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Abstract. We present a novel variational formulation of discrete deformable reg-

istration as the minimization of a convex energy functional that involves diffu-

sion regularization. We show that a finite difference solution (FD) of the varia-

tional formulation is equivalent to a continuous-valued Gaussian Markov random

field (MRF) energy minimization formulation previously proposed as the random

walker deformable registration method [1]. A computationally efficient solution

using the finite element method (FEM) method has been proposed to solve the

variational minimization problem. Our proposed method obtained competitive

results when compared with 14 other deformable registration methods on the

CUMC12 MRI dataset.

1 Introduction

The task of non-rigid or deformable image registration refers to the process of finding

meaningful dense correspondences between two images. It is required in a wide variety

of medical imaging applications such as longitudinal studies on disease progression,

multi-modal image fusion, statistical studies on anatomical variability and atlas-based

segmentation. More formally, the problem of deformable image registration is posed

as the estimation of an optimal displacement field that maps points in an image to the

corresponding points in another image such that a similarity criterion is minimized.

This minimization is inherently ill-posed due to the large number of degrees of freedom

(DOF) involved and therefore it relies on regularization or smoothing constraints.

Over the years, numerous regularization approaches have been proposed for de-

formable registration (see [2] for a detailed review). These approaches can be broadly

categorized into two groups, namely non-parametric and parametric approaches. In non-

parametric approaches, explicit regularization terms such as elastic [3], diffusion [4] and

curvature [5] are added to the data term and a variational minimization of the combined

energy functional is performed. Alternatively, a demons minimization strategy can be

used, where the smoothing of the displacement field is decoupled from the minimiza-

tion of the data term [6], [7], [8]. In parametric approaches, regularization is enforced in

an implicit manner through the parametrization of the displacement field using a finite

set of basis functions, such as radial basis functions (RBF) [9], B-spline based free form

deformations (FFD) [10], finite element method (FEM) basis functions [11].

The various non-parametric and parametric deformable registration approaches men-

tioned above attempt to determine the unknown displacement field through the contin-

uous optimization of energy functionals. As an alternative to continuous formulations,

there has been some interest in formulating the deformable registration task as a dis-

crete labeling problem. Here, the space of possible displacements is discretized and



a Markov random field (MRF) energy corresponding to the registration objective is

minimized. However, as the MRF energy minimization is in general NP-hard, exist-

ing methods on MRF-based discrete deformable registration are only able to find good

quality approximate solutions using graph cuts [12] and linear programming [13].

Previous discrete formulations of deformable image registration were inherently

discrete in both the image domain and displacement space. In this work, we seek a

formulation that keeps the image domain continuous resulting in a variational formula-

tion for discrete deformable registration. Our formulation results in a convex functional

which can be conveniently minimized to obtain a unique solution. Specifically, we as-

sociate a continuous prior probability map to each of the possible displacement values

using image similarities. The prior probability maps denote how likely the correspond-

ing displacement value is at particular spatial location in the continuous image domain.

The discrete deformable registration task is then posed as a variational problem corre-

sponding to the diffusion-based smoothing of prior probability maps. For solving this

variational problem, we propose a finite element method (FEM) that employs a non-

uniform mesh well adapted to the salient image features. This significantly reduces the

number of DOFs involved in the minimization compared to a traditional finite differ-

ence (FD) discretization and hence leads to a highly computationally efficient solution.

Further, we show that a FD discretization of our variational formulation is equivalent

to the the random walker (RW) solution of discrete registration recently proposed by

Cobzas et al. [1].

To summarize, we make the following contributions:

(1) We develop a novel variational formulation of discrete deformable registration on

the continuous image domain. This formulation results in a convex energy func-

tional that involves diffusion regularization.

(2) We show that a finite difference solution (FD) of the variational formulation is

equivalent to a continuous-valued Gaussian MRF energy minimization formulation.

(3) We propose a computationally efficient FEM solution.

(4) We validate our method on the publicly available CUMC12 MRI dataset [14] and

show a competitive performance of our proposed method in comparison to 14 other

deformable registration methods.

2 Methods

2.1 Variational formulation of discrete deformable registration

Given a source image IS : ΩS → R, ΩS ⊂ R
ν and a target image IT : ΩT → R,

ΩT ⊂ R
ν , ν = 2 or 3, the goal of non-rigid or deformable registration is to estimate a

displacement field U : ΩT → R
ν such that the warped source image IS(x +U(x)) is

similar to the target image IT . A similarity map Ψ : ΩT → R can be defined to measure

the similarity between the warped source and target images as:

Ψ(x;U, IT , IS) = (IS(x+U(x)) − IT (x))
2, (1)

In discrete deformable registration, the space of possible displacement values is dis-

cretized or quantized such that it corresponds to a finite set of K vectors, i.e., U :



ΩT → D, where D = {dk}Kk=1, dk ∈ R
ν . Based on the similarity map, similar to [1]

we can define a prior probability map λk : ΩT → [0 1] for each of the displacement

values dk ∈ D as:

λk(x;dk) =
exp(−αΨ(x;dk, IT , IS))

K
∑

r=1
exp(−αΨ(x;dr , IT , IS))

, (2)

It can be seen that the prior λk(x;dk) essentially encodes the belief that the corre-

sponding displacement value d
k is more likely at a spatial location x ∈ ΩT , when the

similarity measure between the warped source image and the target image at x ∈ ΩT is

small. The discrete deformable registration task is next formulated as a variational en-

ergy minimization problem that estimates an unknown probability map Lk : ΩT → R

corresponding to each of the displacement values dk ∈ D:

L
∗ = argmin

L

ED[L; IT , IS ,D] + βEdiff
R [L], (3)

with ED[L; IT , IS ,D] =

∫

ΩT

||L(x) − λ(x;D)||2 dx,

Ediff
R [L] =

K
∑

k=1

∫

ΩT

∇LkT(x)W (x)∇Lk(x) dx,

where λ = [λk]Kk=1, L = [Lk]Kk=1, L∗ = [L∗k]Kk=1 and β is a regularization constant.

The above energy minimization formulation essentially corresponds to the anisotropic

diffusion-based smoothing of the prior probability maps {λk}Kk=1. In other words, the

minimization attempts to find a smooth probability map Lk associated with the dis-

placement value d
k such that it is as “close” as possible to the corresponding prior

probability map λk. The smoothness is enforced through the anisotropic diffusion-based

regularization term Ediff
R , where W is a ν × ν symmetric matrix denoting the diffusiv-

ity or the stiffness field. Note that in the above we do not need an explicit constraint

to make sure that the unknown probability maps {Lk}Kk=1 sum to 1. This because the

unique minimizer of (3) should naturally satisfy this constraint, as the prior probability

maps {λk}Kk=1 were defined such that they sum to 1 (like in Grady [15]). The esti-

mated displacement field U(x) at a spatial location x ∈ ΩT is obtained by choosing

the displacement value dk with the highest optimal probability at that spatial location:

U(x) = d
k ∀x ∈ ΩT , (4)

where k = argmax
r∈{1,2,...,K}

L∗r(x).

However, it should be noted that even though the above displacement field is constructed

from the optimal probability maps {L∗k}Kk=1, this estimated displacement field by itself

does not necessarily minimize any formal registration energy.

2.2 Equivalence to the random walker (RW) registration method

We next show that a finite difference solution (FD) of the variational formulation in

(3) is equivalent to the continuous-valued Gaussian MRF energy minimization formu-



lation referred as the random walker registration in [1]. For this, consider the Euler-

Lagrange equations corresponding to the energy functional in equation (3) for each

k ∈ {1, 2, . . . ,K}:

∇Lk(ED + βEdiff
R ) = (Lk − λk)− β∇(W∇Lk) = 0. (5)

Rearranging we get for each k ∈ {1, 2, . . . ,K}:

Lk − β∇(W∇Lk) = λk. (6)

Now, consider a uniform discretization G = ({xi}Ri=1,N ) of the template image do-

main ΩT , where {xi}
R
i=1 is the set of pixels (voxels) and N denotes neighborhoods.

Further, choose an image dependent stiffness field W (x) = exp(−γ(diag(∇IT ))
2)).

Writing the FDM approximation of the equations in (6) we obtain the following set of

equations for each k ∈ {1, 2, . . . ,K}:

(

IdN + β△G

)

L
k = λ

k. (7)

Here, IdN is a N×N identity matrix and △G is the discrete Laplacian operator defined

on the uniform mesh G as:

(△G)ij =















∑

r∈N (i)

wir if i = j

−wij if j ∈ N (i)

0 otherwise

, (8)

where wij = exp(−γ(IT (xi)− IT (xj)
2)). It is easy to observe that the FD discretiza-

tion on the uniform grid G of the Euler-Lagrange equations in (5) corresponds to the

set of linear equations in (7) that arise from the minimization of the continuous-valued

MRF based discrete registration problem in [1].

2.3 FEM-based solution for variational discrete deformable registration

A more efficient solution of the proposed variational formulation for discrete registra-

tion (3) can be obtained using the FEM method. Consider a non-uniform discretization

M = ({Pn}
N
n=1, T ) of the domain ΩT , where {Pn}

N
n=1 denotes the nodes of the mesh

and T is the set of elements (triangles in 2D, tetrahedra in 3D) (see Figure 1). Then

using nodal basis functions {φn}Nn=1 we can discretize the probability maps as:

L(x) =
N
∑

n=1

Lnφn(x;M) ∀x ∈ ΩT , (9)

where Ln = L(Pn) which represents the value of the probability map at the node Pn

of the mesh M. The task is now to find the nodal probabilities Θ = [Ln]
N
n=1. The FEM



approximation of the energy in (3) can be written as:

Θ
∗ = argmin

Θ∈RNK

ED(Θ; IT , IS ,D) + βEdiff
R (Θ), (10)

with ED(Θ; IT , IS ,D) =

∫

ΩT

||
N
∑

n=1

Lnφn(x)− λ(x;D)||2 dx,

Ediff
R (Θ) =

K
∑

k=1

N
∑

m,n=1

Lk
nL

k
m

∫

ΩT

∇φT
n (x)W (x)∇φm(x) dx,

where Ln = [Lk
n]

K,N
k,n=1.

Setting the gradient of (10) to zero w.r.t each {Ln}Nn=1 and by re-writing Θ =
[Θk]Kk=1, where Θk = [Lk

m]Nm=1 is as a N × 1 vector of nodal probabilities, we obtain

the following system of linear equations for each k ∈ {1, 2, . . . ,K}:

SΘ
k − F

k = 0, (11)

where S = [Sm,n]
N
m,n=1 is a N × N matrix and F

k = [F k
m]Nm=1 is a N × 1 vector

defined as:

Sm,n =

∫

ΩT

φm(x)φn(x) dx + β

∫

ΩT

∇φT
m(x)W (x)∇φn(x) dx,

F k
m =

∫

ΩT

λk(x;dk)φn(x) dx. (12)

The system of independent N ×K linear equations in (11) is solved to obtain the opti-

mal nodal probabilities Θ∗ = [L∗
m]Nm=1 = [L∗k

m ]K,N
k,m=1. Now, the optimal probabilities

L
∗(x) = [L∗k(x)]Kk=1 at any spatial location x ∈ ΩT can found through interpola-

tion of the nodal probabilities [L∗
m]Nm=1 based on the finite element approximation in

equation (9). Then, the estimated displacement field U(x) at x ∈ ΩT is obtained by

choosing the displacement value d
k with the highest optimal probability at that spatial

location, i.e., U(x) = d
k where k = argmax

r∈{1,2,...,K}
L∗r(x).

3 Experiments

In this section, we evaluate our proposed FEM-based variational discrete deformable

registration method on synthetic and real medical images. We implemented our method

in a multi-resolution framework with 4 levels. The range of displacements used in each

of the 4 levels are as follows: [0,±0.125, . . . ,±0.5]ν , [0,±0.25, . . . ,±1.0]ν , [0,±0.5
, . . . ,±1.5]ν , [0,±1.0]ν, where ν = 2 or 3. We chose the Perona-Malik [16] diffusivity

W (x) = 1/(1 + exp(||∇IT ||2/γ)) with γ = 0.05 and set α = 1.0 in the experiments

below. An image-adaptive meshing strategy proposed by Yang et al. [17] was used

to generate the non-uniform FEM mesh. We coded our method in MATLAB using the

MEX facility. We ran all experiments on a Intel i7 3.60 GHz machine with 32GB RAM.



3.1 Comparison with random walker (RW), DROP and demons registration

In Figure 1, we show the performance of our FEM-based discrete registration method in

comparison to the random walker (RW) [1], DROP [13] discrete registration methods

and also the continuous diffusion-based demons [7] registration method on synthetic

2D brain MRI images with a known ground truth displacement field. The RW, DROP

and demons methods all use a uniform mesh, while our FEM-based discrete registration

method employs a non-uniform mesh well adapted to the image features. The number

of DOFs associated with a mesh is given as twice the number of nodes in the mesh.

Further, the computational times reported for the various algorithms correspond to the

time taken by their respective optimization steps. In the case of our proposed method

the optimization step involves solving the equation system in (11). It can be clearly

seen that all the four registration methods successfully recover the displacement field

between the two images. But, our FEM-based discrete registration method achieves

this with a considerably lower computational effort (∼ 30 times lower DOFs and > 60
times faster) when compared to the other three registration methods.

3.2 Validation on the CUMC12 MRI database

The CUMC12 dataset [14] consists of 3D brain MRI scans from 12 subjects taken at

256× 256× 124 resolution with a 0.86mm× 0.86mm× 1.5mm voxel spacing. Man-

ual segmentations of 128 anatomical regions were provided for each of these images.

We performed 12 × 12 − 12 = 132 pair-wise registrations between the images using

our proposed FEM-based discrete registration method. The overall computational time

for each registration is about 15.5 minutes of which 4.5 minutes are taken for the op-

timization step (solving equation system in (11)). For evaluating registration accuracy,

anatomical labels on the source image were mapped to the template using the estimated

displacement field. The Jaccard overlap measure was computed between the warped

source labels and the template labels. In Figure 2, we report the Jaccard score obtained

by our proposed method averaged over 128 anatomical regions and 132 pair-wise reg-

istrations. Klein et al. [18] reported average Jaccard scores obtained by 14 popular

deformable registration methods on the CUMC12 dataset. We can see that our methods

ranks in the top 5 among these methods.

4 Conclusion

We developed a computationally efficient FEM-based discrete deformable registration

method using the squared differences similarity measure and diffusion-based regular-

ization. A salient aspect of our method was the use of an image-adaptive discretization

of the problem domain. This resulted in our method being multiple orders of magni-

tude faster than the existing registration methods that are implemented using uniform

meshes. A limitation of our method is that the estimated displacement field is not dif-

feomorphic. This is because the displacement field is not explicitly regularized and the

regularization is only implicit through the smoothing of prior probability maps. In fu-

ture, we want to explore the use of an additional explicit regularization step that would

yield diffeomorphic displacement fields. Further, we intend to extend our method for

multi-modality registration using more complex similarity measures.



Template Non-uniform mesh Color encoding

Source FEM discrete RW [1] DROP [13] Demons [7]

Ground truth

Method AAE SSDE DOF Time(sec)

Source (before registration) − 4866.67 − −

FEM discrete (proposed) 4.06
◦

102.73 11264 0.02

Random walker (RW) [1] 4.72
◦

142.96 331588 1.27

DROP [13] 2.48
◦

11.63 331062 54.74

Demons [7] 1.93
◦

31.35 331588 122.20

Fig. 1: Results on synthetic 2D MRI data. Average angular error (AAE), sum of squared

differences error (SSDE) and degrees of freedom (DOF) are shown along with the com-

putational times (we set β = 50 in our proposed method).
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