÞ  ðJðxÞ � �JJpÞdx;

r2
pðIÞ ¼ hI ; Iip;
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CCpðI ; JÞ ¼
hI ; Jip

rpðIÞrpðJÞ
:

We now define an intensity similarity measure by summing the local correlation

coefficients for all the points of I

LCCðI ; JÞ ¼
Z

CCpðI ; JÞdp:

(Although we limit here our presentation to the local correlation coefficient criterion,

different criteria can be constructed from second order statistics, such as the qua-

dratic error to the local affine model QELAp ¼ r2
pðJÞð1� CC2

pÞ.)

4.3. Computation using convolutions

Fortunately, we obtain these local statistics without having to process one region

at a time, as it is done for example in block matching algorithms, because we com-

pute all of them at once using convolutions with our window function W :

�IIp ¼ W � IðpÞ;

r2
pðIÞ ¼ I2p � �II2p ¼ W � ðI2ÞðpÞ � ðW � IÞ2ðpÞ;

hI ; Jip ¼ I  J p � �IIp  �JJp ¼ W � ðI :JÞðpÞ � ðW � IÞðpÞ  ðW � JÞðpÞ;

where � denotes the convolution operator. Therefore, only a few convolutions are
necessary to compute local statistics around every voxel.

As for the derivative of LCCðI ; J � T Þ w.r.t. T , which are needed for gradient de-

scent, they can also be computed using convolutions, although formulas get more

complicated

oLCC

oT
¼ I  W � 1

rpðIÞ  rpðJ � T Þ

"
� J � T  W �

hI ; J � T ip
rpðIÞ  r3

pðJ � T Þ

þ W �
hI ; J � T ipJ � T
rpðIÞ  r3

pðJ � T Þ

 
� I

rpðIÞ  rpðJ � T Þ

!#
rJðT Þ:

By default, a linear interpolation on the images is used to get J � T as well as
rJðT Þ, although we have also implemented a much slower cubic interpolation.

4.4. On the choice of the window function

The window function W should be a symmetric and normalized kernel. This

leaves a large number of possibilities, and indeed, window shapes are numerous in

the literature (squares, diamonds, circles, truncated Gaussians, etc.).

PASHA uses Gaussian windows, for essentially two reasons. From a theoretical
point of view, the Gaussian is isotropic, therefore our similarity measure is invariant
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by rotation. Also, unlike most windows used in block-matching, it is smoothly

decreasing toward zero, therefore the profile of the similarity measure is much

smoother, and thus easier to minimize.

From a practical point of view, since similarity measures and their derivatives

are computed by convolution, we should choose a window yielding an efficient
convolution. The Gaussian is particularly efficient because it is separable (it is ac-

tually the only scalar isotropic separable kernel), and 1-D Gaussian convolution

can furthermore be approximated by recursive filtering, yielding a computation

time independent of the size of the Gaussian kernel [25]: one can then use large

Gaussian windows to compute the LCC criterion at a low cost. Although this adds

yet another parameter to the algorithm, we found out that in practice a standard

deviation of 1 cm would work for most brain images. Also, we showed [9] that the

results are quite stable w.r.t. the window size as soon as the window is not too
small.

5. Regularization

A registration algorithm can also propose different kind of regularization ener-

gies—although this is far less common than for similarity measures. A study of

the different regularization energies is far beyond our scope here; one can take a look
at [11] for a panel of possibilities. The important feature of PASHA is that when R is

quadratic and uniform, the regularization is done using convolutions. This enables

particularly simple and fast regularization techniques; we illustrate it here by present-

ing our mixed competitive/incremental deformation model.

5.1. Mixed competitive/incremental regularization

The registration energy (2) includes a regularization energy R depending on T ,
meaning that it yields a competitive algorithm (Section 2.1.1). Most of existing

IFB algorithms are competitive, even if there exists parametric IFB algorithms, using

for example block matching [45].

In this section we introduce a mixed competitive/incremental regularization, and

show that it can be achieved at a relatively low cost when using quadratic energies.

Incremental algorithms are able to recover large displacements, but they often do not

preserve image topology in real applications. Mixing these models with a competitive

approach drastically improves the topology of the solutions. The energy minimized
by PASHA using a mixed model is now, at iteration n,

SðI ; J ;CnÞ þ rkCn � Tnk2 þ rk xRðTn½ � Tn�1Þ þ ð1� xÞRðTnÞ	; ð3Þ
where the new parameter x 2 ½0; 1	 fixes the relative importance of competitive and
incremental regularization (x ¼ 0 being a pure competitive regularization and x ¼ 1

a pure incremental regularization). The first step of the alternating minimization of

this energy is unchanged (Section 3.1); during the second step, we have to minimize
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kCn � Tnk2 þ k½xRðTn � Tn�1Þ þ ð1� xÞRðTnÞ	. When R is quadratic, Tn has a closed-

form formula

Tn ¼ ð1� xÞK � Cn þ x Tn�1½ þ K � ðCn � Tn�1Þ	; ð4Þ
where � denotes convolution and K is a convolution kernel depending of R and k (see

Appendix A). The implementation of this mixed regularization scheme is thus quite

fast, and enables to take the best out of both models.

Fig. 1. Two noisy images to be registered.

Fig. 2. Registration results on the images of Fig. 1 using PASHA and different regularization techniques.

Upper row: recovered deformation field. Lower row: intensity differences between the deformed and the

original images. Incremental regularization gives good image correspondences but a poor deformation

field. Competitive regularization gives a good deformation field but a poor image correspondence; if we

lower the competitive constraint, the deformation field becomes quite irregular. Only the mixed regulari-

zation scheme is able to match the images with a regular and plausible deformation field.
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Let us illustrate the advantage of this mixed regularization with an example: in

Fig. 1, we have two noisy images presenting some large deformations. Incremental

regularization is able to register the images, but being sensitive to noise, the recov-

ered displacement field is aberrant (among others, images are symmetric, but the de-

formation field is not). Competitive regularization is much more robust to noise, but
it is more difficult to recover large deformations: with a high regularization strength,

the deformation looks plausible but the images are not well registered; with a low

regularization strength, the deformation becomes very irregular, while the images

are still not matched. With mixed regularization, we combine the advantages of both

approaches, and are able to match the images while having a smooth and likely de-

formation field. All these results are reported in Fig. 2.

6. Comparison with other approaches

6.1. Comparison with the ‘‘demons’’ algorithm and its extensions

The ‘‘demons’’ algorithm [60] and its extensions [6,14,30] are a limit case of PA-

SHA when the parameter r of Eq. (2) tends to zero (S being then the SSD, and R the

energy yielding Gaussian filtering). Indeed, in that case, the closeness constraint be-

tween T and C disappears during the first step, and we end up minimizing the SSD
alone: this is exactly how these algorithms work. Following Section 3.2, this means

that these algorithms assume that the images are noiseless, or more generally, that

the intensity correspondence assumed by the similarity measure is strictly enforced.

This closeness constraint between C and T during the first step is yet essential to

obtain good results. As a matter of fact, almost all existing IFB algorithms implicitly

enforce this constraint, not within their energy like PASHA, but via their minimiza-

tion scheme: for example, block matching algorithms search iteratively for a position

of the window close to the previous one rather than everywhere in the image; the
‘‘demons’’ algorithm uses a bounded correspondence field [14]; our previous algo-

rithm [14] uses a gradient descent starting from C ¼ T , therefore C is the local min-

ima of S closest to T . These weak constraints avoid totally aberrant results we would

get otherwise, but are still not sufficient: we illustrate this point on a real example.

6.1.1. Illustration on a real 3-D experiment

In the experiment of Fig. 3, we have two 256� 256� 128 T1 MR images of the

brain of two different subjects that we register both with PASHA and with our own
version of the ‘‘demons’’ algorithm [14], using the SSD similarity measure and the

same Gaussian kernel for regularization in both cases. Besides the natural noise of

MRIs, the intensity conservation is slightly violated, among others, in the back-

ground of the images: the background intensity in a rectangle near the skull is

slightly higher (around 2 units for an intensity range of 256) in the target than in

the source image.

Because of the difference in their closeness constraints between C and T , these al-
gorithms give different results. Using the ‘‘demons,’’ the background is dilated
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around the skull. Indeed, if the intensity conservation hypothesis was really true,

there would really have been some important deformations: in this case the ‘‘de-

mons’’ would behave correctly. However this is not the case; with PASHA, this un-

natural deformation is not recovered when we set a positive value for r. This

helps not to pair remote points that have only a small intensity difference. Similar

but visually less illustrative problems also occurs in the white matter, which is far

too deformed by the ‘‘demons’’ (one can see some topology problems occurring in

the center of the deformation field) and correctly deformed by PASHA (see [10] for
further illustrations). Note that because these differences in the deformation occur

precisely in low contrast regions, the deformed images are virtually identical. This

illustrates the hazard of looking at deformed images only.

6.2. Comparison with Feldmar’s ‘‘generalized ICP’’

In [26], Feldmar proposed to register two images using their intensity profiles. The

intensity profile of an n-D image I : ½0; 1	n ! R is the hypersurface SðIÞ in ðnþ 1Þ-D
made of all the points ðx; IðxÞÞ 2 ½0; 1	n � R, 8x 2 ½0; 1	n. To register two images I
and J , he first computes the surfaces SðIÞ and SðJÞ; then, his algorithm roughly con-

sists in alternating the following two steps: finding the closest point on SðJÞ of each
point of SðIÞ, and approximating these correspondences by an affine or local affine

transformation. During the first step, the distance between two points located resp.

on SðIÞ and SðJÞ is given by

d2ððx1; Iðx1ÞÞ; ðx2; Jðx2ÞÞÞ ¼ ½Iðx1Þ � Jðx2Þ	2 þ rkx1 � x2k2

r being a normalization constant and k  k the standard Euclidean norm. It appears

that this step is strictly equivalent to our first step when S is the SSD similarity

measure. Despite the fact that Feldmar�s algorithm is parametric whereas PASHA is

competitive, PASHA is conceptually a generalization of the hypersurface matching
approach, which is satisfying because Feldmar�s is one of the few IFB algorithms

that minimizes an energy. The advantage of PASHA is that its energy (2) is not re-

stricted to the SSD; virtually any similarity measure can be used. With the original

intensity profile formulation of Feldmar, the extension to multimodal registration is

less clear.

Fig. 3. A real 3-D registration experiment: original images and deformation field found by the ‘‘demons’’

and PASHA.
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6.3. Comparison with ‘‘auxiliary variables’’

Auxiliary variables have been introduced for minimizing complex, nonquadratic

competitive energies of the form

DðvÞ þ RðvÞ: ð5Þ
Basically, the idea is to split a coupled, nonlinear multidimensional minimization

into two minimizations, one of which has coupled parameters but is quadratic, and

the other being nonlinear but having decoupled parameters. Geman [29] first de-

veloped this technique for nonlinear regularization, and introduced the auxiliary

variable w to transform Eq. (5) into

DðvÞ þ kM  v� wk2 þ RyðwÞ; ð6Þ
where Ry is the Legendre transform (or conjugate function) of R, and M is a matrix

depending on R, so that the minimum of Eq. (6) is obtained for the same value of v
as for Eq. (5). Cohen [19] applied Gemans� framework to the similarity term,
minimizing

DyðwÞ þ kv� wk2 þ RðvÞ;

where Dy is the Legendre transform of D, and proposed to explain some ‘‘two-steps’’

algorithm by this transformation. While auxiliary variables give energies that look

like Eq. (2), the fundamental difference is that they are used to simplify the mini-

mization of Eq. (5), and can be applied to geometric as well as to intensity based

registration. Our formulation, by contrast, concerns intensity based registration

only; and above all, the transformation obtained after minimizing (2) is quite dif-

ferent from the minimizer of SðI ; J ; T Þ þ kRðT Þ. This is the topic of the next section.

6.4. Comparison with competitive SIB algorithms

To register two images I and J , a competitive SIB algorithm minimizes the energy

SðI ; J ; T Þ þ kRðT Þ w.r.t. T , where S is an intensity similarity measure, R a regulariza-

tion energy, and k a regularization parameter. This seems to be a natural way to

combine these two energies, and indeed, this formulation has proven to be successful

in the field of data fitting and approximation [64]. Furthermore, it has been justified

for registration using Bayesian arguments [28,41].
However, in the context of intensity based registration, this formulation may raise

some problems. Typically, competitive SIB algorithms tend to give very important

and sharp displacements at the edges of the object, and almost constant displacement

in less contrasted regions. We will observe this behavior in the following experiment;

but it can also be observed in other papers where the deformation has been pre-

sented, e.g. [3,28]. We explain this by the fact that S and R have different physical

dimensions: the trade-off is inhomogeneous. The intensity similarity is an intensity

distance, i.e., an idea of the amount of intensity necessary to fade one image into
the other, which is not uniformly proportional to the amount of motion that warps
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one image into the other. Consequently, the smoothness of transformations found by

competitive SIB algorithms is very variable across the image, and the smoothness pa-

rameter is therefore tricky to choose.

Decoupling the similarity matching and the regularization as it is done in PASHA

seems to help to tackle this problem. The regularization, i.e., the fitting of T to C is
now completely geometric and thus homogeneous, as for classical data fitting. The

inhomogeneous trade-off is transfered in the estimation of C, which seems to affect

less the regularity of the solution. We are thus able to obtain deformations with

uniform smoothness, much like those obtained with parametric algorithms (e.g.,

B-splines), but without the folding problems often occurring with pure parametric

algorithms [43,53] thanks to the regularization energy R.

6.4.1. The sinusoidal experiment

We illustrate the previous point by comparing the results given by PASHA and

Asym [15], which is a competitive SIB algorithm that minimizesZ
ðI � J � T Þ2 þ k

Z
kdTk2 ð7Þ

by gradient descent, where dT is the Jacobian matrix of T . In this experiment, PASHA

uses exactly the same similarity and regularization energies: the energy minimized isZ
ðI � J � CÞ2 þ rkC � Tk2 þ rk

Z
kdTk2: ð8Þ

These algorithms thus differ only in the way the trade-off is made. In SIB algorithms,

the regularization energy is in direct competition with the similarity measure, and

these variations are not uniformly proportional to the deformation because of image

contrast differences. Our next experience exacerbates this point by using a couple of

MR images having information both on very contrasted, visible areas (all the ana-

tomical borders of the head) and also on very low contrast regions, like inside the

background or inside the white matter, where subtle but stable intensity variations
make it possible to recover the deformation in these areas. The original MR image

Fig. 4. A synthetic 2-D experiment. From left to right: the original MR image, the deformed image, and

the synthetic transformation used to deform the image.
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has been deformed using a sinusoidal transformation (Fig. 4), and without adding

any noise to it afterwards; therefore, even though the original noise gives texture to

the plain areas (which makes it possible to recover the deformation on these parts),

Fig. 5. Details of results obtained with Eq. (7) and with PASHA, Eq. (8) corresponding to the upper left

quarter of the images of Fig. 4. Results obtained by Eq. (7) have a very contrasted smoothness depending

on the local intensity variation, for any value of k. Consequently, the deformation is not well recovered.

Using Eq. (8), the estimated transformation has a much more uniform smoothness, and is thus closer to

the real transformation.
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the couple of images can be considered almost noiseless (although a small uncer-

tainty remains due to the linear interpolation used to compute the deformed image).

The point of using a sinusoidal transformation is that the same deformation pattern

is repeated several times in the image; therefore, we can study how this pattern is

recovered depending on the local characteristics of the image. This registration
problem looks easy; yet this experiment shows that competitive SIB algorithms have

a hard time to recover this simple transformation, contrary to PASHA.

Since the regularization technique of these algorithms are different, we cannot

compare their results for the same numerical value of k. Therefore, we have regis-

tered these images with Eq. (7) and with Eq. (8) for a high number of parameters;

among all these deformations, we find the best result (i.e., closest to the real trans-

formation) for both algorithms. We report these optimal transformations, as well

as sub- and over-constrained transformations, in Fig. 5. As previously discussed,
the results obtained with Eq. (7) have a very nonuniform smoothness: it is almost

constant and largely underestimated on a large part of the image, except on points

lying on contrasted boundaries (like between the fat and the cerebrospinal fluid)

where it can be discontinuous. It is impossible to recover the deformation near the

skull and in the white matter at the same time, even though there is sufficient infor-

mation in both areas to do so. At best, the recovered deformation has a mean error

of 1.23 pixel. With PASHA, the smoothness of the transformation is much more uni-

form, and we are thus able to recover accurately the sinusoidal deformation pattern
everywhere in the image. The error drops by 33% to 0.83 pixel in mean.

If noise is added to the images, differences are less illustrative, although still signif-

icant;PASHA can of course not recover the deformation in low contrast areas anymore,

but the uniform smoothness ofPASHA yields abetter approximationof the transforma-

tion in areas where it can actually be estimated, just like for this experiment.

6.5. Comparison with incremental and geodesic algorithms

Incremental (‘‘fluid’’) algorithms were introduced in nonrigid registration by

Christensen et al. [18] to tackle large deformations. Although these algorithms are

indeed able to register very different images, they are also known to give unrealistic

deformations on real images, when the assumptions made by the similarity measure

are violated.

Recently, however, a new class of techniques based on geodesic formulations has

generalized the incremental approach [42,62]. These techniques are able to tackle large

deformations while preserving image topology. Although the interest of these new
methods is obvious, we want to show that on most of the examples proposed in these

papers, a classical incremental regularization could work as well.We present results on

the famous ‘‘C’’ experiment inFig. 6 (which seems to be a standard for such algorithms)

obtained with PASHA using a pure incremental Gaussian regularization (x ¼ 1 in Eq.

(3)). For a correct set of registration parameters, the recovered transformationmatches

perfectly the images while keeping an excellent topology (Fig. 7).

Results obtained on synthetic, simple images are impressive; but the incremental

approach often fails on complex or noisy images, as illustrated in Section 5. The geo-
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desic approach may prove its superiority over the classical incremental approach on

this kind of images.

7. A clinical application to neurosurgery

Previous sections presented theoretical aspects of PASHA, as well as some compar-

isons with other approaches. Despite the excellent results obtained previously, it is
important to show that the algorithm works for real studies as well. Actually, our

algorithm has been used already in several studies, mainly for brain tracking in ul-

trasound images [47], and for multipatient MRI registration [12]—not to mention

all the studies based on the ‘‘demons’’ algorithm (e.g., [23,30]), of which PASHA is

a generalization. In this section we propose to expose a novel application of PASHA

to preoperative pneumocephalus.

7.1. Introduction

MR image guided brain surgery is an actively developing field. In most of the cases,

the techniques are based on the use of volumetric preoperative MR acquisitions.

Fig. 7. Same images as Fig. 6 with a pattern added to the images in order to visualize the transformation.

Left: template image. Right: deformed template image.

Fig. 6. The ‘‘C’’ experiment. Left: Template image. Middle: target image. Right: deformed image obtained

by PASHA.
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These techniques implicitly assume that a preoperative acquisition gives a faithful

and precise representation of the brain anatomy during the intervention.

A major limit of these techniques is the brain deformation during the surgical in-

tervention, hence leading to anatomical differences, which can be significant, with the

preoperative MR images.
To overcome this limit, there has been recent interest in quantifying brain defor-

mation during neurosurgery [33,54,55].

One interesting example of this type of procedures is functional neurosurgery

for Parkinson�s disease. This intervention is based on the stereotactic introduction

of electrodes in a small, deeply located, nucleus of the brain, called the subthalamic

nucleus.

This nucleus is targeted on preoperative stereotactic MR acquisitions. During the

intervention, which is performed in the operating room, outside the MR unit, an
electrophysiological and clinical study is performed with the electrodes to check

the preoperatively determined target position.

This exploration is time-consuming and can lead to the development of a pneu-

mocephalus (presence of air in the intracranial cavity) because of CSF leak. This

pneumocephalus leads to a brain shift which can yield a significant deformation of

the entire brain and thus can cause potential errors in the preoperatively determined

position of the stereotactic targets.

Therefore, computing accurately the deformation induced by the pneumocepha-
lus over the entire brain appears to be a key issue, as it will allow to quantify the de-

formation occurred around the stereotactic targets and check if correction of the

preoperative localization would have been needed.

We propose a method to quantify brain deformation from pre- and immediate

postoperative MR acquisitions, based on nonrigid registration. Our method is re-

lated to the approach developed in [55] for estimating tissue deformation induced

by intracranial electrode implantation in patients with epilepsy; however, deforma-

tions provided by Studholme et al. [55] are limited to coarse B-splines, while ours
are vector fields. Therefore, the method presented below allows a finer analysis of

the deformation. It is also substantially faster.

7.2. Material and methods

One patient with bilateral subthalamic lateral implantation was studied. The sub-

thalamic targets were determined one day before the intervention using 3-D stereo-

tactic IR-FSPGR MR acquisition. Then, the patient had bilateral implantation of
depth electrodes at the level of the subthalamic nuclei. MR control using the same

acquisition as preoperative was performed the day after the implantation. Voxel size

of both acquisitions was 0:9375� 0:9375� 1:3mm, and image dimension was

256� 256� 124.

On the control acquisition, presence of air collection was clearly observed at the

anterior part of the cranial cavity.

The methodology to quantify brain deformation from these pre- and immediate

postoperative MR acquisitions consisted in three steps: robust rigid registration of
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pre- and postoperative MR acquisitions using [49]; segmentation of the cortex on the

registered images; nonrigid registration of the resulting images.

One can observe some changes at the scalp level, which are not caused by the

pneumocephalus. Searching for a nonrigid deformation accounting for these changes

would be rather complex, error-prone, and not fundamentally useful for our task.
Therefore, we segmented the brain before computing the nonrigid residual deforma-

tion. This was done automatically using successively thresholding with the CSF

value, morphological opening, erosion, maximal connected component extraction,

and dilation.

From the segmented and rigidly registered images, a nonrigid registration was

performed, using PASHA. We used the Gaussian-weighted local correlation coeffi-

cient, presented in Section 4, as the similarity measure between the images, which

is particularly well suited for MRIs because of frequent nonuniform bias. We also
used the mixed regularization of Section 5, with x ¼ 0:6, which enabled a total re-

covery of the deformation, and that, with a very smooth transformation.

Once the deformation field was computed, it was straightforward to identify re-

gions in the brain that underwent deformations higher than a given value, using

the norm of the deformation field, hence allowing to estimate the deformation due

to pneumocephalus around the preoperatively localized targets.

Fig. 8. Rigid and nonrigid registration of pre- and postoperative MR images of the same patient. Axial

(first row) and sagittal (second row) slices show subtraction images after rigid (left column) and nonrigid

(right column) registration.
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7.3. Results

Nonrigid registration using PASHA was performed on the couple of

256� 256� 124 segmented brain MRI (registration is fully 3-D here). It took 8min

on a 450MHz Pentium III running Linux. Fig. 8 shows axial and sagittal slices of the
subtraction images after rigid and nonrigid registration of the preoperative and post-

operative volumes, in order to visually assess the quality of the registration. Notice in

particular the consistent matching obtained around the prefrontal lobe, where defor-

mation caused by the pneumocephalus was largest.

Once the deformation was computed (the maximal value of the deformation norm

was 5.79mm), it was possible to examine its spatial distribution, and especially to

Fig. 9. Nonrigid registration of pre- and postoperative MR images of the same patient, starting from the

rigidly registered images, after brain extraction. Columns correspond to three different axial slices. First

row: deformation field; second row: norm of the deformation; third row: postoperative image. On the last

two rows, isolines of the deformation norm (1, 2, and 3mm) are superimposed on the images.
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look at regions of brain that suffered deformations higher than a given value. Fig. 9

shows, on the first row, axial slices through the deformation field itself, the displace-

ment of each voxel being represented by an arrow. Then, on the next two rows, is-

olines of the deformation norm are superimposed on the same axial slices, of the

deformation norm, and of the postoperative volume (after brain extraction). The iso-
values were set to 1, 2, and 3mm (3mm corresponding to the smallest region). As

expected, the maximal values of the deformation coincided with the prefrontal lobe

where the pneumocephalus was observed. Then, as can be seen, the deformation

smoothly decreased, reaching values under 1mm at the level of the basal ganglia.

Also, deformation around the targets (identified by the dark holes located between

the putamen and the thalamus on the postoperative images) was significantly lower

than 1mm (around 0.7mm for the anterior part of the targets, and around 0.4mm

for the posterior part). Note that the localized deformation area (greater than 1mm)
at the level of the target on slice 134 was due to the electrode MR signal.

7.4. Discussion

We have proposed a method for quantifying brain deformation induced by pneu-

mocephalus that occurs during deep brain stimulation on Parkinsonian patients.

This method is based on nonrigid registration of pre- and immediate postoperative

MR acquisitions.
On the patient under study, results confirmed surgeon intuition, i.e., pneumoceph-

alus does not affect target preoperative localization. Indeed, the deformation was sig-

nificantly inferior than 1mm around the targets, knowing that the voxel size of the

MR images was around 1mm3.

To confirm the result obtained on this patient, a clinical study is presently con-

ducted on a wide range of Parkinsonian patients.

The methodology presented here could obviously be used in other contexts, for

example for dystonia or epilepsy.

8. Conclusion

In this paper, we have first highlighted a fundamental difference that exists be-

tween intensity based registration algorithms. On the one hand, standard intensity

based (SIB) algorithms use an intensity similarity measure to quantify the quality

of the registration. On the other hand, iconic feature based (IFB) algorithms use a
geometric distance between homologous geometric features, whose pairing is based

on intensities. This last category includes the ‘‘demons’’ algorithm, the ‘‘generalized

ICP,’’ block matching and optical flow constraint based methods.

We have then proposed an energy for competitive IFB registration. The alternat-

ing minimization of this energy leads to a two-step algorithm we named PASHA,

which we compared to some other existing registration techniques. In particular, it

appears that PASHA generalizes the ‘‘demons’’ as well as the ‘‘generalized ICP’’

methods, adding new features (more robustness than the ‘‘demons’’ by adding an
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image noise assumption, more flexibility than the generalized ICP by using similarity

measures other than the SSD).

Concerning intensity similarity, we have proposed an efficient way to compute

Gaussian-weighted local statistics, which are very robust towards nonstationary as-

sumptions. As for the regularization energy, a closed form formula exists using con-
volutions when this energy is quadratic, even for mixed incremental/competitive

regularization that we have presented here. We refer to [11] for a deeper discussion

on isotropic vectorial filters, including generalized Gaussian filtering with cross-ef-

fects between components.

Among the different existing applications of PASHA [12,47], we have chosen to

show the performance of our approach on a new clinical application, namely the

study of preoperative pneumocephalus during deep brain stimulation of a Parkinso-

nian patient. The nonrigid registration of pre- and immediate postoperative MR im-
ages allowed us to quantify, in a very short time, the deformation induced by the

pneumocephalus around the preoperatively determined target position and to assert

that this position had not been biased by the pneumocephalus in this case.

PASHA is able to recover a smooth and precise deformation in a fairly small

amount of time. Its main drawback, shared by many registration algorithms, is that

a number of parameters still have to be chosen manually, especially the regulariza-

tion strength. Therefore, the registration quality depends ultimately on the experi-

ence of the user. Work still has to be done on the extension of classical
regularization parameter estimation techniques to the particular case of image regis-

tration, as it has already begun to some extent, e.g., in [39,57]. We believe that the

difficulty encountered in this topic is related to the discussion of Section 3.2, namely

that the regularization does not depend only on the image noise but should also take

into account a prior knowledge on the deformation smoothness. Until an effective

solution is found, low computation time is a key factor for user interaction, which

is one of the strength of PASHA.

Appendix A. On the closed form formula (4)

Let

EðT Þ ¼ kCn � Tnk2 þ k xRðTn½ � Tn�1Þ þ ð1� xÞRðTnÞ	
be the energy to minimize. Let us note V̂V the Fourier transform of a vector field V .
We suppose in the following that R is a quadratic regularization energy that can be

expressed in the Fourier domain as

RðT Þ ¼
Z

kL  T̂Tk2;

L being a square matrix function. Let us then rewrite the energy E in the Fourier

domain

EðT Þ ¼ kĈCn � T̂Tnk2 þ k
Z

xkL  ðT̂Tn
h

� T̂Tn�1Þk2 þ ð1� xÞkL  T̂Tnk2
i
:
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The formal derivative of this energy w.r.t. T̂Tn is simply

2ðT̂Tn � ĈCnÞ þ 2k xL  ðT̂Tn
h

� T̂Tn�1Þ þ ð1� xÞLT̂Tn
i
:

Setting this derivative to zero, and solving for T̂Tn, we get

T̂Tn ¼ ð1� xÞK̂KĈCn þ x K̂K  ðĈCn

h
� T̂Tn�1Þ þ T̂Tn�1

i
;

where K̂K ¼ ðIdþ k  LÞ�1
. Getting back to the spatial domain, we obtain Eq. (4).
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