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Abstract

Existing scene flow approaches mainly focus on two-
frame stereo-pair configurations and reconstruct an image-
based representation of scene flow. Instead, we propose a
variational formulation of scene flow relative to a coarse
proxy geometry, which is better suited for many views. Fur-
thermore, a linear basis is used to represent temporal sur-
face flow, allowing for longer-range temporal correspon-
dence with fewer variables. Our formulation takes known
proxy motion into account (e.g, if the proxy is a tracked hu-
man subject), which enables 3D trajectory reconstruction
when only a single view is available. Additionally, through
the appropriate proxy and basis, our framework general-
izes existing approaches for scene flow, optic-flow, and two-
frame stereo. We illustrate results on real-data for both
static and moving proxy surfaces over several frames.

1. Introduction
Image-based recovery of dense scene flow, the 3D mo-

tion of scene structure, is important for analysis of dynamic
scenes. The reconstruction process often leverages tempo-
ral information to also improve the 3D structure reconstruc-
tions [22]. However, many existing approaches only con-
sider motion between two frames (e.g., [17, 12, 20]) and do
not fully utilize available coarse scene structure (or coarse
scene motion through tracking).

We overcome these limitations by posing the scene flow
estimation problem directly on a proxy surface. This
approach generalizes the typical image-based methods
(e.g., [12]), where in our formulation the proxy would be
the image plane. Our formulation makes use of available
proxy motion, such as coarse tracking of a human subject,
allowing the reconstruction process to exploit intra-camera
observations not only for motion but also for 3D structure.

To obtain longer range correspondences, we formulate
the recovery of scene motion in terms of temporal basis
functions. As recently demonstrated with 2D optic flow [9],
a low dimensional representation uses fewer variables, pro-
vides temporal smoothness, and is less sensitive to noise.

1.1. Contributions

In our 3D formulation of basis constrained scene flow,
we make the following contributions:

• Variational formulation of scene flow on a proxy sur-
face, where the underlying proxy surface may be un-
dergoing some known motion (e.g., from coarse track-
ing). This formulation naturally links many views
(as opposed to two-frame, two-time methods), and di-
rectly recovers structure & flow from image intensities.

• Direct use of a linear basis in scene flow formulation
that allows integration of many time steps using fewer
parameters. The basis constrains and improves geo-
metric reconstruction when the proxy surface under-
goes some known motion.

• With the appropriate proxy and basis choices, our for-
mulation generalizes and provides unified treatment of
optic flow (e.g., proxy surface is the image domain),
basis-constrained optical flow, two-frame stereo (e.g.,
no flow terms), and two frame scene flow.

• We demonstrate results on static proxies, rigidly mov-
ing proxies, and linear blend skinned proxies.

2. Related work
Proxy surfaces (e.g., triangulated base-meshes) have

been used for parameterizing depth reconstructions in
stereo [24, 10]. However, in scene flow, the representations
are either binocular image-based [12, 20], multi-view depth
map based [3], voxel-based [21], or level set based [17];
such dense methods have not been implemented on a proxy
surface. The advantage of the proxy is that it already en-
codes an approximation of surface structure, and regular-
ization is more natural along the surface of the proxy as
opposed to the image domain.

Dense-motion capture methods for garment capture have
similar goals as scene flow and make use of color-coded pat-
terns [18], temporally align template objects to dense stereo
data [5], or refine and track a dense geometry over many
frames using interleaved structure and motion refinements
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per-vertex [8]. Although the end goal is similar, such meth-
ods often utilize a large number of cameras, require highly
textured surfaces, and don’t make use of long-range tempo-
ral information when reconstructing surface motion.

The use of a temporal basis to reconstruct shape has sim-
ilarities to methods that exploit temporal smoothness to aid
static reconstructions. For example, scene flow can enable
better per-frame geometric reconstructions [22]. Even when
the correspondences between temporal geometries aren’t
obtained, temporal constraints improve reconstructions. For
example, in the level set stereo framework, temporal regu-
larization can be used [14], or, in the case of stereo, aggre-
gating over a skewed window in time [25].

Subspace constraints have been successfully employed
for 2D optic flow recovery. For rigid scenes, Irani used sub-
space constraints on the combined flow observation matrix
in multi-frame flow [13]. Assuming a rigid scene and mov-
ing camera, a rank constraint on the flow matrix is derived,
which helps overcome the aperture problem.

Non-rigid structure and motion techniques represent a
deforming surface as a linear combination of deforming
3D shape modes [6]. Again, with a factorization method,
image observations of a 3D deforming surface can be de-
composed into low rank components representing the sur-
face modes and the motion. This low rank motion basis
can be extracted from reliable point tracks [19]. Once the
motion basis is known, the long-range temporal motion of
other (unreliable) points can be estimated simply by find-
ing the few coefficients that make up the shape component.
This empirically formed basis has been used to reconstruct
dense per-pixel surface motion using a variational formu-
lation [9], where per-pixel shape coefficients (e.g., 2-3) are
estimated with regularization for long sequences (e.g., 80
frames). Per-pixel spatial basis functions have also been
used for over-parameterized optic flow estimation using a
variational approach [15]. We also use a variational ap-
proach, but we are interested in 3D scene flow and structure
and use robust functions on the data and smoothness terms.

As in our method, simple temporal constraints (e.g., lin-
ear motion [1], constant velocity) and more expressive co-
sine basis (e.g., [16]) have been used to constrain the ill-
posed problems of reconstructing 3D trajectories observed
from moving cameras. With the exception of our previous
work [4], where a constant velocity basis in a dense image-
based representation, these constraints are often enforced
independently per-point. In this work, we utilize these basis
constraints on a moving proxy, which allows our represen-
tation to exploit this ability of structure reconstruction when
there is little or no overlap in camera views.

3. Basis-constrained motion
Before describing the basis constrained scene flow on

a proxy, we first use an intuitive example to illustrate the

concept of using a basis to constrain temporal point motion
when some coarse scene motion is known. We restrict our
discussion to the case where correspondences are known,
and highlight some of the benefits of using a temporal basis
to represent surface flow, including the ability to overcome
noise and obtain reconstructions with missing data.

Let us consider the simple case, where a single moving
camera with 3×4 projection matrix, P1, and camera motion
given by 4×4 matrices, {Et}Tt=1, observes a dynamic scene.
If correspondences of a moving point, ut = (ut, vt)ᵀ, are
known, one can formulate an estimation process for the un-
known moving 3D point, x(t), like triangulation:

x(t) = argmin
x(t)

T∑
t=1

|Π(P1Etx(t))− ut|2, (1)

where the symbol Π(x) denotes the perspective division by
z: Π((x, y, z)T ) = (xz ,

y
z )ᵀ. As there are 2 constraints per

image, modeling the motion as independent 3D points over
time (e.g., x(t) = (xt, yt, zt, 1)ᵀ) gives 3T unknowns, lead-
ing to an ill-posed problem. Constraining the motion, for
example, by splitting the trajectory into a mean point, x̂,
with a constant velocity, ō = (o1, o2, o3), gives fewer vari-
ables (e.g., 6):

x(t) = x̂ + o(t) = (x̂, ŷ, ẑ, 1)ᵀ + (t− t0)(o1, o2, o3, 0)ᵀ.

This representation allows for a unique reconstruction if
T ≥ 3 and camera motion is sufficient. The restrictive
constant velocity assumption can be generalized by using
a temporal basis to encode the time-varying displacements:

o(t) =
H∑
k=1

λkBk(t). (2)

where {Bk(t)}Hk=1 are temporal basis functions (H < T ).
This same framework holds if there are several views,

{Pi}Ci=1, with correspondences uit. In this case, one can
think of Et as the coarse rigid motion of the scene (if
known), and Eq. 1 would be accumulated over each view:

x(t) = argmin
x(t)

C∑
i=1

T∑
t=1

|Π(PiEtx(t))− uit|2. (3)

When more than two cameras observe the point in each
frame, the reconstruction is no longer ill-posed. However,
using a basis to represent o(t) has several benefits: temporal
smoothness enforced by the appropriate basis helps over-
come noise, there are fewer parameters, and reconstruction
is possible with missing observations.

As an example, consider a multi-view studio filming an
actor. The coarse geometry can be tracked, which gives the
motion of each bone over the sequence. However, the real
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Figure 1. Motion: Images 0, 20, 40, 50 from camera 1. Left: the displacement residual when approximating the 3D displacements using
varying basis elements. Middle: two-view image-based reconstruction from noisy data using Eq. 4 achieves better results when using
roughly 13 basis elements. Right: using 10-20 basis elements enables reconstruction with missing data from the second view.

surface exhibits residual non-rigid motion in addition to the
skeleton (e.g., clothing). For a point on the surface, the
coarse motion of the scene, Et, is given by the correspond-
ing bone motion; this motion will be different for points
attached to different bones. A linear algebraic solution for
the displacement trajectory (i.e., the λk coefficients) can be
obtained by removing the perspective division by multiply-
ing by the z-component, giving a least squares space-time
triangulation problem:

λk =argmin
λk

∑
i,t

([PiEt]1−uit[PiEt]3)(x̂+
∑
k

λkBk(t))2

+
∑
i,t

([PiEt]2−vit[PiEt]3)(x̂+
∑
k

λkBk(t))2.

(4)

where [P]i is the i-th row of P.
To illustrate this formulation, we test the ability of a low

dimensional basis to approximate and reconstruct non-rigid
trajectories layered on a human skeleton. The motion cap-
ture, deformed meshes, and surface displacements are from
the MIT crane data set [23]. We approximated the displace-
ments relative to the bone in the first 50 frames with the
discrete cosine basis. Figure 1 illustrates 3D residuals for
an increasing number of basis functions. At about 15 ba-
sis functions a good approximation of the surface motion
is obtained; this requires only 1

3 the parameters of the un-
constrained motion. Furthermore, when reconstructing dis-
placements from two views with noisy image observations
using Eq. 4, fewer variables (e.g,. 12 basis functions) gives
better results than more variables (middle Fig. 1), implying
the lower dimensional basis helps in the presence of noise.

The ability to reconstruct in the presence of missing data
is also illustrated in the right of Figure 1, where 10%, 25%,
and 50% of the observations in the second camera were un-
known. In these cases, solving for unconstrained motion is
ill-posed, and the best reconstruction comes from restricting
the motion to a lower (e.g., 10-20) dimensional basis.

4. Scene flow on a proxy
In the previous section, we demonstrated the use of a

temporal basis to recover flow when coarse scene motion
(Et) was known and correspondences were given. In this
section, we replace this idea of coarse motion (e.g., mo-
tion of bones) with the formalism of a moving approxi-
mate proxy surface. Instead of assuming known correspon-
dences, the low dimensional basis constraint is used to di-
rectly estimate the scene flow and scene structure relative to
the proxy surface. Below, we formulate the problem (§4.1),
give a general form of a proxy surface (§4.2), and formulate
scene flow estimation relative to this proxy surface (§4.3).

4.1. Problem Definition

Given input images, Ii,t, taken from 1 ≤ i ≤ C cam-
eras at stationary viewpoints over time t ∈ {1, · · · , T}, the
objective is to reconstruct the dense structure of the sur-
face and the 3D surface flow with respect to a known ap-
proximate proxy-surface. The camera calibration is given:
Pi = [Ki|0][Riti], with internals Ki, and external ro-
tation, Ri, and translation ti. As a shorthand, we use
Πi(x) = Π(Pix). The proxy may be moving; we as-
sume this motion is approximately known through an ex-
ternal tracking process.

4.2. Proxy surface

We assume that we have available a known 3D proxy
surface x̂(u, v, t) : (Ω ⊂ R2) × Z 7→ R3, embedded in 2D
at discrete time steps t. We define the surface normal as

n(u, v, t) =
x̂u(u, v, t)× x̂v(u, v, t)
|x̂u(u, v, t)× x̂v(u, v, t)| , (5)

where xu and xv are the partial derivatives of the surface
(i.e., tangents). The tangent frame matrix is defined as

T(u, v, t) =
[

x̂u(u, v, t)
|x̂u(u, v, t)| ,

x̂v(u, v, t)
|x̂v(u, v, t)| ,n(u, v, t)

]
. (6)
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Figure 2. We represent the surface relative to a possibly moving
proxy surface observed by several cameras. At a reference frame
(e.g., t = 1), the true surface is simply a displacement d from the
proxy along the normal. In subsequent frames, the surface is rep-
resented as the displaced point with an additive flow component.

4.3. Recovering displacements and flow

Scene motion is modeled relative to the moving scene
proxy with a time dependent 3D temporal offset, o(u, v, t),
and a displacement along the normal d(u, v):

x(u, v, t)= x̂+T(u, v, t)o(u, v, t)+d(u, v)n(u, v, t). (7)

The displacement, d, is with respect to a reference time,
e.g., t = 1. The third component of the offset vector
o(u, v, t) = (o1(u, v, t), o2(u, v, t), o3(u, v, t))ᵀ, accounts
for temporal changes in normal motion.1 Using, T, the tan-
gent frame of the surface, implies that the offsets are repre-
sented in the coordinate frame of the surface (see Figure 2).
Setting T to the identity means the surface motion would
be represented in the global world coordinate frame.

Unlike the previous section, which assumed known cor-
respondences, here we recover 3D surface displacement,
d, and long range flow, o, directly from image intensi-
ties. The desired displacements and flow should be both
photo-consistent and flow-consistent. Therefore, the dis-
placement and flow can be recovered by minimizing the fol-
lowing functional, which uses brightness constancy to mea-
sure flow- and photo-consistency:

F (d,o)=α

T∑
t=2

Ff (d,o, t)︸ ︷︷ ︸
Flow

+
T∑
t=1

(Fs(d,o, t)︸ ︷︷ ︸
Stereo

+Fr(d,o, t)︸ ︷︷ ︸
Regularize

), (8)

The individual terms are

Fs(d,o, t)=
∫

Ω

∑
j 6=i

wijtΨ(|Iit(Πi(x(t)))−Ijt(Πj(x(t)))|2)dA

Ff (d,o, t)=
∫

Ω

wit1Ψ(|Ii,t(Πi(x(t)))− Ii,1(Πi(x(1)))|2)dA

Fr(d,o, t)=β2

∫
Ω

Ψ(|∇o(u, v, t)|2)dA+ β1

∫
Ω

Ψ(|∇d|2)dA

1Due to o3, the displacement component, d, can be dropped. How-
ever, we find it advantageous to regularize the displacement component
separately, and instead keep d and choose basis functions with zero dis-
placement at the reference time.

|∇o|2 =
3∑
j=1

|∇oj |2.

where x(t) is a shorthand for x(u, v, t) in Eq. 7, dA =
dudv, and Ψ(x2) =

√
x2 + ε2 is a smooth L1 norm [7],

and ∇ is a 2D spatial gradient over the parameters u and
v. The weighting term wijt(u, v) (resp. wit1) is used to
encode visibility or reliability of the image observations for
stereo pairs (resp. flow). See Section 5.3 for details.

The stereo term, Fs, ensures the displaced surface is
photo-consistent at each time; the flow term, Ff , like optic
flow, ensures the intensity at the flowed points is in agree-
ment with the reference frame (e.g., t = 1). The regular-
ization acts both on the displacements d and prefers to have
smoothly varying 3D flow at each time t.

4.4. Temporal basis-constrained flow

The functional, F , is dependent on the shape displace-
ment d, and the surface offsets o(u, v, t), at each time
2 ≤ t ≤ T . Allowing arbitrary displacements would re-
quire a large number of variables and would need an extra
term for temporal smoothness. Instead, as in Eq. 2, the mo-
tion is modeled with a low-dimensional basis, but the coef-
ficients of motion, λk, are spatially varying scalar fields:

o(u, v, t) =
H∑
k=1

Bk(t)λk(u, v). (9)

Where again {Bk(t)}Hk=1 are a set of basis functions. For
example, a constant velocity basis using time 1 as a refer-
ence would use B1(t) = (t−1, 0, 0)ᵀ,B2(t) = (0, t−1, 0)ᵀ

and B3(t) = (0, 0, t − 1)ᵀ. The total number of unknown
scalar fields reduces from 3(T − 1) + 1 to H + 1.

The basis elements can be more elaborate. As in the
2D flow (e.g., [9]), the motion basis functions can be fac-
tored from a sparse set of representative tracks. We utilize
the discrete cosine basis, which has been used to constrain
trajectories of moving points observed from moving cam-
eras [16]. As a consequence, when proxy motion is known
(and sufficient), it is possible to reconstruct the 3D flow tra-
jectory when the surface is only visible by one camera.

An advantage of this framework is that it naturally gen-
eralizes a number of variational approaches involving dense
correspondence, including optic flow, stereo, and scene
flow. Table 1 lists the corresponding proxy and basis func-
tions for a number of these applications.

4.5. Euler-Lagrange equations

Scalar fields d and {λk}Hk=1 that minimize Eq. 8 must
satisfy the Euler-Lagrange equations:



Problem Time Proxy (static/dynamic) An example basis
Optic flow [7] t = 2 Image plane (static) B1(t) = [1, 0, 0], B2(t) = [0, 1, 0]

Optic flow with basis [9] t > 1 Image plane (static) E.g., B1(t) = [t, 0, 0], B2(t) = [0, t, 0]
Stereo with basis for depth t ≥ 1 Image plane (static) E.g., B1 = [0, 0, t], cosine basis, ...

Displacement from proxy (e.g., [24]) t ≥ 1 Approx geom. (dynamic) E.g., B1 = [0, 0, t], cosine basis, ...
Scene flow [12] t = 2 Image plane (static) B1 = [1, 0, 0],B2 = [0, 1, 0],B2 = [0, 0, 1]

Scene flow on proxy t > 1 Approx geom. (dynamic) B1 = [t, 0, 0],B2 = [0, t, 0],B2 = [0, 0, t]
Table 1. Our basis-constrained scene flow on a proxy generalizes a number of approaches. In optic flow, simple stereo, or scene flow the
proxy would be the image plane. The basis functions limit the reconstruction to the 2D offsets (for optic flow) or the depth (for stereo), and
can easily extend to multi-frame estimates. Our application is the most general: scene flow on top of a dynamic proxy.

0 =
T∑
t=1

∑
j 6=i

wijtΨ′(I2
ijt)Iijt

∂

∂d
Iijt+

α

T∑
t=2

wit1Ψ′(I2
it1)Iit1

∂

∂d
Iit1 − β1∇ · (Ψ′(|∇d|2)∇d),

(10)

and for all 1 ≤ k ≤ H:
T∑
t=1

∑
j 6=i

wijtΨ′(I2
ijt)Iijt

∂

∂λk
Iijt+

α

T∑
t=2

wit1Ψ′(I2
it1)Iit1

∂

∂λk
Iit1−

β2∇ · (Ψ′(|∇o|2)
3∑
c=1

∇oc[Bk(t)]c) = 0.

(11)

Here, the shorthand Iijt = Ii,t(Πi(x)) − Ij,t(Πj(x)),
Iit1 = Ii,t(Πi(x)) − Ii,1(Πi(x)). The partial derivatives
of these terms w.r.t d and λk are

∂

∂d
Iijt =∇Ii,t ∂

∂d
Πi(x)−∇Ij,t ∂

∂d
Πj(x), (12)

∂

∂d
Πi(x) = Π′(Ki(Rix+ti))︸ ︷︷ ︸

2×3

KiRin(u, v, t)︸ ︷︷ ︸
3×1

, (13)

∂

∂λk
Iijt =∇Ii,t ∂

∂λk
Πi(x)−∇Ij,t ∂

∂λk
Πj(x), (14)

∂

∂λk
Πi(x)=Π′(Ki(Rix+ti))KiRiT(u, v, t)Bk(t), (15)

Π′((x y z)ᵀ) =
[

1
z 0 − x

z2

0 1
z − y

z2

]
. (16)

∂
∂dIit1 and ∂

∂λk
Iit1 are similar.

The above Euler-Lagrange equations are linearized and
solved using multi-grid methods (see Appendix A).

5. Implementation on a Skinned Proxy Mesh
The formulation in the previous section operated on a

generic, possibly moving proxy surface. In this section, we

specify implementation details for a linear-blend skinned
triangulated proxy mesh (§5.1), how the tangent space is
defined (§5.2), and further describe the initialization and
optimization (§5.3).

5.1. Skinned mesh

A skinned mesh consists of a set of vertices, V̂ = {v̂j},
in a rest-pose attached to one or more skeleton bones, and
a set of triangles S = {si ∈ Z3}. Each bone, b, has a
transformation, Ab(θb), relative to its parent, p(b); the con-
catenation up the chain gives the transformation from bone
to world: Mb,j(θ) = Mp(b),j(θ)Ab(θb). Given a set of an-
gles, θ =

⋃
b θb, representing the pose of the skeleton, the

deformed vertex is given as

vj(θ) =
∑
b

wb,jMb,j(θ)Mb,j(0)−1v̂j , (17)

where wb,j is the attachment weight of vertex j to bone b.
The motion of the proxy mesh is then determined by the
temporal sequence of joint angles {θt}Tt=1.

5.2. Tangent space

Each triangle si has a corresponding set of 2D tex-
ture coordinates, (ui,1,ui,2,ui,3). The piecewise linear
mapping from 2D to 3D for a point (ui, vi)T in triangle
(ui,1,ui,2,ui,3) with bary-centric coordinates (ui, vi)T =∑3
j=1 ajui,j , is

x̂(u, v, t) =
3∑
j=1

ajvsi,j
. (18)

The tangent space is also interpolated across triangles in the
2D domain using these same bary-centric weights, aj . The
surface normal at each vertex is the average of unnormal-
ized triangle normal (e.g., (vsi,2 − vsi,1)× (vsi,3 − vsi,1)).

Tangent directions, for each triangle are approximated
for each triangle

xx=
[ui,3−ui,1]y(vi,2−vi,1)−[ui,2−ui,1]y(vi,3−vi,1)

c

xy=
[ui,2−ui,1]x(vi,3−vi,1)−[ui,3−ui,1]x(vi,2−vi,1)

c
c =[ui,2−ui,1]x[ui,3−ui,1]y−[ui,3−ui,1]x[ui,2−ui,1]y.



Figure 3. From left: two of four input views, the initial proxy, the
recovered displaced mesh, and the textured displaced mesh.

As in the case for normals, the tangents for each vertex are
averaged over the triangles that contain it.

5.3. Initialization and Optimization

The proxy mesh can either come from a sparse set of
stereo points or a manually initialized selection of points.
The uv-parameterization can be obtained by projection of
vertices into a single-view, through automatic methods, or
it can be aided by a user in modeling software.

In the case of no approximate proxy motion, all motion
will be relative to the original proxy surface. When a kine-
matic skeleton is available, we track the surface of the skele-
ton using silhouettes or image-based scores.

The image weights, wijt, are set as wijt(u, v) =
wit(u, v)wjt(u, v), where

wit(u, v) =
{ 〈n(u, v, t), li〉 if x(u, v, t) visible in Ii

0 otherwise,

and li is the ray to camera i. The flow weights, wit1, are
defined similarly.

The Euler-Lagrange equations (Eq. 10 & 11) are solved
on multiple resolutions of the tangent space and the input
images. Solutions from lower resolutions are propagated to
the higher resolutions by simple image resampling.

6. Experiments
We now illustrate the results of our implementation on

several synthetic and real data sets.
Static proxy, depth only Figure 3 illustrates one of the
applications that our framework generalizes: depth from a
static proxy. Four views of the toy house (one time frame)
are used to recover depth from a simple manually created
proxy (no temporal basis are used).
Skinned object, no camera overlap In this synthetic data
set we illustrate the helpful effect of using the basis con-
straints in the case of kinematic motion when there is no
overlap between the camera views. With this experiment
we show that constraining the motion of the surface with a
basis can improve the surface reconstruction. The sequence
contains 3 views and 3 time instances of a cylindrical ob-
ject (roughly 3 units high by 1.5 units wide) with two bones
undergoing a small bend and small translation motion (see

Figure 4. The three input images (from camera 1) for the synthetic
skinned cylinder illustrate the motion and texture on the object.

Figure 5. Top left: the non-overlapping camera configuration. Top
right: ground truth geometry from first viewpoint. Bottom left: in-
accurate reconstruction results with no constraints. Bottom right:
more accurate reconstruction using a constant velocity constraint.

Fig. 4 for input and Fig. 5 for camera configuration). The
base motion of the skeleton is assumed to be known, and
the ground truth skinning weights are used. The underlying
motion over the three frames is linear.

We reconstructed the surface motion both with a constant
velocity basis and with an unconstrained flow. The use of a
constant velocity basis allows more accurate reconstruction
of the depth (Fig. 5). Although the unconstrained basis does
recover some of the tangential flow, the depth estimates are
still inaccurate. The average of the median position error at
each time step was 0.0209 and 0.0135 for the unconstrained
and constrained reconstructions respectively (base surface
error, with no displacements, is 0.0722).
Static proxy, multiple views In this example, we illustrate
that the proxy motion need not be known. The data was col-
lected from a static stereo setup that captured a translating
deforming mouse pad (Fig. 6). The base geometry consisted
of 2 triangles specified manually in the first frame. We used
a cosine basis with 8 basis elements (for each flow com-
ponent) to model the motion over 16 frames. The motion
was successfully modeled (illustrated by the reprojection of
texture) and the flowed geometric surface exhibits the de-
formations of the mouse pad.
Rigid moving proxy, single view In this example, we illus-
trate that taking motion of the proxy into account aids the
reconstruction. We used a single view from the previous ex-
periment, and used the flow results from the multi-view case
to fit the rigid motion of the proxy. The time-varying depth



Figure 6. Top: input frames 0, 7, and 15 from the mousepad se-
quence (white rectangle shows static proxy). Middle: shaded and
textured reconstructions (several trajectories plotted in t = 0).
Bottom: rectified surface texture over several frames.

Figure 7. Shaded and texture reconstructions for the single-view
time-varying depth only reconstruction of the mousepad on frames
0, 7, and 15.

Figure 8. Top: input images from time 0, 5, 14. Middle: recon-
structed geometry. Bottom: deformed textured with I1,0.

on the surface was then recovered over the sequence using
the first 3 cosine basis functions to model the displacement
along the normal (flow components were not modeled). As
illustrated in Figure 7, the time-varying depth was success-
fully recovered from the single-view sequence.
Two link arm, skinned proxy In this example we demon-
strate the use of the full model: a moving skinned proxy
observed by multiple cameras. The proxy object is a mov-
ing arm (Fig. 8). Two views were used to track the geom-
etry and to obtain an initial shape (a skeleton was manu-

ally inserted and skinning weights were obtained automat-
ically [2]). The texture resolution was 128x128 and a co-
sine basis with 7 elements for each coordinate were used to
model the motion over 16 frames. Notice that the geometry
starts to recover the wrinkles.

7. Discussion & Conclusion

We have presented a variational approach for scene flow
(and structure) reconstruction directly from image intensi-
ties that uses a temporal basis for longer range tracks. The
formulation takes advantage of known motion of the proxy
(when available) to enable monocular reconstruction.

Although the proxy representation is natural for repre-
senting structure and flow, it does have limitations. One
such limitation is that the proxy must be appropriate for the
scene (e.g., the underlying unknown scene must be a func-
tion of depth from the proxy). Further, as only brightness
constraints are used, the surface flow can be confused when
there are illumination changes (likely due to relative surface
motion w.r.t. the lights). This can be addressed by using a
data term less sensitive to illumination (e.g., using the gra-
dient of the image).

The linearization (Appendix A) uses (H + 1)× (H + 1)
tensors for each data term (and each pixel). This limits the
number of basis functions that can be used for long range
sequences. Removing the robust norms on data terms may
allow for a more efficient memory implementation.

Furthermore, our implementation currently doesn’t han-
dle discontinuities in the uv-parameterization, although this
is possible in the discretization (e.g., as in [11]). For other
future work, we would like to consider coupling the track-
ing and flow into a single formulation; in this way, the track-
ing module could take advantage of the refined surface.

Also, the decision of the type of motion bases (and the
degree) are currently parameters that must be chosen by the
user. If possible, prior knowledge of the flow should be
used to guide these decisions. However, in future work,
we would like to ease this decision by making use of an
empirically learned motion basis from a set of reliable point
tracks (e.g., as in the 2D flow implementations [9]).

A. Solving the Euler-Lagrange

Following optic flow [7], the Euler-Lagrange equations
(Eqs 10 & 11) are solved with fixed point iterations:

T∑
t=1

∑
j 6=i

wijtΨ′ij((I
h+1
ijt )2)Ih+1

ijt

∂

∂d
Ihijt+

α

T∑
t=2

wit1Ψ′((Ih+1
it1 )2)Ih+1

it1

∂

∂d
Ihit1−

β1∇ · (Ψ′(|∇dh+1|2)∇dh+1) = 0,

(19)



T∑
t=1

∑
j 6=i

wijtΨ′ij((I
h+1
ijt )2)Ih+1

ijt

∂

∂λk
Ihijt+

α

T∑
t=2

wit1Ψ′((Ih+1
it1 )2)Ih+1

it1

∂

∂λk
Ihit1−

β2∇ · (Ψ′(|∇oh+1|2)
3∑
c=1

∇oh+1
j [Bk(t)]j) = 0.

(20)

Defining the update, dh+1 = dh + δdh, λh+1
k = λhk +

δλhk , 1 ≤ k ≤ H , the data terms can now be linearized:

Ih+1
ijt =Ii,t(Πi(xh+1))− Ij,t(Πj(xh+1))

≈Ii,t(Πi(xh))− Ij,t(Πj(xh))+

(Ihijt)dδd
h +

∑
k

(Ihijt)λk
δλk = (∇Ihijt)ᵀδDh.

(21)

Where

∇Ihijt = [(Ihijt)d, (I
h
ijt)λ1 , · · · , (Ihijt)λH

, Ihijt]
ᵀ, (22)

δDh = [δdhk , δλ
h
1 , · · · , δλhH ]ᵀ. (23)

The terms for Iit1 are defined analogously. Defin-
ing the data tensors Shijt = (∇Ihijt)(∇Ihijt)ᵀ and Shit1 =
(∇Ihit1)(∇Ihit1)ᵀ the linearized equations are

T∑
t=1

∑
j 6=i

wijtΨ′ijt(·)[Sijt]1δDh+α
T∑
t=2

wit1Ψ′it1(·)[Sijt]1δDh

− β1∇ · (Ψ′(|∇dh+1|2)∇dh+1) = 0,
T∑
t=1

∑
j 6=i

wijtΨ′ijt(·)[Sijt]k+1δDh+

α

T∑
t=2

wit1Ψ′it1(·)[Sijt]k+1δDh−

β2∇ · (Ψ′(|∇oh+1|2)
3∑
c=1

∇oh+1
j [Bk(t)]j) = 0,

Ψ′ij∗(·) = Ψ′((δDh)ᵀSij∗δDh).

The discretization and multi-grid optimization follow the
framework for optic flow [7].
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