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Abstract

We consider the problem of recovering 3D surface displace-
ments using both shading and multi-view stereo cues. In
contrast to traditional disparity or depth map representa-
tions, the object centered displacement map representation
enables the recovery of complete 3D objects while also en-
suring the reconstruction is not biased towards a particu-
lar image. Although displacement mapping requires a base
surface, this base mesh is easily obtained using traditional
computer vision techniques (e.g., shape-from-silhouette or
structure-from-motion). Our method exploits shading vari-
ation due to object rotation relative to the light source, al-
lowing the recovery of displacements in both textured and
textureless regions in a common framework. In particular,
shading cues are integrated into a multi-view stereo photo-
consistency function through the surface normals that are
implied by the displacement map. The analytic gradient
of this photo-consistency function is used to drive a multi-
resolution conjugate gradient optimization. We demon-
strate the geometric quality of the reconstructed displace-
ments on several example objects including a human face.

1. Introduction
The automatic computation of 3D geometric and appear-
ance models from images is one of the most challenging and
fundamental problems in computer vision. While a more
traditional point-based method provides accurate results for
camera geometry, a surface representation is required for
modeling and visualization applications. One of the most
popular classes of surface-based reconstruction methods are
multi-view stereo approaches that represent the surface as a
depth or disparity map with respect to one reference im-
age [17] or multiple images [11]. One of the main disad-
vantage of those methods, referred to as image-centered ap-
proaches, is that the reconstruction will be biased by the
chosen reference image. As a consequence, the results are
often aliased due to the limited depth resolution and they
do not reconstruct parts of the object that were occluded in
the reference image. An object-centered model is therefore
more suitable for multi-view reconstruction. Examples of

Displacement Albedo

.

.

.

.

.

.

Input Images
& Calibration Base Mesh

Input Data Output Data

Figure 1: An overview of our method, which recovers the
surface displacement and albedo given a set of input images,
a base mesh, and calibration data.

object-centered surface representations include voxels [18],
level-sets [8], and meshes [10, 7].

We propose a surface reconstruction method that in-
vestigates a less explored object-centered representation -
a depth field registered with a base mesh (see Fig. 1).
Our model is inspired by computer graphics displacement
maps [5] that nowadays have efficient HW implementations
(e.g., [15]). Compared to a deformable mesh-based repre-
sentation, our method is more stable as disparities are con-
strained to move along the normal directions w.r.t. the base
mesh. For a purely mesh-based representation, the vertexes
are allowed to move freely, so the displacement direction
can become unstable. The method can also be regarded as
an extension of the stereo-based methods, where depth is
calculated with respect to an object-centered base mesh as
opposed to the image plane. Therefore reconstruction meth-
ods used for stereo can be easily generalized to our repre-
sentation. One can, for example, make use of the efficient
discrete methods like graph cuts or belief propagation that
cannot be used with some other object-centered represen-
tations (e.g., mesh, level-sets). For our case, as the cost
function is based on shading and uses the surface normals,
we chose a continuous representation where the normals are
implied by the surface.

We formulate the surface reconstruction of Lambertian
scenes as an optimization of a photo-consistency function
that integrates stereo cues for textured regions with shape
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from shading cues for texture-less regions. The cost func-
tion is calculated over a discretization of the base mesh.
Even though the method assumes an a-priori base mesh,
this can be easily obtained in practice using shape-from-
silhouette or triangulation of structure-from-motion points.
Due to the high dimensionality, reconstruction can be diffi-
cult and slow, while requiring a substantial amount of image
data. To ameliorate these problems, we propose a multi-
resolution algorithm.

There exist other approaches that combine stereo for tex-
tured regions with shape from shading cues for texture-less
regions [10, 14], but, in those works, the two scores are
separate terms in the cost function and the combination is
achieved either using weights [10] or by partitioning the sur-
face into regions [14]. Like photometric stereo, our method
is able to reconstruct the surface of spatially varying or uni-
form material objects by assuming that the object is moving
relative to the light source. A similar constraint was used by
Zhang et al. [25] and Weber et al. [22] but with a different
surface representation.

To summarize, the main contributions of the paper are:

• We propose a method that reconstructs surfaces dis-
cretized as a depth field with respect to a base mesh
(displacement map); the representation is suitable for
both closed and open surfaces and, unlike traditional
stereo, reconstructs whole objects;

• We designed a photo-consistency function suitable for
surfaces with textured and uniform Lambertian re-
flectance by integrating shading cues on implied sur-
face normals;

• We designed a practical setup that provides the neces-
sary light variation, camera and light calibration and
requires only commonly available hardware: a light
source, a camera, and a glossy white sphere.

2 Related Work

To our knowledge, the work of Vogiatzis et al. [21] is
the only source that deals with reconstruction of depth
from a base mesh. Most previous approaches reconstruct
depth (from stereo) and then fit planes to the resulting 3D
points [6]. In contrast, Vogiatzis et al. [21] estimate the dis-
placement for sample points on the base mesh using a belief
propagation technique. Their method assumes there is no il-
lumination variation in the images (the scene is fixed w.r.t.
illumination) and the cost function is just a variance of the
colors that a sample point project to. The method is there-
fore similar to multi-view stereo reconstruction, requiring
scenes with good texture.

A related representation was proposed by Zeng et al. [23]
but, in their case, the base geometry is a collection of planes
(fitted to a set of 3D points given a-priori) that do not nec-
essarily form a mesh. The depth of the surface patch along

the plane normal is reconstructed using a globally-optimal
graph cut optimization that ensures that the patch surface
goes through any neighboring 3D points. A similar surface
patch approach was used to determine voxel consistency in
a more recent work by Zheng and his colleagues [24]. Other
approaches use parametric models for local depth represen-
tation (e.g., planar disks [9], quadratic patches [13]). The
patches are then integrated and interpolated to form the fi-
nal surface.

The mesh-based methods share some similarities to the
chosen representation, but they operate by iteratively evolv-
ing and refining an initial mesh until it fits the set of im-
ages [10, 7, 12, 2]. In these approaches large and complex
meshes have to be maintained in order to represent fine de-
tail. In contrast we assume a fixed base mesh and compute
surface detail as a height field with respect to it.

The chosen representation is an extension of the tradi-
tional disparity map where the depth is registered with re-
spect to a base geometry instead of the reference image
plane. Thus it has similarities to the multi-view stereo re-
construction techniques. Like in the global stereo methods
(e.g., [20, 11]) we formulated the problem as minimizing a
global energy function that takes into account both match-
ing and smoothness costs. But, unlike stereo methods, in
our case the discretization and regularization is viewpoint
independent. Additionally, our approach is able to recon-
struct complete scenes as every point that is visible in at
least one image will be reconstructed (in the case of stereo
points that are occluded in the reference image are not re-
constructed).

3 Problem Definition and Formula-
tion

True Surface

Base Mesh

sample point p
i

displaced sample point

p̂i = pi + µidi

sample points

Figure 2: An overview of the representation and notation
used in this paper.

We assume that we are given a set of n images, Ii, the
corresponding calibration matrices, Pi, the corresponding
illumination parameters, Li, and a base mesh consisting of
a set of vertices V = {v ∈ <3} and a triangulation of these
vertices T = {(v1,v2,v3)|vi ∈ V }. The shape recon-
struction problem is then cast as an optimization problem,
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that recovers a set of displacements µj along a direction dj

from a discrete set of m sample points, pj , taken on the sur-
face of each triangle. A point on the displaced surface will
be denoted as p̂j = pj + µjdj , which is a function of the
current estimate of the displacement µj (see Fig. 2).

The displacements, µj , are then related to the image
measurements through a photo-consistency function. The
photo-consistency function measures the similarity between
the reflectance of a point on the surface and the images in
which it is observed. The goal is then to find a set of dis-
placements, µj , and the reflectance parameters, αj , of the
sample points that minimize the value of the following cost
function:

Fdata =
∑

j

1

|Vj |
∑

i∈Vj

fi(µj , αj) (1)

=
∑

j

1

|Vj |
∑

i∈Vj

|Ri(p̂j , αj) − Ii(Π(Pip̂j))|2 (2)

In the above cost function, Vj denotes the set of images
that observe displaced point p̂j , and Ri denotes the render-
ing function that produces a color value for the displaced
point observed under the illumination and viewing parame-
ters of camera i. In other words, the cost function expresses
the difference between the rendered surface representation
and the input images. We used a similar cost function in our
mesh-based implementation [2] although in this work we
currently take no precautionary measures to filter out spec-
ular highlights or address image sampling issues. Again,
instead of using the entire set of cameras that observe a sam-
ple point, a subset of the visible cameras closest to the me-
dian camera are used. This adjustment partially accounts
for image sampling problems (e.g., cameras that view the
surface at a grazing view).

We assume that the input images and illumination infor-
mation is sufficient for determining the reflectance param-
eters αj . That is, if we fix the surface displacements, there
exists a closed form solution for reflectance parameters that
minimize Eq. 4. If this is the case, then this minimization
process can be done for each αj independent of the other
ones (like in photometric stereo).

In our specific work, we assume that the surface is Lam-
bertian, implying that the surface reflectance parameters at
a point are simply the albedo (e.g., αj is a RGB color). Fur-
thermore, we assume that the illumination for each frame
is represented as a directional light source plus an ambient
term 1. We use li to denote the light direction, `i to denote
the light color, and ai to denote the ambient color. Under
these conditions, the rendering function for image i is sim-
ply the Lambertian shading model for the case of a single
light source:

1Actually, we model the light as a point light source, implying that the
direction to the light source is dependent on the 3D position of the point.

Ri = αj

(

`i

nj

|nj |
· li + ai

)

(3)

where nj is the surface normal at displaced point j. We
use the implied surface normal, obtained as a function of
the sample points that are within a neighborhood of sample
point j, denoted Nj .

Unlike traditional binocular stereo, the use of the implicit
surface normal in the above cost function acts a regularizer,
but the minimization is still sensitive to noise. As is the case
in other multi-view stereo reconstructions, additional regu-
larization is necessary. In this work, we take the approach
often used in binocular methods, where the regularization is
added as a separate term in the minimization, giving

F = Fdata + λFsmooth (4)

Currently, we use a simple quadratic regularizer that ensures
that neighboring sample points, have similar displacements:

Fsmooth =
∑

j∈m

∑

k∈Nj

(µj − µk)2 (5)

where Nj is a neighborhood around sample point j. An-
other potential smoothness term would be to use the Eu-
clidean distance between neighboring points, as was done
by Vogiatzis et al. [21].

An alternative approach is to keep the regularization
implicit (multiplicative regularizer) by considering the
weighted minimal surface like in the level set approaches
(e.g., Faugeras and Keriven [8]). However, researchers
(e.g., Soatto et al. [19]) made the observation that the im-
plicit level set approach might suffer from over-smoothness
due to high order derivatives involved into unknowns and
also could change the image variability depending on the
surface. Therefore, for our system, we used an additive
regularizer, giving a more precise and easily interpretable
effect.

4 Sampling & Optimization

We now detail the procedures required in minimizing the
cost function presented in Section 3. First we discuss how
we discretize the base mesh into sample points, and define a
specific neighborhood function for the sample points. With
these details in place we then present a closed form solution
for the reflectance parameters for a set of surface points,
followed by details of the optimization procedure.

4.1 Sampling

Clearly, it is desirable to have a set of sample points that are
evenly distributed on the base mesh. The resolution of the
mesh should be chosen so that the distance between sam-
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ple points roughly corresponds to one pixel in image space.
One simple solution would be to choose the sample points
on a regular grid within each base triangle. However, for
visibility and neighborhood purposes it is useful to have a
triangulation of the base points. Unfortunately, obtaining
a water tight triangulation of these regularly spaced points
may become complicated. Moreover, the sampling rate may
be different on the edges of the base mesh.

To alleviate these sampling issues we instead use a sub-
division approach. In this approach, starting from the base
mesh and given a desired sample spacing, any edges in the
mesh that are longer than twice the desired sample spacing
are split in two. Splitting an edge turns the two triangles that
contain the violating edge into four smaller triangles. This
operation is performed until all edges in the mesh are less
than twice the sample spacing (e.g., splitting an edge would
produce two sample points that closer than the desired sam-
ple spacing). Simply using this approach may produce sam-
ple points with an irregular valence (i.e., an irregular num-
ber of neighbors) and may create triangles with poor aspect
ratios. To circumvent these problems, we use the topologi-
cal operators of Lachaud and Montanvert [16]. These oper-
ators ensure that edge lengths are within a certain range and
that non-neighboring vertices are sufficiently spaced.

The vertices of the subdivided mesh are the sample
points pj , and the neighborhood function Nj is defined as
those sample points that share an edge in the subdivided
mesh. This approach ensures that the neighborhood func-
tion extends across base triangles. Finally, we take the dis-
placement direction dj of a sample point to be the corre-
sponding interpolated surface normal at the position pj on
the base mesh. As our current implementation does not ac-
count for self-intersection during the refinement, using the
interpolated normal opposed to the base plane normal re-
duces the occurance of these self-intersections.

4.2 Reflectance Parameters

Recall that we required a closed form solution for the re-
flectance parameters for any particular choice of displace-
ments. The Lambertian shading function in Eq. 3 is depen-
dent on the implied surface normal, nj , for surface point j.
In this work, we compute the implied surface normal, nj ,
as an area weighted average of the triangle normals of the
sample point triangulation, which is given below in unnor-
malized form:

nj =
∑

(j,k,i)∈∆(pj)

(p̂k − p̂j) × (p̂i − p̂j) (6)

where ∆(pj) denotes the triangles that contain pj . Notice
that the implied surface normal is a function of the displaced
surface points.

Using the above definition of a surface normal for a par-
ticular instantiation of surface displacements, we can com-

pute a closed form solution for the αj . For each particular
surface point, we collect all image observations of the point
into a system of equations:

















(

`1
nj ·l1
|nj |

+ a1

)

(

`2
nj ·l2
|nj |

+ a2

)

...
(

`m
nj ·lm
|nj |

+ am

)

















αj =











I1(Π(P1p̂j))
I2(Π(P2p̂j))

...
In(Π(Pnp̂j))











(7)

Ajαj = Ij (8)

As both the left and right hand sides are n × 1 vectors, the
least squares solution for the albedo is easily obtained as:

αj =
A>

j Ij

A>
j Aj

=
Aj · Ij

Aj · Aj

(9)

4.3 Optimization

One possible method for optimization would be to dis-
cretize the displacement values into a set of discrete labels
and then use a combinatorial optimization technique to re-
fine the labels (e.g., similar to the method of Vogiatzis et
al. [21]). As the surface normals rely on a current estimate
of the neighboring displacements, this approach can not di-
rectly minimize our cost function (see Section 4.4.1, for
more details about a direct discretization of the cost func-
tion).

Instead, we perform a continuous optimization of the dis-
placements. As both the memory and computational cost
for computing a Hessian of the objective function is pro-
hibitive, we chose the conjugate gradient method. We use
the analytic derivatives of the cost function in the optimiza-
tion. These derivatives are summarized below.

For convenience we define the individual terms of the
cost metric for a given sample point in a given view:

cij =

(

αj

(

`i

nj · li
|nj |

+ ai

)

− Ii(Π(Pip̂j))

)2

The value of the objective function for sample point j in
image i (e.g., cij) is dependent only on its displacement, µj ,
and the displacements of the neighbors Nj(pj). Therefore,

∂cij

∂µk
= 0 if k 6= j&k /∈ Nj(pj) (10)

∂cij

∂µk

= 2

(

αj

(

`i

nj · li
|nj |

+ ai

)

− Ii(Π(Pip̂j))

)

((

`i

nj · li
|nj |

+ ai

)

∂αj

∂µk

+ αj`i

∂

∂µk

nj · li
|nj |

− ∂Ii(Pip̂j)

∂µk

)

The derivative of the least squares computation for the
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albedo, ∂αj

∂µk
, is straightforward and can be expressed in

terms of ∂
∂µk

(
nj ·li
|nj |

). These derivations and those for the
∂

∂µk
Ii(Π(Pip̂j)) term can be found in Appendix A.

4.4 Multi-Resolution

The local nature of the conjugate gradient optimization is
sensitive to the starting position and is likely to fall into a
local minima if this starting position is far from the global
minimum. Following other image-based approaches [10],
we use a multi-resolution to lessen the dependence on a
good starting position. We start the optimization on down-
sampled images and a corresponding down-sampled mesh.
After convergence the mesh resolution is increased and the
conjugate descent optimization is run again. After this step
converges the image resolution is increased. These steps
are iterated until the true resolution for the input images has
been used. We use OpenGL depth buffering to compute
visibility of the sample points. This operation can be ex-
pensive, so the visibility of sample points is only updated
every 100 iterations or when the resolution changes.

4.4.1 Initialization

To further avoid local minima and because our method re-
quires a good initialization for convergence we provide an
approximate initialization at the lowest resolution. Specif-
ically, we use a sampling technique that is similar to the
other displacement recovery methods [21]. That is, the cost
function is evaluated at a discrete set of displacements for
each sample point independently.

There is no notion of a current surface in this approach,
so we must approximate some measurements. First, we ap-
proximate visibility during this stage by using the visibility
of the base mesh. Furthermore, each discrete sample of the
cost function for each sample point requires a surface nor-
mal. As there is no implied surface at this stage, the best we
can do is assume that the normal can be arbitrary. There-
fore, for each sample point and each discrete depth label we
must fit a surface normal that reduces the Fdata cost. The
residual of this fitting is the approximate cost function. The
optimization problem is now discrete, with the goal of re-
covering a set of depth labels that reduce the approximated
cost function. This sampled cost function is easily incorpo-
rated with the smoothness term and optimized using exist-
ing combinatorial optimization techniques, such as graph-
cuts or loopy belief propagation. In our case, we adapted
the expansion graph-cut proposed by Boykov et al. [3] for
the displacement map representation (the original algorithm
estimates a disparity map).

To summarize this section, our algorithm takes a low res-
olution base mesh along with the images and calibration
data as input. The downsampled images are created, and
the corresponding low resolution sample points are obtained

Figure 3: An image of the capture setup used in the exper-
iments. The light is placed nearby the camera. We used a
calibration pattern to calibrate the camera and a white spec-
ular sphere to calibrate the light position.

using the subdivision method that was outlined in Section
4.1. The sample displacements on the low resolution mesh
are then initialized with the method outlined above (Sec-
tion 4.4.1). Finally, the multi-resolution optimization is per-
formed. The algorithm outputs the recovered displacements
and the albedo at each sample point on the base mesh.

5 System

We now discuss the practical elements required in provid-
ing the input to our system. Recall that we need a base
mesh, image calibration matrices, and a light direction for
each frame. Furthermore, the light directions need to vary
sufficiently during the capture to ensure that the reflectance
parameters can be fit to each displaced surface point.

To provide these requirements we use a turntable based
setup, which is illuminated by a regular desk lamp located
by the camera (see Fig. 3). Within this setup we use a planar
dot-based pattern for the calibration [1]. A blue-screening
approach is used to obtain silhouettes that are then used as
input to shape-from-silhouette to provide an initial shape.
Other computer vision techniques for sparse structure could
be substituted for shape-from-silhouette. As shape-from-
silhouette may give a fairly dense mesh, we then use the
simplification method of Cohen-Steiner et al. to obtain a
low polygon base mesh [4].

Notice that the camera is fixed relative to the light posi-
tions, implying that the light is actually moving with respect
to the turntable coordinate system. To avoid shadows the
light source is positioned near the camera, and we capture
two full rotations at different heights to ensure that there is
sufficient light variation. A glossy white sphere rotates on
the turntable and is used to calibrate the the exact position of
the light source (i.e., our desk lamp cannot be positioned ex-
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actly at the camera center) as well as to estimate the color of
the source. Several spheres are not necessary as the rotation
of the sphere gives several temporal views. We triangulate
the position of the light source using the specular highlight
on the sphere. From this point light source we can obtain
the direction to the source for any 3D point in the scene to
use in the rendering function. Assuming that the sphere is
white, after we know the position of the sphere and the posi-
tion of the light source, each non-specular pixel observation
of the sphere gives an equation in the 2 unknowns (ambient
light and light source color) for each color channel.

6 Experiments

In a first experiment we demonstrate that the method is ac-
curate on synthetic objects with varying degrees of texture
(Figure 4). We have simulated the capture setup using a
synthetic object texture mapped with two different textures.
In each case the concavities of the object were accurately
recovered. We have also computed the distance from the
recovered displacements to the ground truth displacements
(we used ray tracing to recover the ground truth displace-
ments from a triangulated mesh). A color mapped version
of this distance on the ground truth is also portrayed in Fig-
ure 4. The reconstruction is quite good with an average
geometric error is about 0.0327 units on an object of size 2
units (1.6% accuracy).

The results of the refinement on two real objects are
shown in Figure 5 2. Notice that in each case the base mesh
and the initial displacements (using the method described
in Section 4.4.1) are coarse approximations of the true ob-
ject. After the displacements are refined, the fine scale detail
of the 3D geometry becomes apparent. Notice the method
performs well on the face sequence, which would be consid-
ered hard to capture with traditional methods. The face also
exhibits a surface reflectance that deviates from the Lamber-
tian model, but our Lambertian cost function is successful
at recovering visually appealing displacements.

7 Conclusions

We have presented a method for reconstructing the displace-
ments from a base mesh using image data. The method
couples the surface normals in the cost function, implying
that surface shading cues influence the reconstruction. The
experiments validated the effectiveness of this approach on
objects with uniform and non-uniform Lambertian surface
properties. Experimental evidence also suggests that our
method is capable of dealing with slight reflectance devia-
tions from the Lambertian model (e.g., the face example).

2The human head data set was obtained by placing the calibration pat-
tern upside down on the subject’s head while the subject rotated on an
office chair.

Currently, one of the main limitations of this approach
is the influence that the base mesh has on the final results.
For example, the recovered mesh is restricted to have the
same topology as the base mesh. Also, it is possible that
the true surface cannot be approximated by displacement
mapping the base mesh. In future work, we would like to
address these problems by refining the base mesh during the
optimization.

A Gradient Terms
∂

∂µk
Ii(Π(Pip̂j)) = 0 for k 6= j (11)

Pi =





pi
00 pi

01 pi
02 pi

03

pi
10 pi

11 pi
12 pi

13

pi
20 pi

21 pi
22 pi

23



 (12)

∂

∂µk

Ii(Π(Pip̂j)) = ∇Ii(Π(Pip̂j)) · ∇Π(Pip̂j)

= ∇Ii

[

(pi
00dj,x + pi

01dj,y + pi
02dj,z)/w

(pi
10dj,x + pi

11dj,y + pi
12dj,z)/w

]

−∇Ii

[

u(pi
20dj,x + pi

21dj,y + pi
22dj,z)/w2

v(pi
20dj,x + pi

21dj,y + pi
22dj,z)/w2

]

with [u, v, w]> = Pip̂j . In practice a Gaussian blurred
version of the image gradient is substituted for ∇Ii.

∂

∂µk

(

nj · li
|nj |

)

=
1

|nj |
∂nj · li
∂µk

+ nj · li
∂

∂µk

1
√

nj · nj

=
(∇µk

nj) · li
|nj |

− nj · li
|nj |3

((∇µk
nj) · nj)

Recall that:

nj =
∑

j,k,i∈∆(pj)

(p̂k − p̂j) × (p̂i − p̂j)

Letting e1 = (p̂k − p̂j) = (xk − xj , yk − yj , zk − zj) and
e2 = (p̂i − p̂j) = (xi − xj , yi − yj , zi − zj),

e1 × e2 =





e1ye2z − e2ye1z

−e1xe2z + e2xe1z

e1xe2y − e2xe1y





=





ykzi − ykzj − yjzi − yizk + yizj + yjzk

−(xkzi − xkzj − xjzi − xizk + xizj + xjzk)
xkyi − xkyj − xjyi − xiyk + xiyj + xjyk





Therefore

∇µj
nj =

∑

j,k,i∈∆(pj)





(yi − yk)dj,z + (zk − zi)dj,y

(zi − zk)dj,x + (xk − xi)dj,z

(xi − xk)dj,y + (yk − yi)dj,x




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Figure 4: A synthetic object with different textures used in the experiments. From left to right: an input image, the recovered
shaded model, the recovered textured model, and distance to ground truth (dark means close, white means far). The average
distance of the recovered displacement to the ground truth was 0.0381 and 0.0274 for the untextured and textured sequences
respectively (the size of the whole object is around 2 units).

The derivation of ∇µk
nj and ∇µi

nj are similar.
Finally, using the definition of Aj ,Ij and αj from Equa-

tions 8 and 9, we have

∂αj

∂µk

=
1

Aj · Aj

∂

∂µk

(Aj · Ij)

− Aj · Ij

(Aj ·Aj)2
∂

∂µk

(Aj · Aj)

∂

∂µk

(Aj · Ij) =
∂

∂µk

∑

i

(

`i

nj · li
|nj |

+ ai

)

Ii(Π(Pip̂j))

=
∑

i

Ii(Π(Pip̂j))

(

`i

∂

∂µk

(
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