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The Latent Maximum Entropy Principle1
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We present an extension to Jaynes’ maximum entropy principle that incorporates latent variables. The5
principle of latent maximum entropy we propose is different from both Jaynes’ maximum entropy principle6
and maximum likelihood estimation, but can yield better estimates in the presence of hidden variables7
and limited training data. We first show that solving for a latent maximum entropy model poses a hard8
nonlinear constrained optimization problem in general. However, we then show that feasible solutions to9
this problem can be obtained efficiently for the special case of log-linear models—which forms the basis for10
an efficient approximation to the latent maximum entropy principle. We derive an algorithm that combines11
expectation-maximization with iterative scaling to produce feasible log-linear solutions. This algorithm12
can be interpreted as an alternating minimization algorithm in the information divergence, and reveals an13
intimate connection between the latent maximum entropy and maximum likelihood principles. To select14
a final model, we generate a series of feasible candidates, calculate the entropy of each, and choose the15
model that attains the highest entropy. Our experimental results show that estimation based on the latent16
maximum entropy principle generally gives better results than maximum likelihood when estimating latent17
variable models on small observed data samples.18
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1. INTRODUCTION27

Learning about the world requires a system to extract useful sensory features and then28
form a model for how they interact, perhaps by using abstract concepts. The maximum29
entropy (ME) principle [Jaynes 1983] is an effective method for combining sources of30
evidence from complex but structured natural systems which has had wide application31
in science, engineering, and economics [Fang et al. 1997; Golan et al. 1996]. The effec-32
tiveness of the ME principle arises from its ability to model distributions over many33
random variables by combining only a few critical features (i.e., functions of random34
variables) in a log-linear form. This can yield a succinct representation of a complex35
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joint distribution, and thereby allow for effective generalization and practical infer-36
ence to be realized; as with standard graphical models such as Bayesian networks and37
Markov random fields. However, unlike standard graphical models, instead of making38
direct conditional independence assumptions about the domain, the ME principle only39
requires the specification of certain properties in the data that the model should re-40
spect; for example, that the marginal means in the model should match the marginal41
means in the data. In many applications, specifying constraints on the model in this42
form is easier than proposing conditional independence properties [Della et al. 1997].43

However, one weakness with the standard ME approach is that it only handles44
constraints over the observed data, and does not directly model latent variable45
structure. That is, the standard ME principle does not allow for any missing data46
in its constraints, and therefore never infers the existence of hidden variables. This47
weakness is problematic because in practice many of the natural patterns we wish48
to classify are the result of causal processes that have hidden hierarchical structure,49
yielding data that does not report the value of latent variables. For example, natural50
language data rarely reports the value of hidden semantic variables or syntactic51
structure [Wang et al. 2001].52

In this article, we propose a latent maximum entropy principle (LME) that explic-53
itly handles latent variables, and thus extends Jaynes’ original ME principle to the54
case where some data components are missing. We first formulate the problem so that55
latent variables are explicitly encoded in the model. Although the constrained opti-56
mization problem that results is complex, we introduce a log-linear assumption that57
allows us to derive a practical algorithm (EM-IS) for obtaining feasible solutions. The58
EM-IS algorithm is an iterative technique that combines expectation-maximization59
(EM) with iterative scaling (IS) to yield a convergent procedure that is guaranteed to60
produce log-linear models that satisfy desired feature expectations. To develop EM-IS,61
we show an intimate connection between the latent maximum entropy principle and62
maximum likelihood estimation (MLE). However, the latent maximum entropy and63
maximum likelihood principles remain distinct in the sense that, among feasible solu-64
tions, LME chooses the model that maximizes entropy, whereas MLE selects the model65
that maximizes likelihood. To compare these two different approaches for estimating66
hidden variable models, we then present our main estimation algorithm, ME-EM-IS,67
which repeatedly solves for different feasible log-linear models, calculates the entropy68
of each, and selects the model that attains highest entropy. In order to implement this69
algorithm, we exploit the fact that the entropy can be efficiently determined for the70
feasible log-linear models produced by EM-IS. Our experimental results show that the71
LME principle (implemented by the ME-EM-IS algorithm) often achieves better esti-72
mates than maximum likelihood estimation when estimating hidden variable models73
from small samples of observed data.74

Learning probabilistic models with latent variables have been extensively studied75
in machine learning and statistics for many decades. For both directed and undirected76
graphical models, model parameters are learned by maximum likelihood estimation77
where the latent variables are marginalzing out to obtain the likelihood over observed78
data. A key difference between directed graphical models and undirected graphical79
models is that a directed graphical model requires many local normalization con-80
straints, whereas an undirected graphical model has a global normalization factor.81
In this article, we show an intimate connection between the latent maximum entropy82
principle and maximum likelihood estimation (MLE) for undirected graphical models83
is that the feasible solutions in LME are equivalent to the set of stationary points84
of the likelihood in MLE. However, the LME and MLE principles remain distinct85
in the sense that, among feasible solutions, LME chooses the model that maximizes86
entropy, whereas MLE selects the model that maximizes likelihood for undirected87
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graphical models. Another important relevant work on incorporating hidden variables88
in a maximum entropy philosophy is the maximum entropy discrimination (MED)89
model proposed by Jaakkola et al. [1999] where hidden variables are considered90
in Jebara’s thesis [2000], and its later extensions to structured prediction by Zhu91
et al. [2008] and Zhu and Xing [2009]. Basically, maximum entropy discrimination92
(and its structured extensions) has the same objective function (with a uniform93
prior, the KL-divergence is equivalent to the ME) as the ME principle but with a94
different set of constraints. The methods to consider hidden variables are similar,95
that is, learning a joint distribution over all the random variables and taking the96
averaging (expectations) over hidden variables to define the constraints. However, the97
motivations and problem formulations for ME and MED are completely different. Fist98
of all, ME is motivated for density estimation and the observed data samples are given99
as training data; MED is motivated for classification and the pairwise observed data100
samples as well as its labels are given as training data. Second, in ME, the observable101
and hidden variables are random variables, and the task is to look for the joint102
distribution of both observable and hidden variables that maximizes the joint entropy103
subject to nonlinear constraints that model’s feature expectation match empirical104
feature expectation; but in MED, the prediction is made by averaging a parametric105
discriminant function, which is a linear model of a set of features and their weights,106
and the weights of features are treated as random variables. The joint distribution107
of the weights and hidden variables are learned by maximizing the entropy of the108
joint distribution, subject to margin constraints where the hidden variables are109
marginalized out. Due to the hidden variables, both have to perform EM type iterative110
procedures to obtain the feasible or locally optimal solutions. Another important111
relevant work on incorporating hidden variables is the posterior regularization (PR)112
for latent variable models proposed by Ganchev et al. [2010] and Graca et al. [2007].113
PR is a variant of EM algorithm where, in E step, prior knowledges are encoded as114
constraints that posterior probability has to satisfy, and the objective PR maximizes is115
log-likelihood penalized by average Kullback–Leibler divergence of posteriors from the116
set of constraints. Thus PR applies to both directed graphical models and undirected117
graphical models, but LME only applies to undirected graphical models; both PR and118
LME are penalized log-likelihood methods, but the penalization terms are different.119

2. MOTIVATION120

In 1957, Jaynes [1983] proposed the maximum entropy (ME) principle for statistical121
inference, which states that data should be summarized by a model that is maximally122
noncommittal with respect to missing information. That is, if we must infer a proba-123
bility distribution from data where the distribution should satisfy known constraints,124
then among distributions consistent with the constraints, we should choose the distri-125
bution that has maximum entropy. This principle can be understood clearly by consid-126
ering the case of modeling a single real variable:127

2.1 A Simple Example128

Assume we observe a random variable Y that reports people’s heights in a population.129
Given sample data Ỹ = (y1, ..., yT), we might trust that simple statistics such as the130
sample mean and sample mean square of Y are well represented in the data. If so,131
then Jaynes’ ME principle suggests that we should infer a distribution for Y that has132
maximum entropy, subject to the constraints that the mean and mean square values of133

Y match the sample values; that is, that EY = m1 and EY2 = m2, where m1 = 1
T

∑T
t=1 yt134

and m2 = 1
T

∑T
t=1 y2

t , respectively. In this case, it is known that the maximum entropy135
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solution is a Gaussian density with mean m1 and variance m2−m2
1, p(y) = N(y; m1, m2−136

m2
1); a consequence of the well-known fact that a Gaussian random variable has the137

largest differential entropy of any random variable for a specified mean and variance138
[Cover and Thomas 1991].139

However, assume further that after observing the data histogram, we find that there140
are actually two peaks in the empirical data. Obviously the standard ME solution141
would not be the most appropriate model for such bimodal data because it will con-142
tinue to postulate a unimodal distribution. However, the existence of the two peaks143
in the data might not be accidental. For example, there could be two subpopulations144
represented in the data, male and female, each of which have different height dis-145
tributions. In this case, each height measurement Y has an accompanying (hidden)146
gender label C that indicates the subpopulation the measurement is taken from. How147
can such additional knowledge be incorporated in the ME framework? One way is148
to explicitly add the missing label data. That is, we could let X = (Y, C), where Y149
denotes a person’s height and C is the gender label, and then obtain labeled measure-150
ments (y1, c1, ..., yT, cT). In this case we can formulate the ME problem, as follows. Let151
δk(c) be the indicator function where δk(c) = 1 if c = k and δk(c) = 0 otherwise. Then let152

Nk =
∑T

t=1 δk(ct), p̃(C = k) = Nk
T , p̃(yt|C = k) = δk(ct)

Nk
, for k = 1, 2, and let Ỹ denote the set of153

observed heights (y1, ..., yT). With these definitions, then formulate the ME problem as154

max
p(x)

H(X ) = H(C) + H(Y |C),

subject to
∫

x∈X
δk(c) p(x) μ(dx) =

∑
c∈{1,2}

δk(c) p̃(c),

∫
x∈X

y δk(c) p(x) μ(dx) =
∑
y∈Ỹ

∑
c∈{1,2}

y δk(c) p̃(c) p̃(y|c), (1)

∫
x∈X

y2 δk(c) p(x) μ(dx) =
∑
y∈Ỹ

∑
c∈{1,2}

y2 δk(c) p̃(c) p̃(y|c) for k = 1, 2.

The problem then is to find a joint model p(x) = p(y, c) that maximizes entropy,155
while matching the expectations over δk(c), y δk(c), and y2 δk(c), for k = 1, 2. In156
this fully observed data case, where we witness the gender label C, we obtain a157
separable optimization problem that has a unique solution. In this case, the max-158
imum entropy solution p(x) = p(y, c) is a mixture of two Gaussian distributions159

specified by p(c) = θc = Nc
T and p(y|c) = N(y; μc, σ

2
c ), where μc = 1

Nc

∑T
t=1 yt δc(ct) and160

σ 2
c = 1

Nc

∑T
t=1(yt − μc)2 δc(ct) for c = 1, 2.161

Unfortunately, obtaining fully labeled data is tedious or impossible in most realis-162
tic situations. In cases where variables are unobserved, Jaynes’ ME principle, which163
is maximally noncommittal with respect to missing information, becomes insufficient.164
For example, if the gender label were unobserved, we would still be reduced to infer-165
ring a single unimodal Gaussian, as above. To cope with missing but nonarbitrary hid-166
den structure, we must extend the ME principle to account for the underlying causal167
structure in the data model.168

3. THE LME PRINCIPLE169

To formulate the latent maximum entropy (LME) principle, let X ∈ X be a random170
variable denoting the complete data, Y ∈ Y be the observed incomplete data, and171
Z ∈ Z be the missing data. That is, X = (Y, Z ). For example, Y might be observed as172
natural language in the form of text, and X might be the text along with its missing173
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syntactic and semantic information, Z . If we let p(x) and p(y) denote the densities174
of X and Y , respectively, and let p(z|y) denote the conditional density of Z given Y ,175
then p(y) =

∫
z∈Z p(x) μ(dz) and p(x) = p(y)p(z|y).1 Given this notation, we propose the176

latent maximum entropy principle as follows.177

LME principle. Given features f1, ..., fN, specifying the properties that we would178
like to match in the data, select a joint probability model p(x) from the space of all179
probability distributions, P , over X , to maximize the entropy,180

H(p) = −
∫

x∈X
p(x) log p(x) μ(dx), (2)

subject to the constraints181 ∫
x∈X

fi(x) p(x) μ(dx) =
∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) p(z|y) μ(dz), i = 1...N, (3)

Y and Z not independent,

where x = (y, z).182
Here p̃(y) is the empirical distribution of the observed data, Ỹ denotes the set of183

observed Y values, and p(z|y) is the conditional distribution of latent variables given184
the observed data. Intuitively, the constraints specify that we require the expectations185
of fi(X ) in the joint model to match their empirical expectations on the incomplete186
data Y , taking into account the structure of the implied dependence of the unobserved187
component Z on Y .188

Note that the conditional distribution p(z|y) implicitly encodes the latent structure189
and is a nonlinear mapping of p(x). That is, p(z|y) = p(y, z)/

∫
z′∈Z p(y, z′)μ(dz) =190

p(x)/
∫

x′=(y,z′) p(x′)μ(dz′), where x = (y, z) and x′ = (y, z′) by definition. Clearly, p(z|y)191

is a nonlinear function of p(x) because of the division. If there is no missing data,192
that is, X = Y , then the problem is reduced to Jaynes’ model where the constraints193
are given by

∫
y∈Y p(y) fi(y) μ(dy) =

∑
y∈Ỹ p̃(y) fi(y). However, this is not a requirement194

in our framework, and, in this sense, the LME principle given by (2) and (3) is more195
general than ME.196

Unfortunately, we will find that the most straightforward formulation of LME does197
not yield a simple closed form solution for the optimal distribution. Nevertheless,198
by further constraining the distribution to have an exponential (log-linear) form, we199
will be able to show the equivalence between satisfying the constraints (i.e., achieving200
feasibility) and locally maximizing likelihood. This equivalence will allow us to derive201
a practical algorithm for finding feasible solutions in Section 4.202

3.1 Finding LME Solutions203

Consider the problem of finding a joint distribution p(x) that satisfies the LME princi-204
ple for a given set of features and data (where, for example, the features could specify205
sufficient statistics for a desired exponential model). This problem amounts to solv-206
ing the constrained optimization problem (2,3). Unfortunately, due to the mapping207
p(z|y), the constraints (3) are nonlinear in p(x) and the feasible set is no longer con-208
vex. Therefore, even though the objective function (2) is concave, no unique maximum209
can be guaranteed to exist. In fact, minima and saddle points may exist. Nevertheless,210

1In this article, μ denotes a given σ -finite measure on X . If X is finite or countably infinite, then μ is the
counting measure, and integrals reduce to sums. If X is a subset of a finite dimensional space, μ is the
Lebesgue measure. If X is a combination of both cases, μ will be a combination of both measures.
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we can still attempt to derive an iterative training procedure that finds approximate211
local solutions to the LME problem.212

First, define the Lagrangian �(p, λ) by213

�(p, λ) = H(p) +
N∑

i=1

λi

⎛
⎝∫

x∈X
fi(x) p(x) μ(dx) −

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) p(z|y) μ(dz)

⎞
⎠ . (4)

A natural way to proceed with the optimization is to iteratively hold λ fixed and com-214
pute the unconstrained maximum of the Lagrangian over p ∈ P . To do so let215

pλ = arg max
p∈P

�(p, λ),

ϒ(λ) = �(pλ, λ).

We refer to ϒ(λ) as the dual function. Note that by weak duality the dual function216
provides upper bounds on the optimal value H∗ of the original LME problem:217

ϒ(λ) = �(pλ, λ) = max
p∈P

�(p, λ) ≥ H∗ for all λ.

If strong duality holds, we have218

min
λ

ϒ(λ) = min
λ

�(pλ, λ) = min
λ

max
p∈P

�(p, λ) = H∗.

Therefore, if we could obtain a closed form solution for pλ in terms of λ, we could then219
plug pλ into �(pλ, λ) and reduce the constrained optimization to the unconstrained220
minimization of ϒ(λ) with respect to λ. However, in attempting to solve for pλ we still221
run into difficulty.222

To attempt to solve for pλ, we can take the derivative of �(p, λ) with respect to p(x)223
and try to set this to 0 for all p(x):224

∂�(p, λ)
∂p(x)

= − log p(x) − 1 +
N∑

i=1

λi

⎡
⎣ fi(x) −

∑
y∈Ỹ

p̃(y)

(
fi(x)
p(y)

−
∫

z′∈Z fi(x′) p(x′) μ(dz′)(∫
z′′∈Z p(x′′) μ(dz′′)

)2

)⎤
⎦

= − log p(x) − 1 +
N∑

i=1

λi fi(x)

+
N∑

i=1

λi

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z′∈Z[ fi(x′) − fi(x)] p(x′) μ(dz′)

p(y)2

⎞
⎠ , (5)

where x = (y, z), x′ = (y, z′) and x′′ = (y, z′′). Unfortunately the resulting system225
∂�/∂p(x) = 0 is nonlinear in p(x) and there is no simple closed form solution for pλ.226

3.2 Approximating LME Solutions: Restriction to Log-Linear Form227

Since the original LME principle does not yield a simple closed form solution for pλ,228
we instead look for an approximate solution. By ignoring the last term of Eq. (5) and229
setting the remainder to zero, we find230

pλ(x) ≈ 	−1
λ exp

(
N∑

i=1

λi fi(x)

)
, (6)

where 	λ =
∫

x∈X exp
(∑N

i=1 λi fi(x)
)

μ(dx) is a normalizing constant that ensures231 ∫
x∈X pλ(x) μ(dx) = 1. Thus, we could hope that pλ is at least approximately log-linear232
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in the feature values fi. Note that if we impose the additional constraint that pλ is233
indeed log-linear, (6) and plug this back into the definition of the Lagrangian (4), we234
can obtain a closed form for an approximation to the dual function235

ϒ(λ) ≈ log(	λ) −
N∑

i=1

λi

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z∈Z

fi(x) pλ(z|y) μ(dz)

⎞
⎠ . (7)

That is, under the assumption of a log-linear model pλ, we can approximately reduce236
the original constrained optimization to a much simpler unconstrained minimization237
problem of238

λ∗ = arg min
λ

ϒ(λ), (8)

where ϒ is given as in (7). Assuming λ∗ can be found, we can easily recover pλ∗ from239

(6), up to the normalization constant 	−1
λ .240

Now to attempt to solve for λ∗, take the derivative of ϒ(λ) with respect to λ, and241
obtain242

∂ϒ(λ)
∂λi

=
∫

x∈X
fi(x) pλ(x) μ(dx) −

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) pλ(z|y) μ(dz)

−
N∑
j=1

λ j

∑
y∈Ỹ

p̃(y)
(∫

z∈Z
fi(x) f j(x) pλ(z|y) μ(dz)

−
∫

z∈Z
fi(x) pλ(z|y) μ(dz)

∫
z∈Z

f j(x) pλ(z|y) μ(dz)
)

. (9)

Unfortunately, once again, the system of equations ∂ϒ(λ)/∂λi = 0 is nonlinear due243

to the pλ(z|y) terms, and therefore this does not yield a simple closed form solution244
for λ∗. Even under the log-linear assumption, it is still not easy to satisfy the LME245
principle! Nevertheless, we have made valuable progress toward formulating a prac-246
tical algorithm for approximately satisfying the LME principle under the assumption247
of log-linearity. In fact, at this point we can show an intimate connection between the248
LME principle and maximum likelihood estimation (MLE) principle under log-linear249
models.250

THEOREM 3.1. Under the log-linear assumption, locally maximizing the likelihood251
of log-linear models on incomplete data is equivalent to satisfying the feasibility con-252
straints of the LME principle. That is, the only distinction between MLE and LME253
in log-linear models is that, among local maxima (feasible solutions), LME selects the254
model with the maximum entropy, whereas MLE selects the model with the maximum255
likelihood.256

PROOF. By assuming a log-linear model pλ, we first prove that satisfying the257
constraints (3) of the LME principle is equivalent to achieving a local maxima in258
log-likelihood. Restrict the complete model pλ to have a log-linear form pλ(x) =259

	−1
λ exp(

∑N
i=1λi fi(x)). Then we have pλ(y) =

∫
z∈Z pλ(x) μ(dz), and the log-likelihood260

function for the observed incomplete data is given by261

L(λ) = log
∏
y∈Ỹ

pλ(y) p̃(y) =
∑
y∈Ỹ

p̃(y) log pλ(y). (10)
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(This quantity is actually 1/T times the standard log-likelihood where T is the sample262
size; but this additional factor is not relevant for our purposes.) Taking the derivative263
of L(λ) with respect to λi yields264

∂L(λ)
∂λi

=
∑
y∈Ỹ

p̃(y)
1

pλ(y)

∫
z∈Z

(
− 1

	2
λ

∫
x∈X

fi(x)e
∑N

i=1λi fi(x) μ(dx)
)

e
∑N

i=1λi fi(x) μ(dz)

+
∑
y∈Ỹ

p̃(y)
∫

z∈Z

1
	λ

e
∑N

i=1λi fi(x)

pλ(y)
fi(x) μ(dz)

= −
∫

x∈X
fi(x) pλ(x) μ(dx) +

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) pλ(z|y) μ(dz).

By setting ∂L(λ)/∂λi = 0, for i = 1, ..., N, we obtain the original constraints (3). There-265
fore the feasible solutions of (3) satisfy the conditions for the stationary points of the266
log-likelihood function. This establishes the first part of the theorem.267

All that remains is to show that the MLE and LME principles remain distinct for268
log-linear models. We prove this by proving that the log-likelihood function L(λ) and269
entropy H(pλ) are related by the equation L(λ) = −H(pλ) + H(λ, λ), where H(λ, λ)270
is a nonconstant function of λ whose maxima generally do not coincide with L(λ) or271
H(pλ). This fact is proved in Theorem 5.1 in Section 5. Given this result, we conclude272
that among feasible log-linear solutions, MLE and LME do not maximize the same273
objective, and hence produce different solutions.274

Although the problem of maximum likelihood estimation of log-linear models with275
missing data has previously been studied by Lauritzen [1995] and Riezler [1999], it276
had not been previously observed that locally maximizing the likelihood of a log-linear277
model is equivalent to satisfying the feasibility constraints for a latent maximum en-278
tropy problem.279

3.3 Example Revisited280

To illustrate the relationship between the MLE and LME principles more concretely,281
consider the simple example introduced in Section 2.1. In the circumstance where the282
gender labels are unobserved, Jaynes’ ME principle fails to incorporate the effect of283
these latent variables. However, the LME principle can capture the influence of the284
latent gender information by considering a joint model that includes a hidden two-285
valued variable. Let X = (Y, C), where C ∈ {1, 2} denotes the hidden gender index.286
In this case, given the observed data Ỹ = (y1, ..., yT), the latent maximum entropy287
principle (LME) can be formulated as288

max
p(x)

H(X ) = H(C) + H(Y |C),

subject to
∫

x∈X
δk(c) p(x) μ(dx) =

∑
y∈Ỹ

p̃(y)
∑

c∈{1,2}
δk(c) p(c|y),

∫
x∈X

y δk(c) p(x) μ(dx) =
∑
y∈Ỹ

p̃(y)
∑

c∈{1,2}
y δk(c) p(c|y), (11)

∫
x∈X

y2 δk(c) p(x) μ(dx) =
∑
y∈Ỹ

p̃(y)
∑

c∈{1,2}
y2 δk(c) p(c|y) for k = 1, 2,

Y and C not independent.
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So here we are trying to maximize the joint entropy while matching the expectations289
over the features,290

f k
0 (x) = δk(c), f k

1 (x) = y δk(c), and f k
2 (x) = y2 δk(c), for k = 1, 2, (12)

where x = (y, c), and δk(c) denotes the indicator function of the event c = k. Compar-291
ing the constraints (11) with those in the complete data case (1), we can see that the292
only difference is that here we use the conditional probability of the complete model293
instead of the empirical conditional probability. However, due to the nonlinear map-294
ping imposed by p(c|y), a simple closed form solution no longer exists. Nevertheless, a295
common log-linear model gives a convenient approximation.296

Imagine that, instead of attempting to satisfy the LME principle directly, we were297
instead interested in finding a maximum likelihood model for the observed data Ỹ =298
(y1, ..., yT). Consider a distribution p(x) that is a mixture of two Gaussians; that is,299
p(x) = p(y, c) = θcN(y; μc, σ

2
c ) for parameters θc, μc, σ

2
c , where θc = p(c), and μc, σ

2
c are300

the means and variances for the respective classes c = 1, 2. This distribution has the301
marginal density p(y) = θ1N(y; μ1, σ

2
1 ) + θ2N(y; μ2, σ

2
2 ) on Y . In this case, the joint302

distribution of X = (Y, C) can be written as303

p(y, c) =
∏

k∈{1,2}

⎡
⎣θk

1√
2πσ 2

k

exp

(
− (y − μk)2

2σ 2
k

)⎤⎦
δk(c)

.

If we use the natural (canonical) parameters λ = (λk
0, λ

k
1, λ

k
2) for the corresponding fea-304

tures f k
0 , f k

1 and f k
2 given in (12), k = 1, 2, we can then rewrite this distribution in a305

log-linear form [Amari and Nagaoka 2000],306

p(y, c) =
∏

k∈{1,2}

(
1

	λ1
0λ

2
0

eλk
0

1
	λk

1λ
k
2

eλk
1 y + λk

2 y2

)δk(c)

=
1

	λ

exp

(
2∑

k=1

(
λk

0 δk(c) + λk
1 y δk(c) + λk

2 y2 δk(c)
))

, (13)

where the canonical parameters are related to the standard parameters by λk
0 = log θk,307

λk
1 = μk/σ

2
k , and λk

2 = −1/(2σ 2
k ) for k = 1, 2. The normalization constant is given by308

	λ = 	λ1
0λ

2
0
	λ1

1λ
1
2
	λ2

1λ
2
2
, where 	λ1

0λ
2
0

= 1/(eλ1
0 + eλ2

0 ) and 	λk
1λ

k
2

= exp(−(λk
1)2/(4λk

2))
√

2σ 2
k π for309

k = 1, 2. For this model, the log-likelihood, as a function of λ, can be written as310

L(λ) =
∑
y∈Ỹ

p̃(y) log p(y)

=
∑
y∈Ỹ

p̃(y) log
∑

c∈{1,2}

1
	λ

exp

(
2∑

k=1

(
λk

0 δk(c) + λk
1 y δk(c) + λk

2 y2 δk(c)
))

.
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Therefore, to solve for the maximum likelihood solution, we can calculate the deriva-311
tives to obtain312

∂L(λ)
∂λk

0

=
∑
y∈Ỹ

p̃(y)
∑

c∈{1,2}
δk(c) p(c|y) −

∫
y∈Y

∑
c∈{1,2}

δk(c) p(y, c) dy,

∂L(λ)
∂λk

1

=
∑
y∈Ỹ

p̃(y)
∑

c∈{1,2}
y δk(c) p(c|y) −

∫
y∈Y

∑
c∈{1,2}

y δk(c) p(y, c) dy, (14)

∂L(λ)
∂λk

2

=
∑
y∈Ỹ

p̃(y)
∑

c∈{1,2}
y2 δk(c) p(c|y) −

∫
y∈Y

∑
c∈{1,2}

y2 δk(c) p(y, c) dy for k = 1, 2.

The key result is that setting these quantities to zero results in precisely the same313
constraints as (11). That is, a locally maximum likelihood Gaussian mixture is also314
a feasible solution of the LME principle, and conversely, a feasible log-linear solu-315
tion for the LME principle will be a critical point of the log-likelihood function L(λ)316
(and have the form of a Gaussian mixture). This example provides a concrete demon-317
stration that the log-linear model parameterized with the stationary points of the318
incomplete data likelihood function will give a feasible solution to the original LME319
principle.320

4. A GENERAL ALGORITHM FOR FINDING FEASIBLE LOG-LINEAR SOLUTIONS321

We can now exploit the observation of Theorem 3.1 to derive a practical training al-322
gorithm for obtaining feasible solutions to the LME principle under the log-linear as-323
sumption. Obviously, since Theorem 3.1 shows that locally maximizing the likelihood324
of observed incomplete data will satisfy the constraints of the LME principle (3), the325
most natural strategy is to derive an EM algorithm for log-linear models. In so do-326
ing, we will be able to guarantee that we recover feasible solutions to the original327
constrained optimization problem, by Theorem 3.1.328

4.1 Derivation of the EM-IS Iterative Algorithm329

Recall that a log-linear model is determined by its parameter vector λ (6). Therefore,330
to derive the EM algorithm [Dempster et al. 1977], we typically decomposes the log-331
likelihood L(λ) as a function of λ into332

L(λ) =
∑
y∈Ỹ

p̃(y) log pλ(y)

= Q(λ, λ′) + H(λ, λ′) for all λ′, (15)

where Q(λ, λ′) =
∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ′(z|y) log pλ(x) μ(dz), (16)

and H(λ, λ′) = −
∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ′(z|y) log pλ(z|y) μ(dz). (17)

Here, x = (y, z), Q(λ, λ′) is the conditional expected complete-data log-likelihood, and333
H(λ, λ′) is the conditional expected missing data log-likelihood, which measures the334
uncertainty due to missing data. Note that in the case where λ′ = λ, H(λ, λ) becomes335
the empirical conditional entropy on latent variables.336
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The EM algorithm maximizes L(λ) by iteratively maximizing Q(λ, λ′) over λ. The337
jth iteration λ( j) → λ( j+1) of EM is defined by an expectation step E, which computes338

Q(λ, λ( j)) as a function of λ, followed by a maximization step M, which finds λ = λ( j+1) to339
maximize Q(λ, λ( j)). Each iteration of EM monotonically nondecreases L(λ), and very340
generally, if EM converges to a fixed point λ∗, then λ∗, is a stationary point of L(λ),341
which is usually a local maximum [Dempster et al. 1977; Wu 1983].2342

For log-linear models in particular, we have343

Q
(
λ, λ( j )

)
=

∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ( j) (z|y) log pλ(x) μ(dz) (18)

=
∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ( j) (z|y)

[(
N∑

i=1

λi fi(x)

)
− log(	λ)

]
μ(dz)

= − log(	λ) +
N∑

i=1

λi

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) pλ( j) (z|y) μ(dz). (19)

by plugging the log-linear form (6) into (18) and recalling that x = (y, z). Crucially,344
it turns out that maximizing Q

(
λ, λ( j)

)
as a function of λ for fixed λ( j) (the M step)345

is equivalent to solving another constrained optimization problem corresponding to a346
maximum entropy principle; but a much simpler one than before.347

THEOREM 4.1. Maximizing Q
(
λ, λ( j )

)
as a function of λ for fixed λ( j) is equivalent348

to solving349

max
p

H(p) = −
∫

x∈X
p(x) log p(x) μ(dx), (20)

subject to
∫

x∈X
fi(x) p(x) μ(dx) =

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) pλ( j) (z|y) μ(dz), i = 1, ..., N, (21)

where x = (y, z).350

PROOF. Define the Lagrangian �
(
p, λ, λ( j)

)
by351

�
(

p, λ, λ( j )
)

= H(p) +
N∑

i=1

λi

⎛
⎝∫

x∈X
p(x) fi(x)μ(dx) −

∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ( j) (z|y) fi(x)μ(dz)

⎞
⎠. (22)

Holding λ( j) fixed, compute the unconstrained maximum of the Lagrangian over p ∈ P ,352
to get353

pλ = arg max
p∈P

�
(

p, λ, λ( j )
)

= 	−1
λ exp

(
N∑

i=1

λi fi(x)

)
.

2It is usually possible to check whether the stationary point is in fact a local maximum [Dempster et al.
1977; Wu 1983].
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(This result is obtained by taking the derivative of (22) with respect to p(x) and setting354
it to zero.) Now by plugging pλ into �(pλ, λ, λ( j )), we obtain the dual function355

ϒ
(
λ, λ( j )

)
= �

(
pλ, λ, λ( j )

)
= log(	λ) −

N∑
i=1

λi

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) pλ( j) (z|y) μ(dz),

which is exactly the negative of Q(λ, λ( j )) as given in (19). If we denote the optimal356
value of (20) subject to (21) as H∗(λ( j)), then under the conditions where strong duality357
holds [Bertsekas 1999] we have358

max
λ

Q(λ, λ( j)) = − min
λ

ϒ
(
λ, λ( j)

)
.

= − min
λ

�
(

pλ, λ, λ( j )
)

= − min
λ

max
p∈P

�
(

p, λ, λ( j )
)

= −H∗
(
λ( j)

)
(23)

359

It is important to realize that the new constrained optimization problem in360
Theorem 4.1 is much easier than maximizing (2) subject to (3) for log-linear models, be-361
cause the right-hand side of the constraints (21) no longer depend on λ but on the previ-362
ous fixed λ( j). That means maximizing (20) subject to (21) is now a convex optimization363
problem with linear constraints in pλ. Unfortunately, there is no closed-form solution364
to (20, 21) in general, which means that iterative algorithms are usually necessary.365
However, the maximizer is unique if it exists. For such problems there are a large366
number of iterative algorithms available, including Bregman’s balancing method, the367
multiplicative algebraic reconstruction technique (MART), Newton’s method, coordi-368
nate descent [Huang et al. 2010], conjugate gradient [Malouf 2002; Minka 2003], and369
interior-point methods [Censor and Zenios 1997; Fang et al. 1997]. In the case where370
the feature functions fi(x) are all non-negative, the generalized iterative scaling algo-371
rithm (GIS) [Darroch and Ratchliff 1972] or improved iterative scaling algorithm (IIS)372
[Berger et al. 1996; Della et al. 1997] can be used to maximize Q(λ, λ′) very efficiently.373
Usually, only a few GIS or IIS iterations are needed for the M step.374

Given these observations, we propose maximizing the entropy of log-linear models375
with latent variables by using an algorithm that combines EM with nested iterative376
scaling (either IIS or GIS) to calculate the M step; see Figure 1.377

Note that in implementing this algorithm, as with any EM or IS algorithm,378
we must be able to calculate various expectations with respect to the underlying379
log-linear model pλ. In particular, we need to calculate expectations of the form380 ∑

y∈Ỹ p̃(y)
∫

z∈Z g(x) pλ(z|y) μ(dz) and
∫

x∈X g(x) pλ(x) μ(dx) for a given λ. In structured381

models, such as Gaussian mixtures or other simple log-linear models, these expecta-382
tions can be calculated directly and efficiently (in time polynomial in the number of383
features N and the number of observations T). However, in other log-linear models,384
such efficient algorithms for calculating expectations do not exist, and we must resort385
to Monte Carlo methods or approximation methods in these cases [Della et al. 1997].386
We will demonstrate both kinds of models in Section 7.387

A natural interpretation of the iterative EM-IS procedure is the following: If the388
right-hand side of Eq. (3) is constant, then the optimal solution of pλ is a log-linear389
model with parameters provided by the GIS/IIS algorithm. Once we obtain pλ, we can390
calculate the value of the right-hand side of Eq. (3). If this value matches the constant391
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Fig. 1. EM-IS, an EM procedure embedding an iterative scaling loop, where A
(
λ( j+s/K), λ( j+(s−1)/K), λ( j)

)
is

the auxiliary function in GIS/IIS, s denotes the index of one cycle of full parallel update of λi, i = 1, ..., N, and
K denotes the number of cycles of full parallel updates.

assigned previously, by the optimality condition, we have reached a stationary point of392
the likelihood function, and hence a feasible solution of maximizing the entropy for the393
complete model-subject to the required nonlinear constraints. Otherwise, we iterate394
until the constraints are met.395

We note that approaches of maximum likelihood estimation estimation for log-linear396
models with incomplete data, and even its general theory, similar to what we presented397
in this article, have been presented earlier [Hagenaars 1993; Little and Rubin 2002;398
Meng and Rubin 1993] by combinations of the EM algorithm with iterative propor-399
tional fitting techniques. Special instances of the combination of EM-IS have been de-400
veloped in the context of applications such as natural language parsing [Riezler et al.401
2000], text segmentation and labeling [Lafferty et al. 2001] and finite-state processing402
[Eisner 2002]. Lauritzen [1995] has suggested a similar EM-IS algorithm for maxi-403
mum likelihood estimation of log-linear models with incomplete data. However, he did404
not supply a proof of convergence (which we provide below). Riezler [1999] has also405
proposed a similar algorithm and provied the general theory of the EM-IS algorithm,406
convergence of the EM-IS algorithm, Theorem 3 in this article, follows directly from407
the proof of convergence given in Riezler [1999]. There, convergence is shown for a408
GEM algorithm that is a special case of the EM-IS algorithm where only one iteration409
of IS in applied in the M-step. From convergence of this GEM algorithm, convergence410
of a corresponding GEM algorithm that employs more than one IS iteration, or a corre-411
sponding EM algorithm that iterates IS until convergence to achieve full maximization412
in the M-step, follows directly. But Riezler disfavored the doubly iterative approach of413
nesting iterative scaling inside an EM loop. Instead, Riezler proposed a single loop414
procedure by repeatedly applying the auxiliary function to obtain a closed-form solu-415
tion for the parameter estimates. However, it turns out that Riezler’s algorithm is a416
special case of our EM-IS algorithm by setting K = 1. Although the nested iteration of417
EM-IS might appear to be an unnecessary complication, we will see in Section 7 that418
setting K > 1 is important for obtaining rapid convergence.419

Sequential update variants for iterative scaling have been presented by Darroch420
and Ratchliff [1972] and extended by Goodman [2002]. The experiments conducted421
by Goodman clearly show that sequential update in iterative scaling can improve422
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ALGORITHM 1. EM-IS
Initialization: Randomly choose initial guesses for the parameters, λ(0).
E step: Given the current model λ( j), for each feature fi, i = 1, ..., N, calculate its current expec-
tation η

( j)
i with respect to λ( j) by

η
( j)
i =

∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) pλ( j) (z|y) μ(dz) (24)

These quantities will form the right-hand side of the constraints in (21).
M step: Let f (x) =

∑N
i=1 fi(x). To attempt to solve (21) (or, equivalently, maximize Q(λ, λ( j))

with respect to λ): initialize λ to λ( j) and perform K iterations of a full parallel update of the
parameter values λi, i = 1, ..., N, either by GIS or IIS, as follows. Each update is given by

λ
( j+s/K)
i = λ

( j+(s−1)/K)
i + γ

( j+s/K)
i , (25)

where γ
( j+s/K)
i satisfies ∫

x∈X
fi(x) eγ

( j+s/K)
i f (x) pλ( j+(s−1)/K) (x) μ(dx) = η

( j )
i . (26)

In the special case where f (x) is a constant, that is, f (x) = b for all x, γ
( j+s/K)
i is given

explicitly by

γ
( j+s/K)
i =

1
b

log

(
η

( j )
i∫

x∈X fi(x) pλ( j+(s−1)/K) (x) μ(dx)

)
for s = 1, ..., K. (27)

If f (x) is not constant, then the value of γ
( j+s/K)
i has to be computed numerically, for example, by

solving the nonlinear equation (26) using Newton–Raphson:

γ
( j+s/K)
i (new) = γ

( j+s/K)
i (old) −

∫
x∈X fi(x) eγ

( j+s/K)
i (old) f (x) pλ( j+(s−1)/K) (x) μ(dx) − η

( j)
i∫

x∈X fi(x) f (x) eγ
( j+s/K)
i (old) f (x) pλ( j+(s−1)/K) (x) μ(dx)

.

It is also possible to use a bisection method for this purpose.
Repeat until: λ( j+1) ≈ λ( j).

convergence speed over parallel updates. Moreover, for maximum entropy models, the423
experiments conducted by Minka and Malouf show an even more impressive improve-424
ment of convergence speed of conjugate-gradient techniques over iterative scaling tech-425
niques. This motivates us to employ conjugate gradient techniques in the M-step of426
an “EM-CG” algorithm to directly optimize the incomplete data log-likelihood for log-427
linear models. This could possibly yield more efficient approximations to the LME428
principle than EM-IS. Unfortunately, these approaches are not scalable to large-scale429
data sets, since these optimization methods are not parallel/distributed algorithms430
and have to be done at one machine. However, for some problems such as language431
modeling in Section 8, there are too many parameters to be stored in a single machine,432
iterative scaling with parallel update is an ideal optimization technique.433

4.2 Example434

To demonstrate how EM-IS can be applied, consider the simple example from435
Sections 2.1 and 3.3. Given a joint model X = (Y, C) representing heights and gender436
labels, where we only observe height measurements Ỹ = (y1, ..., yT), the LME principle437
can be formulated as shown in (11). To solve for a feasible log-linear model, we apply438
EM-IS as follows: First, start with some initial guess for the parameters λ(0), where we439
use the canonical parameterization λ = (λk

0, λ
k
1, λ

k
2), k = 1, 2, for the features specified440
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in (12). To execute the E step, we then calculate the feature expectations according441
to (24),442

η
k,( j)
0 =

1
T

T∑
t=1

∑
c∈{1,2}

δk(c) ρ
k,( j)
t ,

η
k,( j)
1 =

1
T

T∑
t=1

∑
c∈{1,2}

yt δk(c) ρ
k,( j)
t ,

η
k,( j)
2 =

1
T

T∑
t=1

∑
c∈{1,2}

y2
t δk(c) ρ

k,( j)
t for k = 1, 2,

where here, ρ
k,( j )
t = pλ( j) (C=k|yt) = pλ( j) (yt|C=k) pλ( j) (C=k) /

∑
c∈{1,2} pλ( j) (yt|c) pλ( j) (c).443

To execute the M step, we then formulate the simpler maximum entropy problem with444
linear constraints, as in (20) and (21), obtaining445

max
p(x)

H(X ) = H(C) + H(Y |C),

subject to
∫

x∈X
δk(c) p(x) μ(dx) = η

k,( j)
0 ,∫

x∈X
y δk(c) p(x) μ(dx) = η

k,( j)
1 , (28)∫

x∈X
y2 δk(c) p(x) μ(dx) = η

k,( j)
2 for k = 1, 2,

where x = (y, c). Similarly to Section 2.1, we can solve this ME problem analytically446
and avoid the use of GIS/IIS in performing the M step. That is, for problem (28) we can447

directly obtain the unique log-linear solution p(x) = p(y, c), where p(c) = 1
T

∑T
t=1 ρ

c,( j)
t448

and p(y|c) = N(y; μc, σ
2
c ) with μc =

∑T
t=1 ytρ

c,( j)
t /

∑T
t=1 ρ

c,( j)
t and σ 2

c =
∑T

t=1(yt −449

μc)2ρ
c,( j)
t /

∑T
t=1 ρ

c,( j)
t for c = 1, 2. We then set pλ( j+1) = p and repeat until convergence.450

Thus, EM-IS produces a model that has the form of a Gaussian mixture. In this451
case, LME is more general than Jaynes’ ME principle because it can postulate a bi-452
modal distribution over the observed component Y , whereas standard ME is reduced453
to producing a unimodal Gaussian in this situation.3 Interestingly, the update formula454
we obtain for pλ( j) → pλ( j+1) is equivalent to the standard EM update for estimating455
Gaussian mixture distributions. In fact, we find that in many natural situations,456
EM-IS recovers standard EM updates as a special case. However, it turns out that457
there are other situations where EM-IS yields new iterative update procedures that458
converge faster than standard parameter estimation formulas. We demonstrate both459
cases in Section 7.460

We now establish the key result that EM-IS is guaranteed to converge to a feasible461
LME solution for log-linear models.462

4.3 Proof of Correctness463

To prove that EM-IS converges to log-linear models that are feasible solutions of the464
LME principle (3), Theorem 3.1 can be exploited to reduce this question to showing465

3Radford Neal has observed that dropping the dependence constraint between Y and C allows the unimodal
ME Gaussian solution with a uniform mixing distribution to be a feasible global solution in this specific
case. However, this model is ruled out by the dependence requirement.
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that EM-IS converges to a critical point of the log-likelihood function. The convergence466
proof for EM-IS then becomes similar to that for the GEM algorithm [Wu 1983].467

THEOREM 4.2. The EM-IS algorithm monotonically increases the likelihood func-468
tion L(λ), and all limit points of any EM-IS sequence {λ( j+s/K), j ≥ 0}, s = 1, ..., K, belong469
to the set470

� =
{
λ ∈ �N :

∂L(λ)
∂λ

= 0
}

. (29)

Therefore, EM-IS asymptotically yields feasible solutions to the LME principle for log-471
linear models.472

PROOF. As discussed in the previous section, it is obvious that if the EM-IS algo-473
rithm converges to a local maximum in likelihood, it yields a feasible solution of the474
LME principle by Theorem 3.1. To prove the convergence, we first show that EM-IS is475
a generalized EM procedure. To do this, we define the auxiliary function A in the same476
way as in [Berger et al. 1996; Della et al. 1997]. More specifically, given two parameter477
settings λ′ and λ, we bound from below the change in the objective functions Q(λ, λ( j))478
and Q(λ′, λ( j)) with an auxiliary function A(λ, λ′, λ( j)).479

Q
(
λ, λ( j)

)
− Q

(
λ′, λ( j)

)
=

N∑
i=1

(λi − λ′
i)

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z∈Z

fi(x) pλ( j) (z|y) μ(dz)

⎞
⎠ − log

(
	λ

	λ′

)

≥
N∑

i=1

(λi − λ′
i)

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z∈Z

fi(x) pλ( j) (z|y) μ(dz)

⎞
⎠ + 1 − 	λ

	λ′

=
N∑

i=1

(λi − λ′
i)

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z∈Z

fi(x) pλ( j) (z|y) μ(dz)

⎞
⎠ + 1

−
∫

x∈X
e
∑N

i=1(λi−λ′
i) fi(x) pλ′(x) μ(dx)

≥
N∑

i=1

(λi − λ′
i)

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z∈Z

fi(x) pλ( j) (z|y) μ(dz)

⎞
⎠ + 1

−
∫

x∈X
pλ′(x)

N∑
i=1

fi(x)
f (x)

e(λi−λ′
i) f (x) μ(dx)

= A(λ, λ′, λ( j)), (30)

where the inequalities follow from the convexity of − log and exp.480
Now let s be the index of one cycle of a full parallel update of λ and assume we481

perform K cycles of full parallel updates, s = 1, ..., K. Then, from Eq. (30), we have482

Q
(
λ( j+s/K), λ( j )

)
− Q

(
λ( j+(s−1)/K), λ( j)

)
≥ A

(
λ( j+s/K), λ( j+(s−1)/K), λ( j)

)
for each s. It is true by inspection that A

(
λ( j+(s−1)/K), λ( j+(s−1)/K), λ( j )

)
= 0 and483

A (λ, λ( j+(s−1)/K), λ( j)
)

is concave in λ. Moreover, the new update λ( j+s/K) is the484

stationary point of A
(
λ, λ( j+(s−1)/K), λ( j)

)
. Therefore, we have the result that485

A
(
λ( j+s/K), λ( j+(s−1)/K), λ( j)

)
> 0, and each step of this procedure increases Q. Thus, the486

EM-IS algorithm monotonically increases the likelihood function L(λ).487
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Next, to show the convergence of {λ( j+s/K), j ≥ 0}, s = 1, ..., K, to the stationary points488

of the likelihood function, we first show the convergence of {λ( j), j ≥ 0} when we just489
consider successive phases at the stage s = 0. By Theorem 1 of Wu [1983], we must490
show that:491

(i) the mapping defined by GIS or IIS is a closed mapping; and492
(ii) if λ( j) 	∈ �, then Q(λ( j+1), λ( j )) > Q(λ( j), λ( j)).493

First, under the compactness condition (6) of Wu [1983] and Wu’s continuity condition494
(10), assertion (i) can be verified directly using λ ∈ RN. Second, to establish assertion495
(ii), it can be shown that ∂ Q(λ, λ( j))/∂λ = ∂ A(λ, λ′, λ( j))/∂λ. Therefore, if λ( j) 	∈ �, then496
∂L(λ)/∂λ 	= 0, which implies that ∂ Q(λ, λ( j))/∂λ 	= 0, and hence ∂ A(λ, λ′, λ( j))/∂λ 	= 0. So497
if λ( j) 	∈ �, we cannot be at a maximum of A. Therefore, given that λ( j+1) maximizes498
A(λ, λ( j+(s−1)/M), λ( j )), we have Q(λ( j+1), λ( j )) > Q(λ( j), λ( j)) as required.499

Finally, to show the convergence of {λ( j+s/K), j ≥ 0} for the cases of s = 1, ..., K − 1,500
respectively, we argue similarly to the above. Therefore, we conclude that all limit501
points of any EM-IS sequence {λ( j+s/K), j ≥ 0} for s = 0, ..., K − 1 belong to the set �.502

Appendix A gives a detailed characterization of the information geometry of EM-IS503
that provides further insight into its behavior, as well as the behavior of EM and IS504
algorithms more generally.505

5. FINDING HIGH-ENTROPY SOLUTIONS506

We can now exploit the EM-IS algorithm to develop a practical approximation to the507
LME principle. As noted in Section 3.1, it is difficult to solve for an optimal latent508
maximum entropy model in general. In fact, Section 3.2 points out that it is hard to509
solve for an optimal LME model, even if we restrict our attention to log-linear models.510
However, the EM-IS algorithm of Section 4 provides an effective technique for find-511
ing feasible, but not necessarily optimal, solutions of the LME principle. (Appendix A512
illustrates how there can be multiple distinct feasible solutions in general.) Our ap-513
proach to using EM-IS to approximate the LME principle is then very simple: we first514
generate several candidate feasible solutions by running EM-IS to convergence from515
different initial points λ(0), then evaluate the entropy of each candidate model, and516
finally select the model that has the highest entropy.517

ALGORITHM 2. ME-EM-IS
Initialization: Randomly choose initial guesses for the parameters λ.
EM-IS: Run EM-IS to convergence, to obtain a feasible solution λ∗.
Entropy calculation: Calculate the entropy of pλ∗ .
Model selection: Repeat the above steps several times to produce a set of distinct feasible candi-
dates. Choose as the final estimate the candidate that achieves the highest entropy.

Although this is not a sophisticated optimization approach, we have found it suffi-518
cient to demonstrate the potential benefits of the LME principle, and therefore have519
left the problem of refining the optimization technique to future research. Neverthe-520
less, despite its simplicity, an apparent difficulty in implementing ME-EM-IS remains:521
we need to calculate the entropies of the candidate models produced by EM-IS. We522
might suppose that the entropy has to be calculated explicitly for each candidate model523
by evaluating the expectation,524

H(pλ) =
∫

x∈X
pλ(x) log pλ(x) μ(dx) = − log(	λ) +

N∑
i=1

λi

∫
x∈X

fi(x) pλ(x) μ(dx). (31)
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However, it turns out that we do not need to perform this calculation explicitly. In fact,525
we can easily recover the entropy of a feasible log-linear model merely as a byproduct526
of running EM-IS to convergence. Recall the decomposition from (15) that L(λ) =527
Q(λ, λ′) + H(λ, λ′) for all λ′, where Q(λ, λ′) and H(λ, λ′) are given by (16) and (17),528
respectively. In the case where λ is a feasible solution according to (3) (and hence (29)),529
we obtain the following relationship.530

THEOREM 5.1. If λ is in the set of feasible solutions, that is, λ ∈ � as defined by531
(29), then532

Q(λ, λ) = −H(pλ)
L(λ) = −H(pλ) + H(λ, λ). (32)

PROOF. By (15), we know that L(λ) = Q(λ, λ) + H(λ, λ) for all λ ∈ �. Let λ( j+1) =533
arg maxλ Q(λ, λ( j )). Then, from Theorem 2, we obtain Q(λ( j+1), λ( j)) = maxλ Q(λ, λ( j )) =534
−H∗(λ( j)). Now, using the same argument as in the proof of Theorem 4.2, we can show535
that all limit points of the sequence {λ( j+1), j ≥ 0} belong to the set �, and therefore536
Q(λ, λ) = −H(pλ) for all λ ∈ �. Thus, we have L(λ) = −H(pλ) + H(λ, λ) for all λ ∈ �.537

This theorem provides the needed result for establishing the latter half of Theorem 3.1538
in Section 3. Interestingly, it also provides a simplification of the entropy calculation,539
(31), when λ∗ is a feasible solution found by EM-IS, because at convergence we will540
have the relationship Q(λ∗, λ∗) = −H(p∗

λ). All we have to do is calculate −Q(λ∗, λ∗) for541
a given feasible solution λ∗ ∈ �, since combining (19) with (24) we have542

H(pλ∗) = −Q(λ∗, λ∗) = log(	λ∗) −
N∑

i=1

λ∗
i η

∗
i

Therefore, the entropy of pλ∗ can be easily determined: the η∗
i values for i = 1, ..., N543

are already calculated in the E step of EM-IS (24), and the normalization constant 	λ∗544
needs to have been determined already as part of the M step for solving (26).545

There are a few other observations that follow from Theorem 5.1. First, note that546
in the special case where there is no missing data, that is, X = Y , we have H(λ, λ) = 0547
and Theorem 5.1 shows that L(λ) = −H(pλ) for a feasible solution λ ∈ �; a well-548
known result of standard maximum entropy theory [Berger et al. 1996; Della et al.549
1997]. We can also draw a clear distinction between the LME and MLE principles550
from (32). Assume the term H(λ, λ) is constant for different feasible solutions. In this551
case, MLE (which maximizes likelihood) will choose the model that has the lowest en-552
tropy, whereas LME (which maximizes entropy) will choose the model that has least553
likelihood. Of course, H(λ, λ) will not be constant among different feasible λ in practice554
and the comparison between MLE and LME is not so straightforward, but this exam-555
ple does highlight difference. The difference between these two principles raises the556
question of which method is the most effective when inferring a model from sample557
data. To address this question, we turn to a brief experimental comparison of LME558
and MLE.559

6. AN EXPERIMENTAL COMPARISON560

We conducted a series of simple experiments to ascertain whether LME or MLE yields561
better estimates when inferring models from sample data that has missing compo-562
nents [Wang et al. 2003]. In the first instance, we considered a simple three-component563
mixture model as a case study, where the mixing component C is unobserved, but a564
two-dimensional vector Y ∈ �2 is observed. Thus, the features (sufficient statistics)565
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we try to match in the data are the same as in Sections 3.3 and 4.2, except that in this566
case there are three, rather than two, mixture components and the observed data Y is567
two-dimensional rather than one dimensional. Given sample data †̄ = (y1, ..., yT) the568
idea is to infer a log-linear model p(x) = p(y, c) such that c ∈ {1, 2, 3}.569

The basis for comparison between LME and MLE is to realize that by the discussion570
in Section 3.3, any feasible solution to the LME principle (11) corresponds to a locally571
maximum likelihood Gaussian mixture as specified by (14). Therefore, we can imple-572
ment EM-IS as outlined in Section 4.2 and generate feasible candidates for the LME573
and MLE principles simultaneously (although as noted in Section 4.2, EM-IS reduces574
to the standard EM algorithm for estimating Gaussian mixtures in this case). From575
Theorem 3.1 we know that LME and MLE consider the same set of feasible candidates,576
except that among feasible solutions, LME selects the model with the highest entropy,577
whereas MLE selects the model with the highest likelihood. Theorem 5.1 shows that578
these are not equivalent.579

We are interested in determining which method yields better estimates of various580
underlying models p∗ used to generate the data. We measure the quality of an estimate581
pλ by calculating the cross entropy from the correct marginal distribution p∗(y) to the582
estimated marginal distribution pλ(y) on the observed data component Y583

D(p∗(y)‖pλ(y)) =
∫

y∈Y
p∗(y) log

p∗(y)
pλ(y)

μ(dy).

The goal is to minimize the cross entropy between the marginal distribution of the584
estimated model pλ and the correct marginal p∗. A cross entropy of zero is obtained585
only when pλ(y) matches p∗(y).586

We consider a series of experiments with different models and different sample sizes587
to test the robustness of both LME and MLE to sparse training data, high variance588
data, and deviations from log-linearity in the underlying model. In particular, we used589
the following experimental design.590

(1) Fix a generative model p∗(x) = p∗(y, c).591
(2) Generate a sample of observed data Ỹ = (y1, ..., yT) according to p∗(y).592
(3) Run EM-IS to generate multiple feasible solutions by restarting from 300 random593

initial vectors λ. We generated initial vectors λ by generating mixture weights594
θc from a uniform prior, and independently generating each component of the595
mean vectors μc and covariance matrices σ 2

c by choosing numbers uniformly from596

{−4,−2, 0, 2, 4} (see Section 4.2 for the relation between the θc, μc, σ
2
c parameters597

and λ).598
(4) Calculate the entropy and likelihood for each feasible candidate.599
(5) Select the maximum entropy candidate pLME as the LME estimate, and the maxi-600

mum likelihood candidate pMLE as the MLE estimate.601
(6) Calculate the cross entropy from p∗(y) to the marginals pLME(y) and pMLE(y),602

respectively.603
(7) Repeat Steps 2 to 6, 500 times and compute the average of the respective cross604

entropies. That is, average the cross entropy over 500 repeated trials for each605
sample size and each method, in each experiment.606

(8) Repeat Steps 2 to 7 for different sample sizes T.607
(9) Repeat Steps 1 to 8 for different generative models p∗(x).608

Scenario 1. In the first experiment, we generated the data according to a three-609
component Gaussian mixture model that has the form expected by the estimators.610
Specifically, we used a uniform mixture distribution θc = 1

3 for c = 1, 2, 3, where the611
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Fig. 2. Average log-likelihood of the MLE estimates versus the LME estimates in Gaussian mixture
experiment 1.

Fig. 3. Average entropy of the MLE estimates versus the LME estimates in Gaussian mixture experiment 1.

component Gaussians were specified by the mean vectors
[

0
−3

]
,
[

0
0

]
,
[

0
3

]
and covari-612

ance matrices
[

2 0
0 1

]
,
[

2 0
0 1

]
,
[

2 0
0 1

]
, respectively.613

Figures 2 and 3 first show that the average log-likelihoods and average entropies of614
the models produced by LME and MLE, respectively, behave as expected. MLE clearly615
achieves higher log-likelihood than LME; however, LME clearly produces models that616
have significantly higher entropy than MLE. The interesting outcome is that the two617
estimation strategies obtain significantly different cross entropies. Figure 4 reports618
the average cross entropy obtained by MLE and LME as a function of sample size, and619
shows the somewhat surprising result that LME achieves substantially lower cross620
entropy than MLE. LME’s advantage is especially pronounced at small sample sizes,621
and persists even when sample sizes as large as 10,000 are considered (Figure 4).622

Although one might have expected an advantage for LME because of a “regular-623
ization” effect, this does not completely explain LME’s superior performance at large624
sample sizes. (In fact, in Section 8 we show that LME can be regularized in exactly625
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Fig. 4. Average cross entropy between the true distribution and the MLE estimates versus the LME
estimates in Gaussian mixture experiment 1.

the same way as MLE by incorporating a prior on parameters. It still maintains an626
empirical advantage in this case.) However, before discussing the regularization prop-627
erties of LME in detail, let us first consider alternative scenarios where the observed628
relationship between MLE and LME is different. This first experiment considered a629
favorable scenario where the underlying generative model p∗ has the same form as630
the distributional assumptions made by the estimators. We next consider situations631
where these structural assumptions are violated.632

Scenario 2. In our second experiment we used a generative model that was a mix-633
ture of five Gaussian distributions over �2. Specifically, we generated data by sampling634
from a uniform distribution over mixture components θc = 1

5 for c = 1, ..., 5, and then635

generated the observed data Y ∈ �2 by sampling from the corresponding Gaussian636

distribution, where these distributions had means
[

2
0

]
,
[

0
0

]
,
[

0
2

]
,
[

−2
0

]
,
[

0
−2

]
and637

covariances
[

2 0
0 1

]
,
[

2 0
0 2

]
,
[

1 0
0 2

]
,
[

2 0
0 1

]
,
[

1 0
0 2

]
, respectively. The LME and MLE esti-638

mators still only inferred three component mixtures in this case, and hence were each639
making an incorrect assumption about the underlying model.640

Figure 5 shows that LME still obtained a significantly lower cross entropy than641
MLE at small sample sizes, but lost its advantage at larger sample sizes. At a crossover642
point of T = 1000 data points, MLE began to produce slightly better estimates than643
LME, but only marginally so. Overall, LME still appears to be a safer estimator for644
this problem, but it is not uniformly dominant.645

Scenario 3. Our third experiment attempted to test how robust the estimators646
were to high variance data generated by a heavy tailed distribution. This experiment647
yielded our most dramatic results. We generated data according to a three-component648
mixture (which was correctly assumed by the estimators) but then used a Laplacian649
distribution instead of a Gaussian distribution to generate the Y observations. This650
model generated data that was much more variable than data generated by a651
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Fig. 5. Average cross entropy between the true distribution and the MLE estimates versus the LME esti-
mates in Gaussian mixture experiment 2.

Fig. 6. Average cross entropy between the true distribution and the MLE estimates versus the
LME estimates in Gaussian mixture experiment 3.

Gaussian mixture, and challenged the estimators significantly. The specific param-652

eters we used in this experiment were θc = 1
3 for c = 1, 2, 3, and means

[
2
0

]
,
[

0
0

]
,
[

0
2

]
653

and “covariances”
[

2 0
0 1

]
,
[

2 0
0 2

]
,
[

1 0
0 2

]
for the Laplacians.654

Figure 6 shows that LME produces significantly better estimates than MLE in this655
case, and even improved its advantage at larger sample sizes. Clearly, MLE is not a656
stable estimator when subjected to heavy tailed data when this is not expected. LME657
proves to be far more robust in such circumstances and clearly dominates MLE.658
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Fig. 7. Average cross entropy between the true distribution and the MLE estimates versus the LME esti-
mates in Gaussian mixture experiment 4.

Scenario 4. However, there are other situations where MLE appears to be a659
slightly better estimator than LME when sufficient data is available. Figure 7 shows660
the results of subjecting the estimators to data generated from a three-component661

Gaussian mixture, θ = 1
3 , c = 1, 2, 3, with means

[
2
0

]
,
[

0
0

]
,
[

0
2

]
and covariances662 [

2 0
0 1

]
,
[

2 0
0 2

]
,
[

1 0
0 2

]
, respectively. In this case, LME still retains a sizable advantage663

at small sample sizes, but after a sample size of T = 500, MLE begins to demonstrate664
a persistent, although modest, advantage.665

Overall, these results suggest that maximum likelihood estimation (MLE) is effec-666
tive at large sample sizes as long as the presumed model is close to the underlying667
data source. If there is a mismatch between the assumption and reality, however,668
or if there is limited training data, then LME appears to offer a significantly safer669
and more effective alternative. Of course, these results are far from definitive, and fur-670
ther experimental and theoretical analysis is required to give completely authoritative671
answers.672

Experiment on Iris Data. To further confirm our observations, we consider a classi-673
fication problem on the well-known set of Iris data as originally collected by Anderson674
and first analyzed by Fisher [1936]. The data consists of measurements of the length675
and width of both sepals and petals of 50 plants for each of three types of Iris species676
setosa, versicolor, and virginica. In our experiments, we intentionally ignore the types677
of species, and use the data for unsupervised learning and clustering of multivariate678
Gaussian mixture models. Among 150 samples, we uniformly chose 100 samples as679
training data, and the rest of the 50 samples as test data. Again, we started from680
300 initial points, where each initial point is chosen as follows: first, we calculate681
the sample mean and covariance matrix of the training data, then perturb the sam-682
ple mean using the sample variance as the initial mean, and take sample covariance683
as the covariance for each class. To measure the performance of the estimates, we684
use the empirical test set likelihood and clustering error rate. We repeat this pro-685
cedure 100 times. Table I shows the averaged results. We see that the test data is686
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Table I. Comparison of LME and
MLE on Iris Data Set

log-likelihood error rate
LME 5.58886 0.1220

MLE 5.37704 0.2446

more likely under the LME estimates, and also that the clustering error rate is cut687
in half.688

A few comments are in order. It appears that LME adds more than just a fixed689
regularization effect to MLE. In fact, as we demonstrate in Section 8, we can add a690
regularization term to the LME principle in the same way we can add a regularization691
term to the MLE principle. LME behaves more like an adaptive rather than fixed692
regularizer, because we see no real under-fitting from LME on large data samples,693
even though LME chooses far “smoother” models than MLE at smaller sample sizes.694
In fact, LME can demonstrate a far stronger regularization effect than any standard695
penalization method: In the well-known case where EM-IS converges to a degenerate696
solution (i.e., such that the determinant of the covariance matrix goes to zero), no697
finite penalty can counteract the resulting unbounded likelihood. However, the698
LME principle can automatically filter out degenerate models, because such models699
have a differential entropy of −∞ and any nondegenerate model will be preferred.700
Eliminating degenerate models by the LME principle solves one of the main practical701
problems with Gaussian mixture estimation.702

Another observation is that all of our experiments show that MLE and LME reduce703
cross entropy error when the sample size is increased. In fact, this leads to a question704
of whether the LME principle is statistically consistent; that is, that it is guaranteed705
to converge to zero cross entropy in the limit of large samples—when the underlying706
model has a log-linear form in the same features considered by the estimator. We are707
actually interested in a stronger form of consistency that requires the estimator to708
converge to the best representable log-linear model (i.e., the one with minimum cross709
entropy error) for any underlying distribution, even if the minimum achievable cross710
entropy is nonzero. In Section 9 we give an answer to this important topic.711

7. APPLICATION TO OTHER MODELS712

Clearly the LME principle is more general than Gaussian mixture models. In this sec-713
tion we demonstrate how LME can be applied to other important estimation problems714
involving latent variables. Our aim in this section is not to present a full-fledged study715
of each problem, but merely to illustrate how the LME principle can be applied in each716
case. Specifically, we focus on the application of the EM-IS algorithm to finding fea-717
sible solutions, and point out cases where it yields faster converging algorithms than718
standard maximum likelihood training algorithms.719

7.1 Mixtures of Dirichlet distributions720

The first model we consider is a mixture of Dirichlet distributions [Wang and721
Schuurmans 2003], which has applications in natural language modeling and other722
areas [Blei et al. 2002; MacKay and Peto 1995]. In this problem, the observed data has723
the form of an M dimensional probability vector y = (y1, ..., yM) such that 0 ≤ y� ≤ 1724

for � = 1, ..., M and
∑M

�=1 y� = 1. That is, the observed variable is a random vector725

Y = (Y1, ..., YM) ∈ [0, 1]M, which happens to be normalized. There is also an underly-726
ing class variable C ∈ {1, 2} that is unobservable. Let X = (Y, C). Given an observed727
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sequence of T M-dimensional probability vectors Ỹ = (y1, ..., yT), where yt = (yt
1, ..., yt

M)728
for t = 1, ..., T, we attempt to infer a latent maximum entropy model that matches729
expectations on the features f k

0 (x) = δk(c) and f k
� (x) = (− log y�)δk(c) for � = 1, ..., M and730

k = 1, 2, where x = (y, c). In this case, the LME principle can be formulated as731

max
p(x)

H(X ) = H(C) + H(Y |C),

subject to
∫

x∈X
δk(c) p(x) μ(dx) =

∑
y∈Ỹ

p̃(y)
∑

c

δk(c) p(c|y) μ(dx)

∫
x∈X

(− log y�) δk(c) p(x) μ(dx) =
∑
y∈Ỹ

p̃(y)
∑

c

(− log y�) δk(c) p(c|y) μ(dx)

Y and C not independent for � = 1, ..., M and k = 1, 2,

where δk(c) indicates whether c = k and p̃(y) = 1
T . Due to the nonlinear mapping732

caused by p(c|y), there is no closed-form solution. However, as for Gaussian mixtures,733
we can apply EM-IS to obtain a feasible log-linear model for this problem. To perform734
the E step, we can calculate the feature expectations according to (24),735

η
k,( j)
0 =

1
T

T∑
t=1

∑
c∈{1,2}

δk(c) ρ
k,( j)
t ,

η
k,( j)
� =

1
T

T∑
t=1

∑
c∈{1,2}

(− log yt
�) δk(c) ρ

k,( j)
t for � = 1, ..., M and k = 1, 2,

where ρ
k,( j)
t = pλ( j) (C=k|yt) = pλ( j) (yt|C=k) pλ( j) (C=k) /

∑
c∈{1,2} pλ( j) (yt|c) pλ( j) (c). Note736

that these expectations can be calculated efficiently, like the Gaussian mixture case.737
To execute the M step, we then formulate the simpler maximum entropy problem738

with linear constraints, as in (20) and (21), to obtain739

max
p(x)

H(X ) = H(C) + H(Y |C),

subject to
∫

x∈X
δk(c) p(x) μ(dx) = η

k,( j)
0∫

x∈X
(− log y�) δk(c) p(x) μ(dx) = η

k,( j)
� for � = 1, ..., M and k = 1, 2.

For this problem we can obtain a log-linear solution of the form p(x) = p(y, c) where740

p(c) = 1
T

∑T
t=1 ρt

k and the class conditional model p(y|c) is a Dirichlet distribution with741

parameters αc
� = 1−λc

l ; that is, p(y|c) = �
(∑M

�=1 αc
�

) (∏M
�=1 �(αc

�)
)−1 ∏M

�=1 yαc
�−1

� . However,742

we still need to solve for the parameters αc
�. (This is unlike the Gaussian mixture case743
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Fig. 8. Average cross entropy between true distribution and MLE versus LME estimates in Dirichlet mix-
ture experiment.

where we could solve for the Lagrange multipliers directly.) By plugging in the form of744
Dirichlet distribution, the feature expectation will have an explicit formula, thus the745
constraints that the parameters αc

� should satisfy become746

−�(αc,( j)
l ) + �

(
M∑

m=1

αc,( j)
m

)
= η

k,( j)
�

for � = 1, ..., M and k = 1, 2, where � is the digamma function. The solution can be747
obtained by iterating the fixed-point equations748

�(αc,( j+s/K)
l ) = �

(
M∑

m=1

αc,( j+(s−1)/K)
m

)
− η

k,( j)
�

for � = 1, ..., M and k = 1, 2. This iteration corresponds to a well-known technique749
for locally monotonic maximizing the likelihood of a Dirichlet mixture [Minka 2003].750
Thus, EM-IS recovers a classical training algorithm as a special case.751

Dirichlet Mixture Experiment. To compare model selection based on the LME ver-752
sus MLE principles for this problem, we conducted an experiment on a mixture of753
Dirichlet sources. In this experiment, we generate the data according to a three-754
component Dirichlet mixture, with mixing weights θc = 1

6 , 1
2 , 1

3 and component Dirich-755

lets specified by the α parameters [1 2], [3 1], and [5 2], respectively. The initial756
mixture weights were generated from a uniform prior, and each α was generated by757
choosing numbers uniformly from {0.1, 0.5, 1, 2.5, 5}. Figure 8 shows the cross entropy758
results of LME and MLE averaged over 10 repeated trials for each fixed training sam-759
ple size. The outcome in this case shows a significant advantage for LME.760

7.2 Boltzmann Machines761

Interestingly, the LME principle leads to fundamentally new training algorithms762
for Boltzmann machine learning [Wang and Schuurmans 2003]. Consider a graph-763
ical model with M binary nodes taking values either 0 or 1. Assume that among764
these nodes there are J observable nodes Y = (Y1, ..., Y j ), and L = M − J unob-765

servable nodes U = (U1, ...,UL). Let X = (Y,U). Thus, Y = {0, 1}J, U = {0, 1}L766
and X = {0, 1}J+L = {0, 1}M. For this problem, the observed data has the form of a767
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Fig. 9. Boltzmann machine model: nodes Y are observable, nodes U are unobservable.

J dimensional vector y = (y1, ..., y j ) ∈ {0, 1}J. Given an observed sequence of T J-768

dimensional vectors Y = (y1, ..., yT), where yt ∈ {0, 1}J for t = 1, ..., T, we attempt to769
infer a latent maximum entropy model that matches expectations on features defined770
between every pair of variables in the model. Specifically, we consider the features771
fk�(x) = yky�, fkm(x) = ykum, fmn(x) = umun, for 1 ≤ k < � ≤ J and 1 ≤ m < n ≤ L, where772
x = (y, u) = (y1, ..., yJ, u1, ..., uL). Note that once again the features are all binary, and773
therefore we can represent the structure of the log-linear model by a graph, as shown774
in Figure 9.775

Given a sequence of observed data Ỹ = (y1, ..., yT), we formulate the LME776
principle as777

max
p(x)

H(X ) = H(Y ) + H(U|Y ),

subject to
∑
x∈X

yky� p(x) =
∑
y∈Ỹ

yky� p̃(y)

∑
x∈X

ykum p(x) =
∑
y∈Ỹ

yk p̃(y)
∑

u∈{0,1}L

um p(u|y)

∑
x∈X

umun p(x) =
∑

u∈{0,1}L

umun p(u)

for 1 ≤ k < � ≤ J and 1 ≤ m < n ≤ L
Y and U not independent,

where x = (y, u) = (y1, ..., yJ, u1, ..., uL) and p̃(y) = 1
T . Again, we can apply EM-IS to find778

a feasible log-linear model. To execute the E step, calculate the feature expectations779
according to (24):780

η
( j)
k,�

=
1
T

T∑
t=1

yt
kyt

�

η
( j)
k,m =

1
T

T∑
t=1

yt
k

∑
u∈{0,1}L

um p(u|yt)

η( j)
m,n =

∑
u∈{0,1}L

umun p(u) for 1 ≤ k < � ≤ J and 1 ≤ m < n ≤ L.
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To execute the M step, we then formulate the simpler maximum entropy problem with781
linear constraints, as in (20) and (21):782

max
p(x)

H(X ) = H(Y ) + H(U|Y ),

subject to
∑
x∈X

yky� p(x) = η
( j)
k,�

∑
x∈X

ykum p(x) = η
( j)
k,m

∑
x∈X

umun p(x) = η( j)
m,n for 1 ≤ k < � ≤ J and 1 ≤ m < n ≤ L,

where x = (y, u) = (y1, ..., yJ, u1, ..., uL). In this case, the probability distribution for the783
complete data model can be written as784

p�(x) = p�(u, y) =
1

	�

e
1
2 y�Y y+ 1

2 u�U u+y�YU u =
1

	�

e
1
2 x�x,

where � =

[
�Y �YU

�YU �U

]
is the M × M symmetric matrix of λ parameters corresponding785

to the features over the variable pairs (with the diagonal elements of � equal to786

zero), and 	� =
∑

x∈{0,1}M e
1
2 x�x is the normalization factor. This graphical model787

corresponds to a Boltzmann machine [Ackley et al. 1985]. To solve for the optimal788
Lagrange multipliers �( j) in the M step, we once again need to use iterative scaling.789
Following (25), we iteratively improve �( j) by adding the update parameters γ ( j+s/K)790
that satisfy (26). These can be calculated by by using Newton’s method or the bisection791
method to solve for γ ( j+s/K) in792

∑
x∈{0,1}M

1
	�( j+(s−1)/K)

yky� exp
(

1
2

x
[
�( j+(s−1)/K) + γ

( j+s/K)
k,�

(
11 − IM

)]
x
)

= η
( j)
k,�

,

∑
x∈{0,1}M

1
	�( j+(s−1)/K)

ykum exp
(

1
2

x
[
�( j+(s−1)/K) + γ

( j+s/K)
k,i

(
11 − IM

)]
x
)

= η
( j)
k,m,

∑
x∈{0,1}M

1
	�( j+(s−1)/K)

umun exp
(

1
2

x
[
�( j+(s−1)/K) + γ

( j+s/K)
i, j

(
11 − IM

)]
x
)

= η( j)
m,n

for 1 ≤ k < � ≤ J and 1 ≤ m < n ≤ L.

Here 1 is the M dimensional vector with all 1 elements, and IM is the M × M identity793
matrix. The required expectations can be calculated by direct enumeration when794
M is small, or approximated by generalized belief propagation [Wainwright et al.795
2003; Yedidia et al. 2005] or Monte Carlo estimation [Ackley et al. 1985] when M is796
large.797

Byrne [1992] used a sequential update algorithm for the M step in a Boltzmann ma-798
chine parameter estimation algorithm. However, to maintain monotonic convergence,799
Byrne’s algorithm requires a large number of iterations in the M step to ensure a max-800
imum is achieved, otherwise monotonic convergence property can be violated for the801
sequential updates he proposes. In our case, EM-IS uses a parallel update that avoids802
this difficulty. A sequential algorithm that maintains the monotonic convergence prop-803
erty can also be adapted, as described in [Collins et al. 2002].804
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Fig. 10. Convergence evaluation for Boltzmann machine training: log-likelihood versus iteration; solid
curve denotes EM-IS with k = 4; dotted curve denotes EM-IS with k = 1; and dashed curve denotes gradient
ascent.

To compare EM-IS to standard Boltzmann machine estimation techniques, first con-805
sider the derivation of a direct EM approach. In standard EM, given the previous pa-806
rameters �( j), we solve for new parameters � by maximizing the auxiliary Q function807
with respect to �:808

Q(�,�′) =
1
T

T∑
t=1

∑
u∈{0,1}L

p�′
(
u|yt) log p�

(
yt, u

)

= − log(	�) +
1

2T

T∑
t=1

∑
u∈{0,1}L

x� x p�′
(
u|yt)

Taking derivatives with respect to � gives809

∂

∂�
Q(�,�′) = −1

2
Ep�

[
xx] +

1
2T

T∑
t=1

∑
u∈{0,1}L

xx p�′
(
u|yt) .

Apparently, there is no closed-form solution to the M step, and a generalized EM algo-810
rithm has to be used in this case. The standard approach is to use a gradient ascent811
to approximately solve the M step. However, the step size needs to be controlled to812
ensure a monotonic improvement in Q.813

By comparison, EM-IS has distinct advantages over the standard gradient ascent814
EM approach. First, EM-IS completely avoids the use of tuning parameters while still815
guaranteeing monotonic improvement. Moreover, we have found that EM-IS converges816
faster than gradient ascent EM. Figure 10 shows the result of a simple experiment817
that compares the rate of convergence of M step optimization techniques on a small818
Boltzmann machine with five visible nodes and three hidden nodes. Comparing EM-IS819
to the gradient ascent EM algorithm proposed in Ackley et al. [1985], we find that EM-820
IS obtains substantially faster convergence. Figure 10 also shows that using several821
IS iterations in the inner loop, K = 4, yields faster convergence than taking a single822
IS step, K = 1 (which corresponds to Riezler’s proposed algorithm [Riezler 1999]).823

Experiments on Learning Boltzmann Machines. Even assuming that we have an824
effective algorithm for local parameter optimization, there remains the issue of coping825
with multiple local maxima. To ascertain whether LME or MLE yields better estimates826
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Fig. 11. Average log-likelihood of the MLE estimate versus the LME estimates in Boltzmann machine
experiment 1 over 10 runs.

Fig. 12. Average entropy of the MLE estimate versus the LME estimates in Boltzmann machine experiment
1 over 10 runs.

when inferring models from sample data that has a missing component, we conducted827
a series of simple experiments. In particular, we considered inferring a simple Boltz-828
mann machine model from data that, in each case, consisted of eight nodes with five829
observable and three hidden units.830

In the first experiment, we generated the data according to the assumed model: a831
Boltzmann machine with five observable and three hidden units, and attempted to832
learn the parameters for a Boltzmann machine that assumed the same architecture.833
Figures 11 and 12 first show that the average log-likelihoods and average entropies of834
the models produced by LME and MLE, respectively, behave as expected. MLE clearly835
achieves higher log-likelihood than LME; however, LME clearly produces models that836
have significantly higher entropy than MLE. The interesting outcome is that the two837
estimation strategies obtain significantly different cross entropies. Figure 13 reports838
the average cross entropy obtained by MLE and LME as a function of sample size,839
and shows the result that LME achieves substantially lower cross entropy than MLE.840
LME’s advantage is especially pronounced at small sample sizes, and persists even841
when sample sizes as large as 1,000 are considered (Figure 13).842
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Fig. 13. Average cross entropy between the true distribution and the MLE estimate versus the LME esti-
mates in Boltzmann machine experiment 1 over 10 runs.

Fig. 14. Average cross entropy between the true distribution and the MLE estimate versus the LME esti-
mates in Boltzmann machine experiment 2 over 10 runs.

In our second experiment, we used a generative model that was a Boltzmann ma-843
chine with five observable and five hidden units. Specifically, we generated data with844
this architecture. The LME and MLE estimators still only inferred a Boltzmann ma-845
chine with five observable and three hidden in this case, and hence were making an846
incorrect “undercomplete” assumption about the underlying model. Figure 14 shows847
that LME obtained a significantly lower cross entropy than MLE.848

In our third experiment, we used a generative model that was a Boltzmann machine849
with five observable and one hidden, and the data were generated by this architecture.850
Again, the LME and MLE estimators inferred Boltzmann machine with five observable851
and three hidden in this case, and hence were making an incorrect “overcomplete”852
assumption about the underlying model. Figure 15 shows that LME still obtained a853
significantly lower cross entropy than MLE.854

Although these results are anecdotal, we have witnessed a similar outcome on855
several other models. Nevertheless, wider experimentation on synthetic and real856
Boltzmann machine applications and theoretical analysis are necessary to confirm857
this as a general conclusion.858
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Fig. 15. Average cross entropy between the true distribution and the MLE estimate versus the LME esti-
mates in Boltzmann machine experiment 3 over 10 runs.

8. A REGULARIZED EXTENSION859

In many statistical modeling situations, the constraints themselves are subject to er-860
ror due to small sample size effects—particularly in domains where there are a large861
number of features. One way to mitigate the sensitivity to constraint errors is to relax862
the LME principle by introducing slack variables [Chen and Rosenfeld 2000; Csiszar863
1996; Lebanon and Lafferty 2002]. That is, we can augment the LME principle to be864

max
p,ε

H(p) − U(ε),

subject to the constraints865 ∫
x∈X

fi(x) p(x) μ(dx) = εi +
∑
y∈Ỹ

p̃(y)
∫

z∈Z
fi(x) p(z|y) μ(dz) i = 1, ..., N,

where the εi, for i = 1, ..., N, are slack variables that allow for errors on the constraints866
and U : �N → R is a convex function that has its minimum at 0. The regularization867
term U(ε) penalizes violations in reliably observed constraints to a greater degree than868
deviations in less reliably observed constraints. This establishes a Bayesian frame-869
work for exponential models in which a prior distribution on feature parameters can870
be naturally incorporated.871

To solve the reformulated LME problem, we again restrict p to be a log-linear model872
and develop an iterative algorithm for finding feasible solutions. The key to developing873
such an algorithm is to note that the stationary points of the penalized log-likelihood874
of the observed data, R(λ, σ ) =

∑
y∈Ỹ p̃(y) log pλ(y)+U∗(λ), are among the feasible set of875

the relaxed constraints, where U∗(λ) is the convex conjugate of U. For example, given876

a quadratic penalty U(ε) =
∑N

i=1
1
2σ 2

i ε2
i with εi = λi

σ 2
i
, we obtain U∗(λ) =

∑N
i=1

λ2
i

2σ 2
i
, the877

Gaussian prior. In this case, the EM-IS algorithm remains almost the same except878
that the parameter update (26) in the M step needs to modified to879

∫
x∈X

fi(x) eγ
( j+s/K)
i f (x) pλ( j+(s−1)/K) (x) μ(dx) +

λ
( j+(s−1)/K)
i + γ

( j+s/K)
i

σ 2
i

= η
( j)
i .
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Gaussian Mixture Example880

To demonstrate the difference for regularized LME with the penalized maximum like-881
hood estimate, we first consider a learning simple Guassian mixture in Scenario 3 in882
Section 6. As in Gauvain and Lee [1994], we take the Dirichlet density to model the883
prior knowledge about the mixture weights884

p(w1, · · · , wK|ν, · · · , νK) ∝
K∏

k=1

w
νk−1
k . (33)

Then, for the mean and covariance of each Gaussian component, we use the joint con-885
jugate prior density, a normal-Wishart density of the form886

p(μ,�|τ, m, α, V) ∝ |�|(α−n)/2 exp
(
−τ

2
(μ − m)T�(μ − m)

)
exp

(
−1

2
tr(V�)

)
, (34)

where (τ, m, α, V) are the prior density parameters such that α > n − 1, τ > 0, μ is887
an n-dimensional vector and V is n × n positive definite matrix. Thus, the joint prior888
density is the product of the prior density defined in (33) and (34).889

The EM re-estimation formulas can be derived as follows.890

wk =
(νk − 1) +

∑T
t=1 ρk

t∑K
k=1

(
νk − 1 +

∑T
t=1 ρk

t

) (35)

μk =
τμk +

∑T
t=1 ρk

t yt

τk +
∑T

t=1 ρk
t

(36)

�k =
μk +

∑T
t=1 ρk

t (yt − μk)(yt − μk)′ + τt(mk − μk)(mk − μk)′

(αk − n) +
∑T

t=1 ρk
t

. (37)

Once we obtain the estimates of wk, μk,�k, for k = 1, · · · , K, we can then transform891
them into the natural parameterization and calculate the regularized entropy and pe-892
nalized likelihood. We then choose the highest regularized entropy estimate as the893
final regularized LME estimate and highest penalized likelihood estimate as the final894
penalized MLE estimate. (Note that when we calculate the regularized entropy, we895
use the negative value of auxilary function, since the negative value of the auxilary896
function is equal to the regularized entropy at the fixed point.)897

Figure 16 shows that the regularized LME still produces significantly better esti-898
mates than the penalized MLE in this case. Comparing with Figure 6, we notice that899
when the data is small, the regularization term causes the estimates to be closer to900
the true distribution, however, when the sample size gets large, this effect diminishes.901

Language Modeling Example902

The maximum entropy approach has been a key method for language modeling since903
the 1990s [Jelinek 1998; Lau et al. 1993; Rosenfeld 1996]. In this section we briefly904
illustrate how to use the regularized LME principle to combine the trigram Markov905
model with probabilistic latent semantic analysis (PLSA) [Hofmann 2001] to form a906
stronger language model.907

Define the complete data as x = (W−2, W−1, W0, D, T−2, T−1, T0), where W0, W−1, W−2908
are the current and two previous words, T−2, T1, T0 are the hidden “topic” values asso-909
ciated with these words, and D is a document identifier. Thus, y = (W−2, W−1, W0, D)910
is the observed data and z = (T−2, T−1, T0) is unobserved. Typically, the number of911
documents, words in the vocabulary, and latent class variables are on the order of912
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Fig. 16. Average cross entropy between the true distribution and the penalized MLE estimates versus the
regularized LME estimates in Gaussian mixture experiment 3.

100,000, 10,000, and 100, respectively. A graphical representation of a semantic node913
interacting with a trigram is illustrated in Figure 17.914

We choose n-gram (n = 1,2,3), co-occured n-gram (n = 1,2,3), and the corresponding915
topic, as well as co-occured topic document as the features. Then, constraints that p(x)916
should respect are917

∑
x

p(x)δ(W−2 =wi, W−1 =w j, W0 =wk) =
∑

d

p̃(d) p̃(W−2 =wi, W−1 =w j, W0 =wk|d) ∀ i, j, k (38)

∑
x

p(x)
0∑

�=−1

δ(W�−1 =wi, W� =w j ) =
∑

d

p̃(d)
0∑

�=−1

p̃(W�−1 = wi, W� = w j|d) ∀ i, j (39)

∑
x

p(x)
0∑

�=−2

δ(W� =wi) =
∑

d

p̃(d)
0∑

�=−2

p̃(W� = wi|d) ∀i (40)

∑
x

p(x)δ(T0 =t, W−2 =wi, W−1 =w j, W0 =wk) =
∑

d

p̃(d) p̃(W−2 =wi, W−1 =w j, W0 =wk|d) ∀ i, j, k, t (41)

p(T0 =t|W−2 =wi, W−1 =w j, W0 =wk, D =d)

∑
x

p(x)
0∑

�=−1

δ(T� =t, W�−1 = wi, W� = w j ) =
∑

d

p̃(d)
0∑

�=−1

p̃(W�−1 = wi, W� = w j|d) ∀ i, j, t (42)

p(T� =t|W�−1 = wi, W� = w jD =d)

∑
x

p(x)
0∑

�=−2

δ(T� =t, W� =wi) =
∑

d

p̃(d)
0∑

�=−2

p̃(W� =wi|d) ∀ i, t (43)

p(T� =t|W� =wi, D =d)

∑
x

p(x)
0∑

�=−2

δ(T� =t, D =d) =
∑

d

p̃(d)
0∑

�=−2

p(T� =t|D =d) ∀ t, (44)

918
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Fig. 17. A graphical representation of the semantic tri-gram model, many arcs share the same parameters
and many features are not reflected by arcs.

where p̃ denotes the empirical distribution actually seen in the training corpus,919
and δ(.) is an indicator that returns 1 if the event is active, and 0 otherwise. Note920
the δ functions specify the features that the learned model p(x) should respect.921
Equations (36 to 38) specify the trigram, bigram, and unigram constraints, which are922
linear. Equations (39 to 41) speficy the co-occured topic-trigram, topic-bigram, and923
topic-unigram constraints, which involve the hidden topic variables T, thus they are924
nonlinear. Finally, Eq. (42) specifies the co-occured document-topic constraints, which925
again involve the hidden topic variables T; thus they are nonlinear.926

The corpus used to train our model was taken from the WSJ portion of the NAB cor-927
pus, and was composed of about 150,000 documents spanning the years 1987 to 1989,928
comprising approximately 42 millions words. The vocabulary was constructed by tak-929
ing the 60,000 most frequent words of the training data. We split another, separate set930
of data consisting of 325,000 words, taken from the year 1989, into two parts: one part931
with 68,000 words used as development data and another part with 257,000 words for932
testing. There are approximately 12 million types of trigrams from the training data933
set, if we choose the topic to be 200, then the constraints for Eq. (39) will be 1.2 billion,934
which is too big to store. Thus, we first ran PLSA on the training data set, then, for935
each document, we chose the most likely 5 topics from a total of 125 toipcs, and all936
the other 195 topics were pruned. This procedure significantly reduces the number937
of constraints for Eq. (39) to approximately 120 million. Unfortunately, this number938
of constraints leads to the same number of parameters that can be stored on a single939
machine. So we use a set of machines to store and update the parameters via IIS; use940
another set of machines to compute feature expectation; and use MPI for message pass-941
ing, scheduling, and synchronization and so on. In the experiment below, we chose a942
Gaussian prior with a variance of 1 for each constraint to serve as a regularizer. We set943
the number of EM iterations to 5 and the number of internal IIS loop iterations to 20.944

To control for the effects of maximizing regularized entropy (RLME) versus maxi-945
mizing a posteriori probability (MAP), we first omitted the outer ME-EM-IS procedure946
and instead just initialize the parameters to zero and execute a single run of EM-IS.947
We then perturbed the parameters randomly and ran a single EM-IS to find a single948
locally MAP model (or, equivalently, a single feasible model for the RLME principle).949
Then, using these results as a control, we reran the procedures with the outer ME-EM-950
IS procedure reintroduced, to find higher regularized entropy (RLME) solutions and951
higher penalized likelihood (MAP) solutions. Specifically, we used 20 random start-952
ing points for λ, ran EM-IS from each, and then selected the highest regularized en-953
tropy solution as the RLME estimate, and the highest penalized maximum likelihood954
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solution as the MAP estimate. The perplexity of the baseline trigram with linear955
interpolation smoothing technique is 132, while the perplexity of the composite tri-956
gram/PLSA trained by RLME is 106, a 19% reduction over baseline: the perplexity of957
the composite trigram/PLSA trained by MAP is 110, a 16% reduction over baseline.958

9. CONSISTENCY AND GENERALIZATION BOUNDS959

The MLE method has been extensively studied in the statistics literature and has960
good statistical properties, such as asymptotic consistency. What we are shown in961
Wang et al. [2005] and summarized below is that under certain necessary conditions,962
the latent maximum entropy density estimate pλ�(y) is also consistent.963

THEOREM 9.1. Let pλ�(y) denote the maximum entropy estimate over the exponen-964
tial family E . Assume for all λ ∈ � and for all y ∈ Y, we have 0 < a ≤ F (y) ≤ b. Then965
there exist 0 < ζ < α < ∞ such that with probability at least 1 − η966

D(p0(y)‖pλ�(y)) − D(p0(y)‖pλ̂(y)) ≤ 4C3√
M

EỸ

[∫ α

ζ

√
logN (F (y), ε, dy)dε

]

+C4

√√√√2 log
(

1
η

)
M

+ Ep̃(y) log
pλ̂(y)
pλ�(y)

,

where pλ̂(x) is the information projection [Csiszar 1975] of (unknown) true distribution967
p0(y) to the marginal exponential family E(y), N (F (y), ε, dy) is the random covering968

number of the marginal feature functions F (y) =
∫

z∈Z exp
(
〈λ, f (y, z)〉

)
μ(dz) at scale ε969

with empirical Euclidean distance dy on sample data Ỹ .970

Using this result, we can then easily establish the following consistency property.971

COROLLARY 9.2. Universal consistency: If
∫ α

ζ

√
logN (F (y), ε, dy)dε is bounded, and972

also Ep̃(y) log pλ̂(y) ≤ Ep̃(y) log pλ�(y), then pλ�(y) will converge to pλ̂(y) (in terms of973
the difference of Kullback–Leibler divergence to the true distribution p0(y)) with rate974

O( 1√
M

), for any true distribution p0(y).975

Corollary 9.2 gives a sufficient condition, that is, Ep̃(y) log pλ̂(y) ≤ Ep̃(y) log pλ�(y),976
which leads to the universal consistency of latent maximum entropy estimation. This,977
perhaps, partially explains our observations of experimental results on synthetic978
data conducted above, that is, in some cases, as the sample size goes to ∞, LME is979
consistent and does converge to the same point as MLE.980

Note that in the proof of Theorem 9.1 and Corollary 9.2, it is not necessary to restrict981
pλ� to be the model that has global maximum joint entropy over all feasible log-linear982
solutions. It turns out that the conclusion still holds for all feasible log-linear models983
pλ(y) which have greater empirical loglikelihood, Ep̃(y) log pλ(y), than the empirical984
loglikelihood, Ep̃(y) log pλ̂(y), of the optimal expected loglikelihood estimate pλ̂(y). That985
is, as the sample size grows, any of these feasible log-linear models will converge to986
pλ̂(y) (in terms of the difference of Kullback–Leibler divergence to the true distribution987

p0(y)) with rate O( 1√
M

).988

10. CONCLUSION989

We have presented an extension of Jaynes’ maximum entropy principle to incomplete990
data or latent variable estimation problems. It is shown that in contrast to the well-991
known duality between entropy and likelihood maximization for log-linear models, for992
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latent variable problems, a weaker correlation between maximum entropy and maxi-993
mum likelihood holds. For the parametric family of log-linear probability distributions,994
the solutions to local likelihood maximization satisfy the constraints on matching em-995
pirical expectations to conditional model expectations, given incomplete data in la-996
tent entropy maximization. Among those feasible log-linear solutions, maximization997
of likelihood and entropy produce different results. An EM algorithm that incorporates998
nested iterative scaling, EM-IS, is used to solve the problem of finding feasible solu-999
tions for the LME principle. EM-IS retains the main virtues of the EM algorithm—its1000
guarantee of monotonic improvement of the likelihood function, and its absence of tun-1001
ing parameters. We have shown that EM-IS recovers many standard iterative train-1002
ing procedures for these models. In one case, we have seen that EM-IS leads to a new1003
training procedure that has superior convergence properties to standard methods. We1004
then used EM-IS to develop the ME-EM-IS algorithm for approximately realizing the1005
LME principle. This algorithm exploits EM-IS to generate feasible solutions, but then1006
evaluates the entropy of the candidates and selects a highest entropy feasible solution.1007
Some experiments show the advantage of LME over standard maximum likelihood es-1008
timation (MLE) in estimating a data source with hidden variables, particularly from1009
small amounts of data.1010

APPENDIX A. THE INFORMATION GEOMETRY OF EM-IS1011

We give an information geometric interpretation of the EM-IS algorithm by using the1012
information divergence and the technique of alternating minimization on probability1013
manifolds. This interpretation will provide a clear illustration on how the EM-IS al-1014
gorithm converges to a stationary point of the likelihood function. Our analysis also1015
clarifies some of the properties of EM algorithms more generally.1016

Define the Kullback–Leibler divergence: D(p‖q) =
∫

x∈X p(x) log p(x)
q(x) μ(dx), (where1017

0 log 0 = 0 log 0
0 = 0, c log c

0 = ∞ if c > 0), which is a measure of distance p from q. It is1018
non-negative, equals 0 if and only if p = q, but is nonsymmetric and does not satisfy1019
triangle inequality.1020

To understand the relationship between maximum likelihood and LME models, note1021
that, unlike the complete data case, we have L(λ) 	= �(p, λ) if there are missing data1022
components. However, the stationary points of the log-likelihood function (10) are1023
the approximate solution for (8) under the log-linear assumption, because, ignoring1024

the last two terms of (9), we have ∂ϒ(λ)
∂λi

≈ ∂L(λ)
∂λi

. To illustrate the relationship between1025

maximum likelihood models and LME models, consider the manifolds of the stationary1026
points of the log-likelihood on incomplete data (10) for a general model, and the feasible1027
solutions of the LME principle (3) under the log-linear assumption, respectively.1028

C =

⎧⎨
⎩p ∈ P :

∫
x∈X

p(x) fi(x)μ(dx) =
∑
y∈Ỹ

p̃(y)
∫

z∈Z
p(z|y) fi(x)μ(dz), i = 1, ..., N

⎫⎬
⎭ (45)

E =

{
pλ ∈ P : pλ(x) =

1
	λ

exp

(
N∑

i=1

λi fi(x)

)
, λ ∈ �

}
, (46)

where1029

� =

{
λ ∈ �N :

∫
x∈X

exp

(
N∑

i=1

λi fi(x)

)
μ(dx) < ∞

}
. (47)
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Fig. 18. In the space of all probability distribution on the complete data P , curve C denotes the set which
satisfies the nonlinear LME constraints; curve E denotes the set of exponential models; and the intersection
of C and E is the set of the stationary points of the log-likelihood function of the observed data.

The restriction λ ∈ � will guarantee that the maximum likelihood estimate is an inte-1030
rior point of set of λ’s for which pλ(y) is defined.1031

Figure 18 illustrates that the two manifolds intersect at the set of log-linear models1032
that are also stationary points of the log-likelihood function of the incomplete data.1033

We now define manifolds M and Ga as1034

M =
{

p ∈ P :
∫

z∈Z
p(x) μ(dz) = p̃(y), y ∈ Y

}
(48)

Ga =
{

p ∈ P :
∫

x∈X
p(x) fi(x) μ(dx) = ai, i = 1, ..., N

}
, (49)

where a is some given vector of constants, a = (a1, ..., aN). Then we have the following.1035

LEMMA A.1. M is a linear submanifold of C.1036

PROOF. Assume p1 ∈ M and p2 ∈ M, and let p(x) = θp1(x)+(1−θ )p2(x) for θ ∈ [0, 1].1037
Then,

∫
z∈Z p(x)μ(dz) = θ

∫
z∈Z p1(x)μ(dz) + (1 − θ )

∫
z∈Z p2(x)μ(dz) = p̃(y). Therefore,1038

p ∈ M, and M is a linear manifold. Also, for all p ∈ M, we have p(x) = p̃(y)p(z|y),1039
and therefore

∫
x∈X p(x) fi(x)μ(dx) =

∑
y∈Ỹ p̃(y)

∫
z∈Z p(z|y) fi(x)μ(dz), i = 1, ..., N. Thus1040

M ⊂ C. So we conclude that M is a linear submanifold of C.1041

One alternating minimization step [Byrne 1992; Csiszar and Tusnady 1984] starts1042
from a given distribution pλ( j) ∈ E , and finds the backward I-projection, p( j), of pλ( j)1043
onto M; that is, p( j) = arg minp∈M D(p‖pλ( j) ). Then, by fixing p( j), we next find the1044
forward I-projection, pλ( j+1) , of p( j) onto E ; that is, pλ( j+1) = arg minpλ∈E D(p( j)‖pλ). It is1045
possible to establish a well-known result that an alternating backward I-projection,1046
forward I-projection step leads to the EM update of the auxiliary function Q(λ, λ( j)).1047
We include a proof here to make this article self-contained.1048

LEMMA A.2. One alternating minimization step between M and E is equivalent to1049
an EM update:1050

λ( j+1) = arg max
λ∈�

Q
(
λ, λ( j )

)
(50)

This equivalence enables us to establish an information geometric interpretation of1051
EM-IS algorithm, as follows (see Figure 19 for an illustration): In the space of all1052
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Fig. 19. The information geometry of alternating minimization procedures. Here the straight line M de-
notes the set of distributions whose marginal distribution matches the empirical distribution, M ⊂ C. The
nonlinear operator T denotes marginalization of p(x) over z, and maps the entire space of p(x) into p(y), M
into a singleton p̃(y), and E into pλ(y). The intersection of C and E is the set of distributions for which the
alternating minimization procedure reaches a fixed point.

probability distributions on the complete data, P , curve C denotes the set that satisfies1053
the nonlinear LME constraints, curve E denotes the set of exponential models, and the1054
intersection of C and E is the set of stationary points of the log-likelihood function of1055
the observed data. Line M denotes the set of distributions whose margin on y matches1056
the empirical distribution.1057

Starting from pλ( j) ∈ E , line Ga denotes the set whose feature expectations match1058
the constant a. The intersection of M and Ga is the point p( j)(x) = p̃(y)pλ( j) (z|y) such1059

that
∑

y∈Ỹ p̃(y)
∫

z∈Z pλ( j) (z|y) fi(x) μ(dz) = ai, i = 1, ..., N. That is, it is the backward1060

I-projection of pλ( j) ∈ E to M, given by p( j) = arg minp∈M D(p‖pλ( j) ). The E step deter-1061
mines the value of a. The M step finds the intersection of E and Ga. This is achieved1062
by a forward I-projection of p( j) onto E , given by pλ( j+1) = arg minpλ∈E D(p( j)‖pλ);1063
this is equivalent to the I-projection of the uniform distribution U onto Ga, pλ( j+1) =1064
arg minp∈Ga D(p‖U). This alternating procedure will halt at a point where the three1065
manifolds C, E , and Ga have a common intersection, since we will reach a stationary1066
point in that case. Due to the nonlinearity of the manifold C, the intersection is not1067
unique.1068

Note that in the EM-IS algorithm, each update λ( j+s/K) after an iterative scaling1069
phase increases Q(λ, λ( j)), and therefore decreases the divergence D(p( j)‖pλ) between1070
p( j) and pλ. Instead of finding a final forward I-projection pλ( j+1) for each M step,1071
EM-IS only finds an approximation solution after K iterations of the iterative scaling1072
procedure.1073

Also note that in the case where there is no unobserved training data, the manifold1074
M shrinks to a singleton p̃(x), and C stretches to match G. In this case, the manifolds1075
C,G, and E intersect at a unique point.1076

Previously, Amari [1995], Byrne [1992], and Csiszar and Tusnady [1984] have given1077
an information-geometric interpretations of the EM algorithm for log-linear models.1078
However, they did not explicitly consider the constraints imposed by the nonlinear1079
manifold C, and subsequently their explanations of why EM can converge to different1080
solutions depending on the initial point were unclear and hampered by this omission.1081
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We gain further insight by considering the well-known Pythagorean theorem [Della1082
et al. 1997] for log-linear models, which in the complete data case states that if there1083
exists pλ∗ ∈ Ga ∩ E , then1084

D(p‖pλ) = D(p‖pλ∗) + D(pλ∗‖pλ) for all p ∈ Ga, pλ ∈ E .

In the incomplete data case, this theorem needs to be modified to reflect the effect of1085
latent variables.1086

THEOREM .3. Pythagorean Property: for all pλ ∈ E and all pλ∗ ∈ C ∩ E , there exists1087
a p ∈ C such that1088

D(p‖pλ) = D(p‖pλ∗) + D(pλ∗‖pλ). (51)

PROOF. For all pλ∗ ∈ C ∩ E , pick p(x) = p̃(y)pλ∗(z|y). Obviously, p ∈ M ⊂ C. Now we1089
show that for all pλ ∈ E that1090

D( p̃(y)pλ∗(z|y)‖pλ(x)) = D( p̃(y)pλ∗(z|y)‖pλ∗(x)) + D(pλ∗(x)‖pλ(x)). (52)

Establishing (52) is equivalent to showing1091 ∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ∗(z|y) log pλ(x)μ(dz) =

∑
y∈Ỹ

p̃(y)
∫

z∈Z
pλ∗(z|y) log pλ∗ (x)μ(dz) + H(pλ∗(x))

+
∫

x∈X
pλ∗ (x) log pλ(x)μ(dx). (53)

The first and second terms on the right-hand side cancel because Q(λ∗, λ∗) = −H(pλ∗)1092
for all λ∗ ∈ � and pλ∗ ∈ C∩E , by Theorem 5.1. Plugging the exponential form of pλ into1093
the remaining terms yields1094 ∑

y∈Ỹ
p̃(y)

∫
z∈Z

pλ∗(z|y) log pλ(x)μ(dz) −
∫

x∈X
pλ∗ (x) log pλ(x)μ(dx)

=
N∑

i=1

λi

⎛
⎝∑

y∈Ỹ
p̃(y)

∫
z∈Z

pλ∗ (z|y) fi(x)μ(dz) −
∫

x∈X
pλ∗(x) fi(x)μ(dx)

⎞
⎠ = 0.

The term inside the brackets is 0 since pλ∗ ∈ C ∩ E .1095

In the incomplete data case, for each point pλ∗ ∈ C ∩ E there is a unique point p(x) =1096
p̃(y)pλ∗(z|y) ∈ C such that (p, pλ∗, pλ) forms a right triangle for all pλ ∈ E . However,1097
unlike the complete data case, in the incomplete data case we now have multiple points1098
pλ∗ ∈ C ∩ E .1099
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