EFFECTIVE CLASSIFICATION LEARNING

by

Dale Eric Schuurmans

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

(© Copyright Dale Schuurmans 1996

Effective Classification Learning
Doctor of Philosophy, 1996

Dale Eric Schuurmans
Graduate Department of Computer Science
University of Toronto

Abstract

This thesis addresses the problem of learning a classification rule from random examples. We first consider the
problem of learning a target concept with guaranteed accuracy and reliability given that the target belongs to
some known class C; a task commonly referred to as probably approximately correct (pac) learning. Previous
work on this problem assumes a fixed-sample-size approach to data collection that fails to achieve practical
data-efficiency in most applications. In this thesis we consider an alternative “sequential” approach where
the learner observes training examples one-at-a-time and decides on-line when to stop training. We prove
that sequential learning strategies can pac-learn with fewer training examples than previous fixed-sample-size
approaches, even while incurring minimal computational overhead. Moreover, these new strategies use many
times fewer training examples in practical case studies.

Next, we study the average error of a learner’s hypotheses as a function of training sample size—its so-
called learning curve. Specifically, we investigate the best learning curve that can be achieved in the worst
case over a class of concepts C'. Previous work has shown that rational convergence to zero error can always
be obtained in this model, but it is impossible to do better in the worst case. However, recent empirical
studies have shown that exponential convergence can be achieved in many experimental settings. We explain
this discrepancy by noting that the previous analysis is non-uniform in training sample size, and prove that
a uniform analysis predicts the exact same dichotomy as observed in the experimental studies. Overall, this
thesis shows how the worst case theory of classification learning can be brought closer to practice.

i

Acknowledgements

First, I would like to thank my two supervisors, Russell Greiner and Hector Levesque, for their helpful
guidance and free donation of their time. My research was greatly improved by their suggestions and by
the high standards with which they conduct their own work. Throughout, Russ has been an enthusiastic
and stimulating collaborator as well as friend. After Russ’ departure from Toronto, Hector took up my local
supervisory duties with poise and professionalism, and I’d like to thank him for that. I was also extremely
fortunate to have an exceptional supervisory committee consisting of Stephen Cook, Geoffrey Hinton, Allan
Borodin, and Allan Jepson. Not only was their feedback quick and incisive, but they were remarkably kind.
I also benefitted from the feedback of my two external examiners, Rob Tibshirani and Nader Bshouty.

My years in Toronto have left me with many friends and colleagues whom I'd like to thank. From start
to finish, Michael Gruninger and Sheila Mcllraith were constant friends: always there to bounce ideas off
of and to share the highs and lows. Thanks to Steven Shapiro for always being willing to engage in last
minute problem solving sessions and crazy debates. I'd also like to thank Richard Mann, Evan Steeg, and
John Funge for their interest in my work and the productive discussions we shared—their feedback was a
tremendous help. Other friends I've made along the way are Mike Godfrey, Javier Pinto, John de Haan, and
Kathy Yen. Last but not least, I’d like to thank my friend Marc Ouellette for sharing in the pursuit of our
many sporting diversions.

For much of our time in Toronto, we were fortunate to have the company of my sister Carol and her
husband Peter. T am grateful for the coincidence that brought them to Toronto and for the time we spent
together. T'd also like to thank both of my families for their love and support: especially my parents (and
parents-in-law!) and my sister Carmen.

Finally, my deepest thanks go to my wife, Sharon, for her enduring love, support, and patience. This
thesis is as much a product of her resolve and optimism as it is of my efforts. I could not have succeeded
without her constant encouragement, unwavering commitment, and grace. Thank you Sharon.

Publication notes

Some of the work reported in this thesis has appeared in the following publications: Much of the material
from Chapter 2 appears in [Schuurmans and Greiner, 1995a] and [Schuurmans and Greiner, 1995b]. Some
preliminary results from Chapter 3 were reported in [Schuurmans, 1996b]. The key results from Chapter 4
appear in [Schuurmans, 1995], and a full paper is currently under review [Schuurmans, 1996a]. T would like
to thank my co-author, Russ Greiner, and the copyright holders for their permission to include this material
here.

1l

Contents

List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Classification learning 1
1.2 Model: learning from random exampleso 0oL 3
1.3 Thesis 7
1.4 Overview 9
2 Distribution-free sequential pac-learning 11
2.1 Imtroduction 11
2.2 Background: distribution-free pac-learning theoryo 13
2.2.1 Problem 14

2.2.2 Procedures 15

2.2.3 Efficiency 17

2.2.4 Complexity 18

2.2.5 Assessment 19

2.3 Tssue . . .o 20
2.4 Sequential pac-learning L. 21
2.4.1 Problem 22

2.4.2 Procedures 22

2.4.3 Efficiency 27

244 Complexity 28

2.5 Empirical efficiency 29
2.5.1 Problem 29

2.5.2 Results 29

2.5.3 Robustness 32

2.5.4 Explanations L 35

2.5.5 Assessment 36

2.5.6 Computation 37

2.6 Learning finite concept classes L L 37
2.7 Range of applicability 40
2.7.1 General hypothesizers 40

2.7.2 Non-uniform pac-learningo L 42

2.8 Conclusion L 44
2.8.1 Research directions 45

2.8.2 Is pac-learning practical?o 46

v

3 Distribution-specific sequential pac-learning
3.1 Introduction L
3.2 Background: distribution-specific pac-learning theory
3.2.1 Problem
3.2.2 Procedures
3.2.3 Efficiency
3.24 Complexity
3.2.5 Relationship to d.f. pac-learningo
3.3 Sequential d.s. pac-learning
3.3.1 Problem
3.3.2 Procedure
3.3.3 Efficiency
3.34 Complexity
3.4 Multiresolution learning L e
3.4.1 Procedure
3.4.2 Spaces with invariant dimensiono
3.4.3 Efficiency
344 Examples e
3.4.5 Assessment
3.5 Learning with certainty
3.5.1 Problem
3.5.2 Procedure
3.5.3 Efficiency
3.5.4 Complexity
3550 Exampleso
3.5.6 Assessment
3.6 Applications of certain to pac learning Lo
3.6.1 Direct application
3.6.2 Tail truncation
3.6.3 Strict domination
3.6.4 Assessment
3.7 Conclusion e
3.7.1 Research directions L

4 Characterizing rational versus exponential learning curves

4.1 Introduction L
4.2 Background: learning curve theory
421 Model
4.2.2 Distribution-free theory
4.2.3 Distribution-specific theoryo
4.3 Dichotomy between rational and exponential learning curves
4.3.1 Intwitive illustration
4.3.2 Finite concept classes
4.3.3 Continuous concept chains
4.3.4 Assessment
4.4 Boundary between rational and exponential curves L.
4.4.1 Dense concept chains
4.4.2 Scattered concept chains
4.4.3 Assessment
4.5 Scaling effects L
4.6 Towards a general distribution-free theory oo oL
4.7 Towards a general distribution-specific theory L.
4.8 Conclusion L e

5 Conclusions
5.1 Synopsis . . .
5.2 Contributions

5.3 Research directions e

A Technical details:

Chapter 2

A.1 Sequential probability ratio testing
A2 Proofsofresults
A.3 Some algebraic boundso L

B Technical details:

C Technical details:
C.1 Preliminaries

Chapter 3

Chapter 4

C.2 Continuous chains e

C.3 Dense chains

C.4 Scattered chalns e

C.5 Other results

Bibliography

vi

103
103
106
106

109
109
112
122

127

147
147
150
153
162
165

169

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6

Example of a learning curveo 6
Procedure F 15
Procedure R 23
Procedure S L 25
Procedure sprt e 26
Empirical scaling in problem dimension 0L 30
Empirical scaling in error level €o o 30
Empirical scaling in failure level &o o 31
Comparing S versus R Lo 31
Comparing different target concepts L oL oL 33
Comparing accretive transformations of the uniform distribution 34
Comparing spherical transformations of the uniform distribution 34
Comparing pyramidal transformations of the uniform distribution 35
Comparing different concept classes with the same VCdimension 36
Comparing the computational overhead of S, R, and Fgpug 37
Procedure Li L 39
Procedure Smb L 40
Procedure Smb: Empirical scaling in error level € 41
Comparing different hypothesizers o 42
Procedure LMR L 43
Procedure BI 51
Procedure Sbi 55
Procedure Sfoc L 58
An initial segment concept ¢ of [0, 1] defined by right endpoint 61
A d-m-initial segment concept oL oL 61
An uncertainty interval for (initials, uniform) oo L L 64
Procedure for learning (initials, uniform) with certainty 65
Procedure Scov L 66
Procedure for learning (d-m-initials, uniform) with certainty 69
Procedure for learning (monomials, uniform) with certainty 70
Comparing Tgcoy and Tg1 on (initials,uniform) o 0oL 73
Procedure Scut 74
Mlustration of a d-tail cutoff 75
Procedure ScovAL L 76
Evolving density of hypothesis error rates L. 83
Comparing uniform versus non-uniform bounds 90
Constructing scattered concept chains with high order limits 94
Strategy HOLC e 94
Strategy CHOLC 95
Strategy BC 99

vil

B.1
B.2

C1
C.2
C.3
C4
C.h
C.6

Procedure NBtest e 134

Illustration of the stopping event for d-m-initials 141
Strategy MP L e 151
Constructing a dense subchain on a countable subdomain 154
Strategy MC o e 155
Simulating a uniform distribution on a countable domain o000 157
Distribution of distances under a simulated uniform prior 161
Distribution of distances in a finite chain.o 165

viil

List of Tables

2.1 Comparing training sample sizeso
2.2 A direct comparison of training sample sizes

1X

Chapter 1

Introduction

1.1 Classification learning

Machine Learning studies computational systems that improve their performance at a task with experience.
This thesis considers a specific form of learning task—classification learning—which is by far the most studied
in machine learning research.

Classification learning is the problem of producing an accurate classification function for some domain,
given the correct classifications of a few domain objects. Abstractly, we have a domain of objects X and a
fixed classification scheme ¢ : X — Y that assigns each domain object z to one class ¢(z) from a mutually
exclusive set of classes Y. Given a sequence of training examples ({z1,c(z1)), (x2, c(22)), ..., (zs, c(x4))) the
goal is to produce a classification function f : X — Y that agrees with the correct classification scheme ¢
over as much of the domain X as possible.

For example, one might be interested in classifying emergency room patients into various disease categories
based on their overt symptoms, e.g., determining whether a patient has meningitis given observations of rash
and flu symptoms. In the event the correct classification scheme is unknown a priori, the idea is to exploit
the existence of a few training examples and extrapolate their classifications to an accurate scheme over the
entire domain. For example, upon observing symptoms

(flu, rash) classified as meningitis,
(no flu, rash) classified as not meningitis,
(no flu, no rash) classified as not meningitis,

we might postulate a general classification rule
meningitis < flu and rash

over the entire domain of patients (hence, classifying the unseen example (flu, no rash) as not meningitis).
This general pattern of reasoning is known as induction in the philosophical literature, or supervised learning
in the machine learning literature. In practice, domain objects might be described in a number of ways; e.g.,
vectors of Boolean attributes, real-valued attributes, or structured descriptions like strings, graphs, term
structures, etc. Regardless of the specific representation however, the central question is always how best to
extrapolate the classifications of a few domain objects to obtain a general scheme that accurately covers as
much of the domain as possible.

Motivation

Classification learning has been widely investigated by numerous (largely disjoint) research communities, in
a wide variety of application areas. The immense interest is due to the fact that classification itself is an
important subtask in many applications (in fact, comprising the central function of most expert systems
[Clancey, 1985]). Learning turns out to be a useful technique for synthesizing effective classification systems
in many cases. This i1s because in many domains where adequate classification schemes are not known a priorz,

2 CHAPTER 1: INTRODUCTION

it is nevertheless possible to obtain a number of correctly classified training examples; for example, by directly
observing historical data (e.g., weather and stock market patterns), intrusive examination procedures (e.g.,
exploratory surgery), consultation with domain experts, or “mining” existing databases [Piatetsky-Shapiro
and Frawley, 1991]. These training examples can be exploited to produce effective global classification
schemes. In fact, there are many successful examples where learning systems have produced classifiers that
outperform the best available hand-coded systems. For example,

[Buchanan and Mitchell, 1978] discusses a system that learned to predict the structure of organic
molecules from their mass spectrograms;

[Qian and Sejnowski, 1988] presents a neural network that learned to predict the secondary structure
of protein molecules from their amino acid sequences;

[le Cun et al., 1989] develops a system that learned to recognize hand-printed digits from digitized
images; and

[Weiss and Kulikowski, 1991] describe a number of systems that have learned to diagnose patient
diseases from laboratory test results.

The success of these efforts demonstrates that it can be advantageous to exploit a collection of correctly
classified training examples rather than directly engineering a classifier on the basis of inadequate domain
knowledge. Even in domains where adequate knowledge might reside with certain domain experts, it has
been suggested that learning be used to overcome the “knowledge acquisition bottleneck” [Michalski, 1983].

Goals

As mentioned, the central task of classification learning is to produce a globally accurate classification
scheme given the classifications of a few domain objects. Of course, we are most interested in developing
strategies that do this effectively; i.e., produce an accurate classification scheme (covering most if not all
of the domain), using few training examples, within reasonable computational limits. So there are two
distinct aspects to extrapolation effectiveness here: data-efficiency (the number of training examples needed
to produce an accurate classification scheme), and computational-efficiency (the computational resources
required to produce the final classifier). Data-efficiency is particularly important since in practice correctly
classified training examples often come at non-negligible cost and are in limited supply. Of course, it is also
essential that a learning system produce a hypothesis using reasonable computational resources for it to be
practically useful.

There is a wide variety of ideas on how best to extrapolate the classifications of a few domain objects
to obtain globally accurate classification schemes. Many extrapolation strategies have been proposed in
the literature and their generalization performance empirically investigated in many domains. The specific
nature of each proposal tends to vary with different choices of domain object representation. However,
despite these differences, the general efficacy of these strategies is invariably demonstrated via empirical
case studies on one or two domains. These investigations have led to some impressive results in specific
applications, as noted above, but no doubt these successes are vastly outnumbered by numerous unreported
failures.

Although most reported research examines the particular performance properties of specific extrapolation
strategies on specific domains, the underlying goal of machine learning research is to uncover whatever
general principles might underly effective extrapolation. The most common research strategy seems to
be abstracting these general principles from empirically successful case studies. However, one does not
have to think about the problem long before realizing that perhaps there are no general principles to be
found: given the classifications of domain objects z1, s, ..., z;, there is nothing really that can be inferred
about the classification of an unobserved object z in general. The classification of z need have nothing
whatsoever to do with the classifications of z1, zs, ..., z;/—unless z’s classification was somehow constrained
by the classifications of z1, 23, ..., z;. The singular aspect of an extrapolation strategy yielding success in a
particular application is best described as fortuitous predisposition: the strategy just happens to guess right
on unseen domain objects, whether by prior knowledge or plain luck. This elementary observation has been

1.2. MODEL: LEARNING FROM RANDOM EXAMPLES 3

made many times in the past [Mitchell, 1980; Wantanabe, 1987], and recently asserted yet again [Schaffer,
1994].

Theory

A recent trend in machine learning research is the theoretical analysis of classification learning. This repre-
sents a fundamental shift in emphasis away from uncovering “general purpose” or “universal” extrapolation
strategies, towards explicitly acknowledging the essential role played by prior knowledge and constraints in
yielding successful extrapolation.

A theoretical analysis of classification learning must adopt a mathematical model of the learning situation
(characterizing the source of training and test examples), and make explicit assumptions about whatever
prior constraints and knowledge are available about the target classification. The underlying goal of the-
oretical analysis is to determine how best to exploit available prior knowledge and constraints to achieve
successful extrapolation in practice. Given explicit assumptions it becomes possible to ask: What levels
of generalization and computational performance are possible to achieve in principle? What is impossible?
Which extrapolation strategies are most effective under specific circumstances? What are the optimum levels
of generalization and computational performance that can be achieved for given prior constraints?

The two best known theoretical analyses of classification learning are due to Gold [1967] and Valiant
[1984]. Gold’s analysis models the learning situation by assuming a countable domain X and considering
arbitrary sequences of examples that enumerate the domain. Prior knowledge is modelled by assuming the
target classification scheme ¢ : X — Y belongs to some known class C'. Gold then asks whether, for a given
class C, there exists a computable guessing strategy that makes at most a finite number of mistakes on any
enumeration of examples from some classification scheme ¢ in C.

Valiant models the learning situation by instead assuming examples are randomly generated according to
a fixed distribution Py on the domain X. Prior knowledge is also modelled by assuming the target scheme
¢ belongs to some known class C'. Valiant then asks whether, for a given class C, there exists an efficient
learning algorithm that reliably produces an accurate approximation to any target classification ¢ from C|
given a reasonable number of training examples generated by an arbitrary domain distribution Py.

Regardless of the specific mathematical model one adopts, the role of theoretical analysis is not to
prescribe whatever prior knowledge or constraints one ought to have about a classification task a prior:, but
rather to provide the best course of action one might take given whatever is known (or presumed) about the
task beforehand. Theoretical analysis can provide better prescriptions for practice and offer deeper insights
into the sources of learning efficacy than empirical study—provided the mathematical model adequately
captures the situation encountered in practice.

Thesis

This thesis focuses on the theoretical analysis of classification learning, primarily considering the random
example model popularized by Valiant [1984]. Since Valiant’s work, this model has seen a recent explosion in
interest under the rubric of “pac-learning theory.” In spite of this increased theoretical activity however, pac-
learning theory has arguably had little direct impact on practice: its prescriptions are rarely if ever followed,
and the current theory does not capture all empirically observed phenomena. The goal of this thesis is
to address some of these shortcomings by re-assessing many basic assumptions of the existing theory, and
identifying more natural alternatives that lead to theoretical prescriptions and insights that are more relevant
to practice.

1.2 Model: learning from random examples

Before outlining the specific topics addressed by this thesis, I first survey relevant results from the current
theory of learning a classification rule from random examples.

4 CHAPTER 1: INTRODUCTION

I.i.d. random exzample model

The independent identically distributed (i.i.d.) random erxample model is the most common mathematical
model adopted in theoretical analyses of classification learning. This model has been brought into recent
prominence by the work of Valiant, but has also been well studied long before that, c¢f. [Vapnik and Cher-
vonenkis, 1971; Duda and Hart, 1973]. In this model we assume there is a natural distribution Px on the
domain X that randomly and independently generates domain objects which are then classified according
to a fixed scheme ¢ : X — Y. The learner receives a set of random training examples from which it must
produce a classification function f : X — Y that will then be tested on random examples drawn from the
same random source. The accuracy of a hypothesis f is just the probability it correctly classifies a random
domain object according to c¢. The learner’s goal is to produce an accurate classifier using as few training
examples (and computational resources) as possible. This is a natural model of many learning situations
where there is no significant relationship between successive training and testing examples and the example
generation process remains stable over time.

A significant assumption made throughout much of the literature is that the example generation process
is noise-free. That is, the language used to represent domain objects is adequate to capture the distinctions
encoded by the target classification scheme, and furthermore, the true classifications of all training objects
are correctly reported. Most theoretical research also focuses on an important special case of learning
a two-category classification scheme (i.e., Y = {0,1}); commonly known as concept learning. A concept
¢: X — {0, 1} specifies a subset of the domain, ¢=!(1) C X, with those domain objects falling within this
subset are known as positive examples, and those falling outside as negative examples. Generally speaking,
most theoretical results concerning concept learning can be scaled up to general classification learning in a
natural way. Concept learning represents the minimal core problem.

A number of different analyses can be considered within this model. The two most significant analyses
consider the difficulty of producing an accurate classifier with guaranteed reliability (“pac-learning”), and
the expected error of a learner’s hypotheses as a function of training sample size (“learning curves”).

Reliably accurate learning

The problem of producing an accurate classification scheme with guaranteed reliability has received a lot of
attention since the work of Valiant [1984]. The specific problem is, given specified accuracy and reliability
levels 1 — ¢ and 1 — § respectively, to observe random examples of some unknown target concept ¢ and
produce a classifier with accuracy at least 1 — ¢, with an overall probability of at least 1 — d over possible
training sequences. That is, the learner must return a sufficiently accurate hypothesis most of the time, but
is allowed to fail sometimes and return an inaccurate hypothesis, but only with some small probability §.
This has since become known as the “pac-criterion” (for “probably approximately correct” [Angluin, 1988]).

The idea is that these two parameters provide the lea;ning system designer with sufficient flexibility to
appropriately tailor the training requirements to the task at hand, keeping in mind that more stringent
levels require more training resources. The accuracy parameter € specifies the desired quality of the final
classification system, and the reliability parameter § specifies the quality of the training process (i.e., the
reliability with which the target accuracy is achieved). So, for example, if an application only requires a
moderately accurate classifier (some moderately small value of €), but it is crucial that this minimal accuracy
level be attained, then § could be set sufficiently small so as to provide a reasonable guarantee. On the other
hand, if all one really desires is a reasonable chance of producing an extremely accurate hypothesis, then €
could be set much smaller than §, etc. The specific choice is left up to the application designer and not fixed
by the theory.

For given ¢ and 4, the learner’s goal is to meet the pac-criterion using as few training examples as possible
within reasonable computational limits. Of course this can be easy or hard depending on what is known
about the target concept a priori. For example, if we already knew the exact identity of the target concept
(or that it was one of very few possibilities) the pac-criterion would be trivial to achieve. If, on the other
hand, the target concept were part of a completely arbitrary set of concepts on a large domain, then achieving
the pac-criterion could be impossible. In order to analyze the difficulty of achieving the pac-criterion we
need to explicitly model whatever knowledge and prior constraints we might have about the target concept
before training begins.

1.2. MODEL: LEARNING FROM RANDOM EXAMPLES 5

Valiant considered a specific form of prior knowledge: namely, that the target concept ¢ belongs to some
known class of concepts C', but nothing is known about the domain distribution P, which could be arbitrary.
Within this model of prior knowledge it is natural to demand for a concept class C' that the learner meet the
pac-criterion for an arbitrary target concept in C', regardless of the underlying domain distribution. That is,
a learner successfully pac-learns a concept class C' if it can guarantee an accurate hypothesis with sufficient
reliability in the worst case over all possible target concepts ¢ in C' and all possible domain distributions Px
on X.

For example, say we need an accurate classification scheme for screening emergency room patients for
meningitis, but we are unable to specify an appropriate rule. Then we can consider learning an accurate
classification scheme by observing examples of correctly classified emergency room patients. Assume for the
sake of argument that we know the correct classification rule is given by some conjunctive definition of the
rash and flu conditions of the patient, but that nothing is known about the distribution of patients. Say we
require a classifier that has an error of no more than 1%, but can tolerate a probability of at most, say, 5%
of not achieving this target. Given these specifications, Valiant asks: Is there a learning procedure that can
meet these goals? How many training examples are required? Can an acceptable classifier be produced with
reasonable computational resources?

The data-efficiency of a pac-learning procedure (with respect to € and d) is given by the maximum number
of training examples it uses in the worst case. The data-complerity of a concept class C' (with respect to e
and §) is given by the smallest number of training examples required that any learning procedure requires to
successfully pac-learn C. Intuitively, the data-complexity of a concept class should be related to its overall
“representational complexity.” That is, the greater the variety of possible target concepts, the more training
examples it should take to disambiguate an adequate concept from the multitude of inaccurate concepts. For
example, a class that contains only two mutually exclusive concepts can be trivially pac-learned by observing
a single training example, since one example is always sufficient to identify the target. On the other hand,
it i1s obviously impossible to pac-learn arbitrarily complex concept classes, like the class of all subsets of the
real line; e.g., given a target concept @, no finite set of training examples can ever rule out every bad concept
like IR — {finite set}.

The general intuition that it should be harder to pac-learn complex concept classes than simple ones
has been precisely captured by a deep theory of Vapnik and Chervonenkis [1971]. They identify a measure
of representational complexity known as the “Vapnik-Chervonenkis dimension” (or just VCdimension) that
precisely characterizes the data-complexity of pac-learning concept classes. Their results have been adapted
to show that the data-complexity of pac-learning a class C depends linearly on its VCdimension. In partic-
ular, Ehrenfeucht et al. [1989] have shown that, for fixed ¢ and ¢, the minimum number of training examples
required to pac-learn C' grows as a linear function of vc(C). Moreover, Blumer et al. [1989] demonstrate
a simple pac-learning procedure that obtains a data-efficiency that is within constant factors of this lower
bound (and a log factor of 1/¢).

Another aspect of learning performance, orthogonal to data-efficiency, i1s computational-efficiency; i.e.,
the computational resources a learner requires to produce its hypotheses. Computational-efficiency is one of
the main issues addressed by Valiant in his seminal paper. Specifically, Valiant considered the problem of
pac-learning parameterized families of concept classes {C,} defined on parameterized families of domains
{X,} with a single learning algorithm L. Following standard practice in complexity-theory, Valiant asks
whether, for a family {C,,}, there exists a learning algorithm L that successfully pac-learns each class Cj,
with a training sample size and computation time bounded by some polynomial in n, 1/¢, and 1/4.

Overall, this type of analysis has important implications for practice, as it provides explicit prescriptions
for obtaining accurate classification schemes with guaranteed reliability, under very general learning circum-
stances. This type of analysis could be important in domains where it is critical to guarantee the accuracy
of any proposed classification scheme.

Learning curves

Of course, under the 1.i.d. random examples model, it is possible to analyze other aspects of learning perfor-
mance beyond pac-learning. For example, another important form of analysis considers the expected error of
a learner’s hypotheses as a function of training sample size. That is, rather than considering the probability

6 CHAPTER 1: INTRODUCTION

0.5

0.4 —
0.3 —
Expected Error Rate

0.2 —

0.1 —

-0 | |
0 10 20 30

Training sample size

Figure 1.1: A learning curve

that a learner produces a hypothesis with error below some threshold, we instead consider the average error
obtained by the learner’s hypotheses. The expected error achieved by a hypothesis guessing strategy as a
function of its training sample size describes its overall learning curve. The learning curve is exactly what one
estimates by repeatedly training a learning system at various training sample sizes and plotting the average
error of its hypotheses. For example, Figure 1.1 shows the exact learning curve obtained by a particular
hypothesis guessing strategy for learning conjunctive concept definitions on a domain defined by 50 boolean
attributes, under a uniform domain distribution [Pazzani and Sarrett, 1990]. Clearly, in this example the
average error of the learner’s hypotheses decreases rapidly for larger training sample sizes.

As before, we expect the shape of the learning curve to depend on how much the learning system knows
about the target concept beforehand. Obviously, if we have a lot of prior information (e.g., that the target
concept belongs to a small set of possibilities) we expect to obtain a learning curve that rapidly converges to
zero error, since the target concept is likely to be disambiguated after a few training examples. On the other
hand, we would expect to obtain poor convergence rates if very little is known about the target classification
a priori.

An analysis of learning curves in much the same spirit as Valiant’s analysis of reliably accurate learning
has been performed by Haussler, Littlestone and Warmuth [1988]. In particular, they adopt the same model
of prior knowledge (that the target concept belongs to a known class C, but nothing is known about the
domain distribution) but ask a different question: For a fixed training sample size ¢, what is the smallest
expected error any hypothesis guessing strategy can achieve in the worst case over all possible target concepts
and all possible domain distributions? For different sample sizes ¢ this characterizes the best “worst case”
(i.e., minimax) learning curve that can be achieved for a concept class C'. Analogous to the previous pac-
learning results, Haussler, Littlestone and Warmuth [1988] show that, for a fixed ¢, the minimax expected
error of any (reasonable) concept class C'is a linear function of its VCdimension. Moreover, their results show
that all minimax learning curves exhibit “rational” convergence to zero error. That is, the best achievable
worst case learning curve always converges as a function ©(¢~!) in terms of training sample size t. (This is
also known as “inverse power law” convergence [Haussler et al., 1994] since for example, cutting the minimax
expected error in half requires the training sample size to be doubled.)

This form of learning curve analysis provides an important characterization of learning performance. In
some sense, the average hypothesis error as a function of training sample size gives the true measure of an
extrapolation strategy’s overall generalization efficacy. The fact that minimax learning curves always exhibit
rational convergence appears to be a deep insight. It says that we can never hope to obtain better than
power law convergence in generalization error for any non-trivial concept class.

1.3. THESIS 7

Assessment

Overall, these theoretical results have greatly increased our knowledge and understanding of classification
learning problems. For instance, they clearly demonstrate the effects of prior knowledge on learning effective-
ness, and moreover, do so in a precise quantitative fashion. Furthermore, these results clearly circumscribe
the limits of learning: characterizing what can and cannot be achieved, and helping us to see what is in fact
possible. These results are not only just descriptive in nature, but also prescriptive, in the sense that they
provide constructive procedures for obtaining specified learning performance levels. Finally, the abstract na-
ture of the theory, in ignoring superfluous representational and algorithmic details, makes it quite powerful.
The general form of prior constraints considered by the theory makes its results applicable to a wide range
of learning situations commonly encountered in practice (e.g., learning function classes defined by neural
network architectures).

However, despite these strengths, the current theory has not had a significant impact on practice. We
outline some of the reasons for this below and suggest ways the current theory can be improved.

1.3 Thesis

The analysis of classification learning under the i1.i.d. random example model has been quite influential on the
theory and practice of machine learning. The descriptive aspects of this theory have influenced the general
practice of machine learning, by pointing out the essential role played by prior knowledge and constraints
in determining learning effectiveness. However, the prescriptive aspects of this theory have generally been
ignored by practitioners, who point to a number of impracticalities in the specific requirements, and the fact
that the theory fails to explain certain empirical phenomena.

This thesis addresses these shortcomings by: first identifying those assumptions in the existing theory
that are responsible for these perceived weaknesses, proposing more natural assumptions in their place, and
finally determining whether this brings the theory any closer to practicality. Specific progress is reported in
three areas:

1. Improving the empirical data-efficiency of pac-learning procedures to practical levels.
2. Incorporating distributional assumptions to obtain further efficiency improvements.

3. Extending the theory of minimax learning curves to account for empirically observed ezponential con-
vergence behavior.

Efficient pac-learning (Chapter 2)

Pac-learning theory promises useful prescriptions for practice by providing procedures that learn with guar-
anteed accuracy and reliability. However, the current prescriptions of this theory are rarely (if ever) followed
in real applications. The main reason for this is simple: the particular training sample sizes currently de-
manded by pac-learning theory are far too large to be practical. That is, the minimum sample sizes that
have been proved sufficient for obtaining guaranteed accuracy and reliability are far larger than deemed
practically reasonable by practitioners. This is especially problematic since training examples are often the
critical resource in practical learning applications, and therefore, minimizing the number of training examples
required is crucial.

The apparent impracticality of pac-learning has lead many researchers to speculate about the sources
of inefficiency. The common wisdom is that this impracticality 1s due to the worst case nature of the
pac-learning guarantees. However, this prevailing view may not be entirely accurate, since:

1. The current sample size bounds [Blumer et al., 1989; Shawe-Taylor, Anthony and Biggs, 1993] incor-
porate approximations that go well beyond just taking the worst case situation into account. (For
example, the sample size bounds that have been proved sufficient and necessary differ by a factor of
more than 64.)

8 CHAPTER 1: INTRODUCTION

2. Pac-analyses typically consider a simplistic learning strategy (fix a sample size, collect this many
training examples, and then choose a consistent hypothesis) that may not be making the most efficient
use of the available training data.

In Chapter 2 of this thesis we focus on the second of these alternatives, by asking whether more sophisti-
cated learning strategies might require fewer training examples than the simple fixed-sample-size approach in
practice. In particular, we consider sequential pac-learning strategies that autonomously decide when to stop
their own training based on the specific sequence of training examples they observe. This chapter proposes
a number of sequential pac-learning strategies, and investigates their data (and computational) efficiency,
both analytically and experimentally. We ask whether these techniques are substantially more efficient than
current pac-learning strategies, if so, how much of an improvement is possible, and whether any new concept
classes become effectively learnable. A number of theoretical results are presented that show these sequen-
tial learning strategies are provably more efficient than current pac-learning approaches (for certain accuracy
and reliability levels) while achieving the exact same worst case pac-guarantees. Furthermore, additional
experimental results show these new strategies are many times more efficient in practice.

Efficient distribution-specific pac-learning (Chapter 3)

Although pac-learning can be more efficiently achieved in practice than previously thought, the practicality
of the preceding results is still equivocal. That is, even though there is potential for additional improvement,
it might well be that worst case pac-learning really is impractical. Many researchers adopt the line of
reasoning that there must be “pathological” domain distributions that force impractical training sample
sizes—arguing moreover that these pathological distributions do not arise in “typical” applications. This
points to the need for making additional distributional assumptions to achieve practical results [Aha, Kibler
and Albert, 1991; Albert and Aha, 1991]. In fact, many researchers have investigated an extreme model that
considers the difficulty of pac-learning from a known domain distribution. This is known as distribution-
specific pac-learning. The problem is to learn an accurate approximation to an unknown target concept ¢
from a known class C, given that the distribution of domain objects, Px, is actually known a priori [Benedek

and Ttai, 1991; Kulkarni, 1991].

In Chapter 3 of this thesis we observe that, even given these distributional assumptions, it is still possible
to consider a sequential approach to learning. In this chapter we investigate the data-efficiency of sequen-
tial strategies for distribution-specific pac-learning. Surprisingly, it turns out that even stronger results
can be obtained here than in the previous distribution-free setting. Specifically, we propose a number of
new sequential learning strategies, analyze their data-efficiency, and show that the data-efficiency of these
new procedures uniformly dominates the previous fixed-sample-size approaches—requiring average training
sample sizes that are many times smaller.

In this chapter we also investigate a stronger form of learning where we demand that the learner return an
accurate hypothesis with certainty (i.e., with probability 1), not just high probability—a learning criterion
we refer to as cac-learning (for certainly approximately correct). Tt is shown that cac-learning is impossible in
the distribution-free setting, but can be achieved in the distribution-specific setting via sequential learning.
A simple sequential learning procedure is proposed for this case, and shown to learn with optimal expected
data-efficiency.

Ezponential versus rational learning curves (Chapter 4)

Next, we turn our attention to the theory of minimax learning curves. Here we find that the current theory
also has some weaknesses. In particular, the theory predicts that all minimax learning curves exhibit the
same rational convergence to zero error [Haussler, Littlestone and Warmuth, 1988; 1994], whereas other
forms of convergence are often observed in practice. For example, in a recent series of experiments Cohn and
Tesauro [1990; 1992] observe ezponential learning curves, in addition to the rational curves predicted by the
previous theory. This phenomenon of exponential convergence is posited as a clear weakness of the current
theory of minimax learning curves: the theory completely misses the significant dichotomy between rational
and exponential convergence. This raises the obvious question of reconciling the theory with the empirical
observations.

1.4. OVERVIEW 9

Chapter 4 of this thesis addresses this issue. Although it is possible to speculate that this oversight is
simply due to the worst case nature of the analysis, we ask whether the dichotomy between exponential and
rational convergence can still be predicted from a worst case analysis of learning curve behavior. By noting a
simple weakness in the original theory, we show that, in fact, this dichotomy can be revealed in a worst case
analysis. The basic observation is that the previous analysis of Haussler, Littlestone and Warmuth [1988] is
non-uniform in training sample size. That is, the lower bounds are established by choosing different target
concepts and domain distributions for each training sample size to force bad behavior. By undertaking a
uniform analysis, we show that the dichotomy between exponential and rational minimax learning curves
can be predicted from the finiteness or continuity of the prior concept class. These results show that the
experimental results of Cohn and Tesauro are no accident: For finite concept classes any consistent learner
achieves an exponential worst case learning curve, whereas continuous concept classes have rational minimax
learning curves. Further analysis shows that the exact boundary between these two modes of convergence is
determined by the presence of any dense subchains in the prior concept class (i.e., whether the class contains
any chain of concepts such that between any two concepts in the chain there is a third).

Contributions

Overall, the results of this research show how the theoretical analysis of classification learning can be made
more relevant to practice. In particular it is shown how pac-learning might be more efficiently achieved
in practice than previously thought, and how making additional assumptions only serves to make these
improvements more significant. It is also shown how the current theory can be extended to account for
empirical phenomena regularly encountered in practice. Throughout, the general aim is to pursue abstract
theoretical results that are as general (and, hence, as widely applicable) as possible.

1.4 Overview

Each chapter of this thesis is largely self contained; supplying a survey of the relevant literature, presentation
of the main results, and discussion of relevant research directions.

Chapter 2 first investigates the use of sequential stopping rules to improve the data-efficiency of distri-
bution-free pac-learning, presenting both theoretical and empirical results to support this claim.

Chapter 3 then extends these results to the distribution-specific setting (where one presumes the domain
distribution is known a priori), and finds that even stronger efficiency improvements can be obtained. The
chapter also investigates a stronger learning criterion that demands the learner return a sufficiently accurate
hypothesis with certainty, not just high probability. It is shown that sequential learning is necessary to
achieve this criterion, and we derive an optimal learning technique for this case.

Chapter 4 then shifts attention to the theory of learning curves. This chapter investigates the empirical
dichotomy between rational and exponential convergence that is left unaccounted for by the current theory
of worst case learning curves. A uniform analysis that keeps the domain distribution and target concept
fixed throughout the training process shows that exponential versus rational learning curves can be predicted
from the structure of the concept class. A precise boundary is drawn between these two convergence modes
based on the existence of any dense chains in the prior concept class.

Chapter 5 then concludes the thesis with a discussion of the implications of these results for practical
classification learning. Here we note that many other generalizations of the current theory are also possible,
and these are contemplated as directions for future research.

10

CHAPTER 1: INTRODUCTION

Chapter 2

Distribution-free sequential
pac-learning

2.1 Introduction

By far the most influential analysis of classification learning has been the theory of “probably approximately
correct” (pac) learning introduced by Valiant [1984]. Rather than speculate about the various strategies that
might underly effective “general purpose” classification learning, Valiant’s idea was to characterize those
situations where successful learning could be provably achieved and where it was demonstrably impossible.

Pac-learning

Pac-learning theory addresses the problem of learning an accurate concept definition from examples: given
a sequence of training examples describing domain objects and their membership in an unknown target
concept, the task is to infer a concept definition that agrees with the target concept over as much of the
domain as possible. This theory considers a particular mathematical model of the learning environment, the
“1.1.d. random examples model,” which assumes training and test examples are randomly and independently
generated according to a fixed domain distribution and classified according to a fixed target concept. Given
this model, we demand that the learner meet the pac-criterion; i.e., return a hypothesis of minimum specified
accuracy with some minimum specified probability. Of course, achieving the pac-criterion can be easy or
hard depending on what is known about the target concept beforehand. Following the seminal work of
Valiant, pac-learning theory adopts a model of prior knowledge that assumes the target concept belongs
to some known class C', but nothing is known about the distribution of domain objects a priori. Given
these assumptions it is natural to demand that the learner meet the pac-criterion for any target concept
from C' and any domain distribution. Thus, we say a learner pac-learns a class C' if it meets the specified
pac-criterion in the worst case over all possible domain distributions and all possible target concepts in C'.

Efficiency and complexity

Since the original formulation of this task many researchers have investigated the difficulty of pac-learning
different concept classes defined on a variety of domains. The main issues are the existence and efficiency
of these solutions. That is, we wish to solve pac-learning problems, while using a minimum of data and
computational resources. Research has focused on developing provably correct pac-learning procedures,
analyzing their data and computational efficiency, and determining the minimum training resources needed
to solve pac-learning problems.

Some of the most important technical results of this theory concern the data resources required to pac-
learn. Intuitively, it takes more training examples to pac-learn a complex concept class than a simple
class, since 1t is harder to disambiguate possible targets from a complex class. The question is: how can the
complexity of a concept class be measured in a way that precisely determines the number of training examples

11

12 CHAPTER 2: SEQUENTIAL PAC-LEARNING

needed to pac-learn? Tt turns out that the Vapnik-Chervonenkis dimension (VCdimension) provides just
such a measure [Vapnik and Chervonenkis, 1971]. With this notion, researchers have been able to show
that the minimum number of training examples required to pac-learn any concept class C' grows as a linear
function of its VCdimension [Ehrenfeucht et al., 1989]. Moreover, there is a simple fixed-sample-size learning
procedure that pac-learns concept classes with a training sample size that is within constant factors of this
lower bound (logarithmic in 1/¢€). This procedure simply collects a large training sample that is sufficient to
ensure that, with high probability, every concept in C' with a large error misclassifies at least one training
example; and then returns any concept in C' that correctly classifies every training example [Blumer et al.,

1989].

Issue

Overall, these results precisely characterize how the number of training examples needed to pac-learn scales
up in terms of the desired accuracy and reliability levels and the VCdimension of the prior concept class
C'. This theory 1s constructive in the sense that it provides a generic procedure for pac-learning with near-
optimal data-efficiency. On the strength of these and other results, pac-learning has become a predominant
form of theoretical analysis of classification learning.

However, despite this success, pac-learning theory has had little direct impact on the practice of machine
learning. That is, practitioners rarely heed the results of this theory in designing learning systems for real
applications. Why? Perhaps, the most common criticism of pac-learning theory is that the training sample
sizes it demands are far too large to be practical: Even though the data-efficiency of the simple fixed-sample-
size learning procedure scales-up near-optimally, in practice the specific constants of scaling are excessive and
make the theory inapplicable to realistic situations. This apparent inefficiency has lead to much speculation
about the sources of difficulty. The predominant folk wisdom is that these impractical training sample sizes
inevitably follow from the worst case nature of the pac-analysis. That is, guaranteeing the pac-criterion for
all possible target concepts and domain distributions necessitates an excessive number of training examples,
and therefore (distribution-free) pac-learning, though desirable, must not be a practical goal. However, this
view may not be entirely accurate, since:

1. The current sample size bounds proved sufficient for pac-learning incorporate many approximations
that go beyond just taking the worst case target concept and domain distribution into account (i.e.,
the constants in the current bounds are not tight).

2. The simplistic fixed-sample-size learning strategy tacitly assumed by most pac-learning research may
not make the most efficient use of available training data.

Approach

The research reported in this chapter begins with the second observation: Perhaps alternative learning
strategies might pac-learn more efficiently than the simple fixed-sample-size approach? Specifically, we
consider a sequential approach where the learner observes training examples one at a time and decides on-
line whether to stop and produce a hypothesis, or continue training. The idea is that, by observing the
specific sequence of training examples, we might be able to detect situations when an accurate hypothesis
can be reliably returned and stop well before the fixed-sample-size bounds are reached. The goal is to reduce
the number of training examples observed while still providing the exact same worst case pac-guarantees as
before; namely, that a hypothesis with error at most ¢ be returned with probability at least 1 — 4, regardless
of the domain distribution and target concept from the prior class.

This sequential approach raises some new issues that do not arise under the fixed-sample-size approach.
One issue is that the number of training examples a sequential learner observes depends on the specific
training sequence, and hence is a random variable rather than just a fixed number. Therefore, to compare
the data-efficiency of a sequential learner to a fixed-sample-size learner we must compare a distribution of
training sample sizes to a fixed number. Although there are many ways one could do this, we will focus on
what is arguably the most natural measure: we compare the average (i.e., expected) training sample size of
a sequential learner with the fixed sample size used by a fixed-sample-size learner to solve the exact same
pac-learning problem.

2.2. BACKGROUND: DISTRIBUTION-FREE PAC-LEARNING THEORY 13

This chapter asks whether sequential learning is able to pac-learn with fewer training examples than
fixed-sample-size learning; if so, how much of an improvement is possible in principle; and whether any such
improvement makes pac-learning practically achievable.

Results

In this chapter we propose new sequential learning strategies and prove them to be correct pac-learners. One
of these procedures is shown to have a data-efficiency that scales the same as fixed-sample-size approaches (up
to constant factors)—with a slight improvement over previous bounds for certain accuracy and reliability
levels. Although this theoretical advantage is not overwhelming, a series of experiments show that this
sequential learning procedure actually uses many times fewer training examples in practice than existing
fixed-sample-size approaches, while attaining the exact same worst case pac-learning guarantees.

An analysis of the intrinsic data-complexity of sequential pac-learning reveals that the inherent data-
requirements of sequential learning must scale the same as fixed-sample-size learning up to constant factors.
Thus, for fixed accuracy and reliability levels, sequential learning can at best offer a constant improvement
in expected training sample size over fixed-sample-size procedures. But, even these constant improvements
can matter a great deal in practice.

Stronger results are obtained for the special case of finite concept classes, where both theoretical and
experimental results show how sequential learning substantially improves the data-efficiency of fixed-sample-
size learning when converting a “mistake bounded” hypothesizer to a pac-learner.

Finally, it is revealed that sequential learning is, in fact, applicable to a wider range of learning problems
than fixed-sample-size learning. Specifically, sequential learning procedures are able to pac-learn many
concept classes that have infinite VCdimension, which is impossible for any fixed-sample-size learner.

Overview

Before investigating the sequential approach to pac-learning, we first review the relevant aspects of pac-
learning theory. Section 2.2 provides basic definitions of pac-learning theory and surveys current results
concerning the efficiency of fixed-sample-size learning procedures and the intrinsic complexity of pac-learning
problems. Section 2.3 then discusses the issue of practical data-efficiency—demonstrating the impracticality
of existing fixed-sample-size learning procedures, and noting that a comparison of fixed versus sequential
learners entails comparing fixed versus expected training sample sizes.

Section 2.4 then begins the investigation of sequential pac-learning by proposing a few sequential learning
procedures, proving them correct, and investigating their data-efficiency. This section then analyzes the
intrinsic data-complexity of sequential pac-learning and shows that the proposed procedure attains near-
optimal scaling in data-efficiency. The primary strength of these procedures is their empirical data-efficiency,
which Section 2.5 shows to be many times better than existing fixed-sample-size approaches. Section 2.6
then considers the special case of pac-learning finite concept classes and investigates the data-efficiency of
converting mistake-bounded hypothesizers to pac-learners.

Aside from improving the data-efficiency of pac-learning, Section 2.7 notes how sequential learning pro-
cedures are applicable to a wider range of pac-learning problems than fixed-sample-size learning, specifically
pac-learning many concept classes that have infinite VCdimension.

Section 2.8 concludes this chapter by discussing the implications of these results and suggesting directions
for future research. Overall, these results indicate that pac-learning can be achieved more efficiently in
practice than previously thought, and that pac-learning may yet be a practically achievable criterion in
many applications.!

2.2 Background: distribution-free pac-learning theory

Before investigating the effectiveness of sequential learning procedures, we first review the definitions of pac-
learning theory and survey the existing results concerning correct pac-learning procedures, their efficiency,

! Much of the material from this chapter appears in [Schuurmans and Greiner, 1995a] and [Schuurmans and Greiner, 1995b)].
Permission has been obtained from IJCAI and ACM respectively for inclusion of this material here.

14 CHAPTER 2: SEQUENTIAL PAC-LEARNING

and the inherent complexity of pac-learning problems.

2.2.1 Problem

Pac-learning theory addresses the problem of learning a concept definition from examples. Formally, we have
a domain of objects X and a target concept ¢ defined on X. Here a concept ¢ is just a subset of the domain,
which we represent by its indicator function ¢ : X — {0, 1}, where ¢(2) = 1 indicates z is a member of the
concept, and ¢(z) = 0 indicates that z is not a member. An ezample is a pair (z,c(z)) that describes a
domain object z and indicates its membership in the target concept c¢. Here, we consider a batch training
protocol where the learner is given a sequence of training examples ((z1, c(z1)), (z2, c(z2)), ...) from which it
must produce a hypothesis h : X — {0, 1} that is then tested ad infinitum on subsequent test examples. A
hypothesis A makes an error on any test example (z, ¢(z)) for which h(z) # c(z).

Pac-learning theory adopts the i.i.d. random example model of the learning environment, which assumes
there is a fixed, natural distribution Py defined on the domain X. Training objects are drawn randomly and
independently according to Py and classified by a fixed target concept ¢ before being presented to the learner.
Any hypothesis the learner produces will then be tested on the same distribution of examples. Therefore,
the error of a hypothesis h is just the probability it misclassifies a random domain object according to ¢,
Py {h(z) # c(z)}.? We say that a hypothesis h is e-bad if Px{h(z) # c(z)} > ¢, and otherwise e-good (or
e-accurate).

Within this model, pac-learning theory considers the difficulty of producing an accurate hypothesis with
guaranteed reliability. Specifically, for given accuracy and reliability parameters ¢ and §, we demand that
the learner meet the pac(e, §)-criterion; i.e., produce a hypothesis of error at most ¢, with probability at
least 1 — 4.

Of course, the difficulty of meeting the pac-criterion depends on what is known about the target concept
and domain distribution beforehand. Following Valiant, most pac-learning research adopts a model of prior
knowledge where we assume the target concept ¢ belongs to some known class C' but nothing is known about
the domain distribution Py, which could be arbitrary. Given these assumptions it is natural to demand
that, for specified C, ¢, and §, the learner meet the pac-criterion in the worst case over all potential target
concepts in C and all possible domain distributions Py . Therefore, we specify an instance of a pac-learning
problem by a concept class C, accuracy parameter ¢, and reliability parameter 4.

Definition 2.1 (Pac-learning problem) A learner L solves the pac-learning problem (C,¢,8) (or
“pac(e,d)-learns C”) if, given random training objects generated by any distribution Py and labelled accord-
ing to any target concept ¢ € C, L produces a hypothesis h such that Px{h(z) # c(z)} < ¢ with probability
at least 1 — 4.

Solving a pac-learning problem involves two main sub-tasks: (i) deciding when a sufficient number of
training examples have been observed to ensure the pac-guarantees, and (i) finding an appropriate hypothesis
to return given these training examples. Therefore, we formalize a learner L as consisting of:

1. a sample size function Ty (C, ¢, d) that determines a suitable training sample size for given C| ¢, and
d; and

2. a hypothesizer Hp(C,¢,d8) : (X x {0,1})* — {0, 1}* that maps finite sequences of training examples
to hypotheses (which in general could be a stochastic or even non-deterministic mapping).

Note that these definitions ignore representational and computational details specific to particular domain
object or classification function representations. In practice, we will have to represent domain objects x
in some concrete way, and Hjp will need to algorithmically produce some effective representation of its
hypotheses h : X — {0,1} that can be used to classify domain objects. So any computational questions
cannot be divorced from the specific domain and hypothesis representations. However, we adopt this abstract

2This definition assumes that all concept labels are correctly reported to the learner; i.e., that classification is noise free.
This is a common assumption made throughout much of pac-learning theory. Some researchers have considered more general
settings that permit noise, cf. [Angluin and Laird, 1988; Kearns and Li, 1988; Haussler, 1992; Kearns, 1993], but we will focus
on the noise free case here.

2.2. BACKGROUND: DISTRIBUTION-FREE PAC-LEARNING THEORY 15

Procedure F (C,¢,d; H)

INPUT: target concept class C|
accuracy parameter ¢,
reliability parameter §;
a hypothesizer H that returns consistent concepts from C'.

RETURN: a hypothesis A with accuracy at least 1 — ¢, with probability at least 1 — 4.
PROCEDURE:

e Determine a training sample size Tg(C, ¢, d) that is sufficient to eliminate every e-bad concept in C
with probability at least 1 —4d regardless of which target concept ¢ from C is used to label the examples.

e Collect T(C, €, d) random training examples labelled by some unknown target concept ¢ € C.

e Call H to obtain an arbitrary concept h € C that correctly classifies every training example; return h.

Figure 2.1: Procedure F

mathematical view here because any statistical (i.e., pac) properties of a learner I will always be independent
of such computational details. Therefore, we will only need to consider such abstract specifications of learning
procedures when addressing the data requirements of pac-learning.

2.2.2 Procedures

Successful pac-learning procedures have been developed for a variety of concept classes defined on many
different domains. Interestingly, most of these procedures follow the same basic fixed-sample-size strategy
first proposed by Valiant [1984]: Simply collect a large training sample sufficient to ensure that, with
probability at least 1 — §, any concept in C with error greater than ¢ misclassifies at least one training
example; then return any concept from C' that is consistent with every training example. Such a hypothesis
will automatically be guaranteed to satisfy the pac(e,d)-criterion. We refer to this simple fixed-sample-size
approach as Procedure F; see Figure 2.1.

Correctness

In general, we assume F has access to a hypothesizer H that always returns hypotheses h from C' that
correctly classify every observed training example. We call such a hypothesizer H consistent for C'. Ensuring
the correctness of Procedure F then is simply a matter of finding an appropriate sample size function 7§ that
can be proved sufficient to eliminate all e-bad hypotheses with probability at least 1 — §. This is normally
accomplished by using well-known results on the uniform convergence of families of frequency-estimates to
their true probabilities. For example, it is easy to determine a sufficient sample size for finite concept classes.

Proposition 2.2 For any ¢ > 0 and § > 0, and any finite concept class C':

1 C
Tanie(C€,8) = - In |5—|

random examples are sufficient to ensure that, with probability at least 1 — §, every concept in C' with error
greater than ¢ musclassifies at least one training example.

This is easy to prove: The probability that one e-bad concept correctly classifies ¢ random training examples
is at most (1 — €)’. Since there can be at most |C| e-bad hypotheses in total, the probability that any one
of them survives ¢ training examples is at most |C|(1 — €)*. Therefore, since (1 —¢€)* < e, we need simply
choose a sample size ¢ that is large enough to ensure |C'le™ < 4.

16 CHAPTER 2: SEQUENTIAL PAC-LEARNING

So, using Tj..., Procedure F correctly pac-learns any finite concept class. Notice, however, that this
bound degenerates for infinite concept classes. This is an important limitation in practice, since many
applications involve infinite domains which naturally give rise to infinite concept classes (conceptually at
least). For example, learning concepts defined on IR generally involves concept classes like halfspaces or
multilayer-perceptrons which are clearly infinite. It turns out that determining sufficient training sample sizes
for infinite concept classes is much more difficult than for the finite case. In fact, the question of whether
pac-learning is even possible at all arises in this case.

A central tool of pac-learning theory is a result, due to Vapnik and Chervonenkis, that provides sufficient
training sample sizes for many infinite concept classes. Specifically, Vapnik and Chervonenkis [1971] charac-
terize the rate at which the empirical frequency-estimates for arbitrary families of events converge uniformly
to their true probabilities. Their main contribution is a bound on this rate of uniform convergence that can
be expressed in terms of a specific measure of the representational complexity of the family; namely, the
Vapnik-Chervonenkis dimension (VCdimension).

Definition 2.3 (Vapnik-Chervonenkis dimension) The Vapnik-Chervonenkis dimension of a concept

class C' 1is defined as follows:

e For any two nested subsets S and F of X, i.e., such that S C F C X, we say that a concept ¢ : X —
{0,1} “picks S out from F” if c(x) =1 for all z in S and c(z) =0 forallz in F — S.

o A concept class C is said to “shatter” a finite set F if for each of the 2F| subsets S of F, there is a
c € C that picks S out from F.

e The Vapnik-Chervonenkis dimension of a concept class C, written vc(C'), is the size of the largest set
shattered by C' (defined to be oo if no largest such set exists).

Thus, the VCdimension measures the representational complexity of a concept class C' by the maximum
number of points that can be independently labelled by choosing concepts from C. To illustrate this,
notice that the VCdimension of a finite class C' can be at most log, |C/|, since independently labelling a
set of d objects requires at least 27 distinct concepts. The importance of the VCdimension is that it is
an abstract measure that applies to arbitrary concept classes defined on arbitrary domains. Moreover, this
measure generally gives an intuitive characterization of the effective dimensionality of a concept class C| often
corresponding to the number of free parameters used to define the class under its most natural encoding.
For example, the class of halfspace concepts defined on IR” has a VCdimension of n + 1 [Pollard, 1984], and
is normally defined by a PERCEPTRON encoding that also involves n + 1 free parameters [Nilsson, 1965].3
Baum and Haussler [1989] also observe that the VCdimension of the class of multilayer-perceptron concepts
roughly corresponds to the number of free parameters used to define the PERCEPTRON networks, up to
constants (and log factors in some parameters).

Specializing the earlier results of Vapnik and Chervonenkis, Blumer et al. [1989] obtain a sample size
function Tyzuy that can be proved sufficient to ensure F correctly pac-learns a wide range of infinite concept
classes.

Theorem 2.4 [Blumer et al., 1989] For any ¢ > 0, § > 0, and any (well behaved*) concept class C with
ve(C) < oo:

Topuw(C,€,0) = max

8ve(C) 13
(250002 1

4 2
1 —, -1
0gs P ’ € 0gs }

random examples are sufficient to ensure that, with probability at least 1 — §, every concept in C' with error
greater than ¢ musclassifies at least one training example.

3To illustrate this for IR?, notice that any (non-co-linear) set of 3 points on the plane can be shattered by halfspaces, but no
set of 4 points can be.

4 These uniform convergence results assume the concept class C' satisfies certain measurability restrictions. This is a benign
technical condition that is normally satisfied by all concept classes encountered in practice (however, it is possible to construct
classes that violate these assumptions; see [Blumer et al., 1989] for details). We will not be concerned with these issues here.
All concept classes we consider will be assumed to be suitably well behaved in this manner.

2.2. BACKGROUND: DISTRIBUTION-FREE PAC-LEARNING THEORY 17

Thus, using Typuw, Procedure F can correctly pac-learn any class C', provided only that C' has finite VCdi-
mension. This is a general and powerful result as most concept classes normally encountered in practice have
finite VCdimension and therefore can be pac-learned by F (for any € > 0, § > 0). However, not every class of
concepts has finite VCdimension; e.g., the class B of all Borel subsets of IR clearly has infinite VCdimension
(since it can shatter infinite sets) and hence Procedure F cannot use Tpguw to pac-learn B. This leaves
open the question of whether classes with infinite VCdimension can be pac-learned by any fixed-sample-size
learning procedure. We address this question in Section 2.2.4 below.

2.2.3 Efficiency

Of course the key issue, aside from designing correct pac-learning procedures, is designing efficient proce-
dures. We are particularly interested in pac-learning procedures that are both data-efficient and computation-
ally-efficient. That is, procedures that observe as few training examples as possible and produce hypotheses
within reasonable computational limits.

Data-efficiency

The data-efficiency of a learning procedure is determined by the number of training examples it observes,
regardless of the computation time it uses in producing its hypotheses. Clearly, the data-efficiency of a fixed-
sample-size learning strategy is directly determined by the sufficient sample size function it uses. Since any
such sample size function must be proved sufficient to eliminate all bad hypotheses with high probability, the
best data-efficiency that can be achieved by a fixed-sample-size learner is directly determined by the smallest
bound we can prove does the job. Since the work of Blumer et al. [1989] some effort has been expended
towards improving their bound, and recent progress has been made in this direction.

Theorem 2.5 [Shawe-Taylor, Anthony and Biggs, 1993] For any ¢ > 0, § > 0, and any well-behaved
concept class C' with vc(C) > 2:

1 6 2
T C,e,d) = —=[2ve(C)In—+1n—
STAB(€) 6(1—\/5) (() n p + n(f)
random examples are sufficient to ensure that, with probability at least 1 — §, every concept in C' with error
greater than ¢ misclassifies at least one training example.

This sample size function improves the previous bound Tz by roughly a factor of 4/1n 2. However, notice
that both of these sample size bounds scale as

Tr(C,e,6) = O <% <VC(C) ln%—i—ln %)) (2.1)
in terms of ¢, 6 and vc(C'), which, interestingly, is linear in vc(C). Although it remains an open question
whether Tsr,5 can be improved further, it 1s known that its scaling behavior cannot be improved: There are
concept classes and (poor) hypothesizers that can force Procedure F to require a number of training examples
that meets this scaling bound to within constant factors [Ehrenfeucht et al., 1989; Haussler, Littlestone and
Warmuth, 1988]. Therefore, the worst case scaling performance indicated by (2.1) can only be improved
upon by considering special hypothesis guessing strategies. (However, in Section 2.2.4 below, we will see
there are strong limits even to this.) For the special case of finite concept classes, we note that the sufficient
sample size bound T}, often gives better results than Tsp,p.

Computational-efficiency

Aside from data-efficiency, the other key aspect of a learning system’s performance is the computational
resources 1t requires to produce its hypotheses. For Procedure F, the only computational task is to find
a concept from C' that correctly classifies every training example; i.e., calling H. Efficient computational
procedures (i.e., hypothesizers) have been developed for finding consistent concepts from many different
families of concept classes, including;:

18 CHAPTER 2: SEQUENTIAL PAC-LEARNING

o kdnf concepts defined on {0, 1}" [Valiant, 1984],
e decision-list concepts defined on {0, 1}" [Rivest, 1987], and
¢ halfspace concepts defined on IR™ [Blumer et al., 1989].

These procedures all run in time polynomial in the input dimension n, and the number of training examples
(which, in turn, is polynomialin n, 1/¢, and 1/d).5 However, it is not always easy to find efficient procedures
for such a task. In fact, there are many concept class families where the problem of finding a consistent
concept is known to be NP-hard.® For example, for the class of k-term-cnf concepts defined on {0,1}",
the problem of finding a k-term-cnf concept consistent with a polynomial number of training examples is
NP-hard [Pitt and Valiant, 1988].

Sometimes in these cases a neat trick due to Pitt and Valiant [1988] can be used to circumvent this
difficulty: Rather than find a consistent concept from C', we instead find a consistent concept from some
superclass C* 5 C, where CH makes the computational task easy but does not require too many additional
training examples to meet the pac-criterion. For example, even though finding a consistent k-term-cnf concept
is NP-hard, we can notice that kdnf O k-term-cnf and use the efficient procedure for finding consistent kdnf
concepts to pac-learn k-term-cnf in polynomial time [Pitt and Valiant, 1988]. Although this comes at the
expense of a slight increase in the number of training examples used (since kdnf is a strictly larger class), we
substantially reduce the computational costs of pac-learning. Thus, the idea is to trade-off a slight loss in
data-efficiency for a significant gain in computational-efficiency. In general, this trick will work whenever we
can find a suitable superset of the concept class C* O C. However, we will see below that this is not likely
to be possible in every situation.

2.2.4 Complexity

Aside from determining the correctness and efficiency of specific learning procedures, it is also important
to consider the intrinsic difficulty of solving pac-learning problems; i.e., determining the minimum data and
computational resources required by any learning procedure to meet the pac-criterion in the worst case.
As before, the complexity of a pac-learning problem can be measured along two orthogonal dimensions:
data-complexity and computational-complexity.

Data-complexity

A number of theoretical results have been obtained that characterize the inherent data-complexity of pac-
learning, ignoring computational costs. These analyses consider the minimum number of training examples
required by any learning procedure to meet the pac-guarantees in the worst case.

Definition 2.6 ((Fixed) data-complexity) The (fired) data-complexity of a pac-learning problem (C, ¢, d)
is the smallest number of training examples required by any (fived-sample-size) learning procedure to meet
the pac(e, d)-criterion for every target concept ¢ in C' and every domain distribution Py.

This type of analysis is important because 1t allows us to compare the data-efficiency of particular learning
procedures with the optimum possible data-efficiency, thus determining whether these procedures can be
improved, and if so, by how much. Just such an analysis has been carried out for pac-learning problems by

Ehrenfeucht et al. [1989].

Theorem 2.7 [Ehrenfeucht et al., 1989] For any 0 < ¢ < 1/8, 0 < § < 1/100, and any concept class C
with ve(C) > 2: any (fired-sample-size) learning procedure that observes fewer than

n—

B ve(C)—1 1—€. 1
toumev(C€,8) = max{ 39¢) 15}

5Note that an analysis of computational-efficiency generally considers how the cost of solving a parameterized family of
problems scales-up in terms of some size parameter n. Here we are addressing how the cost of solving a family of pac-learning
problems {(Chn,¢,8)}22 , defined on domains {X,}32 ; scales-up in terms of n, 1/¢, and 1/8.

61t widely believed there are no polynomial time algorithms for such problems.

2.2. BACKGROUND: DISTRIBUTION-FREE PAC-LEARNING THEORY 19

random training examples will fail to meet the pac(e,d)-criterion for some target concept ¢ € C' and some
domain distribution Px.

This shows that the VCdimension not only provides an upper bound on the number of training examples
F needs to pac-learn a concept class C it also provides a nontrivial lower bound on the number of training
examples required by any fixed-sample-size learning procedure to pac-learn C'. From this result we can
see that finite VCdimension is not only sufficient, but also necessary for any fixed-sample-size learning
procedure to correctly pac(e, d)-learn C'. (Thus, proving that the previous example of the class B of all Borel
set (indicators) on IR cannot be pac(e,d)-learned for any ¢ > 0, § > 0, by any fixed-sample-size learning
procedure.) Consequently F can be seen as a “universal” learning procedure in the sense that it pac-learns
any concept class C' for which this is possible by any fixed-sample-size learning procedure.
Notice that this lower bound ¢,y scales as

tomee(Cre8) = © G <VC(C)+1H g))

in terms of vc(C'), € and §, which matches the scaling behavior of Ty and Tspup up to constant factors
and a In(1/¢) term. Therefore, not only is F a universal learning procedure, it also has near-optimal scaling
behavior, in that no other fixed-sample-size learning procedure can improve on its data-efficiency by more
than a constant (and In(1/¢)) factor.

Overall, these results show that VCdimension is a powerful measure of concept class complexity, as it
tightly determines the data-efficiency with which a concept class C' can be pac-learned by any fixed-sample-
size learning procedure.

Computational-complexity

Aside from the minimum number of training examples needed for pac-learning, it is also important to
consider the minimum computational resources required to produce an acceptable hypothesis. As noted
above, Procedure F can be efficiently implemented for many concept classes (like kdnf) rather easily, but
special tricks are required to implement F efficiently for other concept classes (like k-term-cnf). This raises
the question of whether there are families of concept classes that have no efficient learning procedures.

Definition 2.8 (Feasible learnability) A family {C,} of concept classes is feasibly pac-learnable if there
is a learning algorithm L, taking n, €, and § as input, that solves the pac-learning problems (Cyp,€,d) with
training sample size and running time bounded by a polynomial in n, 1/¢, and 1/4.

Proving that a family is feasibly pac-learnable is simply a matter of showing {C),} has polynomial VCdimen-
sion and demonstrating a polynomial-time hypothesizer H that finds consistent hypotheses from a suitable
class C 5 C,; e.g., as for kdnf D k-term-cnf. However, proving that a family of concept classes cannot
be feasibly pac-learned (no matter how many tricks one tries) is a significant challenge. In fact, this has
yet to be accomplished for any family of concept classes with polynomial VCdimension. However, Kearns
and Valiant [1989] have been able to show that, given standard assumptions about the hardness of certain
cryptographic tasks, there are families of concept classes (e.g., boolean-formulae) that cannot be feasibly
pac-learned, unless these assumptions turn out to be false.

2.2.5 Assessment

The theory of pac-learning has greatly increased our understanding of the difficulty of classification learning.
Not only do these theoretical results describe the limits of what can be achieved in terms of data and
computational-efficiency, they also prescribe how to learn with guaranteed accuracy, reliability, and efficiency,
whenever this is possible. Particularly strong are the results that show these procedures achieve near-optimal
data-efficiencies in terms of how they scale-up in the desired accuracy, reliability, and complexity of the prior
concept class.

The most important aspect of this theory is that it treats prior knowledge explicitly. The theory attempts
to characterize optimal learning performance given whatever prior knowledge is available, and quantifies the
strength of this prior knowledge by the effect it has on learning performance. It turns out that a suitable
measure of the prior knowledge embodied by a concept class C' is given by its VCdimension.

20 CHAPTER 2: SEQUENTIAL PAC-LEARNING

For (X = R'°,C = halfspaces, e = 0.01,d = 0.05):

Teenw = 91,030
Toms = 15,981
Tnemy & 1,100
teuxy = 32

Table 2.1: Comparing training sample sizes

2.3 Issue

However, despite the apparent strength of these results, pac-learning theory has arguably had little impact
on the practice of machine learning. Although machine learning practitioners are generally aware of the
(main) results, they rarely consider the specific prescriptions when tackling real applications. Why?

It is certainly possible to criticize many of the specific modelling assumptions made by pac-learning
theory (e.g., bivalent classification, example independence, noise free classification, etc.), arguing that these
do not address the real situations encountered in practice. However, pac-learning theory has addressed many
of these objections at one time or another (¢f. [Ben-David, Cesa-Bianchi and Long, 1992; Haussler, 1992;
Angluin and Laird, 1988; Kearns and Li, 1988]) and yet still is not adopted in practice.

The key reason that pac-learning theory is ignored in practice over and above these concerns is data-
efficiency. That is, in spite of their near-optimal scaling behavior, the actual training sample sizes demanded
by current sample size bounds are far too large to be practical. This is easily demonstrated by a simple
example.

Ezxample

Consider a typical example of learning a halfspace concept defined on /R”. Here, each domain object is
described by a vector of n real-valued attributes, and the target concept is a half-space of IR” defined by some
unknown hyperplane and direction. As previously noted, this concept class is naturally defined by n+ 1 free
parameters and has VCdimension n+ 1. A typical (small) machine learning application might involve object
descriptions consisting of about 10 object attributes, and we might be interested in achieving an error of, say,
1% with reliability at least 95%; giving a pac-learning problem (X = IR'?, C = halfspaces, ¢ = 0.01,§ = 0.05).

Given these modest requirements it is easy to determine a sufficient sample size for Procedure F to solve
this problem: Simply note that the class of halfspace concepts on IR'? has VCdimension 11, and then plug the
specified parameters into Tyeuw (0r Tspap). But here we find that Tppuw demands 91,030 training examples!
Even the improved bound Ty, demands 15,981 training examples in this case. These seem like outrageous
training sample sizes given the apparently reasonable parameter settings. Moreover, these results compare
quite poorly to the empirical “rule of thumb” that, for a concept class defined by w free parameters, roughly
Tumy = w/e training examples should be required to achieve an error of ¢ [Hinton, 1989; Baum and Haussler,
1989]. Applied here, Ty,..., demands only 1,100 training examples—an order of magnitude fewer than Tsp,5.
Of course, this rule of thumb comes with no guarantees, but it does give a general indication of how many
training examples practitioners would deem reasonable for this problem.

Further evidence of the weakness of Ty and Tsqp,p is obtained by considering the necessary sample
size bound ? gy, in this case, which specifies the minimum number of training examples that can be proved
absolutely necessary to meet the pac-criterion. Here, ¢z, turns out to require only 32 training examples!
So, although the theoretical upper and lower bounds share nearly the same scaling properties, they give
results that are orders of magnitude apart in practice. Moreover, these bounds are an order of magnitude
away from the empirically supported rule of thumb. Table 2.1 gives a direct comparison.

Impact

The weakness of these sample size bounds has drastic consequences for the practical applicability of the
theory since, in practice, training data, not computation time is usually the critical resource. (This is
because correctly labelled training examples usually come at non-negligible cost and it is critical that they

2.4. SEQUENTIAL PAC-LEARNING 21

be conserved.) So multiplying the training sample size merely to account for theoretical slop in the previous
bounds leads to results that are grossly unacceptable in practice.

This fact demands a different emphasis than the one adopted by most pac-learning research. To the
theoretical learning community, with its emphasis on determining what can be done in polynomial time, the
fact that the upper and lower bounds are within constant and logarithmic factors of each other provides
little incentive to find improvements. However, the specific constants in these bounds matter a great deal
in practice. For example, cutting required training sample sizes in half would be a significant improvement,
even if this came at the expense of a slight increase in overall computation time. (Note that this is the
opposite trade-off to that considered by Pitt and Valiant [1988].)

Ezplanations

There are a number of reasons why current fixed-sample-size bounds are impractical.
1. The existing analysis is fundamentally weak and the current bounds can be drastically improved.

Strong evidence for this is given by the substantial difference between Tsp,5 and tguxy. However, the pre-
vailing view among machine learning practitioners is that impractical training sample sizes are inevitable
consequences of the worst case pac-learning guarantees.

2. Achieving the pac-criterion in the worst case over all possible target concepts and domain distributions
s Just too hard.

In fact, this is the most commonly held view: the worst case bounds are inherently unreasonable because
they must take into account “pathological” domain distributions that force large sample sizes—moreover,
the argument continues, these pathological distributions do not arise in “typical” applications. However, this
line of reasoning is really quite weak: First of all, no-one has yet been able to prove that these pathological
distributions really exist (for this would be tantamount to improving the lower bound result ¢zxv). Moreover,
even if they did exist, knowing for certain that pathological distributions do not arise in typical applications
constitutes a strong form of prior (meta) knowledge, which is probably best dealt with explicitly; e.g., as in
Chapter 3 below.

Approach
The work reported in this chapter investigates an alternative view:

3. Perhaps the simplistic fizred-sample-size learning strategy F (collect a sufficient training sample; then
find a consistent hypothesis) does not make the most efficient use of the available training data.

This view raises the question of whether alternative learning strategies might be more data-efficient than
F in practice. This constitutes the starting point of the research reported here. Specifically, we consider
learning strategies that are based on a sequential decision making approach, where the learner is allowed
to observe the training examples one at a time and autonomously decides after each whether to stop and
produce a hypothesis, or to continue training. The hope is that this extra leverage can be exploited to reduce
the number of training examples observed, while maintaining the same worst case pac-guarantees.

One assumption behind this approach is that we are willing to incur a slight computational cost in order
to obtain a significant improvement in data-efficiency. Again, this trade-off is motivated by the fact that, in
most practical learning applications correctly labelled training data is the critical resource.

2.4 Sequential pac-learning

We now consider the idea of pac-learning a concept class C' by using on-line stopping-rules that decide when
to stop training by observing the effects of the training sequence on C'. The challenge is to find an appropriate
stopping-rule that maintains the pac-criterion while observing as few training examples as possible. In this
section, we develop a few simple sequential learning procedures that (i) are provably correct pac-learners
(ii) are provably data-efficient (improving on the existing fixed-sample-size bounds in some cases), and (i)

22 CHAPTER 2: SEQUENTIAL PAC-LEARNING

use many times fewer training examples in practice—often achieving what appears to be near-practical data-
efficiency in empirical case studies. We also assess the inherent data-complexity of sequential pac-learning.

2.4.1 Problem

This section addresses the same pac-learning problem introduced in Section 2.2: given a concept class C
and specified accuracy and reliability parameters ¢ and J, we demand that the learner produce an e-accurate
hypothesis with probability at least 1 — § for any target concept ¢ € C' and domain distribution Pyx. Here,
however, we permit the learner to choose the size of its own training sample based on the specific sequence
of examples it receives. Thus, we re-formalize a learner L as consisting of:

1. A stopping rule Tr,(C,¢,d) : (X x{0,1})*° — IN that maps training sequences to stopping times (where
the event {77, =t} depends only on the first ¢ training examples).

2. A hypothesizer Hy,(C,¢,8) : (X x{0,1})* — {0,1}* that maps finite training sequences to hypotheses.

Since the number of training examples a sequential learner observes depends on the specific training
sequence, its training sample size is a random wvariable rather than a fixed number. So a sequential learner’s
data-efficiency is fully described by a distribution of training sample sizes. Although there are several ways
to characterize a learner’s efficiency by the shape of its sample size distribution, we will focus on arguably
the most natural measure: the average (i.e., expected) training sample size. To compare the relative data-
efficiency of a sequential to a fixed-sample-size learner (which entails comparing a distribution to a fixed
number) we will simply compare the expected and fixed training sample sizes directly. Our goal is to develop
sequential pac-learning procedures that observe a small average number of training examples in the worst
case over all possible target concepts in C' and domain distributions Py . We ask whether sequential learning
procedures can use a smaller average number of training examples than existing fixed-sample-size learning
procedures while maintaining the same worst case pac-learning guarantees.

2.4.2 Procedures

Why do we expect sequential learning to reduce the number of training examples needed to pac-learn?
Perhaps the simplest illustration of this i1s the notion of “premature convergence”: Suppose that while
attempting to learn an unknown target concept from a class C' we happen to notice, well before the sufficient
fixed-sample-size bounds have been reached, that only a single concept ¢ in C' correctly classifies every
training example. Clearly there is no need to continue training, since by assumption ¢ must actually be
the target concept—thus immediately returning ¢ automatically satisfies the pac-criterion. So halting as
soon as the target concept is identified can sometimes substantially reduce the number of training examples
observed. Of course, this naive strategy does not work in general: if the domain distribution does not
distinguish between two distinct target concepts, then neither concept will be uniquely identified after any
finite number of training examples (with probability 1). However, it turns out that more sophisticated
versions of this premature convergence idea can be made to work in general.

The general approach we will take is the following: We assume that we have some hypothesizer H that is
consistent for C' (i.e., H always returns a hypothesis h from C that correctly classifies every training example,
provided the examples are consistent with some ¢ € C'). This hypothesizer will be called as a subroutine in
our learning procedures. The basic strategy will be to call H to obtain an initial hypothesis hg, and then
sequentially observe training examples (z1, ¢(z1)), (x2, e(22)), ..., etc. Whenever the most recent hypothesis,
say h;, misclassifies the current training example, (2, ¢(2:)), we will call H to obtain a new hypothesis h; 41
that is consistent with all observed training examples (z1, ¢(z1)), ..., (¢, c(2¢)). In this way we will generate
a sequence of hypotheses hg, hy, ... etc., where each subsequent hypothesis is consistent with a greater initial
segment of the training sequence. The only question then is, how do we decide when one of these hypotheses
has correctly classified enough training examples to safely be returned as the final hypothesis?

Obvious approach

The most obvious approach to sequential pac-learning is based on the idea of “repeated survival testing”:
Instead of just waiting for premature convergence, we observe the series of hypotheses hg, h1, ... produced by

2.4. SEQUENTIAL PAC-LEARNING 23

Procedure R (C,¢,d; H)

INPUT: target concept class C,
accuracy parameter ¢ > 0,
reliability parameter § > 0;
a consistent hypothesizer H for C'.

RETURN: a hypothesis A with accuracy at least 1 — ¢, with probability at least 1 — 4.
PROCEDURE:

e Fix an arbitrary sequence {;}2; such that §; > 0 and) ;- §; = 6.

e Obtain an arbitrary initial hypothesis hg from H.

e Sequentially observe training examples (z, c¢(z:)), t = 1,2, ..., etc., labelled by some unknown target
concept ¢ € C:

— If the current hypothesis h; has correctly classified Ty, ({hi},€,8;) = %ln (% consecutive training
examples since its inception: halt and return h;.

— If the current hypothesis h; misclassifies a training example: discard h;, call H to generate a new
consistent hypothesis h;41, and begin testing h;y1.

e Repeat until some h; passes the test.

Figure 2.2: Procedure R

H and accept the first hypothesis that correctly classifies a sufficient number of consecutive training examples.
Any hypothesis that makes a mistake is discarded in favor of a new consistent hypothesis. Specifically,
Procedure R (Figure 2.2) takes as a subroutine an arbitrary hypothesizer H that produces consistent concepts
from C'. Whenever the current hypothesis h; misclassifies a training example, R calls H to generate a new
consistent hypothesis h;;11. The first hypothesis h; that correctly classifies a sufficient number of consecutive
training examples (as specified by Tp...({hi},¢€,d;)) is returned as the final hypothesis; see Figure 2.2.7

It is not hard to see that R returns an e-bad hypothesis with probability at most J, since by construction
the probability of accepting hypothesis h;, if e-bad, is bounded by §;. Thus, the total probability of accepting
any e-bad hypothesis is bounded by >":°, §; = d. That is, we carry out an unbounded number of tests, but
perform each with increasing reliability to ensure that the overall probability of making a mistake is bounded
by 4. To show R meets the pac-criterion, then all we need to do is prove that R eventually accepts some
hypothesis with probability 1 (wpl), since this will then guarantee that R returns an acceptable hypothesis
with probability at least 1 —4d. It turns out that R can be proved to halt wp1 for any concept class C, provided
only that the target class C' has finite VCdimension and the hypothesizer H produces only consistent concepts
from C' (see Theorem 2.9 below).

However, even though Procedure R is a reasonable approach to sequential pac-learning, it does not prove
to be particularly data-efficient in theory. The problem is that R can spend too much time rejecting “good
enough” hypotheses. That is, R rejects hypotheses of error € with high probability (greater than 1 — J) even
though such hypotheses are perfectly acceptable. Moreover, R takes a long time to reject these borderline
hypotheses (i.e., with expected time close to 1/€). Thus, if H produces a series of such hypotheses, R will
take an unacceptably long time to terminate (expected time about 1/(ed), which is not very good). This
prevents us from proving good bounds on R’s data-efficiency—unless we incorporate additional assumptions

"This basic “repeated survival testing” strategy has been independently proposed by many researchers, e.g., [Kearns et al.,
1987b; Angluin, 1988; Benedek and Itai, 1988b; Linial, Mansour and Rivest, 1991; Oblow, 1992]—primarily for achieving “non-
uniform” pac-learning. Here we consider the same strategy, but for a different goal: we seek a uniform improvement in sample
size over all targets in C, whereas non-uniform pac-learning attempts to increase the range of “pac-learnable” concept classes
by sacrificing a uniform bound on data-efficiency. These two concerns are orthogonal, as discussed in Section 2.7.2 below.

24 CHAPTER 2: SEQUENTIAL PAC-LEARNING

about H, or somehow argue that H cannot produce an unbounded sequence of consistent hypotheses with
¢ error. However, rather than pursue a complicated analysis we take a different approach: by explicitly
considering R’s shortcomings, we develop an alternative strategy that circumvents these difficulties. This
leads to a novel approach that proves to be more data-efficient than R, both in theory and practice.

Better approach

Here we propose a new sequential learning strategy, Procedure S (Figure 2.3), that is also based on repeated
significance testing, but attempts to avoid the inefficiency of R’s survival testing approach. S is based on
two ideas: First, instead of discarding hypotheses after a single mistake, S saves H’s hypotheses in a list
{ho, h1, ...}, and continues testing each one until some hypothesis proves to have sufficiently small empirical
error. Second, S identifies an accurate candidate in the list by using an on-line sequential probability ratio
test (sprt) [Wald, 1947] to test each hypothesis, returning the first hypothesis that passes the test (see
Figure 2.3). In this way, S never rejects a potentially acceptable hypothesis while quickly identifying any
accurate candidate on the list.

Procedure S is a correct pac-learner in the exact same sense as F and R: it is guaranteed to return an
e-accurate hypothesis with probability at least 1 — § (provided vc(C) < oo and H is consistent for C'). The
key property of S is that its call to sprt is guaranteed to accept any ¢/k-good hypothesis wpl, but only
accepts an e-bad hypothesis h; with probability at most §;. In this way S returns an e-bad hypothesis with
probability at most Zf; d; = ¢ and yet eventually returns some hypothesis wpl, provided only that H
eventually produces an accurate candidate. Thus, proving that S meets the pac-criterion is a simple matter
of showing that H eventually must produce an ¢/k-accurate hypothesis wpl.

Theorem 2.9 (Correctness) For any ¢ > 0, § > 0, and any (well behaved) concept class C' with ve(C) <
oo: Given i.i.d. examples generated by any distribution Px and target concept ¢ € C', Procedure S (R) returns
a hypothesis h such that Py {h(z) # c(z)} < € with probability at least 1 — §; using any hypothesizer H that
is consistent for C.8

8 Proofs of all (original) results stated in this chapter are given in Appendix A.

2.4. SEQUENTIAL PAC-LEARNING 25

Procedure S (C,¢,d; H, &)

INPUT: target concept class C,
accuracy parameter ¢ > 0,
reliability parameter § > 0;
a consistent hypothesizer H for C,
and an arbitrary constant & > 1 (see explanation below).

RETURN: a hypothesis A with accuracy at least 1 — ¢, with probability at least 1 — 4.
PROCEDURE:

e Fix an arbitrary sequence {4;}52, such that §; > 0 and Zf; d; = 4.

e Obtain an arbitrary initial hypothesis hg from H.

e Sequentially observe training examples (z, ¢(z:)), t = 1,2, ..., etc., labelled by some unknown target
concept ¢ € C:

— Collect H'’s hypotheses in a list {hg, hy,...}.

If the most recent hypothesis h; misclassifies a training example: call H to obtain a new consistent
hypothesis h;y1, and add h;y1 to the end of the list.

— Once added, begin testing hypothesis h; on subsequent training examples.

— In parallel, subject each hypothesis h; in the list to a statistical test that accepts h;, if e-bad, with
probability at most J;.

(Note that there are many ways to implement this test. The specific way we will do it is to fix an
arbitrary constant x > 1 and test whether h;’s error is below some threshold ¢/x, or above ¢, with
a probability of incorrectly deciding that h;’s error is less than €/& (when in fact it is greater than
¢) bounded by §;. We will make this decision on-line by using a sequential probability ratio test
(sprt); in particular, we will call sprt(h;(z) # (), €/&, €, &, 0) to test each hypothesis h;;
see Figure 2.4.° The key property of this call is that if h; is e-bad, sprt accepts it with probability
at most d;, but if h; is €¢/k-good, then sprt accepts it with probability 1.1°)

— If some h; in the current list is accepted by the test: halt and return h;.

e Repeat until some h; passes the test.

Figure 2.3: Procedure S

9 Another way to implement this test would be to fix a training sample size that is sufficient to give a (1 — 8;)—confident
p; +€(1—1/k) upper error bar on k;’s true error p; (by using Chernoff bounds [Hagerup and Riib, 8990]) and detecting whether
this error bar is below e. However, sprt is more efficient than this.

10Note that here x serves as a tradeoff parameter between (a) the time it takes to find an ¢/s-accurate hypothesis, and (b)
the time to accept such a hypothesis (wpl) once found. For example, choosing a small value of ~ (near 1) reduces (a) but
increases (b). In Section 2.5 below, we choose a value of « that balances between these two factors in a convenient (but not
necessarily optimal) way.

26 CHAPTER 2: SEQUENTIAL PAC-LEARNING

Procedure sprt (¢, a, 7, dace, 6rej) [Wald, 1947]

INPUT: boolean random variable ¢ : X — {0, 1},
acceptance boundary a, 0 <a < 1,
rejection boundary r, a<r <1,
acceptance reliability parameter dgc. > 0,
rejection reliability parameter d,.; > 0.

DECIDE: Hgeo : Px{¢(z) = 1} < a versus H,.; : Px{o(z) =1} > r;
returning “H,..” with probability at most dq.c when H,.; true, and

returning “H,.;” with probability at most d,.; when Hge. true.

PROCEDURE:

e Sequentially observe ¢, = ¢(z;) for t = 1,2, ..., and monitor the sum

56 = 3 4 (1— 6 n =
i€’

— Return “H,..” if ever St(qﬁt) > In(1/dgcc)-
— Return “H,.;” if ever St(qﬁt) < In(8rej)-

¢ Continue to make observations while In(d,.;) < St(qﬁt) <In(1/84cc) -t

Figure 2.4: Procedure sprt

11T briefly explain this procedure: Note that we have two alternative probability models for a random sequence of i.i.d.
bits: Model A says that P(¢ = 1) = a and Model R says P(¢ = 1) = r (for simplicity we are focusing on the boundary
cases here). Now, assume that we observe a sequence of ¢ bits ¢t = {#1,...,6¢). Then the probability of observing this
sequence under Model 4 is P! {¢'} = H:zl

Pi{¢'} = Hf_l r%i(1 — r)!=%i. (These are called the likelihoods of the sequence ¢° under Models A and R respectively.)

What Procedure sprt does is, in effect, monitor the ratio of these two likelihoods, R:(¢') = PL{@'}/Pt{¢'}, and decide
“A” if the probability of ¢! under Model R is less than 84cc times the probability of ¢! under Model A (or decide “R” if the
probability of ¢! under Model A is less than 8rcj times the probability of @' under Model R); continuing to make observations
while neither condition is satisfied. To implement this procedure however, it is convenient to monitor the log of the likelihood
ratio, St(qﬁt) = In Rt(tﬁt), and hence turn the product into a sum. A proof that sprt correctly meets the stated reliability
criteria, along with a detailed analysis of its stopping time, is given in Section A.1 of Appendix A.

a¢'l(1 - a)1_¢l, and the probability of observing this sequence under Model R is

2.4. SEQUENTIAL PAC-LEARNING 27

The advantage Procedure S holds over Procedure R is that we can prove a reasonable upper bound on
S’s expected training sample size. In addition, S proves to be more data-efficient than R in empirical case
studies, as shown in Section 2.5 below.

2.4.3 Efficiency

We have seen (Theorem 2.7) that no fixed-sample-size learner can improve on the data-efficiency of Tsp,p
by more than a constant factor (logarithmic in 1/€)—where data-efficiency is measured by the maximum
training sample size used in the worst case. However, merely considering the maximum number of training
examples a sequential learner might observe is not an accurate measure of its overall data-efficiency. A
sequential learner might only observe large training samples with small probability and so only use a small
number of examples on average. A far more natural measure of a sequential learner’s data-efficiency is its
expected rather than maximum training sample size.

Definition 2.10 (Expected data-efficiency) The expected data-efficiency of a sequential learner L, for
solving a pac-learning problem (C| ¢,0), is given by the maximum expected training sample size L uses in the
worst case over all possible target concepts ¢ € C' and domain distributions Px.

Given this more natural measure of data-efficiency, it is possible to ask whether sequential learning can
obtain any advantage over fixed-sample-size learning in terms of worst case expected sample size. Here we
derive a reasonable upper bound on S’s expected training sample size under the weak assumption that C
has finite VCdimension and S has access to a consistent hypothesizer H for C. As before, this bound can
be expressed in terms of ¢, 4, and vc(C).

Theorem 2.11 (Data-efficiency) For any § > 0, sufficiently small ¢ > 0, and any (well behaved) concept
class C' with finite VCdimension: Gwen i.1.d. examples generated by any distribution Py and target concept
¢ € C, Procedure S observes an average training sample size of at most

ETs(C,e,6) < <+) ! ([2.125\/0(0) +3] m# +1n 1) ; (2.2)

k—1—Ink/ ¢)

using any hypothesizer H that produces consistent concepts from C, any constant k > 1, and the sequence

{8; = 66/(m?i%)}52, (which gives Y ;o, 6; =).

Although this bound is somewhat loose, interestingly it still exhibits the same scaling as Tyzyw and Tspup
in terms of ¢, §, and vc(C):

ET5(C,e,8) = O (% <vc(C)ln% +ln§)) :

That is, S’s expected data-efficiency scales no worse than F’s (fixed) data-efficiency. Of course, the specific
constants of scaling are of utmost importance in practical applications. To this end we can directly compare
the upper bound (2.2) to the fixed sample size bounds Typuw and Tsp,s. Here we note that the bound (2.2)
actually beats Tygyw and Tspup for small reliability levels.

Proposition 2.12 (Comparison)

ET5(C,€,8) < Tasuw(C,€,8) for k > 3.5 and sufficiently small § = ¢®(C)),
ET5(C,€,8) < Tsnus(C,€,8) for & > (2//€)In(2/1/<) and sufficiently small § = ¢®(= (),
Unfortunately this advantage is only slight, and only holds for high reliability levels. Overall, the bound

(2.2) does not appreciably dominate the efficiency of F, nor do the fixed-sample-size bounds Tpsuw and Tspap
dominate (2.2).12

12The weakness of this bound (2.2) is not too surprising since the upper bound on the expected number of training examples
needed to rule out all ¢/k-bad concepts is directly obtained from the existing fixed-sample-size bound Tsras. Clearly, the
expected time to eliminate all ¢/x-bad concepts is only smaller than the fixed time needed to eliminate all e-bad concepts with
probability 1 — § for very small values of é.

28 CHAPTER 2: SEQUENTIAL PAC-LEARNING

Although this might not seem like much of an advantage at first, an important property of Procedure S
is that we expect 1t to perform much better in practice than any bounds we can prove about its performance
a priori. This is because the number of training examples S observes in any particular application is only
determined by the specific case at hand, not the worst case situation (and certainly not by what we can prove
about the worst case). Therefore, we expect S to be far more data-efficient in practice than the loose upper
bound (2.2) would indicate. Note that this is a property of sequential learning that the fixed-sample-size
approach does not share. The number of training examples observed by Procedure F is always determined
by the worst case—in fact, by what we can prove about the worst case, which is usually much worse. In
Section 2.3 we saw that this can lead to training sample sizes that are far larger than intuitively reasonable;
cf. Table 2.1. So not only do we expect S to perform much better than the crude upper bound (2.2) but also
much better than the fixed-sample-size bounds Tpzuw and Tsrup. In fact, a series of empirical case studies in
Section 2.5 below show that S observes many times fewer training examples than Tyzyy or Tszup in practice,
even while maintaining the exact same worst case pac-guarantees.

However, before demonstrating S’s advantage in empirical tests, we first note that there are inherent
limits even to the data-efficiency of sequential learning. These limits are revealed by considering the inherent
data-complexity of solving pac-learning problems by sequential learning.

2.4.4 Complexity

Beyond considering the data-efficiency of specific learning procedures (like S) it is also important to consider
the inherent data-complexity of solving pac-learning problems; 1.e., the minimum number of training examples
required by any sequential procedure to meet the worst case pac-guarantees. Here we generalize the original
definition of data-complexity from Section 2.2 to consider the minimum average number of training examples
needed to meet the pac-criterion.

Definition 2.13 (Expected data-complexity) The expected data-complexity of a pac-learning problem
(C)€,8) is given by the smallest average number of training examples any learning procedure must observe
to meet the pac(e,§)-criterion for any fired ¢ € C and Py, in the worst case over all possible target concepts
¢ € C and domain distributions Py.

Investigating the inherent data-complexity of pac-learning problems allows us to determine the extent to
which sequential learning might ultimately improve on the data-efficiency of fixed-sample-size learning, and
how significant this advantage might possibly be. Here, we derive a lower bound on the expected number of
training examples any learner must observe to meet the pac-learning guarantees in the worst case over all
possible target concepts in C' and all possible domain distributions Pyx. This bound is expressed in terms of

¢, § and the VCdimension of C.

Theorem 2.14 (Data-complexity) For any 0 < ¢ < 1/8, 0 < § < 1/683, and any concept class C' with
ve(C) > 2: Any learner that always observes an average training sample size less than

B ve(C)—1 1-26
tawg(C,€,6) = max{ 80c 9% }

for every fired ¢ € C and Py will fail to meet the pac(e,d)-criterion for some target concept ¢/ € C and
domain distribution Py .

This shows that no new concept classes become pac-learnable with bounded data-efficiency merely by
considering sequential over fixed-sample-size learners. That is, the target class C' must still have finite
VCdimension for there to be any sequential learner that can meet the pac-criterion for every target concept
¢ in C and domain distribution Py with a bound on expected training sample size. Thus, finite VCdimension
is not only sufficient, but remains necessary for pac-learning with bounded data-efficiency. This also shows
that S is a universal learning strategy in the same sense as F; i.e., S correctly pac-learns any concept class
C for which this is possible via any sequential learning procedure.

Interestingly, the lower bound #,,4 behaves as

i) = 0(2O=0),

€

2.5. EMPIRICAL EFFICIENCY 29

and hence, scales the same as the fixed-sample-size lower bound ¢4k, in terms of ¢ and vc(C'); but with
a slightly weaker dependence on d. This shows that the expected data-efficiency of sequential learning
necessarily scales the same as fixed-sample-size learning, in that the best possible improvement can only
involve constant factors in vc(C) (and possibly logarithmic factors in 1/¢). Also, notice that the scaling
behavior of ¢4,4 matches the the worst case upper bound on S’s expected sample size (2.2) up to constants
and a small logarithmic factor. Thus, not only is S a universal pac-learner in the above sense, it also learns
with near optimal scaling: no other learning procedure can improve S’s data-efficiency by more than constant
(and logarithmic) factors.

Overall, these results show how VCdimension continues to be a powerful measure of concept class com-
plexity, as it still characterizes the inherent data-complexity of pac-learning, even when considering sequential
over fixed-sample-size learners.

2.5 Empirical efficiency

As mentioned, we expect S to perform much better in practice than any bounds we can prove about its
performance a prior:, and hence, much better than either of the fixed-sample-size bounds Typyw or Tsras. In
fact, Procedure S proves to be many times more data-efficient than Tgzyyw or Tsrup In empirical case studies;
demonstrating a clear advantage for the sequential over the fixed-sample-size approach. This empirical
advantage enjoyed by S is easily demonstrated by a simple example.

2.5.1 Problem

Consider the pac-learning problem (X = IR",C' = halfspaces,e¢ = 0.01, = 0.05) discussed in Section 2.3.
The class of halfspace concepts on IR" is a canonical example that appears throughout machine learning,
statistical pattern recognition [Duda and Hart, 1973], and neural networks research [Minsky and Papert, 1969;
Hampson and Volper, 1986; Gallant, 1990], and thus should serve as a good example of a practical learning
problem.'? T tested Procedure S on this problem by fixing a target concept and domain distribution (chosen
without much care), and seeing how many training examples S would observe while meeting the specified
pac(e, d)-criterion. Specifically, the following setup was used: Training objects were generated by the uniform
distribution on [—1,1]" and labelled according to a fixed (diagonal) hyperplane that passed through the
origin 0" with norm directed towards 1”. S’s constant x was set to 3.1461932 (so that k = k/(k — 1 —Ink)),
and T supplied S with a hypothesizer H = HALFSPACE that finds consistent halfspace concepts for any
linearly separable set of training examples.'*

2.5.2 Results

A series of experiments was performed by setting n = 10 and running Procedure S 100 times—yielding the
results shown in Table 2.2. Here we see that S observed an average number of about 3,402 training examples
on this problem, which is about 5 times smaller than Tsr,5; and 27 times smaller than Tgsw. Not only does
S solve this pac-learning problem using far fewer training examples than demanded by the previous worst
case bounds, it appears to be achieving near-practical data-efficiency: S’s average training sample size was
only about 3 times larger than T),,,.,, the empirical rule of thumb for how many training examples should
be needed to obtain € error in practice. It 1s important to emphasize that S achieves these results while
maintaining the exact same worst case pac-guarantees as before; namely, that an e-accurate hypothesis is
always returned with probability at least 1 — 4.

Not only were these surprising results obtained for the parameter settings n = 10, ¢ = 0.01, and § = 0.05,
they were also obtained over the entire range of parameter settings. For example, changing the dimensionality
of the problem (n) does not reduce S’s empirical advantage (Figure 2.5). In fact, it has the opposite effect: as
n increases, S observes proportionally fewer training examples than F; i.e., the ratio Tsr5/avg T increases

13The other advantage of this class is that there is also a well-developed body of computational techniques for dealing with
this problem.

14 Specifically, H = HALFSPACE was implemented by using a BFGS secant optimization procedure [Dennis and Schnabel,
1983] with a “relaxation” objective function [Duda and Hart, 1973].

30

CHAPTER 2: SEQUENTIAL PAC-LEARNING

For (X = R'°,C = halfspaces, e = 0.01,d = 0.05):

Sufficient:
Improved:

Folklore:
Necessary:

TBEHW

TSTAB
j—‘ihumb

tEHKV

na

91,030
15,981
1,100
32

After 100 trials, Procedure S used:

avg Tgs = 3,402
maxTy = 5,155
minTyg = 2,267

Table 2.2: A direct comparison of training sample sizes for the pac-learning problem (IR'®, halfspaces, e =

0.01,8 = 0.05).

Teeuw

30000 Tsran
20000 —
10000 —

maxTS

SIS e T

- /-— —""-— AR min Tg

0 | | |
n=>5 10 15 20

Figure 2.5: Scaling in input dimension n. Number of training examples observed for (IR", halfspaces, ¢ = 0.01,
d =0.05) with n =1, 2, 3, 5, 10, 15, 20. Results of 100 runs at each parameter setting.

100000
10000 — -
1000 — Tosnw
Tsrap
100 —| ~ max Tg
. <
avg Tg
10 | | | min Tg
e=2"7 25 273 21

Figure 2.6: Scaling in error level e. Number of training examples observed for (IR'?, halfspaces, €, § = 0.05)
with e = 271,272 ..., 278 Results of 100 runs at each parameter setting; log plot.

2.5. EMPIRICAL EFFICIENCY 31

Tsran
15000 —
10000 —
5000 — T e T e
___________ maxTS
.. avg Tg
.................. min Tg
0
[[[
§=2"" 2% 2-3 21

Figure 2.7: Scaling in failure level §. Number of training examples observed for (IR'°, halfspaces, ¢ = 0.01,
§) with § = 271,272 ... 278 Results of 100 runs at each parameter setting.

Tsrap(0.01)

6000 — -| avg TR(o.01)
_ — -1 avg Tg(o.01)
////
4000 —| DT
T
~7
-
2000 — =
// avg TR (0.05)
' . ____.;--_--_-'_"'_"_"_";'—"-l’—'—';"—”‘_ avg Tg(0.05)
0oL
| | |
n=>5 10 15 20

Figure 2.8: Comparing S versus R: Scaling in n. Number of training examples observed for (IR™, halfspaces,
€, = 0.05) with n = 1,2,3,5,10, 15,20 and € = 0.01, 0.05. Results of 100 runs at each parameter setting.

32 CHAPTER 2: SEQUENTIAL PAC-LEARNING

for increasing n. This advantage 1s also maintained over the entire range of accuracy and reliability levels:
Figures 2.6 and 2.7 demonstrate that the relative performance ratio Tsr5/avg Tg is unaffected by different
choices of € and §. Overall, S appears to become relatively more efficient than F for harder parameter settings.

Interestingly, Procedure S also outperforms the simplistic sequential learning procedure R on this problem.
Figure 2.8 shows that R performs nearly as well as S on problems with low dimension, accuracy, and reliability,
but S’s advantage grows significantly as these parameters are scaled up. In particular, S’s advantage increases
for larger problem dimension (Figure 2.8) and is maintained over the entire range of accuracy and reliability
levels (not shown). So again, S’s superiority increases for harder learning problems. Of course, the primary
advantage of S over R is that we can obtain a reasonable upper bound on S’s expected sample size, whereas
this cannot be easily achieved for R. These results suggest that S might be inherently more data-efficient
than R for harder learning problems.

2.5.3 Robustness

These empirical results demonstrate a clear advantage for the sequential learning procedure S over previous
fixed-sample-size approaches, showing that S solves the exact same pac-learning problems using far fewer
training examples. Of course, these results are anecdotal, and it is tempting dismiss the advantage as
an artifact of the particular experimental setup. However, the previous results are extremely robust over
changes of target concept, domain distribution, and even concept class. This suggests that S’s empirical
data-efficiency is in fact representative of what one might expect to achieve in practice, if not the worst case.
To counter the claim that S’s apparent success is merely anecdotal and has no bearing on its worst case
behavior, I consider each of the ways that S’s empirical performance might not be representative of its worst
case performance in turn.

Fasy target concept

One way S might accidentally demonstrate better than worst case performance is if the target concept
happens to be a particularly easy one for S to learn. For example, if the hypothesizer H = HALFSPACE
were somehow biased to guess hypotheses close to the target. However, this is easily demonstrated not to
be the case here: Recall that the previous experiments considered a particular diagonal target halfspace ¢
defined by a decision-hyperplane passing through the origin 0'? with a norm directed towards 1'°. To test
S’s dependency on the target concept I repeated the previous experiment for a series of 10 different target
halfspace-concepts, ¢1g, g, ..., ¢1, each successively more axis-parallel than its predecessors. (In particular, ¢;
was defined by a halfspace that passed through the origin 0'® with norm directed towards 1'0'°~%; meaning
that ¢;’s classification of a domain object = € IR'? depended only on the first ¢ attributes.) This experiment
shows that changing the target concept has no effect on S’s performance; see Figure 2.9.

FEasy domain distribution

Another reason why the previous results might not be representative of S’s true worst case performance is
if the specific domain distribution, uniform[—1, 1]”, happens to make the learning problem particularly easy
for S. To counter this claim, I tested S on a series of different domain distributions to determine whether any
could have a serious effect on S’s learning performance. Specifically, I considered three basic transformations
of the uniform[—1, 1]" distribution: accretive, spherical, and pyramidal.

The first intuition I explored was whether any discreteness in the domain distribution could make the
learning problem any harder for S. The feeling I had was that it could not: A discrete distribution in effect
stacks quanta of probability on top of one another, so that seeing any one member of a stack automatically
gives the correct classification for all other members for free. It seems reasonable then that any distribution
cannot be made harder by stacking these quanta. If true, this intuition means that we can concentrate our
search for a hard distribution on continuous transformations of the uniform[—1, 1]" distribution.

AccrETIVE: To support this hypothesis, I considered an accretive transformation of the uniform[—1,1]"
distribution: every domain object in [—1, 1]" is moved a fraction 7 of the distance towards its counter-
part in {—1,1}", 0 < 7 < 1, thus accreting probability towards the discrete points in {—1,1}". This

2.5. EMPIRICAL EFFICIENCY 33

Tsran

15000 —

10000 —

107010 T B I maxTS
____________________________ avg Tg
___ minTS

0 | | | |
axes=2 4 6 8 10

Figure 2.9: Comparing different target concepts. Number of training examples observed for (IR'?, halfspaces,
¢ = 0.01, 6 = 0.05) with diagonal target concepts depending on r = 1,2, ..., 10 relevant axes. Results of 100
runs at each parameter setting.

transformation interpolates a series of distributions between the original uniform[—1,1]" distribution
(at 7 = 0) towards the fully discrete distribution uniform{—1,1}" (at 7 = 1).

Figure 2.10 shows that none of these transformations had any effect on S’s data-efficiency. Therefore, we
focus our attention on finding hard continuous distributions.

For a continuous distribution it is not clear what transformations of uniform[l, —1]* might make the
learning problem harder for S. One intuition might be that clustering the domain distribution towards the
target hyperplane should make learning harder, since this forces S to find a more precise representation of
the target hyperplane. On the other hand, this also means that more training examples will be generated
near the decision-hyperplane, and hence all concepts further away from the target will be eliminated sooner.
To determine which, if any, of these factors has a serious effect on S’s performance, I tested S on two different
transformations of the uniform[—1, 1]" distribution.

SPHERICAL: The first type of distribution I considered was spherical transformations of the uniform[—1,1]"
distribution, where domain objects were translated directly towards or away from the origin 0™. Specif-
ically, I translated object descriptions z € IR” so that their dot product with the normal to the target
hyperplane, 17, was reduced or increased by some power factor of their original value. That is, the
domain objects z were transformed z — 2’ such that z’ - 1" = (z - 1*)® for some power factor a.!®

Thus, @ = 1 gives the original uniform[1, —1]" distribution, a > 1 compresses the distribution towards

the origin, and a < 1 dilates the distribution away from the origin.

Figure 2.11 shows that none of these spherical transformations of the uniform[—1,1]!° distribution had any
significant effect on S’s data-efficiency.

PYRAMIDAL: The other type of distribution I considered was pyramidal transformations of the uniform[—1, 1]”
distribution, where, instead of towards the origin, domain objects were transformed directly away from
the opposite corners of the unit hypercube (—1" and 1") towards the decision-hyperplane. That is,
positive examples z were transformed along the vector 1 —z and negative examples z along —1—2z. The
effect of this transformation is to spread domain objects uniformly about both sides of the decision-
hyperplane, rather than cluster them around the origin. Again, object descriptions z € IR"™ were
transformed so that their dot product with the normal vector of the target hyperplane, 17, was re-
duced or increased to some power factor of their original value.

15Note that straightforward multiplicative scaling just yields an isomorphic learning problem.

34 CHAPTER 2: SEQUENTIAL PAC-LEARNING

Tsran
15000 —
10000 —
BOOO —f----c-mr T e max Tg
————————————————————————————— avg TS
""" minTg
0
|
1-7=0 0.5 1.0
uniform{—1,1}10 uniform[—1,1]10

Figure 2.10: Comparing accretive transformations of the uniform[—1, 1]*? distribution. Number of training ex-
amples observed for (IR'Y, halfspaces, e = 0.01,4 = 0.05) with accretive transformation of the uniform[—1, 1]1°
distribution. X-azis: degree of domain distribution discreteness (1—7). Results of 100 runs at each parameter

setting.

Tsran
15000 —

10000 —

5000 — T e max Tg
————————————————————————————— angS
........ e e minTS

0
[[[
a = 0.25 0.5 1.0 2.0 4.0

dilated uniform compressed

Figure 2.11: Comparing spherical transformations of the uniform[—1,1]° distribution. Number of training
examples observed for (IR'?, halfspaces, ¢ = 0.01,§ = 0.05). X-azis: power factor of transformed dot products.
Results of 100 runs at each parameter setting.

2.5. EMPIRICAL EFFICIENCY 35

Tsran
15000 —]
10000 —
BOOQ — - m eI e max TS
————————————————————————————— avg TS
E T ---..] min TS
0
[[[
a = 0.25 0.5 1.0 2.0 4.0
dilated uniform compressed

Figure 2.12: Comparing pyramidal transformations of the uniform[—1,1]1? distribution. Number of training
examples observed for (IR'?, halfspaces, ¢ = 0.01,§ = 0.05). X-azis: power factor of transformed dot products.
Results of 100 runs at each parameter setting.

Figure 2.12 shows that S’s empirical data-efficiency was also unaffected by pyramidal transformations of the
uniform[—1, 1]19 distribution. Surprisingly, none of the wide variety of domain distributions considered had
any significant effect on S’s empirical data-efficiency.

FEasy concept class

Another reason why S might demonstrate better than worst case performance is that the class of halfspace
concepts might happen to be a particularly easy instance among concept classes with comparable VCdimen-
sion. That is, the class of halfspace concepts might have a simple structure that permits faster learning than
for other classes with the same VCdimension. To counter this claim, I tested S on other concept classes
with identical VCdimension. Here, it turns out that S’s data-efficiency can be affected to some degree: 1
have been able to construct an alternative concept class, disj-m-chains, that forces S to observe nearly twice
as many examples as for halfspaces; see Figure 2.13.16 However, I have yet to devise any concept class that
can double S’s original data-efficiency on halfspaces for large d. In fact, S’s performance often improves for
other concept classes, particularly finite classes (Section 2.6). Overall, halfspaces does not appear to be a
remarkably easy or hard class for a given VCdimension.

The robustness of these results suggests that S’s original performance gives an accurate picture of its true
efficiency at this task, if not its true worst case performance.

2.5.4 Explanations

These empirical results demonstrate a clear advantage for Procedure S over F: in every case S improves on
the data-efficiency of the previous fixed-sample-size bounds Ty and Tspp by an order of magnitude. This
raises the issue of explaining S’s advantage over F. It appears that the primary source of S’s advantage over F
is that S’s data-efficiency on any particular application is directly determined by the convergence properties
of the specific problem at hand—mnot by what we can prove about the worst case. One consequence of this is
that a sequential learner (like S) can automatically exploit easy learning situations to obtain a faster result
[Oblow, 1992], whereas fixed-sample-size learning must always take the absolute worst case situation into
account. Thus, it could be the case that S is simply exploiting an easy learning situation to improve on F.

16 The class of disj-m-chains consists of 1/(de) copies of a d-dimensional product of initial segment concepts, d-7-initials (de-
fined in Section 3.4.4 of Chapter 3), where each product is defined on a mutually exclusive segment of [0,1]. This class has
VCdimension d.

36 CHAPTER 2: SEQUENTIAL PAC-LEARNING

30000 Tsran

20000 —

10000 —---1 avg Tg(C = disj-w-chain)
__________ avg Tg(C = halfspaces)

Figure 2.13: Comparing different concept classes with the same VCdimension. Average number of training
examples observed by S for (R",C;, e = 0.01,4 = 0.05) given two different concept classes C; = halfspaces
and Cy = disj-m-chains, where vc(C) = 2,3,4,6,11,16,21. Results of 100 runs at each parameter setting.

However, the robustness of the previous results suggest that this is not the primary source of S’s advantage
in our experiments.

Another explanation of S’s advantage over F is that Ts,,; might be a gross overestimate of the true worst
case situation. In fact, this seems likely, given the gap between Tsr,5 and #54,y. This means that S might still
demonstrate a significant advantage over Ty, even in the worst case, since S’s data-efficiency depends on the
real convergence properties of this worst case situation, whereas Tsy, incorporates conservative assumptions.

A final explanation of S’s advantage over F is that sequential learning might be inherently more efficient
than fixed-sample-size learning. Since sequential learning generalizes the fixed-sample-size approach, clearly
it can be no worse than Procedure F. The question is, how large an advantage can be obtained in principle?
This is left largely unanswered by the previous empirical results, and remains an interesting open topic for
future research.

2.5.5 Assessment

The sequential approach to pac-learning introduced in this section demonstrates many advantages over
previous fixed-sample-size approaches. First of all, sequential learning decouples the correctness of a learning
procedure from its efficiency. On the other hand, ensuring the correctness of fixed-sample-size learning
requires one to prove that a particular sample size bound is sufficient, which directly determines the data-
efficiency of the learning procedure. These two aspects are completely decoupled for a sequential learner. This
means that we can develop correct sequential pac-learners that require far fewer training examples in practice
than any bounds we can prove about their efficiency a priori. In fact, the previous results demonstrate not
only that sequential learners observe far fewer training examples than our established bounds, but also
that they use many times fewer training examples than the current fixed-sample-size bounds. Although
the current fixed-sample-size bounds are loose (and any efficiency advantage currently enjoyed by S might
possibly be overcome by future improvements to Tsy.5) notice that we can enjoy S’s improved performance
right now, without having to wait for theoreticians to improve the bounds.

Another advantage of sequential learning is that, as mentioned above, the data-efficiency of a sequen-
tial learner depends directly on the specific case at hand, not the worst case situation. This means that
sequential learning can automatically take advantage of beneficial situations like easy target concepts or
domain distributions, or a good hypothesizer that makes lucky guesses—without the system designer having
to realize that these beneficial situations exist a priori! More important, the worst case data-efficiency of a
sequential learner depends directly on the true worst case properties of the concept class at hand, not on the

2.6. LEARNING FINITE CONCEPT CLASSES 37

100s —

CPU time 10s
(SUN 4)

avg cpu(S)
--- avg cpu(R)
avg cpu(Fsrap)

1s -

0.1s I I I
n=>5 10 15 20

Figure 2.14: Comparing the computational overhead of S, R, and Fp,5: scaling in input dimension n. Average
CPU time used for (IR, halfspaces, ¢ = 0.01, § = 0.05) with n = 1, 2, 3, 5, 10, 15, 20. Results of 100 runs

at each parameter setting for a SUN4 implementation.

bounds we happen to be able to prove at the time. That is, S automatically stops sooner if the bad concepts
are eliminated before the proven bounds. So, in effect, a sequential learner like S exploits the optimal worst
case bounds right now, even though we are currently unable to prove exactly what these bounds are.

2.5.6 Computation

The main disadvantage of sequential over fixed-sample-size learning appears to be the additional compu-
tational overhead introduced by the sequential approach. Unlike Procedure F, which only has to call the
hypothesizer H once during a run, a sequential learning procedure like S must call H repeatedly to produce
consistent hypotheses. Moreover, Procedure S has the additional overhead of having to store these hypothe-
ses and maintain their performance statistics. Surprisingly, however, this did not turn out to be a substantial
expense in our experiments. Figure 2.14 shows that S is in fact more efficient than F for small problems, and
obtains comparable efficiency on large problems. In any event, Theorem 2.11 shows that if F (and hence H)
is guaranteed to terminate in polynomial time, then so is S (in polynomial expected time).

Interestingly, Figure 2.14 shows that S and R learn with about the same computational overhead for this
problem. At first glance, S appears to be significantly less efficient than R, as it keeps a continually growing
list of hypotheses and never discards even obviously bad candidates. It might seem intuitive that S would
become bogged-down storing this list of hypotheses and maintaining their performance statistics. However,
surprisingly, this does not turn out to be a significant factor in empirical case studies. It turns out that
the task of finding consistent hypotheses (i.e., calling H) takes most of the computational effort—storing
these hypotheses once found (updating their statistics, etc.) does not require much overhead in comparison.
In fact, for the example considered here it appears these two factors balance each other out, in that S
and R obtain comparable computation times for this problem (Figure 2.14). If one wanted to improve S’s
computational efficiency, it seems the best approach would be to minimize the number of calls to H.

This concludes the primary discussion of distribution-free sequential pac-learning. The remainder of this
chapter discusses a special case where stronger theoretical and empirical results can be obtained, and points
out how sequential pac-learning is directly applicable to a much wider range of problems than fixed-sample-
size learning.

2.6 Learning finite concept classes

The previous section showed how sequential learning can reduce the number of training examples needed
to pac-learn in practice. However, the theoretical advantages that could be demonstrated were only slight,

38 CHAPTER 2: SEQUENTIAL PAC-LEARNING

and only held for certain parameter settings. Here we consider the special case of finite concept classes,
and obtain even stronger theoretical and empirical advantages. Specifically, we consider the problem of
converting hypothesizers that have small mistake bounds into data-efficient pac-learners.

Mistake-bounded learning

Recall that for finite concept classes, the cardinality the class, |C|, provides an alternative measure of
complexity (in addition to VCdimension) that determines sufficient sample sizes for pac-learning (via Ty,).
Another, more interesting, measure of finite class complexity is given by the mistake bound of the class
[Littlestone, 1988], which is defined as follows: Consider the task of observing a sequence of training examples
on-line and attempting to classify each successive example in the sequence, given the correct classifications
of all previous examples. Then the mistake bound of a finite class C 1s given by the smallest number of
mistakes any hypothesizer can make in the worst case over all possible target concepts from C' and domain
object sequences from X *°.

Definition 2.15 (Mistake bound) For a finite class C' and hypothesizer H, let M (C, H) denote the maz-
tmum number of mistakes H makes on any example sequence consistent with some ¢ € C'. Then C'’s mistake
bound, denoted M (C), is given by M(C) = infyr M (C, H), the smallest mistake bound that can be achieved
by any hypothesizer H.

Notice that the mistake bound for a finite class C' is at most M(C) = |C| — 1, since the strategy of
guessing an arbitrary consistent concept h from C' after each misclassified training example is guaranteed
to make at most |C| — 1 mistakes before the target concept is identified. This bound holds for any target
concept in C' and any sequence of domain objects (z1,23,...). Littlestone observed that special guessing
strategies can do even better than this: For example, guessing the “majority” concept at each stage (the
concept that classifies each domain object z according to the majority vote among all consistent concepts
h remaining in C') makes at most log, |C'| mistakes in the worst case. In fact, one can do even better than
this in special cases [Littlestone, 1988]. However, it can be shown that vc(C') always gives a lower bound on

M(C).

Mistake-bounded to pac conversion

In later work Littlestone [1989] considered the problem of converting hypothesizers with small mistake bounds
into data-efficient pac-learning procedures. Here Littlestone developed a simple two-stage (fixed-sample-size)
conversion procedure, Li, that achieves the best known data-efficiency for this problem; see Figure 2.15. The
basic idea behind his procedure is to first observe a number of training examples that is sufficient to guarantee
that an ¢/2-accurate hypothesis is obtained from H with probability at least 1 —§/2, and then estimate the
errors of these hypotheses to within ¢/2 (with probability at least 1 — d/2). Choosing the hypothesis with
the best estimate yields a correct pac-learning procedure, since with probability at least 1 — J we return a
hypothesis with error at most ¢ [Littlestone, 1989].

For M = M(C, H), the data-efficiency of Li is given by the sum of the two training samples it observes,
which Littlestone bounds by

4 2 1
T1i(M,€,0) = <M+81n(M+2)+121ng_._).

A 2

Thus, the training sample size of this procedure scales as

Tii(M,e,8) = @(1 <M—Hn§))

€

in terms of ¢, § and the mistake bound M.

2.6. LEARNING FINITE CONCEPT CLASSES 39

Procedure Li (C,¢,d; H)
o Let M = MB(C, H).
e Observe max{% In %, @} training examples labelled by some unknown target concept ¢ € C'.

— Apply the mistake bounded hypothesizer H sequentially to these examples.

— If the most recent hypothesis h; misclassifies a training example, call H to obtain a new consistent
hypothesis hiy1, and add h;y1 to the end of the list.
— Collect H’s hypotheses in a list {hq, h1,...,h;}, i < M.
e Collect an additional % In w examples, and return the hypothesis h € {hg, h1, ..., h;} that obtains
minimum observed error on these additional examples.

Figure 2.15: Procedure Li

A sequential conversion procedure

Here, we consider whether a sequential conversion procedure might do better than Li. First, notice that Pro-
cedure S can be applied to this conversion problem as is. However, we can obtain slightly better performance
by modifying S to return a hypothesis as soon as the mistake bound is reached, setting k = 3.14619, and
testing each hypothesis h; with a failure level 6; = § /M. This gives a conversion procedure Smb (Figure 2.16)
that is provably more data-efficient than Li. (Note that the correctness of Smb is easy to establish given the
correctness of S.) We derive the following reasonable upper bound on the worst case expected number of
training examples Smb observes to solve this conversion problem.

Theorem 2.16 For any ¢ > 0, § > 0, and any finite concept class C: Given i.i.d. examples generated by
any distribution Px and target concept ¢ € C', Procedure Smb observes an average training sample size of at

most
M ¥ 1 M
ETemp(M,e,6) < g (— 5)2 (ln=—+1);
€ k—1—Ink/ ¢)

using a hypothesizer H with M = M (C, H) and a constant k£ > 1. Choosing k = 3.14619 gives

3.14619

€

¢ 1
ETSmb(Ma€1d) <M+1HM—|—1HS + 1) . (23)

Note that this bound on E Tgpyp is strictly smaller than Li’s fixed sample size 11,; for all values of ¢, ¢,
and M. Again, although this theoretical advantage is not overwhelming, we expect the sequential procedure
Smb to do much better in practice than the crude upper bound (2.3) would indicate. This is unlike the
fixed-sample-size conversion procedure Li which will always perform exactly as specified by 715 .

Empirical comparison

In fact, the number of training examples Smb observes in practice is orders of magnitude smaller than both
(2.3) and Tp;. To demonstrate this, consider the following case study.

Problem: Consider the pac-learning problem (X = {0, 1}", C' = halfspaces, ¢, = 0.05) that involves learning
an unknown halfspace concept defined on {0, 1}". T tested Smb on this problem by setting a failure level of
d = 0.05 and considering various error levels e¢. In particular, T used the following setup: Training objects
were generated by independently setting each bit to 1 with probability 1/4, and labelled according to a simple
disjunction of the first k£ attributes, which happens to be a linearly separable concept. Smb was supplied
with a hypothesizer H = WINNOW [Littlestone, 1988] that happens to have a good mistake bound for this
problem.

40 CHAPTER 2: SEQUENTIAL PAC-LEARNING

Procedure Smb (C,¢,d; H, k)
o Let M = MB(C, H).
e Proceed exactly as Procedure S (Figure 2.3) except:

— Test each hypothesis h; with reliability §; = §/M.

— If the hypothesis hps is ever reached, automatically return hps since this is guaranteed to be the
target concept by construction.

Figure 2.16: Procedure Smb

Results: Figure 2.17 shows the results obtained for 200 runs of Smb at ¢ = 271 272 ... 278 with settings
n = 30 and & = 10. This graph compares Smb’s data-efficiency to the bound (2.3) and 711, using WINNOW’s
mistake bound. Notice that Smb actually used about 15 times fewer training examples than the upper bound
(2.3), and 30 times fewer examples than Li—even considering the maximum number of examples Smb used
in any of the 200 runs! This is a significant improvement. In fact, Tgy, actually appears to scale better than
(2.3) and Tij for smaller values of ¢; obtaining a noticeably improved performance ratio as € becomes small.

2.7 Range of applicability

The previous sections observed how sequential learning can solve pac-learning problems using fewer training
examples than existing fixed-sample-size techniques. Here we observe that sequential learning is applicable
to a much wider range of pac-learning problems as well. Specifically, we note that a sequential learning
procedure like S can learn with arbitrary hypothesizers, even if the hypothesizer produces concepts from a
class with infinite VCdimension. The point is that if the hypothesizer ever manages to produce a reasonable
hypothesis, S automatically detects this and returns the acceptable candidate. Notice that a fixed-sample-size
approach is inapplicable to any situation where the concept class has infinite VCdimension, since Theorem 2.7
automatically rules out any finite sample size as being sufficient. However, S can be applied as is to pac-
learn (many) concept classes that have infinite VCdimension—the only catch is that we can no longer place a
uniform prior bound on S’s expected training sample size. Thus, we are not really contradicting Theorem 2.14
here, as S can have finite expected sample size for each target concept and domain distribution, without
there being a uniform upper bound over all of them (cf. Section 2.7.2 below).

Below we illustrate how S can be applied to arbitrary hypothesizers H and then consider the general
problem of pac-learning concept classes of infinite VCdimension with finite data-efficiency.

2.7.1 General hypothesizers

Many popular hypothesis generation procedures implicitly consider concept classes that have infinite VCdi-
mension. Two of the most common examples of this are the NEAREST-NEIGHBOR hypothesizer [Duda and
Hart, 1973] and DECISION-TREE hypothesizer (CART') [Breiman et al., 1984], both of which can be applied
to learning concepts defined on IR™. In each case, the concept classes implicitly defined by these hypothe-
sizers can shatter arbitrarily large sets, and hence have infinite VCdimension by Definition 2.3. Although
this automatically rules-out any fixed-sample-size procedure for achieving pac-learning, Procedure S can be
directly applied with these hypothesizers to yield successful pac-learning.

Demonstration

To demonstrate this, T tested Procedure S on the same learning problem (X = RR",C = halfspaces, ¢,)
considered before, but here supplying S with a decision-tree and a nearest-neighbor hypothesizer, respectively.
The idea is to show that S can still obtain successful pac-learning in typical applications, even though the
hypothesis classes have infinite VCdimension. In particular, I tested S under the same setup as before:

2.7. RANGE OF APPLICABILITY 41
100000 —_
10000 —|
T .
1000 — . Li
- ‘ETSmbbound
100 — maxTSmb
- Y ave Tgpb
1o | | | mlnTSmb
e=277 27° 279 271

Figure 2.17: Scaling in error level e. Number of training examples observed for (X = {0,1}3% halfspaces, «,
§ = 0.05) with e = 271,272 ... 278, Results of 200 runs for each parameter setting; log plot.

Training objects were generated by the uniform[—1,1]" distribution and labelled according to the same
halfspace target concept considered in Section 2.5; namely, the diagonal hyperplane passing through the
origin 0” with norm directed towards 1™. The constant k was set to 3.14619 and S was supplied with either

H = DECISION-TREE or H = NEAREST-NEIGHBOR, respectively.

Deciston-tree hypothesizer: The specific decision-tree hypothesizer I considered was the CART procedure
[Breiman et al., 1984], which returns decision-tree hypotheses that make only axis-parallel cuts of IR". That is,
each decision node only tests the value of a single object attribute z; against some cutoff value v. This concept
class clearly has infinite VCdimension, since the family of axis-parallel decision-trees can independently label
any finite collection of objects in JR™. T used an implementation of a decision-tree hypothesizer that builds
small decision-trees consistent with the training examples by using a standard information-gain heuristic to
choose the cuts [Breiman et al., 1984; Quinlan, 1986].

Setting n = 1,2,3 and running Procedure S 100 times on each problem (X = IR™,C = halfspaces, ¢ =
0.1,6 = 0.1) yielded the results shown in Figure 2.18. Notice that despite having infinite VCdimension, S
was easily able to meet the pac-criterion (i.e., returning a decision-tree hypothesis with error at most ¢ with
probability at least 1 —) within a reasonable number of training examples. Of course, even these prelim-
inary results indicate that decision-tree learning does not scale-up well: the data-efficiency is apparently
exponential in the input dimension n. However, the problem here is not dimensionality per se, but the fact
that it takes exponentially many axis-parallel cuts to approximate a diagonal hyperplane. We would expect
the data-efficiency not to degrade so rapidly if the target concept were more axis-parallel. In effect, the
diagonal target concept considered here contradicts the “prior knowledge” that the target concept can be
approximated by a small decision-tree.

Nearest-neighbor hypothesizer: 1 also investigated the standard nearest-neighbor hypothesizer which
simply memorizes the training examples ({21, ¢(z1)), ..., (¢, ¢(2:))) and returns a hypothesis that classifies
any subsequent test example (z,c(z)) according to the nearest training object z; in the list (under the
standard Euclidean metric). Clearly, the set of classification rules definable by nearest-neighbor classifiers
has infinite VCdimension.

Setting n = 1,...,4 and running Procedure S 100 times on each problem (X = IR",C = halfspaces, ¢ =
0.1,6 = 0.1) yielded the results shown in Figure 2.18. Again, in spite of dealing with a hypothesis class
that has infinite VCdimension, S has no problem returning hypotheses that meet the pac-criterion after a
reasonable number of training examples. However, these results show that nearest-neighbor learning does
not scale-up well in the dimensionality of the problem. This reflects the well known “curse of dimensionality”
suffered by nearest-neighbor learning [Duda and Hart, 1973]: increasing the dimensionality of the problem
leads to an exponential increase in the number of training examples needed to adequately cover both sides
of the separating hyperplane.

42 CHAPTER 2: SEQUENTIAL PAC-LEARNING

avg TS(H = DECISION-TREE)

2000 — avg TS(H = NEAREST—NEIGHBOR)
1000 —
avg Tq(H = HALFSPACE)
0 | |
n=1 2 3 4

Figure 2.18: Comparing different hypothesizers. Number of training examples observed by S for
(IR™, halfspaces, e = 0.1,0 = 0.1) given a “diagonal” halfspace target concept, using the hypothesizers:
H = DECISION-TREE, H = NEAREST-NEIGHBOR, and H = HALFSPACE. Results for n = 1,2,3,4;

100 runs at each parameter setting.

Conclusion

Of course, these experimental results are once again anecdotal, but they do seem representative of the type
of learning performance one might expect to observe in practice. These results show that the sequential
learning techniques developed in this chapter have a far greater range of applicability than just considering
hypothesizers that choose concepts from classes with finite VCdimension. In effect, S 1s a generic test
procedure that identifies accurate candidates from arbitrary hypothesis sequences. That is, one can supply
S with any hypothesizer deemed appropriate for the task at hand, thus accommodating arbitrary forms
of prior knowledge and biases that go beyond the simple concept class restrictions normally considered in
pac-learning theory. The point is that, whatever the hypothesis guessing strategy, if it somehow encodes
appropriate knowledge about the domain, or even just gets lucky, S will quickly discover this and return an
accurate hypothesis. On the other hand, if the guessing strategy is ill-suited for the task at hand, then S
may take a long time to terminate, if ever. Regardless of the time taken however, the probability that S
returns an e-bad hypothesis is guaranteed to be less than d, for any hypothesizer H.

These results suggest that it is possible to pac-learn concept classes with infinite VCdimension so long
as we are prepared to give up a uniform bound on data-efficiency. This raises the question of characterizing
the range of concept classes C' that can be pac-learned under this weaker criterion.

2.7.2 Non-uniform pac-learning

In this section we consider the problem of “non-uniform” (in C') pac-learning. That is, we consider the task
of pac-learning a concept class C' with finite data-efficiency for each ¢ in C', without demanding that there
be a uniform bound on data-efficiency for all ¢ in C.'7 This question has been previously addressed in the
pac-learning theory literature, where many authors have considered the possibility of pac-learning concept
classes that have infinite VCdimension [Benedek and Itai, 1988b; Ben-David, Benedek and Mansour, 1989;
Linial, Mansour and Rivest, 1991]. Clearly, no procedure can pac-learn such a class with a bounded training
sample size (Theorems 2.7 and 2.14), so the idea is instead to demand only a finite (but different) bound

17Notice that this is a different question than addressed by Theorems 2.7 and 2.14. There it was shown that finite VCdimension
is necessary to pac-learn a concept class C' with a uniform bound on data-efficiency over all ¢ in C'. Here we are only demanding
that the learner produce a hypothesis with bounded data-efficiency for each ¢ in C, without there having to be a uniform bound

for all ¢ in C.

2.7. RANGE OF APPLICABILITY 43

Procedure LMR (C, ¢,)
e Fix an arbitrary sequence {4;}52, such that §; > 0 and 221 d; = 4.
e Decompose C' into Cy C C5 C ... such that UZO; C; = C and vc(C;) < oo for each C;.
e For each concept class C1,Cy, ..., C;, ..., etc. in sequence:

— Add training examples to a global list, until a total of Tysuw(Ci, €, d;) have been observed.
— If there 1s a concept ¢ € C; that correctly classifies every training example, halt and return c.

— If no such ¢ exists in C}, go on to the next concept class and repeat the loop.

e Repeat until a consistent concept is found in some class Cj.

Figure 2.19: Procedure LMR

for each ¢ in C individually. It turns out that many concept classes with infinite VCdimension become
pac-learnable under this weaker criterion.

Linial, Mansour and Rivest [1991] have developed an obvious approach to non-uniform pac-learning in
these cases: First, decompose C' into a sequence of concept classes {C;}$2; such that Uj; C; = C and yet
each C; has vc(C;) < oo. Then, simply apply Procedure F to each Cj; in parallel; see Procedure LMR in
Figure 2.19. The only trick is to use successively smaller failure levels §; so that the overall probability of
producing an e-bad hypothesis is bounded by §. In this way, LMR only requires a finite number of training
examples for each target concept ¢ in C, but the precise bound depends on the smallest class that contains
the target concept.

Clearly, Procedure LMR correctly pac-learns any concept class C' that is decomposable in this way. For
example, the class of decision-tree classifiers on IR™ can be decomposed into a series of classes {C;}52; where
each class consists of the concepts that can be defined by an i-node decision-tree. However, not every concept
class can be decomposed in this way: For example, the class B of Borel concepts defined on IR can shatter
infinite sets, and hence cannot be decomposed into a series of classes with finite VCdimension [Benedek
and Ttai, 1988b, Lemma 1]. Tt turns out that this notion of decomposability is not only sufficient, but also
necessary for non-uniform (in C') pac-learnability.

Theorem 2.17 [Benedek and Itai, 1988b] The following are equivalent:
1. C can be pac-learned with a bounded sample size for each individual ¢ in C'.
2. C can be decomposed as C' = | J;=, C; where vc(Cj) < oo.

3. Procedure LMR pac-learns C'.

This result shows that the concept class B on IR cannot be pac-learned, even in this weak sense. It also
shows that Procedure LMR is universal for non-uniform (in C) pac-learning, in that C' can be non-uniformly
pac-learned if and only if LMR pac-learns it.

Sequential non-uniform pac-learning

It is important not to confuse the issue of sequential with non-uniform pac-learning. Even though LMR can be
interpreted as a sequential learning procedure, since the number of training examples it observes depends on
the specific training sequence it receives, it is important to realize that Procedure LMR has a fundamentally
different motivation from Procedure S: LMR seeks to increase the range of pac-learnable concept classes C' by
sacrificing data-efficiency on those target concepts late in the decomposition [J;Z, C; in favor of those that
appear earlier. Procedure S, on the other hand, seeks to obtain a uniform improvement in data-efficiency
over all target concepts ¢ in C'. In fact, these two concerns are orthogonal: One can adopt a sequential

44 CHAPTER 2: SEQUENTIAL PAC-LEARNING

approach to non-uniform pac-learning, and use a sequential procedure like S to pac-learn each subclass Cj,
in this way obtaining improved performance for each in addition to the non-uniform advantages.

Interestingly, S can directly serve as a non-uniform pac-learning procedure as is. The only trick is to
supply S with an appropriate hypothesizer H that guesses consistent concepts from the smallest possible
class in a decomposition {C;}$2; where vc(C;) < co. In this way we obtain the same range of applicability
as LMR but also benefit from S’s improved data-efficiency. For the problem of pac-learning a concept class
C with finite ezpected data-efficiency for each ¢ in C, we note that the previous form of decomposability
remains both necessary and sufficient for non-uniform (in C) pac-learning, as before.

Theorem 2.18 The following are equivalent:
1. C can be pac-learned with a bounded expected sample size for each individual ¢ in C'.
2. C can be decomposed as C' = |J;, C; where vc(Cj) < co.

3. Procedure S pac-learns C' with a hypothesizer H that produces consistent concepts from the earliest
possible class in the decomposition.

This shows that S, using an appropriate hypothesizer H, is also a universal non-uniform pac-learner: Not
only is Procedure S able to pac-learn any concept class C' that has finite VCdimension (by Theorem 2.11), it
is also able to non-uniformly pac-learn any decomposable concept class C' given an appropriate hypothesizer

H.

2.8 Conclusion

This chapter raised the idea of sequential pac-learning (i.e., observing training examples on-line and deciding
when an accurate hypothesis can be reliably returned) in an attempt to reduce the overall (average) number
of training examples needed to pac-learn.

We introduced a novel sequential learning procedure, S, that proved to be far more data-efficient in
practice than existing fixed-sample-size learning techniques. Theoretical analysis of this procedure shows
that its expected training sample size provably beats the best known fixed-sample-size bounds in some
cases, but overall, scales the same as these previous bounds in terms of the desired accuracy and reliability
levels, € and &, and the VCdimension of the concept class, vc(C'). Although the demonstrated theoretical
advantage is slight, a series of experimental studies show that S uses many times fewer training examples
in practice than previous fixed-sample-size approaches. In addition to these results, we also obtained a
lower bound on the average training sample size needed to pac-learn. This showed that S’s expected data-
efficiency is within constant and logarithmic factors of the best performance possible and also shows that the
inherent data-complexity of sequential pac-learning scales the same as fixed-sample-size learning. Therefore,
sequential learning can at best offer a constant improvement in data-efficiency over fixed-sample-size learning.
However, we saw that these constant factors can have a significant effect in practical applications.

After investigating the general case, we then considered the special case of finite concept classes. In
particular, we used a variant of Procedure S to convert hypothesizers with small mistake-bounds into data-
efficient pac-learners. A theoretical analysis showed that this sequential conversion procedure requires fewer
training examples than the best known fixed-sample-size procedure due to Littlestone [1989]. In fact, this
procedure required orders of magnitude fewer training examples in empirical case studies. Finally, we showed
that Procedure S successfully pac-learns in many situations where fixed-sample-size learning is impossible.
Specifically, it was shown that S can pac-learn many concept classes that have infinite VCdimension (a task
that is impossible for any fixed-sample-size learner).

Overall, these results demonstrate a clear advantage for sequential over fixed-sample-size learning. The
main reason for this advantage is that the sequential approach decouples the correctness of a learner from its
efficiency. This permits us to design correct sequential learning procedures independently of our ability to
prove good bounds on their worst case data-efficiency. The primary benefit of this is that the data-efficiency
of a sequential procedure is often far better than what we can prove. This is unlike the fixed-sample-size

2.8. CONCLUSION 45

approach, where the obtainable data-efficiency is directly determined by the smallest sample size bounds that
can be proved sufficient. This advantage is revealed through numerous empirical case studies that showed
how sequential learning requires many times fewer training examples to achieve the exact same pac-criterion
as existing fixed-sample-size approaches.

2.8.1 Research directions

A number of research directions are suggested by this work. The three most important areas of future
investigation are: obtaining further improvements in data-efficiency, improving computational-efficiency,
and coping with classification noise.

Data-effictency: Even though Procedure S significantly improves the practical data-efficiency of existing
fixed-sample-size learners, it seems clear that further improvements are possible. For instance, most of the
empirical results reported in this chapter appear to be improved by a factor of about 10%, simply by running
S with a value of K = 6 instead of kK = 3.1461932. Perhaps a deeper analysis of the learning problem could
yield additional improvements, both in practice, and in terms of the worst case bounds we can prove. If not
in general, then it would at least be interesting to obtain improvements for important special cases like finite
concept classes, or halfspace concepts on R”.

Although the worst case bounds established here are not strong enough to show a significant advantage
for sequential over fixed-sample-size learning, the empirical results strongly suggest that such an advantage
exists. Therefore, it remains a priority to obtain better bounds on S’s worst case expected data-efficiency.

There also remains the question of whether sequential learning is inherently more data-efficient than
fixed-sample-size learning; i.e., whether the current advantage enjoyed by Procedure S over F is simply due
to the weakness of the existing sufficient sample size bounds Tyzuw and Tsp,s. Even though Tsq,p is the best
known bound, it is by no means guaranteed to be the best possible—especially since Tgpyp and ¢z, differ
by a factor of about 64. Perhaps the fixed-sample-size bounds could be improved to the point where they
compete with S’s empirical data-efficiency. Proving that no fixed-sample-size bound can ever be as efficient
as the best sequential strategy remains an interesting open challenge.

Computational-efficiency: This research was initially motivated by the observation that, in practice, it
is usually more important to conserve training data than to save computation time. Thus, Procedure S was
considered superior to F because it observes fewer training examples in practice. However, even given that
the goal is to trade-off computational-efficiency for data-efficiency, it is still important to consider ways in
which S’s computational-efficiency might be improved.

Recall that the major computational expense in implementing S is not storing the sequence of hypotheses
generated by H, but rather finding consistent hypotheses that correctly classified every training example
(i.e., calling H). Therefore, the key issue to improving S’s computational-efficiency is to reduce the number
of calls to H, or somehow improve the efficiency of each call. An interesting idea here is to exploit the fact
that S repeatedly calls H to solve a nested series of consistency problems. That is, instead of starting H
from scratch every time it is called, we should be able to exploit H’s previous hypotheses to obtain a faster
solution to the current consistency problem, and thereby reduce S’s overall computation time. Research on
incremental learning algorithms appears to have some bearing on this issue.

Classification noise: Perhaps the most important direction for future research is to extend these sequential
techniques to cope with the presence of classification noise. This is the main barrier between the results
presented here and real applications. In practice, object classifications are almost always noisy, and even if
not, it is rarely happens that we have a prior class that we can guarantee contains a perfect hypothesis. In
most applications it is impossible to achieve 100% classification accuracy, and therefore we need to strive
for near-optimal rather than near-perfect classification accuracy. This raises the problem of “probably
approximately class optimal” (paco), as opposed to pac-learning.

It turns out that paco-learning is not hard to achieve in the case where the class-optimal error rate, 3,
is known beforehand: simply modify Procedure S to test whether a hypothesis has error within ¢/x of g
rather than within ¢/k of 0. As before, if S halts it is guaranteed to meet the paco-criterion. This problem
becomes difficult, however, if the optimal error rate 8 is not known a priori. In fact, it is not even clear
how to proceed in this case. The problem is that an appropriate stopping rule can no longer be based on

46 CHAPTER 2: SEQUENTIAL PAC-LEARNING

the absolute error of a single hypothesis. Instead, we must consider how any such error compares to the
unknown class-optimal error 3, which is a property of the entire class C'.

One plausible approach is to test H’s hypotheses to see if they are really improving, and, if not, terminate.
However, care must be taken to ensure that H is actually trying to produce good hypotheses. For example, if
H holds out before producing reasonable hypotheses, it can force premature convergence to bad hypotheses.
At the very least, we require a hypothesizer that honestly attempts to produce concepts with near—class-
optimal empirical error. Devising an effective sequential learning procedure for this problem appears to be
a difficult challenge.

2.8.2 Is pac-learning practical?

Recall that Section 2.3 motivated this research by pointing out how the fixed-sample-size approach to pac-
learning seems to be impractical in terms of the training sample sizes it demands. The common belief is
that these large training sample sizes are forced by the requirement that the pac-criterion be achieved in
the worst case over all possible domain distributions. However, the results presented in this chapter directly
counter this claim by showing that distribution-free pac-learning can be far more efficiently achieved in
practice than previously thought. In fact, the empirical results suggest that distribution-free pac-learning
might be achieved with practical data-efficiency in real applications. Although it remains equivocal whether
distribution-free pac-learning is truly practical in the worst possible case, these results clearly show that it
is premature to conclude that distribution-free pac-learning is inherently impractical.

Nevertheless, the theoretical worst case bounds are still weak, and it could perhaps be that there really
are pathological domain distributions that force large training sample sizes; ¢.e., the current lower bounds
could be much weaker than the upper bounds (although this seems unlikely).!® This belief motivates much
research that makes distributional assumptions to improve the data-efficiency of pac-learning, e.g., [Baum,
1990; Benedek and Ttai, 1991; Aha, Kibler and Albert, 1991; Bartlett and Williamson, 1991]. Although
incorporating such assumptions obviously makes pac-learning easier, notice that regardless of any such
assumptions it is always still possible to consider a sequential approach to pac-learning. In fact, the next
chapter shows that, even given strong distributional assumptions, sequential learning still obtains significant
improvements over fixed-sample-size learning.

Overall, I believe the results presented in this chapter open the way to studying a much broader and
more interesting class of learning algorithms than previously studied in computational learning theory.

181t seems clear that the current lower and upper bounds are both weak. That is, there is no reason to believe that the true
worst case is significantly closer to the current upper bounds than the lower bounds. However, for the sake of argument, we
adopt this position here.

Chapter 3

Distribution-specific sequential
pac-learning

3.1 Introduction

As discussed in the previous chapter, pac-learning addresses the problem of learning an accurate approx-
imation to some unknown target concept from random training examples, with the goal of producing an
accurate hypothesis with some minimum specified probability (the pac-criterion). Of course the difficulty
of achieving this criterion depends on the prior knowledge one has about the target concept and domain
distribution.

Distribution-free pac-learning

Distribution-free (d.f.) pac-learning, as discussed in the previous chapter, adopts a model of prior knowledge
where we assume the target concept belongs to some known class C' but nothing is known about the under-
lying distribution of domain objects P.! Successful pac-learning under this model is characterized by the
ability to meet the pac-criterion for arbitrary target concepts in C' and arbitrary domain distributions P. The
current theory of d.f. pac-learning provides a number of fixed-sample-size learning procedures that provably
pac-learn the widest possible range of concept classes; namely, those with finite VCdimension. However, the
training sample sizes required by these procedures is considered excessive in practice. This has lead to the
common view that distribution-free pac-learning is inherently impractical; i.e., meeting the pac-criterion for
all domain distributions—even “pathological” ones—mnecessitates impractical training sample sizes. Despite
the fact that Chapter 2 shows d.f. pac-learning can be achieved far more efficiently in practice than previously
thought, via sequential learning, it is still possible that d.f. pac-learning is truly impractical in the worst
case situation. This has motivated many researchers to explore distributional assumptions to improve the
data-efficiency of pac-learning.

Distribution-specific pac-learning

The most extreme form of distributional assumption is to consider a single domain distribution P, and
concentrate solely on identifying an unknown target concept from a known class C'. This problem is known
as distribution-specific (d.s.) pac-learning. Here we adopt a model of prior knowledge that assumes the
domain distribution P is known a prior:, but the target concept is known only to belong to some class
C'. That is, the learner’s prior knowledge is characterized by concept space (C,P) rather than just a class
C. Under this model, successful learning is characterized by the ability to meet the pac-criterion for any
target concept in C, given full knowledge of P. As with d.f. pac-learning, current research [Benedek and
Ttai, 1988a, 1991; Kulkarni, 1991] has been able to provide correct learning procedures that provably pac-
learn a wide variety of concept spaces. Moreover, a characterization of the inherent data-complexity of d.s.

1T will drop the subscript X from Px throughout the remainder of this thesis (except when necessary in certain proofs).

47

48 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

pac-learning has been obtained in terms of the “metric entropy” of the concept space (C, P)—a measure of
representational complexity that plays the same role as VCdimension in d.f. pac-learning [Benedek and Itai,

1988a, 1991; Kulkarni, 1991].

Issue and approach

However, just as in the d.f. theory, the current theory of d.s. pac-learning only considers fixed-sample-size
learning procedures. The previous chapter observed how a sequential approach to learning could significantly
reduce the number of training examples needed to achieve d.f. pac-learning in practice. Here we observe
that the sequential approach is also directly applicable in the d.s. setting. This raises the obvious question
of whether similar benefits can also be obtained here. In fact, it turns out that even stronger results can be
achieved in this case.

Results

This chapter investigates the benefits of sequential learning in the d.s. context. First we propose a specific
sequential learning procedure, that is then proved to be a correct pac-learner for any concept space (C, P)
with finite metric entropy. An analysis of the expected data-efficiency of this procedure shows that it
obtains a five fold improvement in data-efficiency over the previous fixed-sample-size approach. Moreover,
an analysis of the intrinsic data-complexity of d.s. pac-learning shows that sequential learning scales the same
as fixed-sample-size learning, so the best we can hope for is constant (or perhaps logarithmic) improvements
in data-efficiency, as in the d.f. case. Again, however, as observed in Chapter 2, even constant reductions
can have a significant impact in real applications.

Next, we explore an alternative technique for speeding up d.s. pac-learning that is orthogonal to sequential
learning. The idea is to perform a multiresolution search for the target concept: that is, search the concept
space by first finding a crude 1/2-approximation to the target, and then searching the 1/2-neighborhood of
this concept for a 1/4-approximation, etc.; gradually refining the search until we find a sufficiently accurate
hypothesis. Tt turns out that this strategy can yield substantial data (and even computational) efficiency
improvements over previous approaches, for concept spaces with uniformly dense neighborhoods.

Finally, we observe that under the d.s. model, sequential learning procedures are able to learn with
certainty, not just high probability. I demonstrate this by examining a few simple examples where a sequential
learning procedure can be shown to return e-approximations with probability 1 (wpl), not just probability
1 =46 for & > 0. T refer to this problem as “certainly approximately correct” (cac) learning. Here a specific
sequential learning procedure is proposed that correctly cac-learns a wide range of concept spaces. Analyzing
the data-efficiency of this procedure shows that it actually cac-learns with optimal expected training sample
size. Moreover, an analysis of the intrinsic data-complexity of cac-learning shows that this procedure is a
universal cac-learner, in the sense that it solves any cac-learning problem where this is possible in principle.
This analysis also reveals that there are pac-learnable concept spaces which are not cac-learnable; thus
showing that cac-learning is intrinsically harder than pac-learning.

Surprisingly, for spaces which are both pac and cac learnable, the optimal cac-learning procedure is often
far more data-efficient than the existing pac-learning procedures. This seems counterintuitive, since the
cac-procedure is actually solving a harder learning problem. However, this result shows that even though
cac-learning seems far removed from practical concerns, it can actually provide an effective alternative
technique for deriving data-efficient pac-learning procedures.

Overview

This chapter explores the sequential approach to distribution-specific pac-learning. Before investigating
various sequential learning strategies, Section 3.2 first surveys existing research on d.s. pac-learning; outlining
the basic d.s. pac model and surveying the relevant results concerning the fixed-sample-size approach.

Section 3.3 then proposes a specific sequential learning procedure for the d.s. setting, proves it correct,
and analyizes its expected data-efficiency. Given this efficient procedure we then study the inherent data-
complexity of sequential d.s. pac-learning problems.

3.2. BACKGROUND: DISTRIBUTION-SPECIFIC PAC-LEARNING THEORY 49

After introducing the sequential approach, Section 3.4 then considers a new multiresolution learning
strategy that obtains additional improvements in some cases. In particular, we establish the data-efficiency of
this technique for concept spaces which are uniformly dense across all neighborhoods. The real effectiveness
of this approach is demonstrated through a series of case studies that reveals how it obtains improved
efficiency in a variety of situations. However, it is also shown that this strategy cannot obtain a significant
improvement in every possible case.

Next, Section 3.5 demonstrates how sequential strategies can learn with certainty in the d.s. setting;
a problem I refer to as “certainly approximately correct” learning. Here we propose a simple generic
learning procedure that turns out to cac-learn with optimal data-efficiency. An analysis of the inherent
data-complexity of cac-learning problems shows that this procedure is applicable whenever cac-learning is
possible. Finally, Section 3.6 reconsiders the problem of pac-learning, and applies this optimal cac-learning
technique to substantially reduce the data-costs of pac-learning many spaces.

Section 3.7 concludes this chapter by discussing the implications of these results and suggesting directions
for future research. Overall, our results demonstrate how sequential learning can reduce the number of
training examples needed to pac-learn in the d.s. model.?

3.2 Background: distribution-specific pac-learning theory

Before investigating the effectiveness of sequential learning in the distribution-specific (d.s.) setting, we first
review the basic definitions of d.s. pac-learning theory and survey existing results concerning correct learning
procedures, their efficiency, and the inherent complexity of d.s. pac-learning.

3.2.1 Problem

As in the previous chapter, we consider the problem of learning a concept definition from examples under the
1.1.d. model; demanding that the learner meet the pac-criterion in the worst case over all situations permitted
by its prior knowledge. The difference here is that we consider an alternative model of prior knowledge where
we assume the learner knows the domain distribution P a prior:, but does not know which target concept
¢ from a known class C' is being used to generate the training examples. An instance of a d.s. pac-learning
problem is specified by a concept space (C, P), an accuracy parameter ¢, and a reliability parameter 4.

Definition 3.1 (Distribution-specific pac-learning) A learner L solves the d.s. pac-learning problem
(C,P,¢,8) (or, “pac(e,d)-learns (C,P)”), if, given random training objects generated by P and labelled ac-
cording to any target concept ¢ in C, L produces a hypothesis h such that P{h(z) # c(z)} < € with probability
at least 1 — §.

As before, we formalize a learner L as consisting of (i} a sample size function Tt (C, P, ¢,d) that determines a
suitable training sample size for given C, P, ¢, and §; and (i) a hypothesizer Hy(C,P,e,6) : (X x {0,1})* —
{0, 1}X that maps finite sequences of training examples to hypotheses—here assuming that we have access
to the domain distribution P in addition to C, €, and §.

3.2.2 Procedures

Given the earlier results concerning d.f. pac-learning, the problem of d.s. pac-learning raises two immediate
questions:

1. Do any new concept classes C' (i.e., with infinite VCdimension) become pac-learnable given specific
domain distributions P?

2. TIs the previous hypothesis-filtering strategy (collect a large training sample, then guess an arbitrary
consistent hypothesis) still adequate for pac-learning these spaces?

?Some preliminary results from Sections 3.5 and 3.6 appear in [Schuurmans, 1996b]. Permission has been obtained from
MIT Press for inclusion of this material here.

50 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

The answer to the first question is trivially yes. Any concept class C' can be pac-learned with respect to
specific distributions; e.g., the distribution P that places all probability mass on a single domain object.
However, the simplistic hypothesis filtering strategy is no longer adequate to achieve pac-learning in general
under the d.s. model: the problem is that there are concept spaces that cannot be pac-learned by straight-
forward hypothesis filtering, and yet still can be pac-learned by more sophisticated guessing strategies. This
is easily demonstrated by a simple example.

Ezample: Consider the concept space ({finite sets} U {[0, 1]}, uniform) defined on the unit interval [0, 1].
Clearly, the concept class {finite sets} U {[0, 1]} on [0, 1] has infinite VCdimension. However this class can
be easily pac(e, §)-learned with respect to the uniform distribution as follows: First, observe a single training
example (z,c(z)); then, if ¢(z) = 0, output the hypothesis @, and otherwise (if ¢(z) = 1) output the
hypothesis [0, 1]. Tt is not hard to see that this procedure actually pac(0,0)-learns the space; for if [0, 1] is
the target, the procedure always guesses [0, 1], and, on the other hand, if any finite set is the target, the
procedure will guess @ with probability 1 (wpl). Thus in either case, the procedure’s final hypothesis has zero
error wpl. Notice that this space cannot be pac(e, §)-learned by guessing arbitrary consistent hypotheses,
since if [0, 1] is the target then any finite sequence of training examples leaves consistent concepts that are
a distance 1 away from [0, 1].

This example shows that there is much more to d.s. pac-learning than simply filtering bad hypotheses.
So designing correct learning procedures for this case requires a bit more subtlety than the d.f. case. This
raises the question of whether there are any general approaches to pac-learning under the d.s. model (like
Procedure F in the d.f. case) or whether we have to resort to special methods for each problem. Fortunately,
there is a simple, generic approach to d.s. pac-learning based on an intuitive metric space view of the problem

[Benedek and Ttai 1988a; 1991].

Metric space view

The key thing to notice about d.s. learning is that, under the i.i.d. random example model, a fixed domain
distribution P induces a metric on the concept class, given by the probability that two concepts disagree on
the classification of a random domain object:3

dp(cr,es) = Plei(z) # ea(2)).

Under this view, it is natural to think of C' and P as comprising a concept space (C,P) with inter-concept
distances determined by dp. Here, the error of a hypothesis h relative to a target concept ¢ is simply given
by its distance dp(h, ¢) from c. The goal of pac-learning then is to reliably produce a hypothesis A such that
dp(h,c) <e.

Benedek and Itai’s approach to d.s. pac-learning is based on exploiting the existence of a small, finite
“cover” of the concept space.

Definition 3.2 (Cover) For a concept space (C, P), an e-cover is a finite set of concepts V.= {h1, ha,...,hn}
such that for every ¢ € C there is an h € V where dp(c, h) < €. The size of the smallest e-cover of (C,P) is
denoted N (C,P).

Given a space (C, P), accuracy parameter ¢, and reliability parameter §, Benedek and Itai propose a procedure
that pac-learns by (i) constructing a small €/2-cover of the space, V; (ii) collecting a sufficiently large training
sample to accurately estimate the errors of the hypotheses in V; and (%ii) returning the cover-hypothesis
that obtains the smallest observed error; see Procedure BI in Figure 3.1.

Correctness

The correctness of BI follows from the fact that its fixed training sample size is sufficient to ensure that any
hypothesis with error at most ¢/2 has a smaller observed error than any hypothesis with error greater than
¢, with probability at least 1 — 4.

31t is easily verified that this definition satisfies the standard properties of a (pseudo)metric: positivity, identity zero,
symmetry, and the triangle inequality.

3.2. BACKGROUND: DISTRIBUTION-SPECIFIC PAC-LEARNING THEORY 51

Procedure BI (C,P,¢,4)

INPUT: target concept space (C,P),
accuracy parameter €,
reliability parameter §.

RETURN: a hypothesis A with accuracy at least 1 — ¢, with probability at least 1 — 4.
PROCEDURE:

e Find an ¢/2-cover of (C,P), V, with size |V| = N/»(C,P).

e Collect % In Hg—l training examples labelled by some unknown target concept ¢ € C.

e Return the hypothesis A € V with minimum observed error.

Figure 3.1: Procedure BI

Proposition 3.3 [Benedek and Itai, 1988a] For any ¢ > 0, § > 0, and any finite collection of hypotheses
V ={h1,....,hn},
32 1
Te(Vie,d) = — <1n [V|+1In —)
€)
random training examples are sufficient to ensure that, with probability at least 1 — 8, every h € V with

dp(h,c) < €/2 has observed error less than 3¢/4, and every h € V with dp(h,c) > € has observed error
greater than 3¢/4.

Therefore, since V is guaranteed to contain a hypothesis with error at most ¢/2 (because V is an ¢/2-cover),
BI cannot produce an e-bad hypothesis with probability greater than §. This means that BI will correctly
pac-learn any concept space (C,P) for which we can find a finite ¢/2-cover at the appropriate scale e. This
turns out to be true of most concept spaces encountered in practice. In fact, any concept space (C, P) that is
formed from a concept class C' with finite VCdimension is guaranteed to be finitely e-coverable at all scales
€ > 0, and hence can be pac-learned by BI.

Proposition 3.4 [Haussler, 1992] For any ¢ > 0, any class C, and any distribution P,

. o\ ve(C)

N(C,P) < 2 (2—6111 2—6) .

€ €

Thus, BI is a general d.s. pac-learning procedure that can be applied to a wide range of concept spaces. For

example, BI easily pac-learns the space ({finite sets} U {[0, 1]}, uniform) considered earlier, since an e-cover
of this space for all ¢ > 0 is given by {@, [0, 1]}.

However, not every concept space can be finitely e-covered for all ¢ > 0, and hence BI cannot be used to
pac-learn every possible space. For example, consider the concept space (B, uniform) on [0, 1], where B is the
Borel subsets of [0, 1].* This space has no finite e-cover for ¢ < 1/4 and therefore cannot be pac-learned by
Procedure BI. (To see this: notice that the concept U?I_OI[i/n, (i4+1/2)/n], a disjoint union of n intervals,
is at least a distance 1/4 from any Borel concept containing n/2 or fewer subintervals. Now consider the
sequence of concepts defined by n = 1,2,4,8, ... subintervals, all of which belong to B. These concepts are
pairwise separated by a distance of 1/2, and therefore, for ¢ < 1/4, no finite set of concepts can e-cover
this sequence.) The question of whether these spaces can be pac-learned by alternative strategies to BI is
addressed in Section 3.2.4 below.

1The Borel subsets of [0, 1] are those sets that can be defined by a countable union of subintervals.

52 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

3.2.3 Efficiency

Given the correctness of a pac-learning procedure, the key issue becomes determining its efficiency; both in
terms of the number of training examples it observes (data-efficiency), and the computational resources it
requires to produce a hypothesis (computational-efficiency).

Data-efficiency

Since BI is a fixed-sample-size learning procedure, its data-efficiency is directly determined by the sufficient
sample size function it uses. For Procedure BI this sample size is given by

TBI(C, P, e, (5) = g <IHNE/2(C, P) +1In %)
in terms of the desired accuracy and reliability parameters ¢ and 4, and the size of the smallest ¢/2-cover of
the space (C,P). Interestingly, Tpt scales linearly in the quantity In N./5(C,P), which is commonly known
as the metric entropy of the concept space at scale ¢/2 [Kulkarni, 1991]. Metric entropy quantifies the
representational complexity of a concept space in the d.s. setting in much the same way as VCdimension
characterizes the representational complexity of a concept class in the d.f. setting. In both cases, these
complexity measures determine linear bounds on the number of training examples sufficient to pac-learn in
their respective models.

Computational-efficiency

Aside from data-efficiency, we can also consider the computational resources required by BI to produce its
hypotheses. For BI, the main computational task is finding an ¢/2-cover of the space and then storing
and manipulating this cover once found. Unfortunately, this is rarely feasible in practice. The problem
is that the size of the minimum e-cover for most concept spaces grows as (1/¢)¢ in terms of the natural
dimensionality d of space [Kolmogorov and Tihomirov, 1961; Kulkarni, 1991; Haussler, 1992]. This leads to
an exponential explosion in cover sizes since d usually corresponds to the natural size parameter n for the
problem. Moreover, the task of finding a smallest e-cover is usually quite difficult for most concept spaces.
Therefore, Procedure BI cannot usually be efficiently implemented as 1s in practice. Most computationally-
efficient d.s. pac-learning procedures reported in the literature employ special techniques specific to the
concept space (family) at hand.

Many efficient procedures have been developed for pac-learning concept space families defined on {0, 1}",
achieving computation times bounded by a polynomial in n, 1/¢, and 1/§. Most research on computationally
efficient pac-learning algorithms has focused on special cases of the concept space family (dnf, uniform) on
{0, 1}". First, notice that polynomial time pac-learning is trivially achieved for simple concept spaces like
(kdnf, uniform) where kdnf itself can be pac-learned in polynomial time under the d.f. model. In fact, this will
be true for any concept space family {(C),, P,)} where the concept classes {C),} themselves are pac-learnable
in polynomial time under the d.f. model. However, 1t is also possible to efficiently learn certain spaces
{(Cyn,Pyn)} for which no polynomial time learning algorithm is known for the corresponding classes {C),}.
Two examples of this are the spaces (udnf,uniform) [Kearns et al., 1987a] and (kudnf, uniform) [Hancock
and Mansour, 1991] where polynomial time learning procedures have been achieved, even though it is not
known whether pudnf and kudnf themselves can be pac-learned in polynomial time under the d.f. model. Tt
is currently an open question as to whether (dnf, uniform) can be pac-learned in polynomial time under the
d.s. model (as for dnf under the d.f. model). However, Verbeurgt [1990] has developed a quasi-polynomial
time procedure for pac-learning this space.’

Aside from these restricted classes of dnf formulae, polynomial time procedures have also been developed
for more general classes of boolean formulae under the uniform distribution. For example, it has been shown
that (p-maj-formulae, uniform) [Goldman, Kearns and Schapire, 1990] and (uformulae, uniform) [Schapire,
1992] can both be pac-learned in polynomial time. Quasi-polynomial time learning procedures have also
been developed for (ACO, uniform) [Linial, Mansour and Nisan, 1989; Furst, Jackson and Smith, 1991].

5 Jackson [1994] has recently demonstrated a polynomial time procedure for pac-learning (dnf, uniform). However, his proce-
dure actively queries the domain for the classifications of specific domain objects, and hence does not properly fall under the
passive observation model we are considering in this thesis.

3.2. BACKGROUND: DISTRIBUTION-SPECIFIC PAC-LEARNING THEORY 53

3.2.4 Complexity

Aside from determining the correctness and efficiency of specific pac-learning procedures, it is also important
to considers the intrinsic difficulty of solving d.s. pac-learning problems; i.e., the minimum resources required
for any learner to meet the pac-criterion for a particular concept space (C,P). Again, this difficulty can be
measured along two distinct dimensions: data-complexity and computational-complexity.

Data-complezity

Restricting attention to the fixed-sample-size approach, we can characterize the (fixed) data-complexity of
pac-learning a concept space (C,P) by the minimum number of training examples required by any (fixed-
sample-size) learning procedure to successfully meet the pac-criterion in the worst case over all ¢ € C'. This
type of analysis allows us to assess the true data-efficiency of pac-learning procedures like BI, by comparing
their data-efficiency to the best performance possible, and determining what, if any, improvements are
possible. Benedek and Itai [1988a; 1991] have established the following lower bound on the inherent data-
complexity of solving a d.s. pac-learning problem (C, P, ¢,d) in terms of the metric entropy of the space.

Theorem 3.5 [Benedek and Itai, 1988a; 1991] For any ¢ > 0, § > 0, and any concept space (C,P):
Any (fized-sample-size) learning procedure that observes fewer than

tp(C,Pe,6) = log, [N2(C,P)-(1—20)]
random training examples will fail to meet the pac(e,d)-criterion for some ¢ € C.

Thus, the metric entropy of a concept space gives a non-trivial lower bound on the minimum number of
training examples needed to achieve pac-learning. This shows that finite metric entropy is not only sufficient
for BI to correctly pac-learn, but is also necessary for there to be any learning procedure that successfully
pac-learns the space (C, P). This proves, for example, that the space (B, uniform), which has infinite metric
entropy for all ¢ < 1/4, cannot be pac-learned by any procedure with a bounded number of training examples.
This also shows that BI is a universal d.s. pac-learning procedure in the sense that it can pac-learn any
concept space for which this is possible in principle.

Tt is also interesting to note that the lower bound #, scales linearly in the metric entropy Na.(C,P) of
the space, which matches BI’s scaling behavior (for fixed ¢ and). Therefore, not only is BI a universal d.s.
learner, its data-efficiency scales-up near optimally in terms of the metric entropy of the concept space (up
to 1/e and In(1/4) factors). So, metric entropy measures the representational complexity of a concept space
in much the same way as VCdimension measures the complexity of a concept class: both determine linear
bounds on the optimum achievable data-efficiency under their respective learning models.

Computational-complexity

Aside from determining the minimum number of training examples needed to pac-learn, it is also important
to consider the minimum computational resources required. As with d.f. learning, it is customary to consider
how the difficulty of learning a parameterized family of concept spaces scales up with problem size.

Definition 3.6 (Feasible learnability) A family {(Cy,Pn)} of concept spaces is feasibly pac-learnable if
there is a learning algorithm L, taking n, ¢, and ¢ as input, that solves the pac-learning problems (C, P, ¢,d)
with training sample size and running time bounded by a polynomial in n, 1/¢, and 1/4.

As usual, proving that a family of concept spaces is feasibly learnable is simply a matter of producing a
polynomial time learning algorithm for the family, e.g., as in [Kearns et al., 1987a] for (udnf, uniform). More-
over, infeasibility follows trivially for concept space families that have super-polynomial data-complexity.
However, it is usually quite difficult to determine whether a family that has polynomial data-complexity
also has a computationally feasible pac-learning procedure. For example, it remains an open question as to
whether the space (dnf,uniform) is pac-learnable in polynomial as opposed to quasi-polynomial time, even
though 1t clearly has polynomial data-complexity. Overall, proving that any data-feasible concept family
is nonetheless computationally-infeasible appears to be an extremely difficult challenge. In fact, the first

54 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

results in this area have only recently been achieved by Kharitonov [1993], who has shown that pac-learning
the space (boolean-formulae, uniform) is infeasible, given certain cryptographic assumptions. (It is not hard
to show that this space has polynomial data-complexity.)

3.2.5 Relationship to d.f. pac-learning

Clearly, there are strong relationships between the difficulty of pac-learning a concept class C' under the d.f.
model, and pac-learning a corresponding concept space (C, P) under the d.s. model.

Data costs

In terms of the number of training examples required, it 1s obviously easier to pac-learn under the d.s. model
than the d.f. model; z.e., it can take no more training examples to pac-learn a concept class C' with respect
to a single domain distribution P, than it can to pac-learn C' with respect to arbitrary distributions. So
if C' is pac-learnable under the d.f. model, then automatically so is (C, P) under the d.s. model for any P.
However, there are pac-learnable concept spaces (C, P) where C' cannot be pac-learned under the d.f. model.

Observation 3.7 For pac-learning with bounded data-efficiency for every e >0, § > 0:
C' pac-learnable < vc(C) < oo

4o
(C,P) pac-learnable < N (C,P)< oo VYe>0.

The preceding results also show how the difficulty of pac-learning a class C, either with respect to all
possible domain distributions, or just with respect to a single distribution P, can be characterized by different
measures of problem complexity.

Computational costs

In terms of computational requirements, it is again obvious that distributional restrictions can only make pac-
learning easier. In fact, even natural domain distributions sometimes significantly reduce the computational-
complexity of pac-learning. For example, Schapire [1992] has shown that (uformulae, uniform) is efficiently
learnable, whereas pformulae itself cannot be pac-learned in polynomial time under the d.f. model, unless
certain cryptographic assumptions are false [Kearns and Valiant, 1989]. In this case, the additional infor-
mation provided by the uniform distribution, while only slightly reducing the required number of training
examples, significantly reduces the computational difficulty of pac-learning.

3.3 Sequential d.s. pac-learning

Even though the strong distributional assumptions made by the d.s. model can significantly reduce the
data-complexity of pac-learning, it is still possible to consider a sequential approach to learning in hopes
of obtaining even further efficiency improvements. Here we pursue the same strategy as Chapter 2 and
ask whether sequential learning strategies can substantially reduce the number of training examples needed
to pac-learn under the d.s. model. This section introduces a particular sequential learning strategy for
the d.s. case, investigates its data-efficiency, and determines the inherent data-complexity of sequential d.s.
pac-learning.

3.3.1 Problem

Here we are addressing the same learning task outlined in the previous section: for a specified concept space
(C,P), accuracy parameter ¢, and reliability parameter §, we demand that the learner produce an e-accurate
hypothesis with probability at least 1 — 4, for any target concept ¢ in C'. The only difference is that now we
allow the learner to autonomously choose the size of its own training sample based on the particular training
sequence it observes, rather than just observing a fixed number of training examples. So, as in Chapter 2,
we generalize the definition of a learner’s stopping rule 77, to depend on the observed training sequence, as
well as the problem parameters C', ¢, §, and P.

3.3. SEQUENTIAL D.S. PAC-LEARNING 55

Procedure Sbi (C, P, ¢, 6)

INPUT: target concept space (C,P),
accuracy parameter ¢,
reliability parameter §.

RETURN: a hypothesis A with accuracy at least 1 — ¢, with probability at least 1 — 4.
PROCEDURE:
¢ Find an ¢/2-cover of (C,P), V, with size |V| = N/»(C,P).

e Sequentially observe training examples (z, c¢(z:)), t = 1,2, ..., etc., labelled by some unknown target
concept ¢ € C:

— Subject each h; € V to a statistical test that decides
Haee : P{hi(z) #c(x)} <€/2 versus H,j: P{h;(z) #c(x)} > ¢,

with a probability of deciding Hgee when H,.; is true bounded by 6/|V|, and zero probability of
deciding H,.;. (This is done by calling the subroutine sprt(h;(z) # c(z), €/2, €, §/|V], 0); see
Figure 2.4 in Chapter 2.)

— If some h; in the list passes the test, halt and return h;.

e Repeat until some h; passes the test.

Figure 3.2: Procedure Sbi

3.3.2 Procedure

As mentioned, the generic approach to d.s. pac-learning, Procedure BI, is based on finding a finite cover of
the concept space and then estimating the errors of these cover-concepts to identify any acceptable candidate.
Here we consider a sequential approach to this problem that also follows the cover-based approach, but now
adopting a sequential rather than fixed-sample-size approach to error estimation. In particular, we consider
a procedure, Sbi, that first finds an €/2-cover of the concept space, but then tests each cover-hypothesis (in
parallel) by subjecting it to a sequential probability ratio test (sprt). The first cover-concept that passes
this test is returned as the final hypothesis; see Figure 3.2. The idea is to improve the data-efficiency of BI
simply by using sprt to quickly identify accurate candidate hypotheses.

It is not hard to see that Procedure Sbi is a correct pac-learner for any concept space that has a finite
¢/2-cover. The key property of Sbi is that its call to sprt eventually accepts any ¢/2-good hypothesis
wpl, but only accepts an e-bad hypothesis with probability at most 6/|V|, where |V| is the size of the
€/2-cover it constructs. So Sbi returns an e-bad hypothesis with probability at most |V| x §/|V| = 4, and
yet must eventually terminate wpl since V' is guaranteed to contain an ¢/2-good hypothesis by construction.
Therefore, the probability that Sbi returns an e-good hypothesis must be at least 1 — 4.

Theorem 3.8 (Correctness) For any ¢ > 0, d > 0, and any concept space (C,P) with N.j5(C,P) < oco:
Guwen 1.1.d. examples generated by P and any target concept ¢ € C, Procedure Sbi returns a hypothesis h
such that P{h(z) # c¢(z)} < € with probability at least 1 —§.°

As before we note that this is a wide range of concept spaces, covering most situations encountered in
practice.

8 Proofs of all (original) results stated in this chapter are given in Appendix B.

56 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

3.3.3 Efficiency

Given the correctness of Sbi, the key issue becomes determining its data-efficiency, and comparing this to
the efficiency of the fixed-sample-size approach. As in Chapter 2, we compare the relative data-efficiencies of
sequential and fixed-sample-size learners by comparing their average and fixed training sample sizes directly.

Definition 3.9 (Expected data-efficiency) The expected data-efficiency of a sequential learner L, for
solving a d.s. pac-learning problem (C, P, ¢,0), is given by the mazrimum expected training sample size L uses
wn the worst case over all possible targets ¢ € C'.

Using the analysis of the sprt procedure derived in the previous chapter it is possible to determine a
reasonable upper bound on the expected number of training examples Sbi observes in the worst case over
all targets in C'.

Theorem 3.10 (Data-efficiency) For any ¢ > 0, d > 0, and any concept space (C,P) with N./»(C,P) <
oo: Given t.i.d. examples generated by P and any target concept ¢ € C', Procedure Sbi observes an average
training sample size of at most

6.5178

€

E TSbi(Ca Pa €, 6)

<lnNE/2(C,P)—|—ln§—|—1) . (3.1)

Interestingly, this upper bound scales the same as BI’s fixed-sample-size bound Ty in terms of ¢, §, and
the metric entropy of the concept space. However, this result shows that Sbi observes about five times fewer
training examples on average than Procedure BI for all values of ¢ and §. This is a much stronger theoretical
improvement than was achieved in the d.f. case, as well as a significant practical improvement.

3.3.4 Complexity

However, the preceding analysis leaves open the question of whether further efficiency improvements are
possible, and, if so, how much of an improvement is possible in principle. To this end, we consider the
intrinsic data-complexity of sequentially pac-learning a concept space (C,P); i.e., the minimum average
number of training examples any sequential learner must observe to meet the pac-guarantees in the worst
case.

Definition 3.11 (Expected data-complexity) The expected data-complexity of a d.s. pac-learning prob-
lem (C,P,¢,8) is given by the smallest average number of training examples any learning procedure must ob-
serve to meet the pac(e, d)-criterion (for any fired ¢ € C'), in the worst case over all possible target concepts

i C.

We have seen that Sbi’s expected data-efficiency is at least five times smaller than BI’s fixed sample size.
Theorem 3.5 in Section 3.2 shows that no fixed-sample-size learner can improve on the data-efficiency of BI
by more than a constant factor in terms of the metric entropy of the space, for fixed ¢ and §. However,
this leaves open the question of whether a sequential learning procedure might do substantially better than
this; e.g., scale up sub-linearly in the metric entropy of the space. It turns out the answer to this question
is no. The next result establishes a lower bound on the minimum average number of training examples any
sequential learner must observe to successfully pac-learn a concept space.

Theorem 3.12 (Data-complexity) For any ¢ > 0, § > 0, and any concept space (C,P): A learner that
always observes an average training sample size less than

1 1
ool C.Prcd) = L log, [NQAG,P) (5—5)]

for every fized ¢ € C' will fail to meet the pac(e, d)-criterion for some fived target ¢’ € C.

3.4. MULTIRESOLUTION LEARNING 57

This shows that no new concept spaces become pac-learnable simply by considering a sequential over
fixed-sample-size learning approach. That is, the concept space (C,P) must have finite metric entropy for
any learner to be able to meet the pac-criterion for every target concept in C' with a uniform bound on
expected training sample size. Thus, having finite metric entropy is not only sufficient for Sbi to be able
to pac-learn a concept space, but also necessary for any sequential learner to be successful. This also shows
that Sbi is a unwersal pac-learning strategy in the same sense as BI: Sbi correctly pac-learns any concept
space (C, P) for which this is possible via any learning procedure.

Notice that the lower bound 4,4 actually scales the same as the fixed-sample-size bound t,. This suggests
that the data-efficiency of sequential learning cannot scale up significantly better than fixed-sample-size
learning, as their respective lower bounds differ only by constant factors. This result also shows that Sbi’s
data-efficiency scales up near optimally in terms of the metric entropy of the concept space (up to 1/¢ and
In(1/4) factors). Of course, Sbi still may not be the most efficient learning procedure possible. In fact, we
will see that its performance can be substantially improved in special cases.

Overall, the results of this section show that metric entropy continues to be a natural measure of concept
space complexity: it continues to determine linear bounds on the achievable data-efficiency of sequential, as
well as fixed-sample-size d.s. pac-learning.

3.4 Multiresolution learning

Independent of whether we pursue a sequential or fixed-sample-size approach to learning, another simple
idea for improving data-efficiency is to perform a multiresolution search for the target concept. That is,
rather than searching a fixed ¢/2-cover of the entire space, we can first perform a crude search at some large
scale (say 1/2) and then refine this search to within smaller neighborhoods of the space, progressively zeroing
in on the target concept. In this way we can substantially reduce the number of candidate hypotheses the
learner must consider, which can lead to both a significant improvement in the data-efficiency of pac-learning
as well as a substantial reduction in computational costs.

3.4.1 Procedure

The particular multiresolution search procedure we consider, Procedure Sfoc, works by first fixing a crude
1/4-cover of the space and estimating errors to within 1/4, yielding a hypothesis with error at most 1/2;
then fixing a 1/8-cover of the 1/2-neighborhood of this hypothesis and estimating these errors to within
1/8, yielding a hypothesis with error at most 1/4; then fixing a 1/16-cover of the 1/4-neighborhood of this
hypothesis and estimating errors to within 1/16, yielding a hypothesis with error at most 1/8; etc.; until a
hypothesis with error at most ¢ is found with high probability (after log,(1/¢) stages); see Figure 3.3.

The benefit of this over the global-cover based approach is twofold: First, Sfoc considers fewer candidate
hypotheses since it only constructs fine-grained covers for small local neighborhoods of the target concept.
Second, Sfoc only estimates the errors of hypotheses near the target concept with high accuracy, as crude
estimates suffice to eliminate candidates that are further away. In this way Sfoc finds an accurate hypothesis
without having to consider a complete ¢/2-cover of the entire space, and without having to estimate the
error of every candidate hypothesis with the same degree of accuracy. This can lead to significant savings in
practice, both in terms of the number of training examples needed to meet the pac-criterion, and in terms
of the computational complexity of pac-learning. In fact, we will see that Sfoc even can achieve polynomial
time pac-learning for certain concept spaces that have exponentially large covers.

Notice however that Sfoc cannot achieve significant improvements in every possible case. The problem is
that the concept space might be extremely dense in certain small neighborhoods of the space—to the extent
that an a-cover of a single neighborhood might be nearly as large as the a-cover of the entire space. (For
example, consider a space consisting of d disjoint sets of size ¢ < 1/d, and @. For 8 > a > ¢, any a-cover of
@’s f-neighborhood is also an a-cover of the entire space.) In such cases Sfoc cannot avoid considering a
large number of candidates, and estimating their errors with a high degree of accuracy. Therefore, we only
expect Sfoc to obtain a significant savings over BI and Sbi for spaces which are more or less uniformly dense
over local neighborhoods. I formalize this notion below.

58 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Procedure Sfoc (C, P, ¢,)

INPUT: target concept space (C,P),
accuracy parameter ¢,
reliability parameter §.

RETURN: a hypothesis A with accuracy at least 1 — ¢, with probability at least 1 — 4.

PROCEDURE:

o Let By(c) L {h € C :dp(h,c) < a} denote the (closed) ball of radius a centered at concept ¢ € C.

e Sequentially observe training examples (zy, ¢(z:)), t = 1,2, ..., ete., labelled by some unknown target
concept ¢ € C":

e Repeat for stages i = 1,..., S, where S = [log,(1/¢)]:

Stage 1: Find a 1/4-cover of (C,P), V1, with size [Vi| = Nq,4(C, P).
Call sprt(h(z) # c(2), 1/4, 1/2, §/(]V1]S), 0) for each h € V7.
Let h; be the first candidate sprt accepts from V;.
(After Stage 1 we know that ¢ € By/5(h1) with probability at least 1 —4§/5.)

Stage 2: Find a 1/8-cover of Bys(hy), Vo, with size |Va| = Ny gBy/2(h1).
Call sprt(h(z) # c(x), 1/8, 1/4, §/(|V2]S), 0) . for each h € V5.
Let hs be the first candidate sprt accepts from V5.
(After Stage 2 we know that ¢ € By/4(hs) with probability at least 1 —24/5.)

Stage i: Find a 2=t _cover of By—(i-1) (hi—1), Vi, with size |Vi| = No—(i41) Bo—¢i-1) (hi—1).
Call sprt(h(z) # c(z), 2=0+D 27 §/(|V;|S), 0) for each h € V;.
Let h; be the first candidate sprt accepts from V;.
(After Stage ¢ we know that ¢ € Bo—:(h;) with probability at least 1 —id/S.)

Stage S: Find a ¢/2-cover of Bac(hs_1), Vs, with size |Vs| = N¢jsBac(hs_1).
For each h € Vg call sprt(h(z) # c(x), €/2, €, §/(|Vs]S), 0).
Let hs be the first candidate sprt accepts from V.
(After Stage S we know that ¢ € B.(hg) with probability at least 1 —4.)

e Return hg.

Figure 3.3: Procedure Sfoc

3.4. MULTIRESOLUTION LEARNING 59

3.4.2 Spaces with invariant dimension

Section 3.2.3 noted that for most spaces, the size of the smallest e-cover grows roughly as (1/¢)? in terms of
the natural dimensionality d of the space. Therefore, it is natural to define the “effective” dimension of a
concept space (C, P) by
In N.(C,P
dim.(C,P) £ In N(C, P).
In(1/¢)

in this way picking out the dimensionality exponent d. However, notice that this measure can change for
different values of €; e.g., the effective dimension of any finite space decreases to zero for small €. To avoid this
variability, many authors have sought scale-independent notions of effective dimensionality. For example,
Kolmogorov and Tihomirov [1961], and Haussler [1992] define the upper and lower metric dimension of a space
by limdim, and limdim, respectively. In the case where these coincide, Haussler refers to their common
limit as the metric dimension of (C,P). Notice that the metric dimension of a space with N.(C,P) =
(polylog(€)/€)? is d, so the metric dimension basically picks out the exponent of the cover size as a function
of 1/e.

However, here we are mainly interested in upper bounds, so I adopt the following, simpler definition:

Definition 3.13 (Scale-invariant (upper) dimension) A concept space (C,P) has scale-invariant (up-
per) dimension d if there is some constant a such that N.(C,P) < (a/e)? for all ¢ > 0. If no such d and a
exists, then (C,P) has infinite (upper) dimension.

As mentioned above, we expect Sfoc to demonstrate an advantage for concept spaces whose effective dimen-
sionality 1s invariant across neighborhoods, not just independent of scale. So we need a stronger definition
to capture this form of invariance.

Definition 3.14 (Neighborhood-invariant (upper) dimension)

e For a concept ¢ € C, let B.(c) denote the e-neighborhood of ¢ in (C,P). l.e., B.(c) L {h e C:
dp(h,c) < €}; the (closed) ball of radius ¢ centered at c.

e Then, for a constant k > 1 we say that a concept space (C,P) has neighborhood-invariant (upper)
dimension d if there is some constant b > 1 such that N.Bg.(c) < (bk)? for all ¢ € C and all ¢ > 0;
i.e., the ke-neighborhood of any concept can be c-covered by at most (bk)? concepts.

o If no such d exists, then (C,P) has infinite (upper) dimension.
e The size of the largest neighborhood cover is NBy(C,P) £ SUP.cc >0 NeBie(c).
Clearly then, neighborhood-invariance implies scale-invariance.

k d(fp+1)
Proposition 3.15 NB,(C,P) < (bk)? implies N.(C,P) < (—) .
€

This definition captures the idea that a space with neighborhood-invariant dimension should be uniformly
dense across all local neighborhoods of the space; i.e., the relative covers of local neighborhoods should be the
same size regardless of their location in the space. Not surprisingly, many natural concept spaces encountered
in practice are uniformly dense in this manner, ¢f. Section 3.4.4 below. It is for these spaces that we expect

Sfoc to obtain a substantial performance advantage over the global-cover based learning techniques BI and
Sbi.

3.4.3 Efficiency

It turns out that we can prove a substantial data-efficiency advantage for Procedure Sfoc over the global-cover
based procedures BI and Sbi for concept spaces which are uniformly dense across all local neighborhoods.
In particular, for a concept space (C,P) with finite neighborhood-invariant dimension, we can derive a
reasonable upper bound on the expected number of training examples Sfoc uses to pac-learn the space.

60 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Proposition 3.16 (Data-efficiency) For anye > 0, > 0, and any concept space (C, P) with NB4(C,P) <
o0: Procedure Sfoc observes an average training sample size of at most
13.0356

€

E TSfOC(07 Pa €, 6)

<lnNB4(C'7 P)—i—lnlnl—l—ln%—l— 1.4) . (3.2)
€

for any target concept c € C.

This result shows that Sfoc is fundamentally more data-efficient than the global-cover based techniques
BI and Sbi for uniformly dense concept spaces. That is, if the space (C,P) has neighborhood-invariant
dimension d and also effective dimension d for all ¢, then it is easy to see Sfoc’s data-efficiency scales
fundamentally better than Tgy in terms of € and d.

Observation 3.17 If NB4(C,P) = 9D and N.(C,P) = (1/¢)®D then
S} (1 (dln1 +1n1)) ,
€ €)

ETsf0c(C,P,€,0) = O <1 <d—|—lnln1 —}—ln%)) :
€ €

So we obtain a better than constant improvement in data-efficiency in these cases.

Tg1(C,P,¢c,d)

3.4.4 Examples

To make the discussion more concrete I consider a few simple examples that illustrate Sfoc’s advantage over
BI and Sbi, both in terms of data-efficiency and computational-efficiency. These examples show that for
concept spaces which are uniformly dense across local neighborhoods, Sfoc obtains substantial data-efficiency
improvements and can even yield polynomial time learning in cases where BI and Sbi require exponential
space. However, we also show that spaces with dense local neighborhoods negate these advantages.

Ezample: (initials, uniform) on [0, 1]

First, consider the simple task of learning an initial segment of the unit interval [0, 1] under the uniform

distribution. That is, consider the concept space (initials, uniform) where initials £ {[0,z.] : 0 < z. < 1}
and domain objects are generated according to the uniform distribution over [0, 1]. Here each target concept
¢ € initials is defined by an endpoint z. € [0, 1] and classifies all points 0 < z < z. as 1; see Figure 3.4.
Given the simplicity of this space, it is easy to construct minimal a-covers of the entire space, as well as
small a-covers of local neighborhoods.

Proposition 3.18 Forany 0 < a <1

1
N (initials, uniform) = [_-‘

NBy(initials, uniform) < 4

(For a global a-cover: just pick concepts 2« apart at endpoints «, 3e, ba, ..., ete. For an a-cover of a local
4a-neighborhood: just pick concepts at endpoints z. — 3a, 2. — o, 2. + a, 2. + 3a.)

Given these covers, we can directly determine the data-efficiency of the various learning procedures BI,
Sbi, and Sfoc.

Observation 3.19

Tgr(initials, uniform,e,§) = © <1 (ln ! +In %))
€ €

(hllnl—f-ln l))
€ 0

E Tgfoc(initials, uniform, €,6) = O<

a | =

3.4. MULTIRESOLUTION LEARNING 61

+ —

ens—— |

0 ZTe 1

Figure 3.4: An initial segment concept ¢ of [0, 1] defined by right endpoint z..

1 2 d
;EC J;C ;EC
|
1 2 d—1
0 a i a 1

d
P

Figure 3.5: A d-m-initial segment concept ¢ defined by right endpoints z., ..., z
Notice that Sfoc’s data-efficiency scales fundamentally better than BI and Sbi in terms of the accuracy
parameter €. In fact, not only is Sfoc more data-efficient than the global-cover based techniques, it also
has a slight computational advantage: Sfoc learns in O(1) space, whereas BI and Sbi require Q(1/¢) space
just to store the cover. Although this makes little difference on a simple space like (initials, uniform), it can
become a significant factor in more complex examples.

Ezample: (d-m-initials, uniform) on [0, 1]

To illustrate how these results scale-up to harder problems we consider a more complicated space (d-m-initials,
uniform). This is a natural d-dimensional generalization of the simple space (initials, uniform): Here the target
class d-w-initial consists of concepts defined by d independent initial segments on disjoint regions of [0, 1],
and domain objects are generated according to the uniform distribution over [0, 1]. Formally, we define
the class of d-m-initial concepts as follows: First, partition the domain X = [0, 1] into d disjoint intervals
X1 =100,1/d), Xs =[1/d,2/d), ..., Xqa = [(d—1)/d, d]. Then, define a concept ¢ € d-m-initials by independently
choosing an endpoint from each of the d segments, z! € X1, ..., z¢ € Xy; so that ¢(z) = 1 if and only if
z € [0,2]u...U[(d - 1)/d,zd]; see Figure 3.5. Thus, the entire class of d-m-initial segment concepts is
generated by independently choosing d endpoints, one from each subinterval X, ..., Xg.

The fact that (d-m-initials, uniform) is a natural d-dimensional generalization of (initials, uniform) is born
out by the following result characterizing the size of a-covers for this space and the size of the relative covers
for local neighborhoods.

Proposition 3.20 For any 0 < a < 1/d,

INA

Ell

NBy(d-m-initials, uniform) < 1.4(6¢)?

d
1
<) < Ny(d-m-initials, uniform)

2ea

(The upper bound for the global a-cover is obvious: for each subdomain X; just pick 1/(2«a) endpoints 2«/d
apart at (i — 1+ a)/d, (i—143a)/d, (i—145a)/d, ..., etc.; then compose cover concepts by independently
choosing endpoints from each subdomain. For an a-cover of a local 4a-neighborhood: repeat the above
construction for the 4a-neighborhood of each component z% of ¢, thus a-covering each interval of length 8o
with 4d endpoints 2a/d apart. Then compose cover concepts by choosing endpoints from each subdomain,
maintaining a total distance from ¢ of at most 4. See Appendix B for details.)

Given these covers, we can directly determine the data-efficiency of the various learning procedures, as
before.

Observation 3.21

€

Tg1(d-m-initials, uniform,¢,§) = © <1 <d In E +1In %))
€

62 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

1 1 1
E Tgfoc(d-m-initials, uniform, ¢,0) = O (— <d +Inln—-+1In 5))
€ €

Again, we see that Sfoc’s data-efficiency scales inherently better than BI and Sbi, both in terms of the
dimensionality d and the accuracy parameter €. In fact, Sfoc reduces a dIn(1/¢) term to a d + Inln(1/¢)
term in this case, which 1s a significant improvement for small e. However, the data-efficiency of all procedures
remains a small order polynomial in the relevant parameters.

Interestingly, Sfoc also permits a polynomial time solution to this problem, even though Proposition 3.20
shows that any ¢/2-cover of (d-m-initials, uniform) must be exponentially large in d; i.e., Q(1/¢?) for € < 1/d.
This means that any global-cover based technique like BI or Sbi must take exponential time just to construct
the cover! Although it is not obvious that Sfoc can solve this problem in polynomial time either, since the
size of the 4x-neighborhood covers constructed in Proposition 3.20 are also exponential in d, it turns out
that the set of neighborhood-cover concepts can be implicitly tested in polynomial time by independently
considering each subdomain X; (see Appendix B for details).

Proposition 3.22 Sfoc can be implemented to solve (d-m-initials, uniform, ¢, d) in time

9
0] (d— <dlnd+1nlnl+lnl)) .
€ €)

Thus, Sfoc not only reduces the data-complexity of pac-learning in this case, it also obtains an exponential
reduction in computational costs.

Ezample: (monomials, uniform) on {0,1}"

However, not every natural concept space is sufficiently uniformly dense to permit Sfoc to obtain these
advantages. For example, consider the space (monomials, uniform) defined on {0, 1}". This particular space
has been much studied in the machine learning and computational learning theory literature [Pazzani and
Sarrett, 1990; Haussler et al., 1994]. Here, the class monomials consists of concepts defined by conjunctions
of (positive) boolean attributes, and domain objects are generated according to a uniform distribution over
{0, 1}". Formally, a monomial concept c is defined by a list of attribute indices {i1,...,ix}, such that for a
domain object * = (a1,...,a,) € {0,1}", ¢(x) = 1 if and only if a;; = 1 on all indices specified by c. We
consider the problem of learning an accurate approximation to a monomial target concept given training
objects generated by a uniform distribution over {0, 1}". It turns out that this simple space is sufficiently
ill-behaved in certain neighborhoods to prevent Sfoc from obtaining any advantage over Sbi in the worst
case.

To demonstrate this, first note that the space (monomials, uniform) actually has an interesting metric
structure: the distance between any two monomial concepts ¢; and ¢y with respect to the uniform distribution
is given by

du(er, o) = 271l po-leal _ g g=leves (3.3)

(thinking of monomial concepts as sets of attributes), which follows from the simple relation P(4A A B) =
PA+ PB — 2 P(AN B). Therefore, concepts defined by few attributes (and pairs having few attributes in
common) are much further apart than concepts defined by many attributes (and pairs having many attributes
in common). The simple discrete structure of this space actually allows us to construct minimum size covers
without too much difficulty.

Proposition 3.23 For a = 27%,

log,(1/a)—1 n log,(1/) n
() Ny (monomials, uniform) < ()

‘ 2
+=0

(]

IN

3.5. LEARNING WITH CERTAINTY 63

The minimal a-cover simply consists of all monomial concepts containing log,(1/«) or fewer attributes. Also,
the collection of monomial concepts containing log,(1/a) — 1 or fewer attributes is pairwise separated by at
least 2, and therefore any a”-cover of the space must contain at least this many concepts.

The problem with this space is that it is extremely dense around the smallest concept (extensionally) in
the space, ¢, = {a1,...,an} (i.e., around @). In fact, the cover of any local neighborhood of ¢, has a size
comparable to any efficient cover of the entire space.

Proposition 3.24 For o = 27% > 27"~2 the smallest monomial ¢,, = {ay, ..., a,} has

This prevents Sfoc from obtaining a significant data-efficiency advantage over BI.

o (1 (tmmm !+ 1))

1 1 1
E Tgfoc(monomials, uniform,e,d) = O <— ((ln n)ln—+In g))
€ €

Observation 3.25 Fore¢>e™ "

Tg1(monomials, uniform, ¢, §)

In terms of computational-efficiency, note that the global-cover based procedures run in quasi-polynomial
time since the ¢/2-cover constructed in Proposition 3.23 has size at least Q(n™(1/€)). Unfortunately, the
straightforward implementation of Sfoc fails to improve on this since any neighborhood cover for ¢, also has
quasi-polynomial size, and 1t is not clear that these cover-concepts can be implicitly tested in polynomial
time (as for (d-m-initials, uniform) in Proposition 3.22 above). Thus, Procedure Sfoc does not seem to yield
any significant advantages in this case beyond those already obtained by Sbi.

Overall, these examples show how Sfoc can substantially improve the data and computational efficiency
of d.s. pac-learning for many natural concept spaces. However, these advantages are restricted to spaces
that have a uniformly dense structure across local neighborhoods,; thus permitting the early stages of a
multiresolution search to have a significant effect.

3.4.5 Assessment

The previous two sections have shown how sequential learning can uniformly improve the data-efficiency
of pac-learning under the d.s. model, by a significant constant factor in general via Procedure Sbi, and
by logarithmic factors for uniformly dense concept spaces by using a multiresolution learning procedure
Sfoc. Although the primary motivation of this work is to improve the data-efficiency of pac-learning,
multiresolution learning also has the advantage of providing computationally-efficient learning procedures
for many problems where the generic global-cover based approaches are inherently infeasible. In each case,
these are simple generic learning procedures, based on an intuitive metric space view of d.s. learning [Benedek
and Ttai 1988a, 1991; Kulkarni 1991].

The next two sections consider an alternative view of d.s. learning. We explore a stronger criterion than
pac-learning which sequential learners are able to achieve under the d.s. model. It turns out that the learning
procedures derived for this problem can obtain additional efficiency improvements in many cases.

3.5 Learning with certainty

Beyond improving data-efficiency, another benefit of sequential learning is the ability to learn with certainty
under the d.s. model, rather than just high probability. That is, there are concept spaces where a sequential
learner can return an e-approximation to the target with probability 1 (wpl), not just probability 1 —J for
some ¢ > 0. Interestingly, this level of reliability cannot be achieved by fixed-sample-size learning for any
non-trivial space. In fact, none of the previous sequential procedures introduced in this chapter can learn

64 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

0 zy Ty 1

+ + 4+ - - -
|
!

Figure 3.6: An “uncertainty interval” for (initials, uniform) generated by a set of training examples (indicated
by +, —). Any consistent initial segment concept h has a right endpoint z; lying between the largest positive
and smallest negative example. lLe., 2y < zp < zy.

with certainty either, as setting § = 0 prevents finite termination. However, learning with certainty can be
achieved in the d.s. setting by other sequential learning strategies.

Ezample: To demonstrate this, consider the concept space (initials, uniform) introduced in Section 3.4.4.
Here, the task is to identify an e-approximation to an unknown initial segment of [0, 1] given uniformly
distributed training examples—which amounts to locating the right endpoint of the target interval ¢ to
within a tolerance of € on either side of .. To do this we notice that any set of training examples determines
an “uncertainty interval” around z. which contains the endpoints of all initial segment concepts consistent
with the training data; see Figure 3.6. Therefore, an obvious learning strategy for this space is just to keep
track of this uncertainty interval and halt as soon as it becomes smaller than 2¢, returning the initial segment
defined by the midpoint of the final interval; see Procedure Scov(initials, uniform) in Figure 3.7. Clearly, any
hypothesis returned by this procedure can have error at most ¢ by construction, since the furthest consistent
initial segment from the midpoint concept can be at most ¢ away. Moreover, this procedure halts wpl, since
the probability of observing a domain object within € of both sides of z. goes to 1 as the size of the training
sample increases. Therefore, Scov is guaranteed to return an e-accurate hypothesis wpl, and hence pac(e, 0)-
learns (initials, uniform). Interestingly, Proposition 3.28 below shows that no fixed-sample-size procedure can
achieve this level of certainty for this (or any non-trivial) space.

This example shows that there are situations under the d.s. model where a sequential procedure can learn
with certainty, but any fixed-sample-size procedure must fail with some non-zero probability. This raises
the question of determining the general conditions when certain learning can be obtained, and the amount
of training data needed to do so. In this section we investigate the difficulty of this learning with certainty
task: identifying those situations where certain learning can be achieved and analyzing the data-efficiency of
proposed solutions. One indirect benefit of this study is that it yields an alternative technique for deriving
data-efficient pac-learning procedures (which we explore in Section 3.6 below).

3.5.1 Problem

We are addressing a slightly different task than the standard pac-learning problem considered before. Now,
for a given ¢, we demand that the learner return an e-approximation to the target concept with certainty,
not just probability at least 1 — d for some § > 0. I refer to this task as “certainly approximately correct”
(cac) learning. Clearly, cac-learning is harder than pac-learning simply because we are demanding a strictly
higher level of reliability. Under the d.s. model, we specify an instance of a cac-learning problem by a concept
space (C,P) and an accuracy parameter e.

Definition 3.26 (Cac-learning problem) A learner L solves the d.s. cac-learning problem (C,P,¢) (or,
“cac(€)-learns (C,P)”) if, given random training objects generated by P and labelled according to any ¢ € C,
L produces a hypothesis h such that P{h(z) # e¢(z)} < € with probability 1.

It is no accident that we are investigating cac-learning under the d.s. and not the d.f. model, since it is
impossible to achieve cac-learning under the d.f. model with any learning strategy.

Proposition 3.27 (D.f. cac-learning impossible) For any 0 < ¢ < 1, and any concept class C' containing
two non-mutually-exclusive concepts: Any learner I must fail to meet the cac(e)-criterion for some target
concept in C', for some domain distribution P.

3.5. LEARNING WITH CERTAINTY 65

Procedure Scov (initials, uniform; ¢)

INPUT: accuracy parameter e.

RETURN: a hypothesis h with error at most e.
PROCEDURE:

e Sequentially observe training examples (zy, c¢(z:)), t = 1,2, ..., etc., labelled by some unknown target
initial concept ¢:

— Let 2y be the largest observed positive example; i.e., the largest z; such that ¢(z;) = 1 (2, = 0,
if none exists).

— Let z, to be the smallest observed negative example; i.e., the smallest z; such that ¢(z;) = 0
(zy = 1, if none exists).

— Observe random training examples until z, — z, < 2¢; the stopping condition.

e Once the stopping condition is reached, return the initial segment h = [0, z;] defined by the midpoint
zhp = (zy — 24)/2.

Figure 3.7: Procedure for learning (initials, uniform) with certainty.

Therefore, distributional assumptions are necessary to achieve cac-learning, so we restrict ourselves to the
d.s. case here. Moreover, not only is it necessary to make distributional assumptions, it is also necessary to
adopt a sequential rather than fixed-sample-size learning approach in order to achieve cac-learning here.

Proposition 3.28 (Fixed-sample-size cac-learning impossible) For any 0 < ¢ < 1, and any space
(C,P) that contains two concepts ¢1 and ca separated by € < dp(e1,¢2) < 1: Any fired-sample-size learner L
must fail to meet the cac(e)-criterion for some ¢ € C.

Therefore, to study this cac-learning problem we must restrict our attention to sequential learning procedures
under the d.s. model. Despite the apparently demanding nature of the cac-criterion, it turns out that a
number of surprisingly strong results can be obtained under this model.

3.5.2 Procedure

First, notice that the simple procedure Scov(initials, uniform) can easily be generalized to obtain a generic
cac-learning procedure that is applicable to arbitrary concept spaces; see Procedure Scov in Figure 3.8.
The idea behind Scov is straightforward: we simply observe training examples until the neighborhood of
consistent concepts remaining in C' is reduced to an e-ball around a single hypothesis 2 (not necessarily in
('), and return h as the final hypothesis. Obviously, any hypothesis returned by Scov is guaranteed to be
an e-approximation to the target concept by construction, so proving that Scov meets the cac-criterion is
then a simple matter of establishing that it halts wpl. Thus, we can see that Scov correctly cac-learns any
concept space (C, P) for which it is guaranteed to halt wpl for every target concept in C'. This turns out to
be true of a wide range of concept spaces.

An obvious way to prove Scov meets the cac-criterion is to show that every e-bad concept in the space is
eventually eliminated wpl. A weaker condition that implies this is to show that every e-bad concept must
be eliminated from the space with some non-zero probability after a finite number of training examples.

Definition 3.29 (Reduction) For a concept space (C,P):

e Forc € C, let P.(C,P,t,c) denote the probability that (C,P) is reduced to a (closed) e-ball around ¢
after t training examples.

CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Procedure Scov (C, P, ¢)

INPUT: target concept space (C,P),

accuracy parameter e.

RETURN: a hypothesis h with error at most e.

PROCEDURE:

Sequentially observe training examples (2, ¢(z:)), t = 1,2, ..., etc., labelled by some unknown target
concept ¢ € C:

— Halt when there exists a single concept A (not necessarily in C') within € of each consistent ¢
remaining in C.

Return hA.

Figure 3.8: Procedure Scov

Let P.(C,P,t) be the minimum such probability over possible target concepts ¢ € C; i.e., P.(C,P,t) L

infeec Pe(C,P,t,¢).

Then let R.(C,P) be the leastt such that P.(C,P,t) > 0. (If no sucht exists, we define R.(C,P) = 00.)
Thus, R.(C,P) < co means that there erists some v > 0 such that for all ¢ € C, with probability at
least v, (C,P) is reduced to an e-ball around ¢ after R.(C,P) training examples.

R.(C,P) is called the e-reduction number of (C,P). Any concept space (C, P) with a finite e-reduction
number is said to be e-reducible.

It is not hard to show that Scov correctly cac-learns any concept space that is e-reducible at the desired

€Irror €.

Proposition 3.30 (Correctness) For any ¢ > 0, and any concept space (C,P) with R.(C,P) < co: Scov
halts wpl and meets the cac(e)-criterion for every target c€C.

This proves that Scov cac-learns a broad class of concept spaces. In fact, most concept classes encountered
in practice are e-reducible, and hence cac-learnable by Scov. For example, this is true of any concept space

(C,P) where C has finite VCdimension.

Proposition 3.31

1. ve(C) < oo implies R(C,P) < oo for all e > 0.

(In fact, ve(C) < oo if and only if for all € > 0 there exists an r < co and p > 0 such that P.(C,P,r) >
p for all domain distributions P.)

2. There are spaces (C,P) for which vc(C) = oo and yet R.(C,P) < oo.

However, Scov does not cac-learn every concept space which is pac-learnable in the d.s. setting. That is,

there are concept spaces (C, P) that are finitely coverable for all € > 0, but not e-reducible for any ¢ > 0.

Proposition 3.32

1. If Re(C,P) < 0o for all € > 0, then N.(C,P) < oo for all e > 0.

2. There are concept spaces (C,P) for which R.(C,P) = co and yet N.(C,P) < oco.

3.5. LEARNING WITH CERTAINTY 67

An example of such a space is ({finite sets} U {[0, 1]}, uniform) defined on [0, 1]. This space is not e-reducible
at any scale ¢ < 1 since, as we saw in Section 3.2, if [0, 1] is the target concept then any finite training sample
leaves consistent concepts a distance 1 from [0,1]. On the other hand, we also saw that {@,[0, 1]} is an
e-cover of this space for any € > 0, which means that any of the cover-based learning procedures discussed
in Sections 3.2-3.4 can successfully pac-learn this space.

However, most natural concept spaces are finitely reducible, as suggested by Proposition 3.31—only
pathological examples appear not to be. This means Scov is a fairly general cac-learning procedure that is
applicable to most concept spaces normally encountered in practice. The question of whether non-e-reducible
concept spaces are nevertheless cac-learnable is addressed in Section 3.5.4 below.

3.5.3 Efficiency

Given the correctness of Scov, the main issue is determining its efficiency. As usual, we measure the data-
efficiency of a sequential learner by its worst case expected sample size over all target concepts in C'. Here
it is not hard to derive a simple upper bound on Scov’s expected sample size in terms of the reduction
parameters R, and P..

Proposition 3.33 (Data-efficiency) For any space (C,P) with R, = R.(C,P) < oco:

Re

ET: P < ——mMmMM—.
Scov(C: a€) = PE(C,P,RE)

(3.4)
Unfortunately, this bound is quite loose, and does not generally give an accurate indication of Scov’s true
data-efficiency in many cases. Developing a tight characterization of Scov’s data-efficiency in terms of the
reduction parameters, or any other simple measure of concept space complexity appears to be quite difficult.
However, despite the difficulty of obtaining a precise quantitative characterization of Scov’s data-efficiency,
it turns out that we can show Scov has the following rather remarkable optimality property.

Theorem 3.34 (Optimality) For any ¢, and any (well behaved”) concept space (C,P) with R.(c,P) < oo:
Scov meets the cac(e)-criterion with optimal expected training sample size for any target concept ¢ € C.

Therefore, even though Scov is an incredibly simple-minded technique, it is the optimum possible procedure
for cac-learning any e-reducible concept space (C,P). That is, Scov minimizes the expected number of
training examples needed to cac-learn any target concept in the space. This means Scov’s data-efficiency
cannot be improved upon, even for a single target concept in C, if the certainty guarantees are to be
maintained.

3.5.4 Complexity

Since Scov cac-learns with optimum data-efficiency for e-reducible spaces, it follows that the inherent data-
complexity of cac-learning these spaces coincides with Scov’s worst case data-efficiency. That is, the minimum
average number of training examples any learner requires to successfully meet the cac-criterion simply
corresponds to Scov’s expected training sample size for the problem. I have yet to derive a tight lower
bound on Scov’s expected data-efficiency in terms of the e-reduction parameters R, and P.. However, it
can be shown that finite reducibility is not only sufficient for Scov to cac-learn, it is also necessary for any
learning procedure to be able to cac-learn with bounded data-efficiency.

Theorem 3.35 (Cac-learnability) For a (well behaved) space (C,P): If R.(C,P) = oo for some ¢ > 0,
then no learner L can cac(e)-learn (C,P) with a bounded expected training sample size for every e > 0.

For example, the space ({finite sets} U {[0, 1]}, uniform) cannot be cac-learned by any learning procedure,
since 1t 1s not e-reducible for any € < 1. Therefore, in addition to being an optimal cac-learning procedure,
Scov is also a universal cac-learner in the sense that Scov successfully cac-learns any concept space for which
this is possible in principle—doing so optimally.

7 This result assumes the space (C,P) satisfies a certain separability condition, which is satisfied by all concept spaces
normally encountered in practice. See Appendix B for details.

68 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Given the strength of these results, it seems that achieving cac-learning in practice amounts to little
more than finding an efficient implementation of Procedure Scov. Given its optimality, this will always yield
a data-efficient learning procedure. However, Scov may not be efficiently realizable from a computational
standpoint, so heuristic implementations will generally have to be considered in practice.

3.5.5 Examples

As mentioned, the crude upper bound derived in Proposition 3.33 does not give a precise characterization
of Scov’s true data-efficiency in real applications. To obtain a more accurate picture of Scov’s real data-
efficiency, I consider a few simple case studies where we can precisely analyze the expected training sample
size of Scov. These case studies show that Scov is an extremely data-efficient learning procedure in many
practical circumstances (which is not entirely surprising given its optimality).

Ezample: (initials, uniform) on [0, 1]

First we consider the concept space (initials, uniform) introduced in Section 3.4.4. Here we have already
seen that Scov can be easily implemented for this space (Figure 3.7). In fact, this implementation is also
computationally-efficient as it requires only constant time per training example. Moreover, Scov is extremely
data-efficient for this problem as well.

The crude bound from Proposition 3.33 can be applied to this space by noticing that (initials, uniform) can
be reduced to an e-ball around a target concept ¢ by a observing domain object in each subinterval [z, —¢, z.]
and (2., z. + €]. Given this fact, we can determine that R.(initials, uniform) = 2 and P.(initials, uniform, 2) =
1/(2€?); and hence derive E Tgcoy(initials, uniform, ¢) < 1/¢? from Proposition 3.33. Clearly, however, this is
a loose bound. A more precise characterization of Scov’s data-efficiency can be obtained by a direct analysis.
In fact, we can derive an exact characterization of Scov’s stopping time for this simple space.

Proposition 3.36 For 0 < ¢ < 1/2, and any c€initials with z. € [2¢,1 — 2¢],
Tscov(initials, uniform, ¢) ~ negative-binomial(p = 2¢, k = 2),

which gives
L . 1
E Tgcov(initials, uniform,¢) < —
€

(since Scov stops even faster for concepts with endpoints nearer to 0 or 1).

This is extremely efficient learning performance: Scov only requires an average of 1/¢ training examples to
return an e-accurate hypothesis with certainty for the space (initials, uniform).

Ezample: (d-m-initials, uniform) on [0, 1]

Similar results can be obtained for the space (d-m-initials, uniform). For this more complicated space we must
extend the previous version of Scov to handle d independent initial segments defined on d disjoint subintervals
of [0, 1]. This can be done simply by keeping uncertainty intervals around each of the d unknown endpoints,
and halting as soon as the sum of interval-widths shrinks below 2¢; see Procedure Scov(d-m-initials, uniform)
in Figure 3.9. The correctness of this procedure is fairly obvious, since any hypothesis it returns is guaranteed
to be e-accurate by construction, and it clearly terminates wpl. As before, not only is Scov easy to implement
for this space it is also computationally-efficient as well, requiring at most O(d) time per training example.
Here again, Scov also turns out to be extremely data-efficient.

The crude bound from Proposition 3.33 can be applied to this space by noticing that (d-m-initials, uniform)
is reduced to an e-ball around a target concept ¢ by observing a domain object in each of the “e-brackets”
[zl — ¢, z!] and (2, ! + €] surrounding ¢’s d independent endpoints z., ...,z This ensures that the sum
of largest brackets from each pair has length at most 2e. Given this observation we can determine that
R¢(d-m-initials, uniform) = 2d and P,(d-m-initials, uniform, 2d) < (2d)! ¢?¢; and hence from Proposition 3.33
derive E Tgeoy(d-m-initials, uniform, €) < 2d/[(2d)! ¢29]. However, as before, this bound is loose. A far better
characterization of Scov’s data-efficiency can be determined by a direct analysis of the problem. In fact, we

3.5. LEARNING WITH CERTAINTY 69

Procedure Scov (d-m-initials, uniform; ¢)

INPUT: accuracy parameter e.

RETURN: a hypothesis h with accuracy at least 1 —e.
PROCEDURE:

e Sequentially observe training examples (zy, c¢(z:)), t = 1,2, ..., etc., labelled by some unknown target
d-m-initial concept c:

— Let [b[i] be the largest positive example observed in subdomain X; (1b[i] = 0, if none exists).
— Let ub[i] be the smallest negative example observed in subdomain X; (ub[i] = 1, if none exists).

— Observe random training examples until Zle(ub[i] — 1b[i]) < 2¢; the stopping condition.

e Once the stopping condition is reached, return the d-m-initial concept h defined by the midpoints in
each subdomain; ¢.e.,), = (ub[i] + 1b[i])/2 for i =1,...,d.

Figure 3.9: Procedure for learning (d-m-initials, uniform) with certainty.

can scale up the previous analysis for (initials, uniform) to obtain an exact characterization of Scov’s stopping
time for this more complicated space.

Theorem 3.37 For any 0 < ¢ < 1/(4d), and any target concept ¢ € d-m-initials defined by endpoints
zl .. 2 wherezl € [(i — 1)/d+ 2¢,i/d —2¢c] fori=1,...,d,

Tscov(d-m-initials, uniform, ¢) ~ negative-binomial(p = 2¢, k = 2d),

which gives
L . d
E Tscov(d-m-initials, uniform, ¢) < -
3

(since Scov stops even faster for concepts nearer the subdomain boundaries).

Again, this shows that Scov obtains extremely efficient performance, even while learning with certainty.

Exzample: (monomials, uniform) on {0,1}"

Although usually data-efficient, it is not always easy to find a computationally-efficient implementation of
Scov. An example of this is the space (monomials, uniform) defined on {0, 1}" which was introduced in
Section 3.4.4. Although Scov is still data-efficient for this space, any straightforward implementation of
Scov for (monomials, uniform) requires at least quasi-polynomial time to produce a final hypothesis in the
worst case. We demonstrate this below by considering what a straightforward implementation of Scov would
look like for this space.

Recall that (monomials, uniform) has an uneven metric structure where the (extensionally) large monomial
concepts (defined by few attributes) are widely spaced, but the small monomial concepts (defined by many
attributes) are tightly clustered around @. Therefore, the difficulty of reducing this space to an e-ball around
some target concept depends strongly on the size of the target concept.

Proposition 3.38 For distinct monomial concepts c; and cy (assuming ¢ = 27%):
1. If |er| <logy(1/€) — 1, then dy(cq,ca) > € for all eq # c1.
2. If |e1| = logy(1/€), then dy(ci,ea) < € iff c1 C ca, but dy(c1, c2) > €/2 for all ey # c1.
3. If |er] > logy(1/€) + 1, then dy(ci, e2) < € if |ea] > logy(1/€) + 1.

70 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Procedure Scov (monomials, uniform; ¢)
INPUT: accuracy parameter €.

RETURN: a hypothesis h with accuracy at least 1 —e.

PROCEDURE:
o Let hg = {ay, ..., a,} be the initial hypothesis; i.e., the monomial concept that conjoins every attribute.
e Sequentially observe training examples (z, c(z:)), t = 1,2, ..., etc., labelled by some unknown target

monomial c:

— If z; is a positive example (i.e., e(z;) = 1), then update the current hypothesis to include this
example; i.e., let h; = h;_1 N {positive attributes in z;}.

— If no monomial defined by log,(1/€) or more attributes is consistent with the observed training
examples (the stopping condition), then halt and return h;.

e Repeat until some hypothesis h; is returned.

Figure 3.10: Procedure for learning (monomials, uniform) with certainty.

That is, for large target concepts, defined by fewer than log,(1/¢) attributes, the only way to achieve ¢ -
reduction is to eliminate every other monomial concept in the space. On the other hand, for small targets,
defined by more than log,(1/¢) attributes, it suffices to eliminate only the large concepts from the space.

Given these observations, we can derive a straightforward implementation of Scov: Keep track of the
smallest monomial concept consistent with the training examples, and continue to observe training examples
until every large concept (defined by log,(1/¢) or fewer attributes) has been eliminated from the space; see
Procedure Scov(monomials, uniform) in Figure 3.10. This procedure works because the smallest monomial
concept consistent with the training examples is guaranteed to be unique [Pazzani and Sarrett, 1990; Haus-
sler, 1988]. Also, by Proposition 3.38, any large monomial concept defined by log,(1/¢) or fewer attributes is
guaranteed to be more than ¢ away from the smallest consistent monomial concept, so we cannot halt before
all large concepts have been eliminated.

Unfortunately, although this is a simple procedure, it does not quite run in polynomial time. The
problem is that there are too many large concepts in the space, and there is no obvious way to test them all
for consistency, short of enumeration. Specifically, there are more than (log;(ll/e)) monomial concepts defined
by log,(1/€) or fewer attributes, which means that any implementation of Scov is likely to require at least
quasi-polynomial time since this i1s how many large monomial concepts must be considered. Despite these
computational difficulties however, Scov remains a very data-efficient learning procedure for this space.

Theorem 3.39 For ¢ < 1/2 and any target concept ¢ € monomials{0, 1}",
. . 2 1
E Tgcov(monomials, uniform,e) < — {1In—) log,(en).
€ €

Overall, these case studies show how Procedure Scov can be easily implemented for various concept spaces
once the metric structure is understood, but finding a polynomial time implementation can be difficult in
general. Regardless of the computational difficulties however, these case studies demonstrate that Scov is
an extremely data-efficient learning procedure for a wide variety of concept spaces.

3.5.6 Assessment

This section showed how it is possible to learn with certainty under the d.s. model, following a necessarily
sequential learning strategy. The problem of learning with certainty turns out to be solvable for any concept

3.6. APPLICATIONS OF CERTAIN TO PAC LEARNING 71

space that is e-reducible at the desired error level ¢. This is a condition that is satisfied by all concept
spaces normally encountered in practice; e.g., whenever vc(C) < oo (but not necessarily whenever (C, P)
is finitely-coverable). The main result of this section was to identify a universal learning procedure, Scov,
that cac-learns with optimal expected data-efficiency for any cac-learnable concept space. This procedure
is easy to implement for simple spaces, and appears to be extremely data-efficient in practice.

Analogous to the previous pac-learning theory, it would be useful to obtain a tight characterization
of the inherent data-complexity of cac-learning based on some simple measure of the complexity of the
concept space. However, this turned out to be difficult to achieve. One idea is to exploit the fact that we
know Scov has optimal data-efficiency, and reduce the problem to determining bounds on Scov’s expected
training sample size. Thus, the challenge i1s to identify a simple structural parameter of concept spaces
that determines tight (linear) bounds on Scov’s data-efficiency. The e-reduction parameters R, and P, are
obvious candidates for such a measure, since a concept space is cac-learnable if and only if 1t is e-reducible.
However, the analyses of Scov’s data-efficiency in terms of R, and P, appear to be too loose to be useful in
practice. Improving these bounds remains an important open problem for future research. Perhaps a tight
characterization could be based on some other measure of concept space complexity; for example, effective
VCdimension, or some other measure.®

Notice however that such a characterization is not as important here as it was for pac-learning: here
we already have an optimal procedure, Scov, and we know that we cannot improve upon Scov’s efficiency,
regardless of how carefully we can predict its performance a priori. Therefore, an improved analysis in this
case can only help predict how well Scov will perform on a particular problem, but it cannot lead to an
improved procedure. Anyways, we saw in Section 3.5.5 that it is usually possible to obtain a reasonable
characterization of Scov’s data-efficiency in specific case studies by a special case analysis.

3.6 Applications of certain to pac learning

The previous section studied the problem of learning with certainty, more or less as an aside to our inves-
tigation of pac-learning. However, here we observe that the optimally data-efficient cac-learning procedure
Scov can also be applied to pac-learning problems. This is because producing an e-accurate hypothesis
with certainty automatically satisfies the pac(e, d)-criterion for any § > 0. Surprisingly, Scov turns out to
be far more data-efficient than any of the standard pac-learning procedures (BI, Sbi, and Sfoc) on many
natural problems, even though Scov attains a strictly higher level of reliability. Although counterintuitive,
this suggests that Scov might form the basis for more data-efficient pac-learning procedures than previous
approaches.

Of course, from Proposition 3.32 we know that not every pac-learnable concept space is cac-learnable. A
simple example of this is the space ({finite sets} U {[0, 1]}, uniform) on [0, 1], which we have seen is trivially
pac-learnable, but cannot be cac-learned for any € < 1. Therefore, Procedure Scov cannot be a fully general
pac-learning procedure like the previous cover-based techniques, BI, Sbi, and Sfoc. However, we do know
that Scov can cac-learn any concept space (C, P) for which vc(C') < oo by Proposition 3.31, and hence can
pac-learn most concept spaces normally encountered in practice.

The fact that Scov is far more data-efficient than the cover-based approaches in some cases raises the
question of determining the range of concept spaces where Scov obtains an advantage, and quantifying Scov’s
advantage when it does. Unfortunately, this proves to be difficult without a tight characterization of Scov’s
general data-efficiency. However, we can still investigate the various ways that Scov might be applied to
improve the data-efficiency of existing pac-learning procedures.

3.6.1 Direct application

The most obvious idea here is to directly apply Scov to pac-learning problems, exploiting the fact that most
natural pac-learnable concept spaces are also cac-learnable. Clearly, if Scov cac-learns a concept space then
it pac-learns 1t. Surprisingly, Scov is far more data-efficient than standard pac-learning approaches in many
natural cases, even though it solves a harder learning problem.

8Notice that vc(C) and N¢(C,P) cannot be appropriate candidates for such a measure, since neither coincides with cac-
learnability; cf. Propositions 3.31 and 3.32.

72 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

To illustrate this, consider the concept space (initials, uniform) on [0,1]. We can directly compare Scov
with the cover-based learning procedures, BI, Sbi, and Sfoc, on this space (using the covers constructed in
Proposition 3.18).

Observation 3.40 For the pac-learning problem (initials, uniform, e = 0.01,6 = 0.05):

1 1 1
1 1 1 .
ETstoc = O (Inln_+Ins < 9,528
1
ETscov < . = 100

Notice that Scov’s data-efficiency scales fundamentally better than standard pac-learning procedures. In
fact, Scov requires orders of magnitude fewer training examples in this case, even though it returns an
e-accurate hypothesis with certainty.

Similar results are also obtained for the more complicated space (d-m-initials, uniform) on [0, 1]. Here,
using the a-cover size (2a)~¢ from Proposition 3.20, we can again see that Scov uses many times fewer
training examples than any of the cover-based learning procedures in addition to achieving better scaling
behavior.

Observation 3.41 For the problem (d-m-initials, uniform, e = 0.01,8 = 0.05) with d = 10: °

1 1 1
Tt = @<E <dlnz—|—ln5)) = 156,952
1 1 1 .
ETSfOC = O z d—|— hl h’l z —|— hl g S 447 552
d
ETscov < B = 1,000

Finally, for the space (monomials, uniform) on {0, 1}", we again see that Scov is substantially more data-
efficient than the cover-based learning approaches (using the covers constructed in Propositions 3.23 and

3.24).

Observation 3.42 For (monomials, uniform, ¢ = 277§ = 0.05) on {0,1}", with n = 10: 1°

(9(l ((lnn)lnl—}-lnl)) = 24,907
€ € 1)

1 1
ETscov < (@] <z(ln n)In z) < 958

Tg1

Although these results are anecdotal, they demonstrate how Scov achieves far better data-efficiency in a
variety of cases. This seems surprising since, at first glance, one would expect Scov to be less data-efficient
than the cover-based procedures given its greater reliability. However, we see that Scov can actually use
orders of magnitude less training data in many cases, even while achieving these higher reliability levels.

The primary reason for this overwhelming advantage appears to be the fact that Scov is not based on
estimation. That is, all of the cover-based learning techniques use training examples to estimate the error
rates of various hypotheses to identify an accurate candidate. Scov, on the other hand, avoids estimation

9 Interestingly, the straightforward implementations of BI and Sbi require exponential time for this problem, while Sfoc and
Scov can be easily implemented to run in polynomial (expected) time.

10 The obvious implementations of procedures BI, Sbi, Sfoc, and Scov all require quasi-polynomial time for this problem.
However, Scov can be easily modified to run in polynomial time for this problem if we give up the guarantees of certainty.

3.6. APPLICATIONS OF CERTAIN TO PAC LEARNING 73

0.04 —

ET5cov =20

P{Tscov =t} 0.02 —
0 | | |
t=20 t =20 t =40 t =60
Training sample size ¢
Figure 3.11: Comparing Tgcoy and Tgy on (initials, uniform,e = 0.05,6 = 0.05); noting that

Tscov(initials, uniform, ¢, §) ~ negative-binomial(p = 2¢, k = 2).

altogether. There is an intuitive sense in which estimation seems inherently inefficient under the d.s. model:
if the entire metric structure of the space is known a priori, why use training data to estimate inter-
concept distances? Scov appears to gain an inherent data-efficiency advantage over the cover-based learning
procedures by not using training examples to gain information that is already known a priori.'! Of course,
we also know that not every cac-learnable concept space can also be pac-learned. Therefore, Scov is not
applicable to every pac-learnable concept space, and hence some form of estimation is necessary in general;
1.e., whenever the space is finitely e-coverable but not e-reducible. Of course, non—e-reducible spaces are not
typical in practice, and this leaves open the question of whether estimation is necessary for d.s. pac-learning
under any practical circumstances.

3.6.2 Tail truncation

Interestingly, Scov’s performance can still be slightly improved for pac-learning problems. To see this, note
that Scov not only observes a small expected number of training examples, it is also unlikely that Scov ever
observes a large training sample.

To see this, consider the space (initials, uniform) on [0,1]. From Proposition 3.36 we know that Tgcoy
has a negative-binomial distribution with parameters p = 2¢ and k = 2d, and Figure 3.11 shows that this
distribution has most of its mass concentrated below the mean 1/¢. This means that Scov observes large
training samples only with exceedingly small probability. In fact, for this example there is only a minuscule
probability that Scov ever observes more training examples than BI.

2
Proposition 3.43 For (initials, uniform): Pye {Tgcov > 1} < e‘“(l_i) fort > 1/c. Thus, fore < 6—3/2}
§ < e Y2 and using the cover constructed in Proposition 3.18, we get

PX""{TSCOV > TBI} < (666)30'
The same is also true for the more complicated space (d-w-initials, uniform).

2
Proposition 3.44 For (d-m-initials, uniform): Pxee{Tgcoy > t} < emte(1- %) fort > dJ/e. Thus, for
e<e 32 § <e 42 and using the cover constructed in Proposition 3.20, we get

PX""{TSCOV > TBI} < (66)30(1530'

I Note that estimation also prevents these cover-based procedures from achieving certainty within any finite number of
training examples.

74 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Procedure Scut (C, P, ¢, d)
o Let d-tailge oy be a fixed training sample size such that Pyeo {Tgcoy > d-tailgeoyt < & for every ¢ € C.
e Run Procedure Scov and return any hypothesis it produces.

o If Scov has not terminated within ¢ = d-tailg. oy training examples, then halt and return an arbitrary
hypothesis.

Figure 3.12: Procedure Scut

This shows that even though there is no strict upper bound on the number of training examples Scov
might observe, the probability that Scov observes a large training sample is exceedingly small; in fact, Scov
almost never observes more training examples than the fixed-sample-size procedure BI. However, by insisting
that the learner stop within some maximum number of training examples we obtain another idea for data-
efficient pac-learning: instead of letting Scov run until termination, we only let Scov run until the “J-tail”
of 1ts sample size distribution.

Definition 3.45 (J-tail) The d-tail of a sequential learning procedure L is the smallest training sample size,
d-taily,, such that Pxe{Ty > é-tail,} < & for any target concept ¢ € C. That is, L is gquaranteed to halt
within §-taily, training examples, with probability at least 1 — § for any ¢ € C.

Thus, we can obtain pac-learning by running Scov as is, returning any hypothesis it produces, until we reach
the d-tail of its sample size distribution—at which point we halt and return an arbitrary hypothesis. I refer
to this truncated version of Scov as Procedure Scut (Figure 3.12). Obviously Scut is a correct pac-learner
whenever the concept space is e-reducible at the desired scale e: if Scov halts it is guaranteed to return an
e-approximation by construction, and Scut truncates Scov with probability at most §.

The benefits of this truncation procedure are twofold: First, Scut improves Scov’s expected stopping
time, since it always halts at or before before Scov. Second, Scut provides a strict upper bound on training
sample size. Thus, if one cannot tolerate even a small probability that the training sample size exceeds
some pre-set bound, we can use Scut instead of Scov (and obtain a slight data-efficiency improvement in
the bargain). Of course, in so doing we must give up the guarantees of certainty and settle instead for the
weaker pac-criterion.

To illustrate the advantages of Scut we briefly reconsider the previous case studies. From Propositions
3.43 and 3.44 we can determine an upper bound on Scov’s d-tail for the concept spaces (initials, uniform) and
(d-m-initials, uniform), and hence identify appropriate sample size cutoffs for Procedure Scut; see Figure 3.13.

Proposition 3.46

[\

1.1
Tgcut (initials, uniform, ¢,6) < — (1 + 5 In 5)
€

[\

1.1
Tscut (d-m-initials, uniform, ¢,6) < — <d + 3 In 5)
€

Thus, not only does Scut pac-learn these spaces with a smaller expected sample size than Scov (and hence
smaller than BI, Sbi, and Sfoc, cf. Observations 3.40 3.41, and 3.42), Scut also pac-learns with a small
upper bound on total training sample size. In fact, Scut observes a maximum number of training examples
that is an order of magnitude smaller than BI for these problems.

Observation 3.47 Using the ¢/2-covers constructed in Propositions 3.18 and 3.20,

32 1 1
Tg1(initials, uniform, e, del) = 32 <1n —+1n 5)
€ €

2 1 1
Tg1(d-m-initials, uniform e, del) = — (dln —+1In 3)
€ €

3.6. APPLICATIONS OF CERTAIN TO PAC LEARNING 75

0.04 —
ET5cov =20
P{Tscov =t} 0.02 —
Pxoe {Tgcoy > 46} < 0.05
0 i |' |
t=0 t =20 t =40 t =60

Training sample size ¢

Figure 3.13: Tllustration of a §-tail cutoff. Here we see that Scov’s 0.05-tail for the cac-learning problem
(initials, uniform, ¢ = 0.05) is 46. Ie., Procedure Scut can solve this problem by truncating Scov after 46
training examples.

Thus, the upper bound on Scut’s training sample size is over 16 times smaller than BI’s fixed-sample-size for
these problems. Interestingly, this means that these concept spaces can be pac-learned with a much smaller
fixed-sample-size than previous bounds. That is, analyzing the sample size distribution of a sequential
learning procedure like Scov actually provides a new technique for deriving improved fixed-sample-size pac-
learning bounds.

3.6.3 Strict domination

Finally, we note that the data-efficiency of any fixed-sample-size learner L can be strictly dominated by a
sequential learner ScovA L that simply runs L and Scov in parallel and returns any hypothesis proposed
by either; see Figure 3.14. Since Scov never returns an e-bad hypothesis, ScovA L only makes a mistake
whenever L does, and hence is a correct pac-learning procedure whenever L is. Obviously ScovA L never
observes more examples than L, and is guaranteed to observe fewer for e-reducible spaces.

3.6.4 Assessment

The results of this section demonstrate how further improvements to the data-efficiency of d.s. pac-learning
can be obtained by considering alternative learning techniques beyond the cover-based strategies considered
in Sections 3.2-3.4. We saw how the reduction-based techniques developed in Section 3.5 for learning with
certainty can be more data-efficient than previous cover-based approaches for many natural concept spaces.

However, not every finitely e-coverable (i.e., pac-learnable) concept space is e-reducible, so these reduction-
based techniques can only offer an improvement for a strict subset of the pac-learnable concept spaces. So
these reduction-based learning procedures are not universal pac-learners in the same sense as the cover-
based procedures BI and Sbi. However, most concept spaces encountered in practice are e-reducible (cf.
Proposition 3.31), and for many of these spaces we can dramatically improve on the performance of BI and
Sbi; not only requiring fewer training examples on average, but also achieving significantly smaller bounds
on maximum training sample size. This raises the important question of determining the generality of this
advantage: for what class of concept spaces does Scut obtains a significant advantage over the cover-based
learning procedures, and how much of an improvement is possible in principle? It appears that these im-
provements can be obtained for any e-reducible concept space. However, this has yet to be proved, and much
work remains to be done in generalizing these results.

76 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

Procedure ScovAL (C,P, ¢,)
e Run Scov and L in parallel.

e Return the first hypothesis returned by either procedure.

Figure 3.14: Procedure ScovA L

3.7 Conclusion

This chapter introduced the idea of using sequential learning procedures to improve the data-efficiency of
distribution-specific (d.s.) pac-learning. In the d.s. setting, a concept class over a known domain distribution
forms a metric space in a natural way. Previous (general) approaches to d.s. pac-learning adopt this view
and exploit the existence of a small covers of the concept space to pac-learn. The idea is to first find a small
collection of concepts that accurately approximate every other concept in the space, and then observe a large
training sample that is sufficient to accurately estimate the errors of these cover-concepts. In this chapter,
we considered a number of ways to improve the data-efficiency of this basic learning strategy.

The first technique we considered was to apply a sequential rather than fixed-sample-size technique to
estimating hypothesis errors. Here we observed that a sequential probability ratio test (sprt) could estimate
the errors of cover-concepts much more efficiently than the previous fixed-sample-size procedure, leading to
a significant reduction in the expected number of training examples needed to pac-learn. This improvement
was obtained for any concept space, error level €, and failure level 4.

The second idea we explored was to adopt a multiresolution rather than global-cover based strategy to
search the concept space. The basic approach is to begin with a coarse search of the concept space and
then gradually refine this search to consider smaller neighborhoods near the target concept. This strategy
obtains fundamental improvements in data-efficiency over the global-cover based approach for any concept
space that is uniformly dense across local neighborhoods.

After exploring these direct techniques for improving the data-efficiency of d.s. pac-learning, we then
noted as an aside that sequential procedures can learn with certainty under the d.s. model rather than just
high probability. We first demonstrated this in a simple case study and then formalized the general problem
of certainly approximately correct (cac) learning. Here T proposed a simple generic learning procedure, Scov,
that correctly cac-learns a wide range of concept spaces. Surprisingly, this simple procedure cac-learns with
optimal data-efficiency, in that any other procedure that observes fewer training examples than Scov cannot
meet the cac-criterion for every target concept in the space. In addition to optimality, it was also shown
that Scov is a universal cac-learning procedure in the sense that it successfully cac-learns any concept space
for which this is possible in principle.

Surprisingly, this “certain” learning procedure Scov uses dramatically fewer training examples than any
of the previous pac-learning strategies in many case studies, even though it obtains a strictly higher level
of reliability. In fact, we saw that Scov could even be modified to learn with a much smaller fixed training
sample size than current fixed-sample-size learning procedures. This counterintuitive result reveals how the
learning with certainty model can provide an alternative technique for deriving data-efficient pac-learning
procedures. Of course, the scope of this technique is somewhat limited as Scov is not applicable to every
pac-learnable concept space. However, Scov cac-learns (and hence pac-learns) most natural concept spaces.

Contributions

The research reported in this chapter constitutes the first step towards developing learning procedures that
achieve the same accuracy and reliability guarantees as current fixed-sample-size pac-learning procedures,
but use far fewer training examples in practice. As in the previous chapter, we observed that sequential
learning strategies can substantially reduce the number of training examples needed to pac-learn. In fact, we
were able to prove these advantages analytically, rather than just establish them empirically. Interestingly,
the techniques developed in this chapter also lead to significant computational-efficiency improvements in
some cases.

3.7. CONCLUSION 77

The data-efficiency improvements we achieve range from constant factors to significant improvements in
scaling behavior, depending on the concept space and learning technique used. These substantial improve-
ments in data-efficiency enhance the practical applicability of pac-learning to real learning situations. In
practice, even a constant reduction in training sample size can be the difference between a useful and an
irrelevant theory.

3.7.1 Research directions

Although specific directions for future research were discussed throughout the chapter, here I briefly sum-
marize some of the more important areas for future work. The work on learning with certainty (Section 3.5)
raises important questions concerning the computational feasibility of implementing procedures such as Scov,
as well as characterizing the complexity of concept spaces with respect to cac-learning. Other research direc-
tions involve investigating alternative learning criteria and models not covered in this thesis; in particular,
exact learning, and pac-learning with respect to classes of domain distributions. Finally, I describe how the
reduction-based learning techniques developed here can be scaled-up to deal with the distribution-free and
noisy learning models.

Computational feastbility: Although the primary goal of this chapter was to improve the data-efficiency
of pac-learning, it is also important to develop computationally-efficient procedures. The techniques de-
veloped in this chapter lead to computationally-efficient procedures for learning simple concept spaces like
(initials, uniform) and (d-m-initials, uniform) on [0, 1], and (monomials, uniform) on {0,1}". However, for
these simple spaces polynomial time pac-learning procedures were already known. It would be interest-
ing to see if computationally-efficient learning procedures could be found for more interesting spaces like
(halfspaces, uniform) on [—1, 1], or spaces involving multilayer-perceptrons, etc. Perhaps also some of these
ideas could lead to a polynomial time procedure for pac-learning (dnf, uniform), a long standing open problem
in computational learning theory.

Characterizaing complexity: For the cac-learning model, the most important remaining challenge is to
develop a characterization of concept space complexity that determines tight bounds on achievable data-
efficiency. This characterization is important because 1t helps identify those spaces where the reduction-based
learning strategies Scov and Scut can yield significant advantages over previous cover-based approaches. The
current results show that e-reducibility is both necessary and sufficient for cac-learnability, but fail to yield
a tight characterization of Scov’s data-efficiency. Perhaps, some refinement of this reducibility notion is
needed to achieve an appropriate characterization. Another approach is to generalize the tight analyses of
special cases like (d-m-initials, uniform) to handle a wider variety of concept space structures.

FEzact learning: In Section 3.5 we observed how sequential learning procedures can learn with certainty
under the d.s. model. That is we can achieve pac(e, 0)-learning under the d.s. model, not just pac(e,d)-
learning. Similarly, one can consider the problem of exact learning; i.e., return a hypothesis with zero error,
not just error € > 0. In fact, we immediately obtain two variants of this problem: probably exact learning
(pac(0,4)) and certainly exact learning (pac(0,0)). Clearly, each of these two criteria can be met under the
d.s. model for some concept spaces. For example, it is easy to see that any finite space can be pac(0, 0)-
learned under the d.s. model, simply by observing training examples until the target concept is identified
up to zero-error variants. This raises the question of determining the range of concept spaces that can be
pac(0,4) and pac(0,0) learned, and determining the distributional assumptions necessary to achieve these
criteria.

Classes of distributions: Returning to the standard pac(e, d)-criterion, note that it is also possible to
consider the problem of pac-learning a concept class C' with respect to a class of domain distributions P,
rather than just learning C' with respect to a single distribution P, or every possible domain distribution.
This problem has been considered in the literature by Kulkarni [1991]. It has been conjectured that pac-
learnability of a concept class C with respect to a class of distributions P is determined by the existence of a
uniform bound on metric entropy, N.(C,P), over all distributions P € P [Benedek and Itai, 1991]. However,
Dudley et al. [1994] have recently shown that this conjecture is false. Therefore, the challenge of finding a
complexity measure that determines the pac-learnability of general (C,P) remains open. In spite of this fact,
it would still be interesting to consider the effectiveness of sequential learners for this task; i.e., identifying

78 CHAPTER 3: DISTRIBUTION-SPECIFIC LEARNING

effective sequential learning procedures for this problem, quantifying their data-efficiency, and comparing
this to fixed-sample-size approaches.

Detecting training convergence: From a practical perspective the most interesting direction for future
research is based on the observation that any d.f. pac-learning problem can be turned into a d.s. problem
simply by exploiting unlabelled training examples. That is, we can use a large collection of unlabelled
training examples to accurately estimate all inter-concept distances (without observing a single labelled
training example) and then apply the d.s. learning strategies developed in this section to significantly reduce
the number of labelled training examples needed to pac-learn. Since unlabelled examples are presumably
cheaper, why use labelled examples to estimate inter-concept distances? Although this strategy is likely to
be computationally expensive and require large amounts of unlabelled training data, it can be extremely
advantageous in situations where labelled training data is expensive to obtain; for example, in medical
diagnosis or geological applications. Another interesting aspect of this strategy is that is generalizes more
readily to handle noise than the d.f. strategy developed in Chapter 2. In fact, these metric-based learning
strategies seem applicable to general function approximation problems, not just classification learning.

Chapter 4

Characterizing rational versus
exponential learning curves

4.1 Introduction

When learning a concept from random examples we naturally expect the accuracy of a learner’s hypotheses
to improve as it sees more training examples. In some sense, it 1s the rate of this improvement that best
describes the learning performance of the system. Given i.1.d. random examples, we define a hypothesizer’s
learning curve by the expected error of its hypotheses as a function of training sample size. Intuitively, this
is what one measures by repeatedly training a hypothesizer on a fixed problem and plotting the average error
of its hypotheses as a function of training sample size. Since we expect a learner’s hypotheses to improve
with increasing training sample size, we measure the quality of a learning curve by the rate at which the
average hypothesis error converges to zero.!

Thus, here we are considering an alternative aspect of learning performance to pac-learning: the idea is
to examine the expected error of a learner’s hypotheses, rather than the probability the learner produces
a hypothesis with error less than €. Also, we examine a hypothesizer’s performance for all training sample
sizes, rather than just determining a minimum sample size sufficient to meet the pac-criterion.

Worst case learning curves

Obviously the quality of a hypothesizer’s learning curve is determined by its prior knowledge about the
underlying target concept and domain distribution. For example, if the exact target concept were known a
priort then zero error can be trivially achieved. Obtaining rapid convergence to zero error is more interesting
if we know less about the target concept and domain distribution beforehand. Here we continue to consider
the model of prior knowledge popularized by Valiant [1984]: we assume the target concept ¢ belongs to some
known class C', but nothing is known about the distribution of domain objects P, which could be arbitrary.
Given this model, we naturally consider what can be achieved in the “worst case, distribution-free” sense.
Specifically, for a concept class C' we are interested in determining the best learning curve that can be
obtained in the worst case over all target concepts in C' and domain distributions P.

An analysis of this form has been carried out by Haussler, Littlestone and Warmuth [1988; 1994], who
investigate the smallest expected error a hypothesizer can achieve after ¢ training examples in the worst case
over all target concepts in C' and domain distributions P. In particular, they develop a special hypothesis
guessing strategy, HLW, that obtains an expected error of at most O(vc(C)/t) for any target concept in
C' and domain distribution. Moreover, they show that no hypothesis guessing strategy can do significantly
better than this: given ¢ training examples, any hypothesizer must obtain an expected error of at least
Q(ve(C)/t) for some target concept ¢; in C' and some domain distribution P;. This shows that, overall, the
best achievable worst case expected error always behaves as a “rational” function of ¢t (i.e., ©(t~1)) for any
reasonable class of concepts C'.

INote that we are assuming zero error is achievable here; i.¢e., that classification is noise-free.

79

80 CHAPTER 4: LEARNING CURVES

Issue

These results would seem to suggest that we should always expect to observe rational learning curves in
practice, at least in the worst case. However, it turns out that rational learning curves are not always
observed in practice: a recent empirical study by Cohn and Tesauro [1990; 1992] shows that ezponential
learning curves can often be observed in natural situations. They demonstrate this by testing a specific
hypothesis generation algorithm, BP (backpropagation), on concept classes defined by fixed neural network
architectures over {0, 1}". By repeatedly training BP at various sample sizes ¢ and plotting the average error
of its hypotheses, Cohn and Tesauro observe learning curves that converge exponentially to zero error (i.e.,
average error behaving as e®(~%) for training sample size t).

These experimental findings demonstrate a clear limitation of the worst case theory of Haussler, Little-
stone and Warmuth for predicting even the shape of the learning curves observed in practice. Of course,
these empirical results do not directly contradict the worst case theory, since the exponential behavior was
only observed for specific target concepts and domain distributions and this may not reflect the true worst
case behavior of the given situation. That is, the discrepancy between the theoretical and empirical results
could simply be because the worst case results are unrepresentative of the typical performance observed
in practice. However, this simplistic conclusion does not explain all of the results obtained by Cohn and
Tesauro: Aside from testing BP on neural networks on {0, 1}, Cohn and Tesauro also tested BP on the same
network architectures defined over [0,1]"; i.e., they considered the same neural network architectures with
discrete and real-valued inputs. Although defined on different input domains, these paired concept classes
defined by the same network architecture have identical VCdimension (in one case considered), and hence are
isomorphic under the previous theory. In spite of this, Cohn and Tesauro observe radically different learning
curves in each case: By training BP on the same set of target weights and uniform domain distributions for
both the discrete and real-valued cases, they invariably observe:

1. Finite concept classes (networks with {0, 1} inputs) yield exponential learning curves.
2. Continuous concept classes (networks with [0, 1] inputs) yield rational learning curves.

Moreover, the rational curves they observe in the continuous case closely match the worst case predictions
of Haussler, Littlestone and Warmuth. Thus, the worst case theory can provide an accurate prediction
of learning curve behavior in some cases, so merely stating that the worst case theory does not reflect
the “typical” learning curves observed in practice is incorrect—sometimes it does. An adequate theory of
empirical learning curve behavior must explain how the worst case theoretical results are typical in some
situations (continuous concept classes) but not others (finite concept classes).

Observation and approach

These experimental results illustrate a striking dichotomy between rational and exponential convergence
that is completely missed by the current worst case theory. In this chapter we provide a simple theoretical
explanation of this dichotomy based on making a simple observation about the previous theory: A close
inspection of [Haussler, Littlestone and Warmuth, 1988] reveals that their analysis is non-uniform in training
sample size ¢. In particular, the lower bound result (that forces an Q(¢t=1) worst case expected error) chooses
a different domain distribution and target concept for each training sample size ¢. Clearly, this does not
reflect the situation normally encountered in practice, nor that investigated by Cohn and Tesauro, where
these are held fixed. This raises the question of whether, in a model where the domain distribution and
target concept are held fixed, there are situations where the best achievable worst case learning curve is
exponential and other situations where it 1s rational. It turns out the answer to these questions is yes.

Results

By carrying out an analysis of worst case learning curves where the domain distribution and target concept
are held fixed, this chapter shows how the dichotomy between rational and exponential learning curves can
be explained in the worst case distribution-free (d.f.) setting. In particular, we show that there are concept
classes that permit exponential learning curves, even in the worst case; but there are other concept classes

4.1. INTRODUCTION 81

that force any hypothesizer to produce rational learning curves, even for fixed domain distributions and
target concepts.

We first establish the basic dichotomy between exponential and rational convergence for the simple case of
finite versus continuous concept classes. Here it is not hard to show that for a finite class C', any hypothesizer
that guesses consistent concepts from C will obtain exponential convergence in the worst case. We also prove
that it i1s impossible to achieve better than exponential worst case convergence for a non-trivial class, so this
must be the optimal form of worst case learning curve. However, we then show that exponential convergence
cannot be achieved for every possible concept class. In particular, we show that continuous classes force
any hypothesizer to obtain rational learning curves for some target concepts and domain distributions, even
if these are held fixed. Note that this is stronger than the lower bound result of Haussler, Littlestone and
Warmuth [1988], in that it is easier to force bad behavior by choosing a different target concept and domain
distribution for each training sample size, than it is to show bad behavior results even when these are held
fixed.

These results nicely corroborate the experimental findings of Cohn and Tesauro. The fact that they
observe exponential learning curves for finite concept classes is no accident, since this is achieved by any
consistent hypothesizer. Continuous concept classes, on the other hand, always force rational learning curves
to be exhibited, at least in the worst case.

Of course, there is a significant gap between finite and continuous concept classes. Therefore, these
results are far from comprehensive; for example, they say nothing about what happens for countably infinite
concept classes. This leaves open the question of identifying the precise conditions that dictate between
rational and exponential learning curves, and whether other intermediate forms of convergence are possible
(e.g., ©(t~™) or some other form). We obtain exact answers to these questions for the special case of concept
chains—i.e., classes that are totally-ordered under set-inclusion.? It turns out that for a concept chain C,
the precise condition that determines the worst case convergence form is the presence or absence of any dense
subchains in C' (i.e., a subchain D C C such that between any two concepts d; C dz in D there is a third
dy C d3 C dy). We show that somewhere-dense chains force rational worst case convergence, but exponential
convergence can always be obtained for nowhere-dense (i.e., “scattered”) chains, even in the worst case. Not
only does this characterize the precise boundary between rational and exponential learning curves in the d.f.
model, it also shows that no other form of worst case learning curve is possible (for concept chains) in this
setting.

Finally, we observe that every concept class Cohn and Tesauro considered in their computer simulations
was represented with limited precision, and hence fundamentally finite. This means that every learning
curve they observed must have been asymptotically exponential —apparently contradicting the fact that
they observed rational curves in some situations. This discrepancy is resolved by noting how, at the scale of
training sample sizes examined relative to the inter-concept distances, convergence can appear rational even
when it is fundamentally exponential.

Overview

This chapter is organized as follows. Before presenting the main results, Section 4.2 first introduces the basic
modelling assumptions and briefly surveys the existing theory of worst case learning curves.

Section 4.3 then demonstrates the dichotomy between exponential and rational learning curves in its
most fundamental form by examining finite versus continuous concept classes. Once this basic dichotomy is
established, Section 4.4 then investigates the exact boundary between rational and exponential worst case
learning curves for the special case of concept chains. Here it is shown that the existence of a dense subchain
in the original chain C is the precise condition that dictates between worst case convergence modes. This
also establishes that only two types of worst case learning curves are possible in the d.f. setting (for concept
chains).

Section 4.5 then briefly notes how exponential learning curves can appear rational at small training
sample sizes, even when convergence remains asymptotically exponential; thus explaining how the dichotomy
between rational and exponential learning curves can be observed in finite precision computer experiments.

2Note that in this chapter it will be convenient to think of concepts as subsets of the domain, ¢ C X, rather than indicator
functions, ¢ : X — {0,1}.

82 CHAPTER 4: LEARNING CURVES

Next, Sections 4.6 and 4.7 on some preliminary results for extending these analyses to the general case.
Here we consider the two issues of (i) drawing a general boundary between rational and exponential worst
case learning curves, and (i) determining tight bounds on the specific rates of worst case convergence.
These questions turn out to be quite difficult however, and only minor progress is reported. The barriers to
developing a general theory are identified for both the d.f. and d.s. cases.

Finally, Section 4.8 considers the relationship between learning curve theory and the theory of pac-
learning, and concludes the chapter with some suggestions for future research. Overall, these results show
how the dichotomy between rational and exponential learning curves can be recovered in the distribution-free
setting.3

4.2 Background: learning curve theory

Before investigating the specific conditions where rational versus exponential learning curves are obtained,
this section briefly introduces the mathematical model used in this analysis and surveys the relevant existing
research.

4.2.1 Model

We continue to consider the standard problem of learning an accurate concept definition from (noise free)
random examples. Recall that in this chapter it will be convenient to think of concepts as subsets of the
domain, ¢ C X, rather than indicator functions ¢ : X — {0, 1}. Thus, an ezample is a pair (z, 1.(z)) that

specifies a domain object z and gives the value of ¢’s indicator function at z. To simplify notation we let

ext 2 ({x1, Le(z1)), ...y (2, 1c(2¢))) denote the sequence of training examples generate by a target concept ¢

and object sequence x = (1, ..., Zy).

Given these definitions, we consider the same batch training protocol as before: the learner is given a finite
sequence of training examples cx’ from which it must produce a hypothesis » C X that is then tested ad
wnfinitum on subsequent test examples. But rather than investigate learning procedures that must choose an
appropriate training sample size as well as produce an accurate hypothesis, we focus only on the hypothesis
guessing strategies themselves. In particular, we consider how the quality of a hypothesizer’s guesses improve
with increased training sample size. Formally, a hypothesizer H is just a mapping from finite sequences of
training examples to hypotheses H : (X x {0, 1})* — 2%X.

As usual, we adopt the usual 1.1.d. random examples model, which assumes domain objects are indepen-
dently generated according to some fixed domain distribution P and classified according to some fixed target
concept c¢. Here, the error of a hypothesis A with respect to target concept ¢ and domain distribution P

is given by P(h A ¢), where A denotes symmetric set-difference. Thus P defines a natural (pseudo)metric,

t

dp(h,¢) L P(h A ¢), over the space of concepts on X. For a given training sequence cx?, we denote the

learner’s hypothesis by H[cx'], and the error of this hypothesis by err(H, P, ¢, x") L dp(Hlex'],¢). Given
this model, the hypothesizer’s goal is to produce accurate hypotheses given as few training examples as
possible.

Under the i1.i.d. random examples model we can characterize the overall performance of a hypothesizer H,
as follows: First, consider a fixed training sample size ¢, and notice that a fixed target concept ¢ and domain
distribution P induce a distribution training sequences of length ¢#. From this distribution, H maps each
training sequence cx’ to a particular hypothesis, H[cx?], and hence induces a distribution over hypotheses.
Since each hypothesis H[cx'] has a particular error value with respect to ¢ and P, err(H,P,c,x"), H in fact
induces a distribution over hypothesis errors. This distribution, referred to as the “¢*! error distribution
of H with respect to ¢ and P” completely characterizes H’s learning performance for a given training
sample size t. To characterize H’s overall learning performance then, we consider the sequence of error
distributions H produces as a function of training sample size. “Good” learning performance is characterized
by error distributions that quickly become skewed towards zero after few training examples; as illustrated
in Figure 4.1.

3The key results from this chapter were reported in [Schuurmans, 1995], and a full paper is currently under review [Schuur-
mans, 1996a]. Permission has been obtained from Springer-Verlag for inclusion of this material here.

4.2. BACKGROUND: LEARNING CURVE THEORY

training
sample
size

hypothesis error rates

Figure 4.1: Evolving density of hypothesis error rates as a function of training sample size.

83

84 CHAPTER 4: LEARNING CURVES

Although the error distribution completely describes a hypothesizer’s learning performance at a given
training sample size, it is usually not possible to consider such a comprehensive characterization in practice.
Useful but practical characterizations of learning performance can still be obtained by focusing on some
crude aspect of the error distribution’s shape; for example, its expected value or tail probabilities. In this
chapter we focus on the expected value of a hypothesizer’s error distribution and consider the average error
attained by H’s hypotheses after ¢ training examples, E z: err(H,P,c,x").* In particular, we define H’s
learning curve (with respect to a target concept ¢ and domain distribution P) by the ezpected error of
its hypotheses as a function of training sample size . So although the sequence of error distributions fully
describes H'’s learning performance, we are only focusing on the average error of H’s hypotheses for each
training sample size.?

Obviously the quality of a hypothesizer’s learning curve depends on whatever prior knowledge it has
about the target concept and domain distribution beforehand. Most research on learning curves adopts one
of two models of prior knowledge: the d.f. model (studied in Chapter 2) where we assume the target concept
belongs to some known class C' but nothing is known about the domain distribution; and the d.s. model
(considered in Chapter 3) where we assume in addition that the precise domain distribution is known a
priori. In either case, the idea is to characterize the best learning curve that can be achieved in the worst
case over all possible target concepts in C' and all possible domain distributions P, given whatever prior
assumptions we make about P. Obviously the rate at which this best achievable learning curve converges to
zero error is determined by the complexity of the concept class C' or concept space (C, P), as the case may
be. The primary focus in this chapter will be on the d.f. model studied by Valiant.

4.2.2 Distribution-free theory

In Valiant’s d.f. model we assume the target concept ¢ belongs to some known class C', but nothing is
known about the domain distribution P beforehand. Given this model, we naturally consider what can be
achieved in the “worst case, distribution-free” sense. Specifically, for a concept class C' we are interested in
determining the best learning curve that can be obtained in the worst case over all possible target concepts
in C' and domain distributions P.

Upper bound

An analysis of worst case learning curves under this model has been carried out by Haussler, Littlestone and
Warmuth [1988] who investigate the smallest expected error a hypothesizer can guarantee after ¢ training
examples for a concept class C'. They develop a special learning strategy HLW which, given ¢ training
examples, always produces hypotheses with a small expected error, regardless of the target concept in C' and
domain distribution P.

Theorem 4.1 [Haussler, Littlestone and Warmuth, 1988, Theorem 5.1] For any concept class C
with ve(C) < oco: given t random training examples, guessing strategy HLW produces hypotheses with an
expected error of at most

2ve(0)

E st err(HLW, P, ¢, x") 1

(4.1)

for any target concept ¢ € C, and any domain distribution P.

4Interestingly, E ,+ err(H,P,c,x!) corresponds to the probability that H’s hypothesis after ¢ training examples misclassifies
the t + 1st example [Haussler, Littlestone and Warmuth, 1988, Lemma 6.1]. Le.,

E ¢ err(H,P,c,xt) = P! {xt+1 f Tgext)(Ze41) # Le(@e41) } .

50f course other aspects of an error distribution’s shape might be important in particular applications. For example, in pac-
learning theory (as studied in the previous two chapters) we consider the tail probabilities of the hypothesizer’s error distribution:
demanding that the hypothesizer produce an error distribution with at most § of its probability mass concentrated above ¢.
Here however, we simply consider how the ezpected error of a learner’s hypotheses evolves with increased training sample size.
These two aspects of an error distribution’s shape are clearly related: a small expected value implies a small probability in the
upper tail, and vice versa.

4.2. BACKGROUND: LEARNING CURVE THEORY 85

So, for any concept class C with finite VCdimension, the hypothesis strategy HLW achieves a worst case
expected error that converges rationally (i.e., O(t~1)) to zero error, with a specific rate of decrease that is pro-
portional to the VCdimension of C'. In later work, Haussler, Littlestone and Warmuth [1994] develop a ran-
domized version of this guessing strategy, HLW g, and obtain a slightly better bound E st err(HLWg, P, ¢, x") <
ve(C)/(t+1).

Lower bound

In addition to proving a rational upper bound on the expected error obtained by HLW, Haussler, Littlestone
and Warmuth also show that no hypothesizer can do significantly better than this: for any guessing strategy
H there is a sequence of domain distributions P1,P5; ..., and a sequence of target concepts ¢y, cs, ..., that
forces H to obtain an expected error of at least Q(¢=1) for training sample sizes t = 1,2, ..., ete.

Theorem 4.2 [Haussler, Littlestone and Warmuth, 1988, Theorem 5.2] For any concept class C
with ve(C) > 2: given t > d training examples, any hypothesizer H must obtain an expected error of at least

ve(C) —1

E e err(H, Py e, x') > 2e(l + 1)

(4.2)

for some target concept ¢ € C' and some domain distribution Py.

Therefore, no hypothesis guessing strategy can achieve a worst case expected error that converges faster
than rationally to zero error. This shows that the best achievable worst case expected error for each training
sample size t must behave as a rational function in ¢ (i.e., ©(vc(C)/t)) for any concept class C' with finite
VCdimension.

Assessment

These results appear to provide a comprehensive characterization of worst case learning curves in the d.f.
setting. From Theorems 4.1 and 4.2, it is tempting to conclude that for any concept class C':

1. rational convergence is the best that is achievable in the worst case, and
2. hypothesis strategy HLW always attains (near) optimal worst case learning curves.

However, neither of these conclusions is entirely accurate: It turns out that substantially better than rational
convergence can be achieved for many non-trivial concept classes, even in the worst case; and there are
alternative guessing strategies that do significantly better than HLW in some situations. The main reason for
this discrepancy is that the analysis of Haussler, Littlestone and Warmuth is non-uniform in training sample
size t. In particular, the lower bound result, Theorem 4.2, forces large expected error rates by choosing
a different domain distribution and target concept for each training sample size ¢t. This analysis clearly
does not reflect the situation encountered by a learning system in practical applications, nor in empirical
learning curve investigations. Consequently, the results of this theory do not always match the learning
curve phenomena observed in practice.

For example, the first conclusion is inaccurate, since forcing bad behavior by choosing a series of target
concepts and domain distributions can easily overlook situations where sub-rational convergence could be
obtained for any fixed choices, even in the worst case. Evidence for this is provided by the experimental
results of Cohn and Tesauro which demonstrate that exponential learning curves can be obtained for many
finite concept classes. (Granted, these results could simply be missing the worst case behavior, but we will
see below that this is not the case.) The second conclusion could be inaccurate since, in a uniform setting

8Note that a complete description of Strategy HLW is somewhat involved. In fact, HLW will generally produce hypotheses
that do not directly belong to C'. The precise details of this strategy will not concern us here; a complete description is given
in [Haussler, Littlestone and Warmuth, 1988], where this strategy is referred to as the “l1-inclusion graph prediction strategy.”
The reason they devise this strategy HLW is that the obvious approach of simply guessing arbitrary consistent concepts from C'
does not work in general: such a strategy can be forced to have expected errors of ((Int)/¢) (which is not quite rational in ¢)
for certain concept classes [Haussler, Littlestone and Warmuth, 1988, Theorem 6.2]. Therefore, in order to obtain guaranteed
rational convergence, the more sophisticated guessing strategy HLW is required.

86 CHAPTER 4: LEARNING CURVES

where the target concept and domain distribution are held fixed, further refinements to the HLW strategy
might be necessary to ensure near-optimality. For example, if sub-rational worst case convergence is possible
for some concept classes, then Theorem 4.1 no longer guarantees that HLW necessarily achieves near-optimal
learning curves.

The main point of this chapter is to consider a uniform analysis of worst case learning curves that keeps
the domain distribution and target concept fixed for all training sample sizes. It turns out that this more
natural model allows us to prove that exponential worst case convergence is indeed possible for some concept
classes, but also that there are other classes that force any hypothesizer to obtain rational convergence for
fixed domain distributions and target concepts.

4.2.3 Distribution-specific theory

Given the comprehensive nature of the d.f. theory developed by Haussler, Littlestone and Warmuth [1988],
most recent research has concentrated on developing a d.s. theory of learning curves. Part of the motivation
for this is that stronger assumptions should yield better predictions of the actual learning curves observed
in practice. A d.s. analysis (as investigated in Chapter 3) adopts a stronger model of prior knowledge where
we assume the domain distribution P is known a prior:, but the target concept ¢ is known only to belong to
some class C'. So here we are interested in determining the best learning curve that can be obtained in the
worst case over all possible target concepts in some class C' given prior knowledge of a concept space (C, P).

A comprehensive theory of d.s. worst case learning curves has yet to be developed to the same extent
as the d.f. theory presented above. Most research to date has considered specific examples; determining
the convergence rates obtained by particular hypothesis algorithms on specific concept spaces. Given the
stronger assumptions of this model, many researchers have demonstrated that exponential convergence can
be achieved in specific situations.

For example, many researchers have analyzed the behavior of specific hypothesizers on particular concept
spaces and shown that exponential convergence is possible. Much recent work in machine learning, for
example, has considered the concept space (monomials, uniform) on {0,1}". For this space, Pazzani and
Sarrett [1990] have analyzed the performance of a hypothesis strategy that simply chooses the (unique)
smallest monomial concept consistent with the training examples. Similarly, Langley et al. [1992] study a
hypothesis strategy that guesses the most likely class assuming independent features. In both cases, the
authors show that these hypothesizers achieve exponential convergence to any target concept (although this
is not explicitly stated as such). In a similar study, Golea and Marchand [1993] investigate the performance
of a “clipped Hebb rule” hypothesizer for the concept space (halfspace, uniform) on {41, —1}", and explicitly
prove that it achieves exponential convergence in the worst case.

Some researchers have shown that even general hypothesis guessing strategies can obtain exponential
learning curves for particular concept spaces. For example, Baum and Lyuu [1991] and Lyuu and Rivin
[1992] analyze the same concept space (halfspace, uniform) on {+1,—1}" considered by Golea and Marchand
above, but show that in fact any hypothesizer that guesses consistent halfspace concepts achieves exponential
convergence to any target in this space (for large n). Haussler et al. [1994] achieve a similar result for the
related concept space (halfspace™, spherical) defined on IR™, where halfspace™ is the class of concepts defined
by perceptrons with {+1,—1} weights, and spherical is any distribution in IR™ that is radially symmetric
about the origin. Again, they show that any consistent halfspace hypothesizer achieves exponential learning
curves for this space.

Bayestan analyses

Another large body of work concerning the analysis of learning curves is the Bayesian statistical-mechanical
approach, which not only assumes the hypothesizer knows the domain distribution P a prior:, but also has
access to a prior distribution Q over possible target concepts. This type of analysis tends to consider the
average case learning curves obtained by the Bayes and Gibbs hypothesizers in particular. For example,
Seung et al. [1991] consider the concept space (halfspace®, spherical) defined on IR", and argue that the Bayes
and Gibbs guessing strategies obtain exponential average case learning curves for this space. Similarly, Opper
and Haussler [1991] argue that the Bayes and Gibbs strategies obtain rational average case learning curves
for the space (halfspace, spherical) on IR". General analyses [Amari, Fujita and Shinomoto, 1992; Haussler,

4.3. DICHOTOMY BETWEEN RATIONAL AND EXPONENTIAL LEARNING CURVES 87

Kearns and Schapire, 1991] suggest that rational convergence is a natural form of learning curve for this
model.

Given the much stronger assumptions of this model it is not too surprising that many researchers have
indicated such a dichotomy between rational and exponential average case learning curves; e.g., [Schwartz
et al.,; 1990; Seung, Sompolinsky and Tishby, 1991; Barnard, 1994]. The common suggestion is that this
dichotomy is determined by the existence of “gaps” between target concepts; ¢.e., whether target concepts
are isolated under the distribution metric dp [Schwartz et al., 1990; Barnard, 1994]. However, it is easy to
refute this suggestion in general [Dudley et al., 1994] (see also the counterexample in Section 4.7), so this
really must be an informal observation. Our purpose here is to (rigorously) establish that this dichotomy
already exists under the much weaker distribution-free model.”

Assessment

The distribution-specific theory, given its much stronger assumptions, appears able to predict a dichotomy
between rational and exponential learning curves, both under a worst case and average case analysis. Unfor-
tunately, current analyses only address specific case studies, and therefore do not provide a general charac-
terization of the concept space properties that permit or prohibit exponential convergence. (A preliminary
attempt at a general (rigorous) characterization is given by Haussler et al. [1994], but only finite concept
spaces are addressed in any detail.)

Even though distribution-specific analyses can clearly provide tighter characterizations of the learning
curves observed in practice, these analyses require much more problem specific information than a d.f.
analysis; in fact, much more than is typically available in practice. This chapter shows how, in a general
way, this dichotomy can still be revealed under much weaker assumptions. A benefit of the d.f. approach
is the simplicity of analysis and its wider range of applicability. This allows us to draw a clean boundary
between convergence types based solely on a simple structural property of concept classes. Any insights
obtained here will aid in our understanding of the distribution-specific case also.

4.3 Dichotomy between rational and exponential learning curves

This section investigates the uniform analysis of worst case learning curves under the d.f. model. Here we
assume and target concept are held fixed throughout the training process. We establish the dichotomy
between rational and exponential worst case convergence in its most basic form by considering finite versus
continuous concept classes; showing that the dichotomy between rational and exponential learning curves
does indeed exist and can be recovered in the d.f. setting.

Since we are primarily concerned with the distinction between rational and exponential learning curves,
we focus on the worst case asymptotic form of a hypothesizer’s learning curve. In particular, for a concept
class C' we are interested in determining the worst case asymptotic form of learning curve a hypothesizer
can obtain for fixed target concepts in C and fixed domain distributions P.

Definition 4.3 (Worst case learning curve) We say that a concept class C' has a ©'(g(t)) worst case
learning curve, written Lc(C) = ©'(g(t)), if

1. There exists a hypothesizer H that achieves E xx err(H,P,c,x") = O(g(t)) for every target concept
¢ € C and domain distribution P.

2. For every hypothesizer H, there is a target concept ¢ € C' and a domain distribution P that forces H
to obtain E xt err(H, P, c,x") = Q'(g(t)).

Thus, we say Lc(C) = O'(g(t)) if some hypothesizer achieves O(g(t)) worst case convergence, but every
hypothesizer can be forced to have an expected error of at least ©'(g(t)) for some fixed domain distribution

"It has been suggested that all intermediate forms of convergence between rational and exponential (e-g., @(t_2)) are possible
under this average-case distribution-specific model [Haussler et al., 1994]. However, Haussler et al. [1994] also point out that
these statistical-mechanical analyses often employ non-rigorous asymptotic arguments, and many of these conclusions may not
apply to real situations.

88 CHAPTER 4: LEARNING CURVES

P and target concept in C. (The notation f(t) = Q'(g(t)) means there exists a constant « such that
f(t) > ag(t) for infinitely many ¢ > 0. We use this weaker definition instead of the standard “for all but
finitely many ¢ > 0” because there is no way to prevent a hypothesizer from periodically “guessing right” on
large training sample sizes. That is, we want to rule out the case of a hypothesizer that systematically cycles
through a finite (or countable) concept class, ignoring the training data, and yet periodically achieving zero
error for any target concept.)

4.3.1 Intuitive illustration

Before developing the general theory we first illustrate the intuitive source of the dichotomy between rational
and exponential convergence in the simplest possible way. First, note that a training sequence cx® produced
by a concept ¢ and object sequence x* reduces a concept class C to a consistent neighborhood Clcx!] which
contains every hypothesis h € C that correctly classifies every training example in cx’. Then for any
domain distribution P this consistent neighborhood will have a diameter, dia(C, ¢, x"), given by the maximum
distance between any two concepts in the consistent neighborhood under the distribution metric dp. Now
consider an arbitrary hypothesizer H that is consistent for C' (i.e., produces a concept from C that correctly
classifies every training example). Clearly, the expected error of H’s hypotheses must be bounded by the

expected diameter of the consistent neighborhood:

Eyterr(H,P,c,x") < Ejdia(C,c,x"). (4.3)

So we need only consider the rate at which the diameter of this consistent neighborhood converges to zero
as a function of training sample size, as this will give an immediate upper bound on H’s learning curve.
To simplify things, we will consider a simple chain of concepts C'.

Definition 4.4 (Concept chain) A concept chain is a class C that is totally-ordered under set-inclusion;
1.e., for every distinct ¢c; and co in C, either ¢y C ¢ or ey D .

Given a concept chain C'| assume that the target ¢ is a lower bound for the chain; z.e., ¢ = @. Then for a
training sequence cx’, the consistent neighborhood C[cx!] will simply consist of all concepts between @ and
the largest consistent concept £ in C'. Thus, the diameter of the consistent neighborhood will just be the
distance between @ and £, dp(@,¢). Here we are interested in how rapidly the expected diameter of this
consistent neighborhood converges to zero as a function of training sample size ¢.

To measure the width of this consistent neighborhood, define a random variable Z : X — [0, 1] that gives
the distance between @ and the largest consistent concept £ in C. Then for a training sequence cx!, the
distance between @ and the largest consistent concept in C'is given by the minimum of the ¢ observations of
Z: Z,(x") = ming,ext{Z(x1), ..., Z(z¢)} (the first order statistic). We now ask: how rapidly does Z, converge
to zero as a function of ¢7 It turns out that the specific form of convergence depends on the structure of
(C,P). In fact, it is not hard to demonstrate situations where Z, converges exponentially to zero error, and
other situations where it converges only rationally.

Case 1: Assume that (C,P) is constructed so that the smallest non-empty concept in C' is a non-zero
distance away from @ (i.e., assume P{Z = 0} > 0). Then it is not hard to see that the width of the
consistent neighborhood of C' converges exponentially to zero.

Proposition 4.5 For any bounded random variable Z : X — Rt with 0 < P{Z =0} <1, EZ, = ®-1 3

Case 2: Assume instead that (C,P) is constructed so that C' contains some concept at every distance
0<z< 1 from @. This implies that Z ~ uniform(0, 1) (since clearly P{Z < z} = z). This means that the
width of the consistent neighborhood fo C' will only converge rationally to zero.

Proposition 4.6 For any random variable Z ~ uniform(0,1), EZ, = O(t~1).

8 Proofs of all (original) results stated in this chapter are given in Appendix C.

4.3. DICHOTOMY BETWEEN RATIONAL AND EXPONENTIAL LEARNING CURVES 89

This illustrate the fundamental dichotomy between rational and exponential convergence in its most
basic form: Whenever there is a non-zero probability of eliminating all but the target concept, the expected
distance to the furthest consistent hypothesis converges exponentially to zero. However, if there is a chain
of hypotheses at every distance 0 < z < Zz, then the expected distance to the furthest consistent concept
converges only rationally to zero.

The remainder of this section extends these simple observations to establish the fundamental dichotomy
between concept classes that permit exponential worst case learning curves, and classes that force rational
learning curves in the worst case. Specifically, we establish this dichotomy for finite versus continuous concept
classes.

4.3.2 Finite concept classes

It is actually not hard to see that exponential convergence can always be achieved for any finite concept
class. In fact, any consistent hypothesizer H for C obtains exponential convergence in this case, even in the
worst case over all target concepts in C' and domain distributions P.

Proposition 4.7 (Finite UB) For any finite concept class C: Any consistent hypothesizer H for C' obtains
an exponential learning curve (i.e., Ext err(H, P, c,x*) = e9(=1)) for every target concept ¢ € C, regardless
of the domain distribution P.

This result follows from the simple fact that all non-identical concepts (under P) are eliminated with non-zero
probability after a finite number of training examples, and hence Proposition 4.5 applies.

Not only do we obtain exponential convergence for finite concept classes, this is in fact the optimal form
of convergence that can be obtained for any non-trivial concept class. We say a class C' is non-triwial if it
contains at least two concepts ¢; and ey such that (¢; Acz) # @ and (¢1 = ¢2) # @. For a non-trivial class
C' we can always find a domain distribution P that forces any hypothesizer to exhibit (at least) exponential
convergence for some fixed target concept in C.

Proposition 4.8 (Universal LB) For any non-trivial concept class C: There is a domain distribution P
that forces any hypothesizer H to obtain an exponential learning curve (i.e., E i err(H, P, ¢ xt) = ¥ (=1))
for some target concept ¢’ € C.

The basic idea behind the proof is to construct a domain distribution that forces any hypothesizer H to
obtain an expected error of at least ¢*(~*) on average between a pair of non—-mutually-exclusive concepts ¢;
and ¢y. This can then be used to show that H must produce an exponential learning curve for at least one
of the two (for infinitely many training sample sizes).

Thus, we have shown that exponential convergence is the optimal achievable form of worst case learning
curve in the d.f. setting for any non-trivial concept class. Overall, Propositions 4.7 and 4.8 show that any
non-trivial, finite concept class C' has exactly an exponential worst case learning curve, and this is achieved
by any consistent hypothesizer H for C.

Corollary 4.9 Any non-trwial, finite concept class C' has an ezponential worst case learning curve: Lc(C) =
o'(~t)
e .

It is interesting to observe how these results compare to the non-uniform theory of Haussler, Littlestone
and Warmuth [1988]. Although we obtain an exponential learning curve for any fixed domain distribution,
there is no single “worst case” distribution that maximizes the expected error for all training sample sizes .
That is, we have a different worst case distribution for each training sample size . Moreover, although each
worst case curve is exponential, any universal upper bound over all of these curves (that simultaneously takes
every domain distribution into account) turns out to have a rational form; see Figure 4.2. Tt is this rational
envelope over a family of exponential curves that is characterized by the non-uniform theory of Haussler,
Littlestone and Warmuth. Figure 4.2 also illustrates the discrepancy between the non-uniform bounds of
Haussler, Littlestone and Warmuth, and the empirical observations of Cohn and Tesauro: Any empirical
study (which considers a single P for all ¢) will follow one of the exponential curves; whereas the worst case
non-uniform bounds (which considers the upper envelop over all worst case learning curves) has a rational
form that quickly diverges from any empirical curve.

90 CHAPTER 4: LEARNING CURVES

0.5
expected
error 0925 —
rate
0 _ﬁ
10 20 30 40 50 60
t
-1
In
expected
error

20 40 60 80 100

Figure 4.2: Comparing uniform versus non-uniform bounds. This demonstrate how a series of exponential
learning curves can have a rational upper envelope.

4.3. DICHOTOMY BETWEEN RATIONAL AND EXPONENTIAL LEARNING CURVES 91

4.3.3 Continuous concept chains

We have shown that a uniform analysis can yield exponential learning curves for certain concept classes, even
though the non-uniform theory of Haussler, Littlestone and Warmuth [1988] predicts only rational forms.
This raises the question of whether every concept class permits exponential convergence under a uniform
analysis, or whether there are concept classes that can still force rational learning curves even for fixed
domain distributions and target concepts. Here we show that there are indeed concept classes that force
rational convergence in this case. Evidence for this is given by the experimental results of Cohn and Tesauro
that show BP obtains rational convergence whenever it learns from a continuous concept class defined by
a neural network architecture on /R™. This suggests that, unless the backpropagation hypothesis guessing
strategy is fundamentally flawed in some way, we should not be able to obtain substantially better learning
curves in these cases.

To establish conditions where rational convergence is forced, we formalize the notion of a continuous
concept chain.

Definition 4.10 (Continuous chain) A continuous chain s a any concept chain C' that is order-isomorphic
to R; i.e., a chain that can be indexed C = {¢c, : y € R} such that ¢, C ¢, fory < z. (A simple example of
a continuous chain is the class of initial segment concepts on [0, 1] discussed in Chapter 3.)

Below we show that any continuous concept class forces at least rational convergence in the worst case, even
under a uniform analysis. However, before proving this, we first observe that any consistent hypothesizer
already achieves rational worst case convergence for any concept chain.

Proposition 4.11 (Chain UB) For any concept chain C: Any consistent hypothesizer H for C obtains a
rational learning curve (i.e., E xt err(H, P, e, x%) = O(t~1)) for every target concept ¢ € C, regardless of the
domain distribution P.

Therefore, the worst case learning curve for any concept chain can never be worse than rational. It
remains to show that rational convergence is the best any hypothesizer can achieve in this case.

Theorem 4.12 (Continuous LB) For any continuous concept chain C': There is a domain distribution P
that forces any hypothesizer H to obtain a rational learning curve (i.e., E g err(H,P,c',x") = Q'(t71)) for
some target concept ¢’ € C.

The proof of this theorem is somewhat involved, but in broad outline follows the same steps as Proposi-
tion 4.8: First, we fix a uniform domain distribution P on X, and then fix a uniform prior Q over the class
of concepts C'. Then we argue that any hypothesizer H must obtain an average expected error of at least
Q(t~1) over the set of concepts in C'. This is then used to show that there must be some target concept ¢’ € C
that forces H to exhibit Q/(¢=!) expected error for infinitely many training sample sizes t. See Appendix C
for details.

This result shows that, for any continuous chain C' there is a single domain distribution that forces any
hypothesizer H to exhibit a rational learning curve for some target concept ¢’ in C. Notice that this is a
stronger result than Theorem 4.2 as it shows how rational convergence can be forced by a single domain
distribution and target concept, as opposed to choosing different distributions and target concepts for each
training sample size.

Combining Proposition 4.11 and Theorem 4.12, we see that the worst case learning curve for a continuous
concept chain must be exactly rational.

Corollary 4.13 Any continuous concept class C has a rational worst case learning curve: 1.¢(C) = ©'(t~1).

Together, Corollaries 4.9 and 4.13 establish the existence of the fundamental dichotomy between rational
and exponential worst case learning curves in the distribution-free model.

92 CHAPTER 4: LEARNING CURVES

4.3.4 Assessment

Overall, these results establish the existence of a fundamental dichotomy between rational and exponen-
tial learning curves under the d.f. model. This is contrary to the common suggestion that distributional
assumptions are needed to reveal this dichotomy [Seung, Sompolinsky and Tishby, 1991; Haussler et al.,
1994].

Our results corroborate the experimental findings of Cohn and Tesauro, in that observing exponential
learning curves for finite concept classes is no accident since this is achieved by any consistent hypothesizer,
and any continuous class of concepts forces rational convergence in the worst case. Our results also explain
why the non-uniform theory of Haussler, Littlestone and Warmuth matches Cohn and Tesauros’ empirical
results for continuous concept classes, but not for finite classes. In the continuous case, there is a single
domain distribution that can force rational convergence as per the theory of Haussler, Littlestone and
Warmuth, and this is exactly what Cohn and Tesauro observe in this case. However, for finite classes there
is no single domain distribution that can force rational convergence, and here the non-uniform theory no
longer applies, as the experimental results demonstrate.

4.4 Boundary between rational and exponential curves

The previous section revealed the basic dichotomy between rational and exponential learning curves by
demonstrating that continuous concept chains have rational worst case learning curves and finite concept
classes have exponential such curves. Of course, this characterization is far from complete as there is a
significant gap between finite and continuous concept classes. In this section we draw an exact boundary
between rational and exponential learning curves for the special case of simple concept chains. Specifically,
this boundary is determined by the presence or absence of a dense subchain in the original class C'.

Definition 4.14 (Dense versus scattered chains) A concept chain C is dense if between any two con-
cepts c1 C co in C there is a third ¢z € C such that ¢ C c¢3 C cy. (Note that we require a dense chain to
contain at least two, and hence infinitely many concepts.) We say that an arbitrary chain is somewhere-
dense if it contains a dense subchain (not necessarily a subinterval), and nowhere-dense if it contains no
such subchain. Nowhere-dense chains are also referred to as scattered.

The main contribution of this section is to show that somewhere-dense chains have rational worst case
learning curves, whereas nowhere-dense chains have exponential worst case curves. This gives an exact and
complete characterization of worst case convergence (for concept chains) under the d.f. model.

4.4.1 Dense concept chains

From Corollary 4.13 above we know that continuous concept chains have rational worst case learning curves.
Since any continuous chain is obviously dense it is natural to consider whether this is the key property that
forces rational convergence in the worst case. Here we show that this is indeed the case: the presence of
a dense subchain is sufficient to force any learner to exhibit rational learning curves for some fixed target
concepts and domain distributions.

Theorem 4.15 (Dense LB) For any dense concept chain C: There is a domain distribution P that forces
any hypothesizer H to obtain a rational learning curve (i.e., E xi err(H, P, ', x') = Q*(¢t™1)) for some target
concept ¢’ € C.

(Note that we establish the slightly weakened proposition that E xt err(H, P, ¢, x%) = Q' (t=17¢) for any € > 0;
hence the notation ©*.) This theorem generalizes the previous result concerning continuous concept chains,
Theorem 4.12, to arbitrary (i.e., countable) dense concept chains. The basic argument is still the same: We
first construct a domain distribution that forces the expected diameter of the consistent neighborhood to
converge rationally to zero for any target concept ¢ € C. We then fix a prior distribution Q over C' and
argue that any hypothesizer H must obtain an average expected error of at least Q*(¢t=1) over the concepts
in C'. Finally, we use this result to show that there must be a target concept ¢ € C' that forces H to exhibit
Q*(t~1) expected error for infinitely many training sample sizes ¢. Details are given in Appendix C.

4.4. BOUNDARY BETWEEN RATIONAL AND EXPONENTIAL CURVES 93

Combining Theorem 4.15 and Proposition 4.11, we see that the worst case learning curve for a somewhere-
dense concept chain must be rational.

Corollary 4.16 Any somewhere-dense concept chain C' has a rational worst case learning curve: Lc(C) =

o*(t71).

4.4.2 Scattered concept chains

We now consider the complementary class of scattered (nowhere-dense) concept chains. Here we wish to
show that exponential learning curves can always be obtained for any fixed target concept and domain
distribution. From Proposition 4.8 above we know that it is impossible to achieve better than exponential
convergence, so it remains only to show that exponential convergence can always be achieved in this case.
This turns out to be somewhat hard to prove: we must actually demonstrate a learning strategy that achieves
exponential convergence for any scattered concept chain (or least prove that such a strategy must exist).

Recall from the finite case (Proposition 4.7) that exponential convergence results whenever the hypothe-
sizer can identify the target concept (up to P-equivalence) with non-zero probability after a finite number of
training examples. Now consider applying this idea to scattered concept chains; fixing an arbitrary scattered
chain C' and domain distribution P. First, we observe that any consistent hypothesizer H for C' must obtain
exponential convergence to an isolated target; i.e., a concept that has a least larger neighbor ¢ O ¢ and
a greatest smaller neighbor s C ¢ in (C,P). This is because an isolated concept is clearly identified with
non-zero probability after just two training examples (eliminating both s and ¢), and H will guess the target
exactly in such cases. Therefore, the only catch must be with limit concepts; i.e., concepts that are the
limits of infinite ascending (|J;" ¢;) or descending (({° ¢;) sequences of concepts in C'. (Note that this can
easily happen without the chain being dense; see Figure 4.3a.) The problem with limit concepts is that they
permit a consistent hypothesizer H to guess an infinite sequence of hypotheses that converge to, but never
reach the target. For example, in Figure 4.3a, if the rightmost concept is the target, then a hypothesizer that
always guesses the smallest consistent concept in the chain will never reach it. The point is that this guessing
behavior can easily lead to rational convergence for certain domain distributions; e.g., as demonstrated in
the proof of Theorem 4.15 (Lemma C.8). So the trick to achieving exponential convergence must be to avoid
guessing infinite sequences of hypotheses that slowly converge to limit concepts without ever reaching them.®

Perhaps the most obvious way to avoid this difficulty is to always guess limit concepts before isolated
concepts. Then, provided the limit concepts are isolated from one another, we will still achieve exponential
convergence, since any target will be guessed with non-zero probability after just two training examples. Of
course, it also possible to have limits of limit concepts in a scattered chain (i.e., second order limits; see
Figure 4.3b). In fact, limit concepts of each order 1,2, 3... are certainly possible; and in fact one can even have
limits of these (i.e., concepts of infinite order!); see Figure 4.3c. However, no matter how large these limits
become, the simple strategy of guessing the highest order limit concept that is consistent with the training
examples (almost) works in general. T refer to this guessing strategy as HOLC; see Figure 4.4. Intuitively,
HOLC will obtain exponential convergence as long as the limit concepts are isolated from concepts of the
same or higher order, since this will then guarantee that target concept is identified (up to P-equivalence)
with non-zero probability after just two training examples. So this isolation property appears to be the key
aspect of scattered chains that we need to establish in order to ensure exponential convergence. Fortunately,
this turns out to be true. A proof of this fact follows as a corollary to Hausdorff’s Theorem, which provides
a suitably constructive characterization of the class of scattered linear orderings [Rosenstein, 1982, Chapter
5].
Lemma 4.17 (Corollary to Hausdorff’s Theorem) For a scattered concept chain C, there is some least
ordinal v such that (i) every concept in C' has order 8 < v, and (ii) all limit concepts of a particular order
(3 are 1solated in concepts of the same or higher order.

Given this fact, we expect HOLC to achieve exponential convergence for any scattered concept chain, since if
the target concept is isolated in the class of concepts with the same or higher order, HOLC will be guaranteed
to guess a zero-error hypothesis with non-zero probability after just two training examples.

®Notice that the special learning strategy HLW developed by Haussler, Littlestone and Warmuth [1988; 1994] does not
automatically do this, and hence, might produce a rational learning curve when in fact exponential convergence is possible.

94 CHAPTER 4: LEARNING CURVES

10
(a)
‘ ‘ | | [T
20
10
10
(b) 1°
1° 1o
‘ ‘ | [11 ‘ ‘ | [l ‘ | ||I|-.| | ||I|J ||I|-.J|I|-JI|-J|-J-.J.~..
0° 00°
10
20

Ian.J.J.. .JJM ‘ | |1

Figure 4.3: This figure depicts three scattered concept chains defined on X = [0,1]. Here, each line y
indicates a concept ¢, containing all points z < y. Notice that each of these chains is nowhere-dense since
every concept (except the last) has a least larger concept. (a) A scattered chain with a first order limit
concept at the end (i.e., a chain of order type w +1). (b} A scattered chain with a series of first order limit
concepts and a finally a second order limit at the end (i.e., a chain of order type w? +1). (c) A scattered
chain with a series of limit concepts of progressively higher order, followed by an infinite order limit (i.e., a
chain of order type w* + 1).

‘ ‘ ||||I| |||In.

Strategy HOLC (C, cx')

INPUT: a scattered concept chain C,
a training sequence cx! labelled by some unknown target concept c € C.

PROCEDURE:

¢ Guess the highest order limit concept h € C consistent with cx?.

Figure 4.4: Strategy HOLC

4.4. BOUNDARY BETWEEN RATIONAL AND EXPONENTIAL CURVES 95

Strategy CHOLC (C, cx')

INPUT: a scattered concept chain C,
a training sequence cx! labelled by some unknown target concept c € C.

PROCEDURE:
e Close C under U, N to obtain C(C).

e Guess the highest order limit concept h € C(C') consistent with cx’.

Figure 4.5: Strategy CHOLC

However, there is one final problem: for HOLC to be applicable, we require that there exist a limit concept
of maximal order consistent with any sequence of training examples. Unfortunately, this need not be true in
general; e.g., consider removing the last concept from the chain depicted in Figure 4.3c. Therefore, HOLC is
not always well-defined. However, there is a way to circumvent this difficulty: we first compactify the chain
C' in a natural way, by closing it under N and U to yield a larger chain C(C). We call such a chain C(C)
compact for the following natural reason.

Lemma 4.18 Any chain C that s closed under U, N s also complete and bounded, and satisfies a natural
version of the Bolzano-Weierstrass property.

The key property of this closure C(C') is that it cannot make a scattered chain dense.
Lemma 4.19 IfC is a scattered chain, then the chain C(C) formed by closing C under U, N is still scattered.

Moreover, because of compactness, C(C) provides a maximum order limit concept for any sequence of training
examples.

Lemma 4.20 For a scattered chain C' that is closed under N, U, there is always a concept ¢ € C' of maximal
order consistent with any finite sequence of training examples.

This leads to our final proposal for a hypothesis guessing strategy that achieves exponential convergence
for any scattered concept chain: First compactify the chain, and then guess the highest order limit concept
consistent with all the training examples; see Strategy CHOLC in Figure 4.5.

Theorem 4.21 (Scattered UB) For any scattered concept chain C: The hypothesis guessing strategy
CHOLC obtains an exponential learning curve (i.e., E xt err(CHOLC, P, ¢, x*) = ¢9(=*)) for every target concept
c € C, regardless of the domain distribution P.

Obviously this hypothesis guessing strategy CHOLC has little direct practical use, but the issues it ad-
dresses do shed light on the fundamental nature of worst case learning curves. Theorem 4.21, along with
Proposition 4.8, shows that any non-trivial, nowhere-dense concept chain must have exactly an exponential
worst case learning curve.

Corollary 4.22 Any non-trivial, scattered concept chain C' has an exponential worst case learning curve:

Le(C) = ¢® (=),

4.4.3 Assessment

The results of this section provide a complete characterization of the asymptotic form of worst case learning
curves for concept chains under the d.f. model. Combining Corollaries 4.16 and 4.22, we have shown the
following.

96 CHAPTER 4: LEARNING CURVES

Corollary 4.23 (Exact boundary) Any concept chain C' must have either a rational or exponential worst
case learning curve: rational if and only if the chain s somewhere-dense; exponential if and only if the chain
1s nowhere-dense.

Not only does this precisely characterize the boundary between rational and exponential worst case
learning curves, it also shows that no other form of worst case learning curve is possible for concept chains in
the d.f. setting. These results also corroborate the previous dichotomy of Section 4.3: Clearly, finite chains
are scattered, and hence yield exponential convergence; whereas continuous chains are intrinsically dense,
and hence force rational convergence in the worst case. Moreover, the results of this section subsume the
earlier theory by showing how exponential convergence can be obtained for certain infinite concept classes,
and how rational convergence can be forced for certain countable concept classes.

4.5 Scaling effects

Although the previous results draw a precise boundary between the conditions when rational and exponential
learning curves are obtained, in one sense they miss the point demonstrated by the experimental results of
Cohn and Tesauro [1990; 1992]: Since their computer simulations were conducted with finite precision, every
concept class Cohn and Tesauro considered must have been fundamentally finite and hence every learning
curve they obtained must have been asymptotically exponential. The fact that they observe rational learning
curves seems to contradict the results of this chapter. However, the real source of the dichotomy in Cohn
and Tesauros’ experiments is a scaling effect. That is, every learning curve they observed must have been
asymptotically exponential, its just that at the scale of training sample sizes they considered, relative to the
size of the inter-concept distances, convergence appeared rational. This effect is easily demonstrated by a
simple example.

Consider a finite concept chain C), consisting of n 4+ 1 concepts ¢ C ¢; C ... C ¢p, and fix a domain
distribution P,, that imposes a distance of 1/n between adjacent concepts.

Proposition 4.24 For any ¢ € (Cp, Py),

0 1 2\" 2
-] — E o wid(Cy, Py, ¢, x" 1-2) =
< n) i+ S wid(¢x) < (n) T 1

Notice that this bound is exponential in ¢ and well approximated by e_(”/"b(t + 1)~! for large n. Now, if
we focus on training sample sizes ¢ that are small relative to n, the e=*/" factor will behave like a constant
near 1 and the (¢ + 1)~! factor dominates. Here we would observe apparently rational convergence, even
though convergence remains asymptotically exponential. To reveal the underlying exponential convergence,
we would have to consider training sample sizes on the order of ¢ = n,2n,3n, ...; which in the “continuous”
case considered by Cohn and Tesauro [1990; 1992] is on the order of “computer BIGNUM.” This partly
explains the observed dichotomy, as they considered the same training sample sizes for concept classes with
vastly different inter-concept distances; observing exponential convergence when the gaps were large, and
rational convergence when the gaps were small. (Barnard [1994] makes a similar observation.)

This concludes the main contributions of this chapter. The next two sections discuss preliminary results
concerning the general boundary between rational and exponential convergence for arbitrary concept classes
(spaces), and general characterizations of specific convergence rates.

4.6 Towards a general distribution-free theory

Although we have established a precise characterization of the dichotomy between rational and exponential
learning curves for simple concept chains, from a practical perspective these results are still limited. The
primary shortcomings are the restriction to simple concept chains, and the lack of any reasonable quantitative
predictions. In general, we require a characterization of the boundary between rational and exponential
convergence for arbitrary concept classes, not just concept chains; and tight bounds on the specific rates

4.6. TOWARDS A GENERAL DISTRIBUTION-FREE THEORY 97

of (worst case) convergence. Unfortunately, both of these problems present serious difficulties, and only
preliminary results can be reported here. Below I discuss the challenge of extending the theory in each
of these two directions—pointing out specific barriers to developing a general theory, and presenting the
prospects for progress in each direction.

General boundary

Theorem 4.2 shows that finite VCdimension is necessary to ensure worst case convergence for a concept class
in the d.f. setting. Given the results of Section 4.4, it is tempting to conjecture that we can always achieve
exponential convergence for any class C' (with finite VCdimension) that does not contain a dense chain.
However, we have to be specific about what we mean by containment here: It is possible for a concept class
not to directly contain any dense chain and yet still form a dense chain over some restricted subset of the
domain. For example, the concept class C' = {[0,y]U {1 + y} : y € [0, 1]} defined on X = [0, 2] contains no
chain longer than one, and yet defines a continuous chain on the subdomain [0, 1]. In this case, a domain
distribution concentrated on [0, 1] could force rational convergence, even though the original concept class
contains no dense concept chains per se. So obviously by containment we mean C' forms a dense subchain
over some (measurable) subset of the domain.

Conjecture 4.25 For any concept class C' with vc(C) < oo: If C contains a dense chain, then LC(C) =
©'(t=1). If C does not contain a dense chain, then LC(C) = ® (=),

The first assertion is obviously true and follows directly from Theorems 4.1 and 4.15. The second assertion
however is far from obvious, and would be extremely hard to prove. In effect, one would have to demonstrate a
hypothesis guessing strategy that always achieves exponential convergence for any concept class (with finite
VCdimension) that does not contain a dense chain. This would involve generalizing Strategy CHOLC to
somehow deal with arbitrary nowhere-dense concept classes, which appears to be an extremely difficult task.
Limited progress can be made however. For example, the previous results can easily be extended to handle
products of chains.

Definition 4.26 (Product chain) Consider a partition X1, ..., X4 of some domain X, and a collection of
concept chains C, ..., Cy defined on each element of the partition. l.e., each concept ¢ € C; has its extension
contained in X;, and has empty intersection with X; for j # i. Then the d-fold product chain, C?, is formed
by taking arbitrary unions of concepts selected from each basis chain.

Intuitively, a concept in a product chain is defined by independently choosing an endpoint from each sub-
domain X;. Clearly, the VCdimension of a d-fold product chain is d. (An example of a product chain is the
class of d-m-initial concepts examined in Chapter 3.) The results of Section 4.4 can be easily generalized to
provide the exact boundary between exponential and rational convergence for product chains.

Observation 4.27 For any product chain C?% with d < co: If some base chain of C? is dense, then LC(C) =
O'(t=1). If every base chain of C? is scattered, then LC(C) = ® (=),

The first part follows directly from Theorems 4.1 and 4.15. The second assertion can be proved by
considering the obvious extension of Strategy CHOLC: simply apply CHOLC to each basis-chain independently
and return the union of its hypotheses as the final conjecture. Since each basis-chain is scattered, we obtain
exponential convergence for each basis-chain, and hence exponential convergence overall.

Convergence rates

From a practical perspective, it is important to predict the specific rates of convergence in addition to the
functional forms of learning curves. For example, a characterization of convergence rates could be used to
choose the complexity of a hypothesis class relative to the amount of training data available, or determining
whether sufficient data was available to achieve desired error levels, etc. Of course, a necessary prerequisite
for any predictive theory of convergence rates is to be able to predict whether rational versus exponential
convergence will take place. Obviously we cannot hope to predict specific convergence rates without first
being able to predict the underlying functional form of the learning curve.

98 CHAPTER 4: LEARNING CURVES

For dense product chains, given Proposition 4.27 above, it is easy to obtain tight bounds on the precise
rates of worst case convergence.

Observation 4.28 For any product chain C%, d < oo, that contains d’ > 1 somewhere-dense basis chains:

LC(C) = ©/(d'/t).1°

Unfortunately, one cannot give a correspondingly tight characterization of exponential convergence rates
for scattered product chains. The problem is that there is no single “worst case” domain distribution
(Figure 4.2), and the envelope over all worst case learning curves only has a rational form. Therefore, any
tight characterization of convergence rates will have to take into account the specific domain distribution P.
This supports the view that some form of d.s. analysis is needed to achieve accurate predictions of empirical
learning curves in general.

4.7 Towards a general distribution-specific theory

As discussed in Section 4.2, it is also possible to consider a d.s. rather than d.f. analysis of worst case learning
curves. Here we assume the domain distribution P 1s known a prior: but the target concept ¢ is known only
to belong to some class €. The motivation for a d.s. analysis is that incorporating strong distributional
assumptions should enable us to more accurately predict the learning curves observed in practice.

Convergence rates

As mentioned in Section 4.2, a general characterization of worst case learning curves has yet to be developed
in the distribution-specific setting. Haussler et al. [1994] report a preliminary attempt for finite concept
spaces, based on characterizing the convergence rates of the expected diameters of consistent neighborhoods.
Recall from the discussion in Section 4.3.1 that this will immediately give an upper bound on the learning
curve for any consistent hypothesizer H. Unfortunately, this approach cannot work in general: The problem
is that many concept spaces have consistent neighborhoods that never converge, and yet special hypothesis
guessing strategies can still achieve worst case convergence to zero error for these spaces.

A simple example of this is the space ({finite sets} U {[0, 1]}, uniform) defined on [0, 1]. Notice that the
class {finite sets} U {[0, 1]} has infinite VCdimension, and hence no finite number of training examples can
ever eliminate every e-bad concept for € > 0; meaning that the consistent neighborhoods never converge.
On the other hand, a trivial guessing strategy achieves worst case convergence for this space: simply guess
@ or [0,1], whichever correctly classifies the most training examples. This strategy achieves immediate
convergence to zero error wpl after just one training example.

This example shows that a general characterization of minimax learning curves for concept spaces cannot
be based on the convergence of consistent neighborhoods. In Chapter 3 we saw that the general pac-
leanability of concept spaces was determined by the finiteness of their metric entropy; ¢.e., whether the space
can be finitely e-covered at various scales ¢. Here we can exploit the same cover-based approach discussed
in Chapter 3 to obtain a hypothesis guessing strategy that always achieves worst case convergence to zero
error for any concept space, where this is possible. The idea is to construct an a;-cover of the space at some
appropriate scale a; for the training sample size ¢, and then simply guess the hypothesis from this cover that
correctly classifies the most training examples; see Strategy BC in Figure 4.6. It turns out that this strategy
obtains a worst case learning curve that is determined by the effective dimensionality of the concept space
(cf. Section 3.4.2); i.e., how fast the space’s a-covers grow as a function of @ — 0.

Theorem 4.29 For any space (C,P) such that N,(C,P) = 0(1/a)? for some d as a — 0:
1. Strategy BC achicves E xt err(BC, P, ¢, x*) = O((d/t) In(t/d)) for any target c € C.

2. Any hypothesizer H obtains E x+ err(H, P, ¢’ x') = ' (=t/d) for some target ¢’ € C.

10 For the upper bound, use a product version of CHOLC to obtain exponential convergence on the d—d’ scattered basis-chains
and then apply HLW to obtain O(d’/t) convergence on the remaining d’ dense chains. The lower bound requires a product
version of Theorem 4.15.

4.7. TOWARDS A GENERAL DISTRIBUTION-SPECIFIC THEORY 99

Strategy BC (C, P, cx")

INPUT: target concept space (C,P),
a training sequence cx! labelled by some unknown target concept c € C.

PROCEDURE:

e Let a and d be constants such that N,(C,P) < (a/a)?.

o Let ay = 3?—‘1 In % (applicable whenever ¢ is sufficiently large to ensure oy < 1).

e Find an ai-cover of (C,P), V;, with size |V;| = N, (C,P).

e Return the hypothesis in the cover h € V; with minimum observed error on cx’.

Figure 4.6: Strategy BC

Part 1 shows that BC achieves worst case convergence to zero error for any space with finite effective-
dimension. Part 2 shows that finite effective-dimension is not only sufficient but necessary for any hypothesis
strategy to obtain worst case convergence to zero error. Thus, BC is a universal guessing strategy in the
sense that it achieves worst case convergence whenever this is possible in principle. Unfortunately, this
theorem only provides loose bounds on BC’s rate of worst case convergence, admitting both super-rational
and exponential convergence. It remains an open question whether these bounds can be improved and when.
Perhaps useful bounds could be obtained for the special case of e-reducible concept spaces as studied in

Chapter 3.

General boundary

Surprisingly, just characterizing the boundary between rational and exponential convergence is harder in
the d.s. case than the d.f. model. In fact, it is not even obvious what property distinguishes rational from
exponential worst case learning curves for simple chains in this case. It has often been suggested in the
literature [Barnard, 1994; Schwartz et al., 1990; Seung, Sompolinsky and Tishby, 1991] that density in the
distribution metric dp should determine whether rational versus exponential learning curves are obtained.
However, this suggestion is easily shown to be false.

Consider a concept chain (C, P) where C £ {q = [0, ¢] : ¢ € Q[0, 1]} contains the initial segments of [0, 1]
with rational endpoints, and P is any distribution on [0, 1] such that P{q} > 0 for all (and only) rational
points of [0, 1]. Clearly, C' is dense under dp (since for every q € C' and ¢ > 0 there is an r € C such that
dp(q,r) < €) and yet a simple learning procedure always achieves exponential convergence for this space:
simply guess the smallest rational initial segment r consistent with the training sequence. Since each q € C
has a gap between it and all smaller concepts (because ¢ € q but ¢ & r for all r C q) we will guess q with
non-zero probability after one training example, and hence achieve exponential convergence.'!

This example shows that density in the distribution metric dp is not sufficient to force rational convergence
in general. Instead we need some property of “density from all sides.” Unfortunately, extending this notion
to arbitrary concept spaces appears intractable, and the prospects for a general theory seem remote. As long
as we cannot distinguish between rational and exponential convergence, it is unlikely that we can develop a
tight quantitative characterization of empirical learning curves. So this difficulty has serious implications for
any theory (d.s. or otherwise) that purports to provide a general and tight characterization of the learning
curves observed in practice.

' Note that this does not contradict Theorem 4.15, as we have only shown that exponential convergence can be achieved for
some, but not every domain distribution.

100 CHAPTER 4: LEARNING CURVES

4.8 Conclusion

This chapter provided a theoretical explanation of the dichotomy between exponential and rational learning
curves observed in practice. This theoretical explanation is based on a uniform analysis of worst case learning
curves where we keep the domain distribution and target concept fixed for all training sample sizes. This
model allowed us to prove that exponential worst case convergence is possible for certain concept classes,
but other concept classes force any hypothesizer to obtain rational worst case learning curves.

First, we showed that exponential learning curves can always be obtained for finite concept classes,
whereas classes that contain continuous chains always force rational learning curves for some fixed target
concepts and domain distributions. Next, we generalized this result to obtain an exact boundary between
exponential and rational worst case learning curves for concept chains. Here we found that exponential
convergence could always be obtained for nowhere-dense chains, but somewhere-dense chains force ratio-
nal convergence in the worst case. This shows that, for concept chains at least, rational and exponential
convergence are the only two types of worst case learning curves in the d.f. setting.

Next, we observed how the original dichotomy between rational and exponential convergence observed by
Cohn and Tesauro was actually due to a scaling effect: if the training sample sizes are small relative to the
inter-concept distances, then convergence can appear rational even when it is asymptotically exponential.

Finally, I presented some preliminary results towards generalizing the theory to arbitrary concept classes.
In particular, the previous theory was extended to handle product chains. We also briefly considered the d.s.
case, and introduced a universal hypothesis guessing strategy that always obtains worst case convergence
whenever this is possible. Unfortunately, it proved difficult to achieve a completely general theory in either
the d.f. or d.s. case, and various specific reasons for this were discussed in detail.

Contributions

The analysis considered in this chapter differs from the preceding work of Haussler, Littlestone and Warmuth
[1988; 1994] in that we considered the worst case learning curves that are obtained when the target concept
and domain distribution are held fixed throughout the training process. Consequently, our results go further
towards explaining many salient learning phenomena observed in practice. For example, we are able to predict
whether exponential versus rational learning curves will be observed, in exactly the same circumstances as
observed by Cohn and Tesauro [1990; 1992].

One possible objection to the analysis presented in this chapter is that it only characterizes the (best
achievable) worst case learning curves, which might not be representative of the learning curves observed in
practice. For example, even though a concept class might force rational learning curves in the worst case,
it still might be possible for a hypothesizer to exhibit exponential convergence to particular target concepts.
However, this is not what Cohn and Tesauro observe: whenever the worst case theory predicts even the
possibility of rational convergence, that is exactly what their experiments show. So in terms of the mode
of convergence, their experimental results coincide with our worst case theory. That is, if the worst case
theoretical results are unrepresentative in practice (as far as the type of convergence is concerned), then the
experimental results have yet to demonstrate this.

Relationship to pac-learning

Given the striking dichotomy between rational and exponential learning curves, it seems natural to try and
exploit these results to achieve better pac-learning performance. Unfortunately, it turns out that exponen-
tial convergence does not confer an immediate advantage for pac-learning. In fact, the following example
demonstrates that two concept spaces can have identical pac-properties for a given €, while one space permits
exponential and the other rational learning curves.

Consider two concept chains C; and C.. Let C} to have two concepts, @ and £ # X. Fix a domain
distribution P; so that the distance between @ and £ is exactly ¢. Next, define C. to be a continuous
concept chain C. = {¢, : y € [0,1]} and fix a uniform domain distribution P. so that the distance between
two concepts ¢; and ¢; is given by |i — j|. Clearly, C; has an exponential worst case learning curve, whereas
C. has a rational worst case learning curve. However, the number of training examples needed to achieve
pac(e, d)-learning can be the same in both cases! To see this, fix a target concept @ in both cases, and

4.8. CONCLUSION 101

consider the probability that all ¢ far concepts are eliminated after ¢ training examples. Here we see that
this probability is the same in each case, and so the minimum number of training examples needed to achieve
the pac-criterion is also the same.

This example shows that an isolated target concept may have nothing to do with the probability of
eliminating all e-bad concepts from the space (if the gap size is less than €). A difference in pac-learning
finite and continuous concept classes would only be revealed by considering progressively smaller error levels
e — 0.

Research directions

The main direction for future research is to characterize the boundary between exponential and rational
worst case learning curves for general concept classes and spaces. However, Sections 4.6 and 4.7 show that
this is quite difficult. The other main research question is to develop a precise (d.s.) characterization of
specific convergence rates, if not for the general case, then for useful and interesting subclasses of concept
spaces.

102 CHAPTER 4: LEARNING CURVES

Chapter 5

Conclusions

5.1 Synopsis

This thesis addressed the problem of learning a classification function from examples: given a sequence of
training examples {(z1, c(21)), (x2, e(22)), ..., (zt, c(x1))) generated by some unknown classification scheme
¢c: X — Y, how can we produce a global classification function A : X — Y that agrees with ¢ over as
much of X as possible? This simple abstract task is by far the most studied problem in machine learning
research. Most work, however, empirically evaluates specific ad hoc strategies for mapping training sequences
to hypotheses given particular representations for domain objects z and classification functions A. In this
thesis we pursued a general theoretical analysis of this problem.

A theoretical analysis of classification learning requires one to adopt a mathematical model of the learner’s
environment. The specific model we considered was the 1.1.d. random examples model, which assumes there
is a fixed distribution of examples from which all training and test examples are generated randomly and
independently. This is a natural model of many learning situations where successive training examples
are not correlated and the example generating mechanism remains stable over time.> Given this model, we
addressed the standard batch training protocol where in an initial training phase the learner is given access to
a (finite) sequence of training examples, from which it must produce a classification function h: X — {0, 1}
that i1s then tested ad infinitum in a subsequent testing phase. Here the learner’s goal is to produce an
accurate hypothesis as quickly and reliably as possible.

Of course, the learner’s success depends strongly on the prior knowledge it has about the underlying target
concept and domain distribution. A theoretical analysis of classification learning requires us to explicitly
model the prior knowledge/constraints the learner has about the target concept and domain distribution
before training. In this thesis we addressed a model of prior knowledge popularized by Valiant [1984]: we
assume the learner knows only that the target concept ¢ belongs to some class C', but nothing is known about
the domain distribution Py beforehand. Given this form of prior knowledge it is natural to consider the worst
case performance guarantees we can make over all possible situations permitted by our prior constraints.

Sequential pac-learning

The first part of this thesis (Chapter 2) considered the problem of probably approximately correct (pac)
learning; z.e., returning a hypothesis with guaranteed accuracy and reliability after observing some finite
number of training examples. Here, given a prior concept class C', a specified accuracy level 1 — ¢, and a
specified reliability level 1 — §, we demand that the learner produce a hypothesis of accuracy at least 1 — €
with probability at least 1 — J, regardless of the particular target concept in C' used to label the training
examples and the domain distribution used to generate domain objects.

Previous research has investigated the minimum data and computational resources needed to solve this
problem as a function of C, ¢, and §. Most of these investigations consider a simplistic fixed-sample-

1'We also restricted our attention to two-class classification problems (i.e., learning a concept ¢ : X — {0,1}) and made
the simplifying assumption that all generated examples were consistent with some underlying target concept (i.e., noise-free
classification).

103

104 CHAPTER 5: CONCLUSIONS

size learning strategy, Procedure F, that first observes a large collection of training examples and returns
an arbitrary concept from C' that correctly classifies every training example. The data-efficiency of this
procedure scales-up near-optimally in terms of ¢, §, and the Vapnik-Chervonenkis dimension of C. Despite
this optimal scaling however, the actual training sample sizes this procedure demands are far too large to
be practical in real applications.

To overcome this problem we considered an alternative approach—sequential pac-learning—where we
observe training examples one-at-a-time and decide on-line whether to halt and return a hypothesis or
continue training. Specifically, we introduced a novel pac-learning procedure S that observes a sequence of
hypotheses hg, h1, ... produced by a consistent hypothesizer for C', and uses a sequential probability ratio test
to detect any accurate hypotheses in this list. We noted that this sequential procedure observes a random
rather than fixed number of training examples, so we compared S’s maximum expected sample size to the
fixed sample size required by F to solve the same pac-learning problem.

A theoretical analysis showed that S’s expected sample size scales the same as F’s up to constant factors,
and beats the previous bounds for small values of §. But we also saw that there are inherent limits to the
data-efficiency of sequential learning: a lower bound result showed that no sequential learner can beat the
fixed-sample-size lower bound by more than a constant factor. However, training data is often the critical
resource in practical applications, so even constant improvements can be important. In this regard we
observed that Procedure S actually uses many times fewer training examples than F in practice even while
obtaining the exact same worst case pac-guarantees. Moreover, this empirical advantage appears robust to
changes in target concept, domain distribution, and even concept class (for a given VCdimension); thus,
countering any claim that S’s advantage is solely due to exploiting easy learning situations.

Finally, as an aside, we showed how Procedure S could also convert mistake bounded hypothesizers to
data-efficient pac-learners; simplifying and improving on an earlier result of Littlestone [1989]. We also
showed how S could be applied to arbitrary hypothesizers, to obtain pac-learning under a wider variety of
situations than fixed-sample-size learning.

Distribution-specific sequential pac-learning

Next, in Chapter 3 we considered a different model of prior knowledge where the learner knows the domain
distribution that is used to generate domain objects, but does not know which target concept from a prior
class C' is being used to label the examples. Here we considered the same pac-learning problem as before:
demanding that the learner return a hypothesis with error less than ¢ with probability at least 1 — § for
any target concept in C'. Part of the motivation for considering this distribution-specific (d.s.) model is the
presumption that the distribution-free (d.f.) pac-learning bounds are perceived as too pessimistic in that
they must account for every possible domain distribution. As in the d.f. case, previous work on d.s. pac-
learning has only considered fixed-sample-size learning procedures, but clearly there is nothing to prevent
us from taking a sequential approach here. In fact, in Chapter 3 we saw that much stronger theoretical
improvements could be obtained in this case.

The first thing we observed about d.s. pac-learning was that a fixed domain distribution automatically
imposes a natural metric over the concept class C. From this perspective, Benedek and Itai [1988a] derive
a universal d.s. pac-learning strategy, Procedure BI, that first constructs a finite cover of the concept space,
and then identifies a near-optimal concept in this cover—using a fixed-sample-size approach to estimate inter-
concept distances. In this chapter we showed how using a sequential test to identify accurate cover-concepts
could substantially improve the data-efficiency of BI (by a factor of five).

We then investigated a more sophisticated multiresolution learning strategy, Sfoc, that first constructs
a coarse cover of the concept space, and then searches the local neighborhood of the best concept in this
cover, etc.; gradually refining the search to small local neighborhoods of the target concept. This procedure
improves the data-efficiency of BI by more than constant factors, for concept spaces that are uniformly dense
across local neighborhoods.

Next, as an aside, we observed how sequential procedures are able to learn with certainty in the d.s.
setting (i.e., return an e-accurate hypothesis with probability 1), not just high probability. We referred to
this form of learning as certainly approximately correct (cac) learning, and showed that cac-learning was
impossible to achieve with fixed-sample-size learning and under the d.f. model. We then derived a sequential
learning strategy for the d.s. case, Scov, that cac-learns a wide variety of concept spaces by first, observing

5.1. SYNOPSIS 105

the set of consistent concepts remaining in C', and then halting as soon as this set can be covered by a single
hypothesis. We showed that this procedure Scov is a universal learner in the sense that it cac-learns every
concept space where this is possible in principle. Moreover, we showed that Scov cac-learns with optimal
data-efficiency. Although we were unable to derive a tight characterization of Scov’s data-efficiency in terms
of any simple parameter of concept space complexity, we were able to demonstrate its extreme data-efficiency
in a series of concrete examples.

Finally, returning to the standard pac-learning model, we pointed out how Scov could be applied to
learning with high probability rather than certainty. Surprisingly, Scov turned out to be far more data-
efficient than any of the previous pac-learning strategies (BI, Sbi, and Sfoc), even though Scov attains a
higher level of reliability. Although Scov is not a universal pac-learning strategy, it appears to be strongly
advantageous for natural spaces. The primary drawback of this procedure is that it is only computationally
feasible for very simple spaces.

Learning curves

Finally, in the last part of this thesis (Chapter 4) we turned our attention to a different aspect of learning
performance: investigating the average error of a learner’s hypotheses as a function of training sample size
t, rather than demand the learner to return an accurate concept with some pre-specified reliability. We
referred to this as the learning curve of the hypothesizer. Clearly, the rate at which a learner’s curve
converges to zero error is determined by the prior knowledge it has about the target concept and domain
distribution. We analyzed this question under the d.f. model considered in Chapter 2. Here Haussler,
Littlestone and Warmuth [1988; 1994] have shown that the smallest expected error any hypothesizer can
obtain after ¢ training examples, in the worst case over all possible target concepts in C' and all possible
domain distributions, behaves as a rational ©(¢~!) function of ¢. However, in a series of experiments Cohn
and Tesauro [1990; 1992] showed that ezponential learning curves could be observed in many practical
situations.

In Chapter 4 we observed that the worst case analysis of Haussler, Littlestone and Warmuth is non-
uniform in training sample size. The point of this chapter was to show that this non-uniformity accounts
for the discrepancy between the theoretical and experimental results. Specifically, we undertook a uniform
analysis that keeps the domain distribution and target concept fixed for all training sample sizes, and
investigated the best asymptotic form of convergence that can be achieved in the worst case over all possible
target concepts in a class C' and all possible domain distributions.

Our first results established the basic dichotomy between rational and exponential convergence by showing
that finite concept classes always have exponential worst case learning curves, whereas continuous concept
classes always force rational convergence in the worst case. These results corroborated the experimental
findings of Cohn and Tesauro; predicting rational and exponential (worst case) learning curves in exactly
the same circumstances. We then investigated the exact boundary between these convergence modes and
established that rational versus exponential worst case learning curves (for simple concept chains) is deter-
mined by the presence or absence of any dense subchains in the original class. This showed that rational
and exponential learning curves are the only two types of worst case convergence possible in the d.f. setting
(for concept chains).

Next, we observed that every concept class considered by Cohn and Tesauro was fundamentally finite,
and hence every learning curve they observed was asymptotically exponential. The reason they observed the
dichotomy between rational and exponential learning curves is that they considered different relative scales
between the training sample size and inter-concept distances.

Finally, we discussed the prospects for a general theory of worst case learning curves. The two important
questions are (7) identifying the boundary between rational and exponential convergence, and (i) deriving
tight bounds on the specific convergence rates in terms of some simple parameter of the concept class (space)
structure. Preliminary results were obtained for both the d.f. and d.s. models, however the prospects for a
completely general theory remain distant.

106 CHAPTER 5: CONCLUSIONS

5.2 Contributions

The overall point of this thesis was to demonstrate how the worst case theory of classification learning
(developed by Valiant, Haussler, and others) could be made more relevant to practice. We did this by:

1. Deriving new learning strategies that improve the practical efficiency of previous techniques, while
maintaining the same theoretical guarantees of correctness.

2. Deriving new theoretical explanations of widely observed empirical phenomena left unaccounted for by
the previous theory.

Specifically, for the problem of d.f. pac-learning we presented a new learning technique that significantly
improves the data-efficiency of previous approaches, while maintaining the exact same accuracy and reliability
guarantees. This new procedure, S, embodies a generic hypothesis testing strategy that can be applied to
arbitrary concept classes with little computational overhead. The practical implication of this technique is
that it makes many new d.f. pac-learning problems realistically solvable for the first time.

For the related problem of d.s. pac-learning, we presented a number of new learning techniques that obtain
significantly better data-efficiency than previous approaches, again maintaining the exact same reliability
and accuracy guarantees as before. These procedures obtain better than constant reductions in special cases,
and are orders of magnitude more efficient in natural problems.

Although the d.s. model may not seem very relevant to practice at first, these d.s. results might ultimately
have a greater impact than the previous d.f. results. This is because we can always turn a d.f. learning problem
into a d.s. problem simply by using unlabelled training examples to estimate the inter-concept distances. So
we should be able to use the extremely data-efficient d.s. learning procedures developed in Chapter 3 to solve
d.f. pac-learning problems using very few labelled training examples. This appears to be an interesting area
for future research. Overall, the results of this thesis show that sequential learning is a far more effective
technique for minimizing training resources than fixed-sample-size learning; both theoretically (in terms of
the ultimate efficiency levels that can be achieved), and pragmatically (in terms of the ease designing efficient
learning procedures).

Finally, in this thesis we derived a precise theoretical explanation of the dichotomy between rational and
exponential learning curves, which has often been observed in practice. The practical significance of this
form of analysis is that it delineates intrinsically easy from hard learning situations.

5.3 Research directions

A number of specific directions for future research were identified throughout this thesis, including:
e achieving further improvements to the data-efficiency of pac-learning;
e pursuing a more serious investigation of the computational issues faced by a sequential learner;

e improving the data-efficiency (and learning curve) analyses to achieve tighter performance bounds,
perhaps based on other structural parameters of concept class (space) complexity besides VCdimension,
metric-entropy, or e-reduction numbers, etc.;

e generalizing the d.s. pac (and learning curve) results to handle a wider range of natural problems.

Each of these items was discussed in detail, but rather than reiterate those discussions, I reconsider what a
theory of classification learning should be doing in the first place.

The main thrust of this thesis was to show how the current (worst case) theory of classification learning
could be made more relevant to practice. However, what we really want is effective classification learning
in practice. That is, we want practice to benefit directly from theory, not the other way around. Although
pac-learning theory has providing a deeper understanding of the factors that affect learning performance,
this has yet to result in more useful tools for applied machine learning. Most of the techniques currently used
in applied machine learning are ad hoc, and there are few examples of theoretically derived techniques in
widespread practical use. The security of mathematically proven guarantees is nice, but practitioners want
tools that actually work for them.

5.3. RESEARCH DIRECTIONS 107

Desirable mathematical properties

This suggests that the key for making the theory more useful and relevant is to first ask what mathematical
properties of a learning system would yield desirable behavior in practice. For example, pac-learning (where
we fix an accuracy and reliability level, and then determine a training sample size sufficient to achieve these
levels) might not be the most natural model of applied learning situations. It might be more natural to
consider a fixed training sample size, and perhaps even a fixed confidence level, and then determine the
smallest error level that can be achieved.

Another natural question is (d.s.) model selection: given a domain distribution P, a nested sequence of
hypothesis classes C; C C5 C ..., and a fixed training sample size ¢, how do we decide which class to choose a
hypothesis from? Perhaps such a selection procedure could be based on a principle of minimizing the worst
case expected error of the procedure.

Models of prior knowledge

It also makes sense to investigate other models of prior knowledge. This thesis concentrated on a worst case
model where the target concept and domain distribution were assumed only to belong to general classes,
and the goal was to account for every possibility by minimizing the worst case outcome. Another useful
model of prior knowledge is to encode quantitative preferences or vague knowledge by placing a probability
distribution over possible target concepts (and domain distributions); e.g., a Bayesian approach. The benefits
of a prior is that it permits us to express quantitative preferences in a simple and well-motivated manner,
and automatically implements a principled trade-off between the “complexity” of the hypothesis and its “fit”
to the training data. In fact, a Bayesian approach seems to give the best results in data-limited practical
learning problems [Hinton, 1995]. The main drawbacks of the Bayesian approach are (i) that it demands
complete prior knowledge (in the sense that one always has to specify a single, complete distribution over all
possibilities), and (i) implementing Bayesian inference is computationally demanding, even in simple cases.

A less demanding way to express prior preferences is to specify a qualitative preference hierarchy C7 C
Cy C ..., ete. Of course, this representation introduces the classical “complexity versus fit” problem (also
known as the bias/variance dilemma [Geman, Bienenstock and Doursat, 1992]). Since the preferences are
incommensurable with empirical data-fit, there is no obvious way to trade-off these two aspects. This was
the motivation for the second proposal above: to base any such trade-off, not on prior “universal” principles,
but on desirable, quantitative performance characteristics for any model selection strategy.

The overall point here is that there is little need to be dogmatic about the type of prior information
or constraints we can express about a learning problem. We just need languages that allow us to express
naturally all prior information/constraints we have, without forcing us to express more than we know (or are
willing to state) a priori. The best approach to any applied learning problem is to state all and only what
one knows about the domain beforehand, and let the data do the rest. Different forms of prior knowledge
will likely be available in different applications. It is important to have a sound mathematical understanding
of the consequences on learning performance of adopting each such form.

108 CHAPTER 5: CONCLUSIONS

Appendix A

Technical details: Chapter 2

This appendix addresses the technical issues raised in Chapter 2. First, since the learning techniques in-
vestigated in Chapter 2 were based on the sequential probability ratio test (sprt) [Wald, 1947], we first
discuss this procedure in some detail in Section A.1; describing the key properties that will be needed in
the subsequent analysis. After these preliminaries Section A.2 then presents complete proofs of all (original)
results stated in Chapter 2 and Section A.3 summarizes some algebraic bounds used in these proofs.

A.1 Sequential probability ratio testing

The sequential learning strategies developed in Chapter 2 made use of a sequential probability ratio test
(sprt) [Wald, 1947] to test the error rates of their hypotheses. This procedure (Figure 2.4) tests the
probability that a boolean random variable ¢ : X — {0, 1} takes on the value 1 with a probability less than
a or greater than r, a < r. In particular, sprt tests

Hace : Px{o(z) =1} <a versus Hgyee : Px{g(z) =1} > r,

with a probability of incorrectly deciding Hge. when H,.; is true bounded by d4cc, and a probability of
incorrectly deciding H,.; when Hg.. is true bounded by d,.; (we do not care what happens when the
probability is between @ and r). For the analyses in Section A.2 below we first need to establish a number
of key properties of this sprt procedure.

Definitions and notation: Notice that from a fixed distribution Py on X, a boolean random variable
¢ : X — {0,1} induces a distribution Pyq 13 on {0,1}. To analyze sprt we need to consider the sample
space that consists of all observation sequences of unbounded length; i.e., (¢1,¢a,...) € {0,1}°°. Since
we are assuming i.i.d. observations, from a fixed distribution Pq 13 on {0, 1}, the probability of an event
A C {0,1}* is determined by the product distribution Pyg 130 = P13 X Pyo13 X ... on {0,1}*. To
simplify the presentation, we drop the subscript {0, 1} from Py 13 and let P? denote P1o,1}¢, and P* denote
Pio13. We also let P, stand for the probability measure for which P{1} = p, and let E, stand for the
expectation operator with respect to this distribution. The notation ¢* will refer to the initial ¢-segment of
some unbounded observation sequence ¢ € {0, 1}.

Here, a stopping rule T': {0,1}°° — IN is defined as a mapping from unbounded observation sequences to
stopping times, such that the event {¢ € {0,1}°° : T'(¢p) = ¢} depends only on the first ¢ training examples.
For a stopping rule T', we let ¢ refer to the initial T(¢)-segment of ¢ € {0, 1}°°.

Analysis of Procedure sprt

From Figure 2.4 we can see that Procedure sprt monitors the likelihood ratio R;(¢") = Pt {¢‘}/PL{¢'} and
decides “Hge.” whenever P {¢'} < §accPa{¢'}, and “Hye;” whenever P.{¢'} < 5rejPr{¢t}. The basic idea
is to decide “Hg4e.” as soon as the probability of the observed sequence under H,.; drops below d4c. times
its probability under Hgc.. It is not hard to show that this strategy meets the stated reliability criteria.

109

110 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Lemma A.1 [Wald, 1947] For any boolean random variable ¢ : X — {0,1}, any 0 < a < r < 1, and any
dace > 0 and 6,05 > 0: The probability that sprt(¢(z), a, r, dace, drej) incorrectly decides H,q. when in fact
H,.j is true, is bounded by d4cc. (Similarly, the probability that sprt incorrectly decides H,.; when Hgec is
true is bounded by d,c;.)

Proof (This proof is due to Wald [1947]. T include it here because it clearly illustrates the behavior of
sprt.) We first want to show that, assuming H,.; is true, the probability that sprt decides Hg.. is bounded
by dace; t.e., P {sprt decides Hsee} < dgec. To this end, let A* be the set of all finite observation
sequences a! € {0,1}* such that sprt decides Hg. at the end of the sequence, without making any decision
beforehand. Then

{¢p € {0,1}* : sprt decides Hgee} = U {p:¢' =a'}. (A1)

ateAr

By construction, for each a® € A* we have Pi{al} < §4cc PL{al}, or equivalently
P {qﬁ:qﬁt:at} < daee PY° {qﬁ:qﬁt:at}.

Since this inequality holds for each ! € A*, it must also hold for the (disjoint) union:

Pe | {p:¢'=a'l < ucP? |J {9:0' =a'}. (A.2)

atcA* atcA*
Finally, since P$° is a probability measure over {0, 1}, from (A.1) and (A.2) we get

P° {¢ : sprt decides Haec} dace P2° {¢p : sprt decides Hgee}
dac

<
<

acc -

The proof that P° {sprt decides H,.;} < ,¢; 1s symmetrical.
a 18P J J

The sequential learning procedures developed in Chapter 2 call this sprt procedure to test whether
the error of a hypothesis h was less than ¢/k, or greater than ¢, for some k > 1. In particular, they call
sprt(h(z) # c(x), €/k, €, §, 0), which accepts an e-bad hypothesis with probability at most J, but never
rejects any hypothesis (since setting d,.; = 0 means sprt never decides “H,.;”). A key fact is that such a
call to sprt is guaranteed to accept any ¢/k-good hypothesis wpl.

Lemma A.2 Foranye >0, > 0, k > 1, and any boolean random variable ¢ such that Py {¢(z) = 1} < ¢/k:
Calling sprt(¢(z), ¢/k, €, 6,0) returns “Hgee” wpl.

Proof First notice that since d,.; = 0, sprt never rejects a hypothesis. Therefore, it remains only to show
that sprt terminates wpl for a boolean random variable ¢ with Px{¢(z) = 1} < ¢/k. (Notice that this
induces a distribution P, on {0, 1} where p < ¢/k.) We will use the fact that the log-likelihood S; monitored
by sprt is actually an i.i.d. sum:

S = 3 Z(e),

pied’
where)
hl 1—-€¢/& ¢ — 0
Z(¢;) = T—e ¢ ’ A3
(¢:) { —Ink, o; = 1. (4.3)

Since S; is an i.i.d. sum we have S;/t — E Z wpl by the strong law of large numbers [Ash, 1972, Theorem
7.2.5]. Claim A.3 below proves that E,Z > 0 for any p < ¢/x where € > 0 and & > 1, and therefore S; — oo
wpl under these conditions. Finally, since sprt terminates whenever S;(¢') > In(1/84..), this means that
sprt terminates wpl for any 4cc > 0. I

A.1. SEQUENTIAL PROBABILITY RATIO TESTING 111
Claim A.3 Fore >0, k> 1, and p < ¢/k:
E, 7 > <w) c.
K

Proof For a distribution P, on {0, 1} (i.e., such that P{1} = p) we have

E,Z = (1-p)ln

1—

1_6: —plnk, (A.4)
by the definition of Z given in (A.3). Since this quantity is increasing for decreasing p, it suffices to derive
a lower bound on E,Z at p = ¢/«. Fixing « and thinking of E./,Z as a function of ¢, we can lower bound
this quantity by a linear function of ¢ as follows. Plugging p = ¢/k into (A.4) and rearranging gives

KR — €

1_6—1115.

B2 = (1 - g) In

This quantity is 0 at ¢ = 0 (i.e., EqZ = 0), so we lower bound it by a linear function ae for a constant «.
To determine this bound we take the derivative of E /7 with respect to ¢

d 1 (k=1 -
SR 2 = <“ —InZ E).

de k\1l—c¢ 1—e€
The constant « is given by the value of this derivative at € = 0,

d
—E /7
de /

k—1—-Ink

K

e=0
Notice that this quantity is strictly positive for k > 1, and also that the second derivative

d? (k —1)2
@EE/HZ k(k—e€)(1 —¢)?

is strictly positive for k > 1 > €. This means that

B2 > (f’i—l—ln.‘i) ‘.

K

foralle >0, x> 1. |

A consequence of these results is that sprt(h(z) # c¢(z), €¢/k, ¢, §, 0) is guaranteed to accept any
¢/k-good hypothesis h wpl. However, not only is this call to sprt guaranteed to eventually accept any
¢/k-good hypothesis, it does so quickly—i.e., with a small expected sample size. In fact, it is well known
that sprt meets the specified accuracy and reliability criteria with optimal expected sample size [Chernoff,
1972].1 Here we derive a reasonable upper bound on the expected number of observations sprt makes before
accepting an ¢/k-good hypothesis.

Lemma A.4 For any 0 < e <5/8,d >0, kK > 1, and any boolean random variable ¢ such that Px{¢(z) =
1} <¢/k:

K 1 1
ETSPrt(¢(l‘),E/H,E, 5,0) < <m) - (hlg + 1))

LThe general optimality result uses cutoff boundaries that are a bit are a bit smaller than 5re] and 1/84cc, however these
boundaries coincide with the ones used here for the special case of §,.; = 0.

112 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Proof Recall from (A.3) that S; is a sum of i.i.d. random variables 71, ..., Z;. Wald’s identity then says
that ESy = EZ x ET for any stopping rule 7' [Wald, 1947, §3.5; Shiryayev, 1978, pp.175], which obviously
means

E St
ET = ——. A5
57 (A.5)
Le., the expected time to halt equals the expected sum at termination divided by the average step size.
Now consider the stopping variable T' = Tgprt(¢(z), ¢/x, ¢, 5,0)- By construction sprt terminates whenever

St > 1In(1/d), so we know the sum at termination can be at most
1—¢/k

1
Sr < lng—l—ln T

Le., the final sum must be less than the threshold plus one positive increment. Combined with (A.5) this
gives

1 1

for 0 < € <5/8 (since In[(1 —¢/k)/(1—€)]<1forall0<e<1—e!and x> 1).
Notice that inequality (A.6) holds for an arbitrary P, defined on {0, 1}. We now derive an upper bound
on E,T under the assumption that Px{¢(z) = 1} < ¢/x. Claim A.3 above shows that if p < ¢/k then

B,7 > (ﬁ—l—lnn‘)e
K

for all € > 0, k > 1. Therefore, plugging this inequality into

(

K 1

E,T _—) -
pto< <h‘—1—1nf€)€

A.6) we obtain
1

In—=+1

<“5+)

The next section applies these results to prove the correctness and efficiency of the sequential learning
procedures developed in Chapter 2.

for p<e/w,e>0,k>1. |

A.2 Proofs of results

Definitions and notation: To simplify the notation, for a target concept ¢ and object sequence x* =

(z1,23,...,7), we denote the resulting training sequence by cx’ £ ({z1,e(x1)), (x2, c(®2)), ..oy (T, c(21))).
The analyses presented in this section consider the behavior of sequential learning procedures on training
sequences of unbounded length. Therefore, we will generally be considering the sample space (X x {0,1})*°
consisting of all unbounded training sequences ex = ({21, ¢(21)), (z2, c(z2)),...). In particular, for a target
concept ¢ : X — {0, 1}, we will be concerned with events A C X . Since we are assuming i.i.d. observations,
the probability of an event A C X will be determined by the product distribution Py~ = Px x Px x ...
defined on X*°.

Recall that a stopping rule 7' : (X x {0,1})® — IN is a mapping from unbounded training sequences
to stopping times, such that the event {¢x : T(ex) = ¢t} depends only on the first ¢ training examples. For
a fixed target concept ¢ : X — {0, 1}, this stopping rule 7" becomes a mapping from sequences of domain
objects to stopping times (z.e., T : X®° — IN), where again the event {x : T'(x) = ¢} depends only on the
first ¢ examples. For a stopping rule T, we let xT refer to the initial T'(cx)-segment of x € X*° (where c is
usually understood from context).

Theorem 2.9 (Correctness) For any ¢ > 0, § > 0, and any (well behaved) concept class C with vc(C) <
oo: Given i.i.d. examples generated by any distribution Px and target concept ¢ € C', Procedure S (R) returns
a hypothesis h such that Py{h(z) # c(z)} < € with probability at least 1 — §; using any hypothesizer H that
1s consistent for C.

A.2. PROOFS OF RESULTS 113

Proof First, we show that if Procedure S terminates wpl, then it must satisfy the theorem. Lemma A.1
above shows that S’s call to sprt accepts an e-bad hypothesis h; with probability at most §;. Therefore, the
total probability that S accepts some e-bad hypothesis is bounded by Z?; d; = 6. Clearly, if S returns some
hypothesis wpl, but returns an e-bad hypothesis with probability at most §, then S must return an e-good
hypothesis with probability at least 1 — d. (The same argument also works for R.)

It remains only to show that S terminates wpl. The proof of this relies on two key facts: first, S’s call to
sprt eventually accepts any ¢/k-good hypothesis wpl; and second, S’s hypothesizer H eventually produces
such a hypothesis wpl. Together, these two facts ensure S terminates wpl. The first fact follows from
by Lemma A.2 above. To establish the second fact we argue as follows: Since C' has finite VCdimension,
Lemma A.5 below shows that, wpl, there must be some time ¢ by which every ¢/x-bad concept in C has
misclassified some training example. At this time, either H has already produced a hypothesis that correctly
classifies every observed example, or if not, it will be called to do so. In either case, H will have produced
an ¢/k-good hypothesis.

(Termination wpl for R can be proved by showing that once every e-bad hypothesis has been eliminated
from C', R must eventually accept some e-good hypothesis wpl.) |

Lemma A.5 For any € > 0, and any concept class C' with finite VCdimension: Given a sequence of 1.1.d.
training examples, every concept in C' with error greater than € eventually misclassifies some training example,
wpl.

Proof Fix an arbitrary € > 0 and an arbitrary distribution P over training examples. Let A; C (X x{0,1})*
be the event that all e-bad concepts have been eliminated from C' after the first ¢ training examples. We
are interested in the event Ao, = J;o; A, that all e-bad concepts have been eliminated from C' within some
finite number of training examples. Theorem 2.5 [Shawe-Taylor, Anthony and Biggs, 1993] shows that for
every 0 > 0 there is a t (= Tspas(C,€,9)) such that PA; > 1 —§ for all s > ¢. Thus PA; 1 1, and since
A T Aw we also have PA; T PA, [Ash, 1972, Theorem 1.2.7], and hence PAo, = 1 as desired. I

Theorem 2.11 (Data-efficiency) For any § > 0, sufficiently small ¢ > 0, and any (well behaved) concept
class C' with finite VCdimension: Gwen i.1.d. examples generated by any distribution Px and target concept
¢ € C, Procedure S observes an average training sample size of at most

K 1 14k 1
< - - 212k v . =) 2.
ET5(C,e,8) < (I{—l—lnﬁj) . <[2 12k ve(C) + 3] In c —}-lné), (2.2)

using any hypothesizer H that produces consistent concepts from C, any constant k > 1, and the sequence

{8; = 66/(m?i%)}52, (which gives y ;- 6; = §).

Proof The proof of this result relies on the same two facts used in Theorem 2.9 above: first, the call to sprt
eventually accepts any ¢/k-good hypothesis wpl; and second, the hypothesizer H eventually produces such
a hypothesis wpl. Together, these two facts show that we can bound the expected time for S to terminate
by the time for H to produce an ¢/k-good hypothesis plus the time for sprt to accept such a hypothesis.
Fix arbitrary € > 0,d > 0, ¥ > 1, and choose an arbitrary target concept ¢ € C' and domain distribution
Pyx. Let T¢ (€) denote the time at which every e-bad concept has been eliminated from C, and let Tsprt (¢, &,)
denote the time for sprt(h(z) # (), €/, €, d, 0) to accept an €¢/k-good hypothesis. Then, as argued in
Theorem 2.9 above, once T¢(€/x) has been reached, S’s current hypothesis h; must be ¢/x-good, since it
correctly classifies every observed example by construction. Therefore, we can bound S’s stopping time by

TS(E,J) S TC(G/K) +TSprt(€a"{a§Z')1

where i is the index of the first ¢/k-good hypothesis produced by H. Notice that ¢ here is a random variable,
but we can always bound ¢ by T (e/k), since no more than one hypothesis can be generated per training
example. This means any sequence of training examples gives

Ts(e,0) < Tele/k)+ Tspre(e, £, S roe/n))-

114 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Now, taking expectations and using EX = E[E [X|Y]], we get
ET5(c,6) < E [Te(e/r)+ Tspre(c, &, 0rc(e/x))]

E [E [t + Tepre(e, &, &)| Te(e/x) = 1]

= ETc(e/k) + E [E [Tepri(e, 5,8)| Te(e/r) =t]] . (A.8)

First we bound the inner expectation: Applying Lemma A.4 above and using the fact that §; = 6§/(n?%i%),
we obtain

! 1
E [Tsprt(e,ﬁ,5t)|TC(e/ﬁ) = t] < % (hlg_ + 1) where k' = k/(k — 1 — In k),
t
&' 1 w2

for 0 < € < 5/8. So, combining (A.8) and (A.9), and noticing that In(7?/6) < 1/2, we get

I

ETs(c,8) < ETc(e/n‘)JrE[% (21”0(6/'“)““%4“%)]

= ETc(e/k) +

f’il
€

<2 B [InTe (/)] +In 5 + %)

! 1
< ETc(e/r)+ 2 <21nETC(€/n)—|—lng+g). (A.10)
€
The last bound follows from Jensen’s inequality: since In is a concave function we have E In X <InE X for
any random variable X [Ash, 1972, Chapter 7].

It remains only to find a bound on ET¢(¢/k). Let d = vc(C'). Lemma A.6 below shows

f’u‘”

ETc(e/k) < —<2dln%—|—ln2—|—1> where k" = k/(1 — \/¢/k),
€ €

¢ 1"
27y, s (A.11)

€ €

<

for d > 1. The rest is just algebraic manipulation: Plugging (A.11) into (A.10) yields

14 2k"d . 14 1
ETs(e,d) < [Z—dln—K 21n< R ln—K)—}—lng—}-%],
€ €

Claim A.12 below shows that £”/x’ < 1.06«, and so we have

ZH//

' 14
ETs(c,0) < = [2.12,“1111—” +2 <1n
€ €

0 (1 <d1n1+1n1)) |
€ €)

This bound holds under the minor restriction that ¢ < 5/8 (needed to apply Lemma A.4). If, however, we
restrict attention to small values of € this bound can be simplified further. Claim A.13 below shows that

1" <
2 -|-lnlni—f-lnd—|—é < ;IHM—H
€

ford>2and ¢ < min{1/4, ﬁ/[d2(ln1 05d)?] }. Plugging this into (A.12) yields

+1n1ni+1nd+3> +1n§] (A.12)

In

ETs(e,6) < %((2 12/€d+3)1n14—h+1 —) |

A.2. PROOFS OF RESULTS 115

Lemma A.6 For any € > 0, and any concept class C' with finite VCdimension: Given a sequence of i.1.d.
training examples, the expected number of training examples before every e-bad concept is eliminated from C

1s bounded by
1 6
ET, < — [2ve(C)In—+1In2+1).
20 < gty (we@n g +me)
Proof We prove this using Theorem 2.5 [Shawe-Taylor, Anthony and Biggs, 1993], which showed that for
every 0 > 0 we have P {T¢(€) > Tspup(C,€,0)} < J, where Tspup5(e€,d) is a constant that depends on ¢, d, and
vc(C). Let us assume, pessimistically, that T (e) is a random variable that makes this an equality; i.e.,

P{Tc(€) > Tonus(Cre,8)} = 6 (A.13)

for every § > 0. Now, consider a random variable V' defined by the linear transformation
V = €1 —+/e)Te(e) —2ve(C) lng —In2.
€

Notice that V' > In(1/§) holds if and only if Te(€) > Tspas(C, €, d). Therefore, we have P{V > In(1/6)} =46
for all § > 0, and this means V' has an exponential (1) distribution. Now, notice that T¢(€) is related to V
by the inverse linear transformation

Te(e) = ﬁ <2VC(C’) lng—kln?—}- V))

Taking expectations gives the result, since EV = 1. |}

Proposition 2.12 (Comparison)

ET5(C,€,8) < Tosuw(C,€,8) for k > 3.5 and sufficiently small § = ¢®0=(C)),
ET5(C,€,8) < Tsnus(C,€,8) for & > (2/:/€)In(2/1/<) and sufficiently small § = ¢®(= (),

Proof This result simply exploits the fact that k" = k/(k — 1 — Ink) can be made arbitrarily close to 1

by choosing & sufficiently large. This is important because reducing the multiplicative factor on the In(1/4)

term in the ETg bound creates a situation where é can be chosen sufficiently small to ensure ETg < Typnw

and ETg < Tspap. Let d = ve(C'), and recall the bound (2.2) on ETg

. ! 14k ro1

ET5(C,e,6) < —(2126ve(C)+3)In— + Zln 5
€ € €

First, for Tyzuw, recall

d 13 4 2
Topuw = max{g—log:) _37 _10g2 _}
€ ‘e €)

5.77d . 13 2.88 2
In— + —In-.
€ € 1)

Choosing k > 3.5 gives k' < 2.88, which permits us to choose a value of § = @) g0 that ETs < Tsenw-
Next, for Ts;,5, recall

1 6 1 2
———2dIn - —In—.
P Y R Ry R
Claim A.14 below shows that choosing x > (2/+/€) In(2/+/€) gives ' < 1/(1—+/¢). This permits us to choose
a value of § = €2(*9) for which ETs < Tsras- |

TSTAB(Ca €, 5)

116 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Theorem 2.14 (Data-complexity) For any 0 < ¢ < 1/8, 0 < § < 1/683, and any concept class C' with
ve(C) > 2: Any learner that always observes an average training sample size less than

taug(C,G,(S) = maX{VC(C)_l 1_26}

480e T 2e

for every fired ¢ € C' and Py will fail to meet the pac(e,d)-criterion for some target concept ¢/ € C and
domain distribution PL.

Proof Fix an arbitrary 0 < € < 1/8 and an arbitrary learner L = (T, H). Let H[cx"] denote H’s hypothesis
given training sequence ex!, and let Hex”] denote H{ex'] for t = T(ex]. Also let err(H,Px, c,x") denote
Py {Hiex")(z) # c(x)}. We prove this theorem in two parts: first showing ¢4,y > (vc(C) — 1)/(480¢), and
then t4,4 > (1 — 26)/(2e).

Part 1: tgy > (vo(C) — 1)/(480¢). Following Ehrenfeucht et al. [1989] we construct a hard domain
distribution that forces bad worst case behavior. Let d = ve(C)—1 and X' = {zq, z1, ..., x4} be a set of d+1
domain objects shattered by C' (such a set must exist by the definition of VCdimension, ¢f. Definition 2.3).
Define the distribution P, on X’ by

P.{ze} = 1-—8¢
Pl {z;) = % for 1 <i<d. (A.14)

Now, for observation sequences x € X, let the random variable U : X*° — IN indicate the first time, ¢,
when more than d/2 of the objects in {z1,...,24} appear in the initial segment, x*, of x. The basic idea
is to show that if ET i1s too small then T will often be smaller than U, and this will force H to miss the
pac(e, d)-criterion for some target concept ¢’ € C.

For any H and T, and for any ¢, Px, and ¢ we have

Py {err(H, Py, c,xT) >e} > Pye{err(H,Py, c,XT) > ¢, Tlex] < Ux]}
= PXoo{err(H,PX,c,xT)>e|Tc<U} Pyoe {Te < U}
> wa{err(H,PX,c,xT)>e|Tc<U} Py {Tc <t < U}

> Pyoo {err(H,PX,c,xT) > €| Te < U}
X [Py {Te <t} + Py {U >t} — 1] (A.15)

(the last inequality follows since PAB = PA+ PB — PAU B). Below we find lower bounds for each of these
terms.

1. Lemma A.7 shows that for any H there must be some ¢’ € C for which

Pl {err(H,P,, ¢ ,x") > | T < U} > % (A.16)
2. Ehrenfeucht et al. [1989, Lemma 3] show that for ¢’ = d/(32¢)
PLo{U>t} > 1—e /12 > 11—3 (A.17)
3. Finally, by Markov’s inequality we have that if ET¢ < t'/k for k > 1, then
Prw{Tc<t'} > 1- l. (A.18)

k

A.2. PROOFS OF RESULTS 117

Combining (A.15), (A.16), (A.17), and (A.18) shows that if ETec < d/(32ke) for all ¢ € C, then for any
hypothesizer H there must be some ¢’ € C for which

PLo{err(H,PL ¢, xT) > ¢} >

st x

e R

Choosing k = 15 yields the result.

Part 2: tsy > (1 — 28)/(2¢). Again, we construct a hard domain distribution that forces bad worst
case behavior. Since vc(C) > 2, there must be two domain objects {zg, 21} shattered by C. Define the
distribution P on {zq,z1} by

Pl{ze} = 1-2¢
PL{z} 2.

Now, for observation sequences x € X, let V : X* — IN indicate the first time that z; appears in x. As
before, we argue that if ET is too small then T' will often be smaller than V', and this will force H to miss
the pac(e, d)-criterion for some ¢’ € C. Restrict attention to the class of concepts Cy that label zg as 0; i.e.,
Co 2 {c € C : ¢(xg) = 0}. Here the event {T'c < V} is identical for all ¢ € Cy since it consists of all stopping
sequences where only zq is observed, so we write this event as {T' < V'}.

For any H and 7T, and any ¢ € Cy we have

PLo{err(H,PL c,xT) > ¢}

)L x

v

Pl {err(H, PLoe,x’)>¢ T < V}
= Plw {err(H,P)'(,c,xT) > €| T< V}
X Ploe{T < V}. (A.19)

First, to lower bound the conditional probability in (A.19), notice that if {T" < V'} has occurred, then Cj
can be partitioned into two subclasses that are 2¢ apart

Cowo = {CECQ 26(1‘1):0},
Cop = {eceCy:c(zr)=1}.

This means that for any training sequence x € {T' < V'}, any hypothesis H[cx”] must be at least ¢ away
from all of the concepts in one of Cyg or Coy. Thus, for any (randomized) hypothesizer H there must exist

some ¢’ € Cy such that
1

Pl {err(H,P,, ', x")>c| T<V} > 5 (A.20)

Now, to lower bound the probability term in (A.19) notice that {T" < V} means T halts beforez; is
observed. Le., T halts on some initial sequence xi, = (zq, 2o, ...) that contains only z¢’s.? In fact, if {T' < V'}
occurs at all, then there must be some shortest such initial sequence x7, so we write PLo {T < V} = PL.{z]}.
Now, if we assume that T stops as soon as 7 is observed,? then this value of 7 also determines T7s expected

stopping time as follows. Let pg = PL{zo} and P,{z1} = 1 — py. Then

T—1
ET = Zipé_l(l—po) + mpgt
i=1
T7—1) T7—1
= > gkt = D vy + !
i=1 i=1

2 Assuming a deterministic stopping rule T. I have yet to generalize this argument to randomized rules.
31f not, we can consider a T’ that stops as soon as 1 is observed so that P} {T’' < V} < Pl o{T < V}.

118 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

T—1 T—1

= > G+0rh = i
j=0 i=0
= 1—pf 1—PL{T <V}
7=0 —Po €

This means that if ET < (1 — 24)/(2¢) for all ¢ € Cy, then
PLAT <V} > 2. (A.21)

So finally, combining (A.19), (A.20), and (A.21), we have that if ET < (1 — 24)/(2¢) for all ¢ € Cy, then
for any hypothesizer H there must be some ¢’ € Cy such that
Pl {err(H,PL, c, xT) >ec} > 26

|
S N =

Lemma A.7 For the domain distribution P, and random variable U : X*° — IN defined as in (A.14) above:
For any learner L = (L, H), if P {Te < U} > 0 for all ¢ € C, then there must be some concept ¢' € C for
which

Pl {err(H,PL, ¢/, x") > €| Td <U} >

-1 =

Proof We use the same averaging argument employed by Ehrenfeucht et al. [1989, Lemma 2] , however their
proof must be reformulated to cope with the fact that the stopping event {T¢c < U} is no longer independent
of the target concept c. Since all that matters is L’s behavior on {z1, ..., 24}, we focus our attention on the
class

Co = {lg:SCHz1,...,z4}};
i.e., the class of concepts that shatters {z1, ..., 24} and yet classifies ¢(zg) = 0 for every ¢ € Cy. Fix a uniform

prior Q over Cy. Claim A.8 below shows that any learner I, = (T, H) must obtain

E.[Ex [err(H, P, e, x7) | Trex1 < Uixl]] > 2e.

st x

This means that there must actually be some ¢’ € Cy that forces this expected error; i.e.,

A eCy Eyx [err(H P! c’,xT) | Tie'x) < U[x]] > 2e.

3L x

Since we have err(H,P%,c,xT) < 8¢ for all ¢ € Cy and x € X*° by construction,* we obtain

1
Pl {err(H, P)'(,c',xT) | Tic'x) < U[x]} > =
(This follows because for a random variable X with EX > 2e¢ and X < 8¢, we must have 2¢ < EX <
8¢P{X > ¢} + eP{X < ¢}, which implies P{X > ¢} > 1/7.) |

Claim A.8 Let Py denote the joint distribution on Cy x X defined by Q x Pio. Then for the random
variable U : X — IN defined as above: Any learner I = (T, H) such that Px{T[ex] < U[x]} > 0 obtains

E.[Ex [err(H, P, e, x7) | Tiex1 < Uxl]] > 2e.

3+ x0

4Provided H produces hypotheses that classify xo as 0 (i.e., H[ch](m)) = 0). If not, then we can always construct another
hypothesizer H' that does so, and for which err(H',P4,c,xT) < err(H,P%,c,x”). The subsequent lower bound will hold for
H' and hence for H as well.

A.2. PROOFS OF RESULTS 119

Proof Consider the event A = {{e,x) : Tlex] < U[x]}, which consists of all pairs (¢,x) € Cy x X that
cause the stopping rule T' to terminate before half of the objects in {z1,..., 24} have been observed. We
decompose this event as follows. First, write A as

A

Z{(c,x) (Tex) < Ulx], xF = X — M}
M

(1>

ZAM7
M

where M ranges over all unobserved subsets of {z,...z4} with size at least d/2.5 That is, A can be
decomposed as a union of pair-sets that leave the same set of domain objects unobserved at termination.

Now, consider one of these pair-sets Aps that causes T to halt before a particular subset M C {z1, ..., 24}
has been observed. This means that the observed objects are a subset of X — M. So, given M, we can
partition Cy into N = 24~ |M]| equivalence classes Cas1,...,Cary, ..., Cr, v, where each equivalence class

shatters M, but the concepts in each class identically label the objects in X — M. Then we can write A as
a disjoint union

A = ZZ{<C,X>ZT[CX]<U[X], XTEX—M,CECMJ}
M i

e

SN Au,
M

where Apr; consists of all pairs (c,x) that leave a particular set of domain objects M unobserved at ter-
mination, and where the concepts Cpr; = {c: (c,x) € Ap;} identically label every object in X — M but
shatter the unobserved set M.

Finally, consider one of these pair-sets A ;. Notice that if an object sequence x € X* causes (¢1,x) €
Angi for some ¢1 € Cpr;, then it must cause (¢, x) € Apr; for every ¢ € Car;. This is because (c1,x) € Anr i
means T[cix] halts before any element of M has been observed, and since every ¢ € Cyr; labels X — M
identically, we must have T[ci1x] = Tlex] and hence ¢1x? = ex? for every ¢ € Cu,i. This shows that Ay is
a cartesian product Anr; = Cari x Xp7,;, where Car; = {¢:{c,x) € Ap;} and Xpri = {x:{c,x) € Am;}.
That is, A can be decomposed as a finite union of disjoint rectangles

A = DN O x X3z, (A.22)
M

where each rectangle Cyr; X X7 ; causes a particular (large) set of domain objects M to remain unobserved
at termination, and where the concept class Cjs; identically labels every observed portion of a sequence
X € X737, but shatters the unobserved set M.

We now prove the claim that E (. x) [err(H, Pl c,xT) | A] > 2¢. Note that since P, (A) > 0 by hypoth-
esis, 1t suffices to prove

E(ex) [err(H,PLe,x") | Curi x X37,] > 2¢ (A.23)

for any rectangle where Py (CM,z' X XJO\ZZ») > 0.5 Consider such a rectangle and let Pas,i denote the condi-
tional probability of P, given X357, and let Qar; denote the conditional probability of Q given Cas ;. The
idea is to prove that if T stops before half the objects in {z1, ..., 4} have been observed, then no hypothesizer
H can achieve a small average error over the possible labellings of the unobserved objects.

5Here the notation Z means disjoint union, and vector = set means contents(vector) = set.
6To see that this suffices, note that Py (A) > 0 by hypothesis, so there must be some rectangle Cpr; X Xy, that gives

Px (CMJ- X X592 i) > 0. Now, obviously for any random variable X, if E [X|B;] > «a for disjoint B;, P(B;) > 0, then we must
also have E [X| Z] B;] > a.

120 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Recall that Q is uniform on Cy, and thus Qaz; is uniform on Chr ;. Rewriting (A.23) gives

E {e,x) [67“7“(H, P;(; C, XT) | CM,Z' X XJ?; z] = / / 67°7°(H’ P;(a C, XT) dPM,z dQM,z
’ Cum,i VX3,

/ / err(H,PL,c,x7) dQuari dPar,
Y Cni

by Fubini’s theorem [Ash, 1972, Theorem 2.6.6]. Now, consider an arbitrary x € X§7 ;. Recall from (A.22)

that every target concept ¢ € Cjpr,; yields the same observation sequence ex” for x. This means that any
hypothesizer H must produce the same hypothesis h(x] = Hcx”] for any ¢ € Cu,i. So for this x we obtain
an average error of

8¢
/ err(H, Py, c,xT) dQum;: = / 7 E L hix)(e) 2e(z)} dQnri
Cni Cm,i TeM

since each point in M has weight 8¢/d under P. 7

8¢
B E/ Lih(a) e(z)} dQni
d Chr,i

rzeM

8¢ 1
= TX3

reM
since half the concepts in Cr; agree with Ajx] on z € M,
4e
= —|M
]

de d
d 2

v

since |[M| > d/2 by construction,

= 21

Theorem 2.16 For any ¢ > 0, § > 0, and any finite concept class C: Given i.i.d. examples generated by
any distribution Py and target concept ¢ € C, Procedure Smb observes an average training sample size of at
most

ETsmn(M,€,6) < M (*) ! (mﬁ + 1) ; (A.24)

€ k—1—Ink/ ¢)

using a hypothesizer H with M = M (C, H) and a constant £ > 1.

Proof We prove this using a simplified version of the argument from Theorem 2.11 above. As in Theo-
rem 2.11 we exploit the two key facts that (i) the call to sprt eventually accepts any ¢/k-good hypothesis
wpl, and (iz) H must eventually produce such a hypothesis wpl. Thus, we can bound the expected time
for Smb to terminate by the time for H to produce an ¢/k-good hypothesis plus the time for sprt to accept
such a hypothesis.

Fix arbitrary € > 0,d > 0, k > 1, and choose an arbitrary target concept ¢ € C' and domain distribution
Pyx. Let Ty (¢) denote the time when H returns an e-good hypothesis, and let Tgprt (¢, &,d) denote the time

7Note that this assumes h[x] correctly classifies all observed domain objects z € (X — M). If not, we can construct an
alternative hypothesizer H' that produces consistent hypotheses, and for which err(H', Py, ¢, XT) < err(H,Py,c, XT)7 as in
Footnote 4.

A.2. PROOFS OF RESULTS 121

sprt(h(z) # c(z), /K, €, 8, 0) takes to accept an ¢/k-good hypothesis. Then we can bound Smb’s stopping
time by

TSmb(ga 6) S TH(g/K) + TSPI't(Ea R, 6/M)

Taking expectations, we get
ETgmp(€,8) < ETu(e/k) + ETsprt(e, x,d/M). (A.25)

Now, for the Ty term, we know that
M
E Ty (c/k) < 2, (A.26)
€
since any ¢/k-bad hypothesis is guaranteed to make a mistake in less than k/e expected time, and there can

be at most M such hypotheses. Finally, for the Tgprt term, Lemma A.4 shows that

k—1—Ink/ ¢

E Tspre(c,k, 6/M) < <L> ! <ln¥ + 1) . (A.27)

So combining (A.25), (A.26), and (A.27) directly yields the stated bound. [

Theorem 2.18 The following are equivalent:
1. C can be pac-learned with a bounded expected sample size for each individual ¢ in C.
2. C can be decomposed as C = |J;2, C; where vc(Cj) < co.

3. Procedure S pac-learns C' with a hypothesizer H that produces consistent concepts from the earliest
possible class in the decomposition.

Proof (1 = 2) Following [Benedek and Ttai, 1988b, Theorem 2], we assume there is some learner L that
pac-learns C' with bounded expected sample size for each ¢ € C. Fix 0 < ¢ < 1/8 and 0 < § < 1/683. For
t =1,2,..., let C; be the set of concepts from C' that L pac(e,d)-learns with an expected training sample
size of at most ¢. By assumption, each ¢ € C' must belong to some C;. But by Theorem 2.14, each C; must
have finite VCdimension. Thus, C' = [J;2, C: and vc(Cy) < oc.

(2 = 3) We are given a decomposition C' = |J;=, Cj, vc(C;) < oo. Fix an arbitrary ¢ € C' and an
arbitrary Px. There must be a first class C; that contains ¢. By construction, the hypothesizer H will only
produce consistent, concepts from the set of concepts C7 = [JI_, C;. Lemma A.9 below shows that this class
C7 has finite VOdimension, and therefore we can directly apply Theorem 2.9 to show S correctly pac-learns
c.

(3 = 1) Follows directly. [

Lemma A.9 For two concept classes Cy and Cs:

ve(ChUCs) < 3.1 max{vc(Ci), ve(Cy) } + 2.
Proof Recall from Definition 2.3 that vc(C) = d means there is a set of d domain objects {z1, ..., 24}
that can be independently labelled by choosing concepts from C; i.e., C “picks out” all 2¢ distinct subsets

of {z1,...,z4}. Blumer et al. [1989, Lemma A2.1] prove that the maximum number of distinct subsets any
concept class C' with vc(C) = d can pick out from a set {z1, ..., 2:} of size ¢ is bounded by

o) < (g) (A.28)

122 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

for 1 < d <t. We use this fact to derive an upper bound on the VCdimension of C; U Cy: Let d = vc(Ch)
and dy = vc(Cy). By (A.28), the maximum number of distinct subsets of any set {z1,...,2:} that can be
picked out by concepts from Cy U C'y is bounded by

HCIUC2 (t) < HCI (t) + ch (t)
et \ 4 n et \ %
dq do

d
t
2 (%) where d = max{d;,d>}.

IN

IN

Now, if ve(Cy U Cs) = t, then by definition we must have Tl¢,uc,(t) = 2°. Therefore, the VCdimension of
C1 UCy can be no larger than the largest ¢ for which 2(et/d)? > 2°.

We prove that t = 3.1d + 2 implies 2(et/d)? < 2! and hence vc(Cy U Cs) < 3.1d + 2. To do this, note
that 2(et/d)? < 2 if and only if (d/In2)In(et/d) < ¢ — 1, and consider

d et d 2

substituting ¢t = 3.1d + 2,

d 3.1 2
< R JE— JR— —
S e [(3 +3d—|—1n3 1)—1—1]

by Lemma A.10 below; using a = 1/3,

d 2

< 31d+1 = t—1.}

N

A.3 Some algebraic bounds

Here we present proofs of the various algebraic bounds used in Section A.2. Most of these bounds are derived
from the following two lemmas which provide linear approximations to log functions.

Lemma A.10 [Shawe-Taylor, Anthony and Biggs, 1993] For any o > 0:
Inz < az+1In(l/a)—1.
Corollary For anya>0,b>0, and 0 < a < b/e?: x > alnbx for

LN (A.29)

l—aa «e

r

Proof The lemma is proved in [Shawe-Taylor, Anthony and Biggs, 1993]. For the corollary, we seck a
lower bound on z that ensures z > alnbz. It is proposed that (A.29) is sufficient to do this (for a < b/e?).
It suffices to show # > alnbz holds at the bound (A.29) since z grows faster than alnbz for z > a, and
a < b/e? ensures a is smaller than (A.29). To this end, consider

— ax e

b
alnbr = aln <b1 2 —) plugging in (A.29),

A.3. SOME ALGEBRAIC BOUNDS

123

= alnb—|—aln< a lni)
1—aa «e
b 1
< alnb—|—a< ad 1n——|—ln—) by the lemma,
1l—aa «ae e
2 2
= alnb+ e Inb+ 1« +a)ln—
1—aa 1-— e
ax aq 1
= all+ Inb+all+ In —
1—aa 1 - aa e
= a lni =z |
1—aa ae
)) 4\? 4. 4
Lemma A.11 Forany 0 < g <4/e*: (Inz)* < fz+4 lnﬂ— for Izﬁlnﬁ_'
€ €

Proof We seek a linear function Bz + ¢ that is an upper bound on (Inz)%. Consider the difference function
f(z) = Bz + ¢ — (Inz)?. This difference is increasing for values of z where f/(z) = 8 — (2Inz)/z > 0. In
particular, f'(z) > 0 for « larger than (4/8) In[4/(Be)]. (To see this, note that > (4/3) In[4/(Be)] implies
z > (2/B)Inz, by the corollary to Lemma A.10 above; using o = (3/4 and ensuring 3/4 < 1/¢2.)

Since f'(z) > 0 for z > (4/3)In[4/(Be)], we need only find a constant ¢ that ensures f(z) > 0 at
z = (4/P8) In[4/(Pe)] and the result will follow automatically for larger z. Tt turns out that a suitable choice
is ¢ = 4[In(4/(Be))]?. To see that this is sufficient, consider

f(z) Bz +c— (Inzx)?

for ¢ = 4[In(4/(Be))]? and = = (4/5) In[4/(Be)],

4

)]

fe

since In(4/(3e)) < 4/(Be?) by Lemma A.10 above (using a = 1),

4 4 4
z 4(%) (1“5)‘[1“5(

4 4 4
= 4<ln%) <lnﬁ>—4<ln%
> 0

)

since In(4/0) > In(4/(Be)) for 3 > 0. |

Given these lemmas, we now prove the algebraic bounds referred to in the previous section.

124 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Claim A.12 Fork > 1 and 0 <e < 1: -~k < 1.06k.

Proof First notice that \/e/x < 1/4/k for all 0 < € < 1, so it suffices to consider ¢ = 1. We seek a constant

« such that
l k—1—1Ink _ k—1-Ink
k\ 1—-1/k k= /k

for all & > 1. Tt can be numerically verified that o = 1.06 is a suitable choice. [}

Claim A.13 Ford > 2 and ¢ < min{1/4, k/(dIn1.05d)? }:

3 14k 2k"
—In— > In
2 € - €

14k 3
+Inln — 4 Ind+ 2.
€ 4

Proof First of all, it can be verified that 2k < 4k for all e < 1/4, k > 1 (recalling that " = /(1 —/€¢/k)).
So it suffices to show that for ¢ < x/(dIn1.05d)? we have
3. 14k 3

Ak 14k
2 s i 2 f a2
2 € € € 4

Since In(4k/¢) = In(14k/¢) + In(4/14), this is equivalent to

1. 14x 4 14k
=2 > = 4Inln—= find+
2 € 14 €

3
4)
which in turn is equivalent to

dln —
14 €

Now let # = 14x/e. Noticing that (4e%/%/14)? < 0.37, we need only establish that

14 (463/4 14ﬁ) ’
— >)

€

z > 0.37d*(Inz)? (A.30)

holds for all z > 14d?(In 1.05d)?%.

Let f(z) = 2 — 0.37d*(In 2)? and note that f/(z) = 1 — 0.74d*(Inz)/z. By the corollary to Lemma A.10
above we have that f’(z) > 0 for all z > 2d?In(1.05d) (using a = 1/[4 x 0.74d?], which ensures o < 1/e? for
d > 2). Clearly, 14d*(In 1.05d)? > 2d*In(1.05d), so it suffices to establish that the inequality (A.30) holds at
z = 14d*(In 1.05d)%. To this end, consider

0.37d*(Inz)?> = 0.37d* [In 14d*(In 1.05d)?]”

plugging in = = 14d?(In 1.05d)?,

< 2
0.37d” [0—27(111 1.05d)? + 4 <1n 3 0'37d2)]

[

IN

for any d > 1 by Lemma A.11; using 8 = 1/[2 x 0.37d?]
(which ensures 8 < 4/e? for d > 2),

< 7d*(In1.05d)* 4 16 x 0.37d*(In 1.05d)*
since 8 x 0.37/e < 1.052,

< 14d*(In1.05d)* = z. |

A.3. SOME ALGEBRAIC BOUNDS 125

1
Claim A.14 For all ¢ > 0: al < for k>

k—1—1Ink 11—/

v

Proof Note that x/(k — 1 —Ink) < 1/(1 — \/€) is equivalent to & > ¢~'/2(1 4+ Ink). To verify that this
inequality holds for k > (2/+/€) In(2/+/€) consider

o,
—(1—}—111&) < ﬁ_l—}—ln(Tln\/_)]
plugging in & > (2/+/€) In(2/+/e),

<~

IN

1—|—ln

a
VR
by Lemma A.10 above (using a = /¢/2),

A
Vel

—

In

AL
S

126 APPENDIX A. TECHNICAL DETAILS: CHAPTER 2

Appendix B

Technical details: Chapter 3

Definitions and notation: In this appendix we adopt the same definitions and notation used in Ap-
pendix A. 1In particular, we let cx’ denote the sequence cx' = ((z1,c(z1)), (x2,c(x2)), ..., (Tt c(z1)))
generated by a target concept ¢ and object sequence x = (1, Z3,..., ;). Thus, for a hypothesizer H :
(X x {0,1})* — {0,1}* we denote the hypothesis it produces given training sequence cx’ by Hicx']. We
also let H[exT] denote Hicx'] at t = Tlex], and let err(H,c,x") £ dp(H[cx'], ¢) denote the error of H'’s
hypothesis given cx!, with respect to ¢ and P.

Theorem 3.8 (Correctness) For any ¢ > 0, d > 0, and any concept space (C,P) with N.j5(C,P) < oco:
Guwen 1.1.d. examples generated by P and any target concept ¢ € C, Procedure Sbi returns a hypothesis h
such that P{h(z) # c(z)} < € with probability at least 1 — 6.

Proof Since Sbi constructs an e/2-cover V of (C,P), it must consider at least one ¢/2-good hypothesis
h € V. Lemma A.2 in Appendix A shows that Sbi’s call to sprt eventually accepts such a hypothesis wpl,
and therefore Sbi is guaranteed to terminate wpl. On the other hand, each call to sprt accepts an e-bad
hypothesis with probability at most §/|V| by construction, so the total probability that Sbi accepts an ¢-bad
hypothesis is bounded by |V| x /|V| = §. Therefore, the probability that Sbi returns an e-good hypothesis
must be at least 1 —§.]

Theorem 3.10 (Data-efficiency) For any ¢ > 0, d > 0, and any concept space (C,P) with N.j»(C,P) <
o0o: Grven t.i.d. examples generated by P and any target concept ¢ € C', Procedure Sbi observes an average
training sample size of at most

. 51
ETepi(C,P,,5) < 02208

1
<lnNE/2(C,P)+lng—|—1)) (3.1)

Proof As above, since Sbi constructs an ¢/2-cover V of (C,P) it must consider at least one ¢/2-good
hypothesis h € V. Moreover, the call to sprt(h(z) # c(z), €/2, ¢, §/|V], 0) eventually accepts this
hypothesis wpl. So we can bound Sbi’s overall stopping time by the time it takes sprt to accept this
¢/2-good hypothesis

Tsbi(C,P,€,8) < Tsprt(n(e)#e(z), /2, ¢, 6/[V],0)>

where |V| = N./»(C,P). Applying Lemma A.4 (bounding E Tgprt) yields the result. |

Theorem 3.12 (Data-complexity) For any ¢ > 0, § > 0, and any concept space (C,P): A learner that
always observes an average training sample size less than

! 1
tavg(C, P €,8) = EIng [Nze(ca pP) (E — 6)]

for every fized ¢ € C' will fail to meet the pac(e, d)-criterion for some fived target ¢’ € C.

127

128 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Proof Fix an arbitrary € > 0 and an arbitrary learner L = (T, H). As in the proof of Theorem 2.14, the
idea is to show that if L’s expected stopping time E T is too small relative to tgr, then H must fail to meet
the pac(e, d)-criterion for some ¢’ € C'.

For any T and H, and any ¢ and ¢ we have

Py {err(H,c,x7) > ¢} = 1—Pxe{err(H,c,x7) < ¢}

= 1 =Py {Tlex] < t, err(H,c,x7) < ¢}
— Py {Tiex) > t, err(H,c,x’) < ¢}

> 1 —Py{err(H,c,x") < e} — Py {T[cx] > t}, (B.2)

since Pyoe {T[cx] < t, err(H,c,xT) < ¢} > Pyi{err(H,c,x) < ¢}t
Now we find lower bounds on these terms. First, Lemma B.1 below shows that for any ¢ there must be
some ¢’ € C for which

ot
Pyi{err(H,c,x") < ¢} < m (B.3)

Then by Markov’s inequality we have that, if E xT[ex] < t/2 for all c € C,
1
Py {Tlex] >t} < 7 (B.4)

So combining (B.2), (B.3), and (B.4) shows that for any ¢ if ETe < ¢/2 for all ¢ € C, then there must be
some ¢’ € C for which

2! 1
Noo(C,P) 2

Choosing ¢ = log,[N2(C, P)(3 — 8)] finishes the proof. |

Lemma B.1 For any concept space (C,P) and any hypothesizer H, there must be some ¢’ € C' for which

ot
Pyi{err(H,c,x") < e} < m
Proof To prove this lemma we need to consider a “2Ze-packing” of the space, V, consisting of a maximal
collection of pairwise 2¢-separated concepts in C. If we let My (C, P) denote the size of the largest 2e-packing
of the space, then it is well known that Ms.(C, P) > Na(C, P) [Kolmogorov and Tihomirov, 1961], and thus,
|[V| > N2e(C, P). We now use an averaging argument, originally due to Benedek and Ttai [1988, Lemma 5].
Fix a uniform prior Q over V| and consider an arbitrary hypothesizer H. Thinking of concepts as being
randomly drawn from V according to Q, consider

E. [PXt{err(H,c,xt) < e}] = / / Lierr(H,ext)<e) dPy(x") dQ(c)
ceV JxteX1

/ / Lerr(i,exty<e} dQ(c) dPy: (x")
xte Xt JeeV

by Fubini’s theorem,

1 This assumes H does not change its guess after T has stopped; i.e., H[exT] = H{ex!] for ¢ > Tlex]. If not, then we can
always construct a new hypothesizer Hy that freezes H's hypotheses once the stopping variable T' has terminated (and thus is
behaviorally equivalent to H with respect to stopping rule T'), and still provides the lower bound Px o {T[cx] < ¢, err(H,c, XT) <
e} > Pyi{err(H,c,x') < e}

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 129

IN

9t .
— dP,:
/xtep] P)

by Claim B.2 below,

2t
= T
This means that there must be some ¢’ € C such that
2t
Pyi{err(H,c,x") < ¢} < G
2t
< —— 1
- NQE(C, P)

Claim B.2 For any set of pairwise 2a-separated concepts V., and any object sequence x* of length t: No
hypothesizer H can produce hypotheses that a-approrimate more than a fraction 2¢/|V| of the concepts in V.

Proof Fix an arbitrary 2a-separated subset V of a space (C, P) and an arbitrary object sequence x*. Let
Q denote the uniform prior over V' and consider an arbitrary hypothesizer H. Then, considering concepts as
being randomly drawn from V according to Q, we have

Q {c €V ierr(H, e, x") < a} = / Ldp (Hiext,e)<a} dQ(C)
ceVvV

IN

€
/ E Lidp(Hieixt,0)<a) dQ(C)
ceVvV ot

e{0,1}*

where ('x" denotes ((z1,£1), ..., {(z¢, l)),

= Z / Ldp(Heixt,c)<a) 4Q(c)
rtefo,1} ceV

>,

£te{0,1}1

AN

since each H[#'x'] can only be within a of one ¢ € V,

2t
=t
AC=22)
., . d . .
Proposition 3.15 NB(C,P) < (bk)® implies N.(C,P) < (—) .
€

Proof Clearly, N, < NBy, - Ng.. Therefore, assuming NBy < (bk)¢, we get
N. < (bk)4Neg
< [(k)) Nz < oo < [(0k)] N <

[(bk)d] [log, (1/€)] Nl

[(bk)d] log,. (k/€) .1

(

IN A

)d(ﬁ“)

LY ES

)

130 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3
since (bk)l"gk(k/ﬁ) = (k/g)logk(bk).

Proposition 3.16 (Data-efficiency) For any e > 0, § > 0, and any concept space (C, P) with NB4(C,P) <
0o: Procedure Sfoc observes an average training sample size of at most

13.0356

€

E TSfOC(Ca Pa €a 6)

1 1

<lnNB4(C', P)—i—lnln——l—lng—l— 1.4) . (3.2)
€

for any target concept c € C.

Proof Sfoc runsin S = log,(1/¢) stages. Each stage i constructs a 2=+ _cover, V;, of a local 27 (i=1)-

neighborhood, and calls sprt(h(z) # c(z), 20+ 271 §/(|Vi|S), 0) for each h € V;. Since V; is a
2-(+1)_cover, we know it contains at least one 2~ (+1)_good hypothesis h;. Therefore, from Lemma A.2 in
Appendix A, we know that sprt eventually accepts this hypothesis wpl, and from Lemma A .4 we know that
this takes an average number of training examples of at most

ETsprt(hi(z) # c(x), 2-6+1), 24, 5/(|Vi]S), 0)

< 6.5178(2") <ln |V3|S + 1) .

Finally, since |V;| < NB4(C, P), the total number of training examples observed by Sfoc is bounded by:

S
. ¢ NB4(C,P
ETst0c(C,P,e,8) < 26.5178(21)111#
i=1
neNB4(C,P)S

= 6.5178(2°F — 1)1 5

13.0356

1 1
(lnNB4(C',P)+lnln— —}—lng —Inln2 4+ 1) ,
€

plugging in S = log,(1/¢). |

Proposition 3.18 Forany 0 < a <1
. . 1
Ng(initials, uniform) = [—
NBy(initials, uniform) < 4

Proof Part 1: To show Ny(initials, uniform) < [1/(2«)], construct an a-cover of the space by choosing
[1/(2a)] concepts defined by endpoints {a(2n—1):n =1,2,...,[1/(2a)]}. Clearly, these endpoints are
spaced 2a apart and any endpoint z. in [0, 1] must be within at least a of some cover-point.

Part 2: To show N,(initials, uniform) > [1/(2«)], notice that an initial segment h can a-cover at most an
neighborhood of initial segment concepts defined by endpoints in [z — a, 2, + «]. This neighborhood has
length at most 2a;, and hence at least [1/(2«)] endpoints are required to cover the entire interval [0, 1].

Part 3: Finally, to show NBy(initials, uniform) < 4, notice that the 4a-neighborhood, B, (c), of any initial
concept ¢ is defined by an interval of endpoints [z. — 4a, 2. + 4a]. This neighborhood clearly has length at
most 8a. Thus, an a-cover of this neighborhood can be constructed by choosing at most 4 initial segment
concepts defined by endpoints z. — 3o, z. — a, z. + o, z. + 3a. |

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 131

Proposition 3.20 For any 0 < a < 1/d,

INA

2ea

1\? 11°
<) < Ny(d-m-initials, uniform) [—-‘
2a

NBy(d-m-initials, uniform) < 1.4(6¢)?

Proof Part 1: N, (d-m-initials,uniform) < [1/(2a)]%: An obvious a-cover of this space can be constructed
by choosing [1/(2a)] endpoints 2a/d apart at

{i—=1+a2n—1]))/d : n=1,2,..,[1/(22)] }

for each subdomain X; = [(: —1)/d, i/d), and then composing d-m-initial concepts by independently choosing
an endpoint from each subdomain. This forms an a-cover of the space, since for any d-m-initial concept, ¢,
the distance between c’s endpoint in subdomain X;, z%, and the nearest cover-point in X; is at most a/d;
which means the total distance between ¢ and the nearest cover-concept can be at most d x a/d = a. Since
there are d independent subdomains with [1/(2a)] points in each, this construction generates [1/(2a)]?

cover-concepts in total.

Part 2: N, (d-m-initials, uniform) > (2ea)~%: Here it will be useful to think of d-m-initial concepts ¢ as tuples
(xl ... 29 €[0,1/d]% Tt is easy to see that the total volume of this space is (1/d)?. We will show that the
volume of any a-neighborhood of a tuple (z!,...,z%) € [0,1/d]¢ is bounded by (2ea/d)?, and therefore any
a-covering of (d-m-initials, uniform) by d-m-initial concepts requires at least a number of distinct concepts

vs B (LY

d

To prove this, fix an arbitrary tuple (z!,..., 2% € [a, 1/d — a]¢. We wish to calculate the volume of the
a-neighborhood of the concept ¢ defined by this tuple. Note that we have

du(c,h)<a <= |el—z}|+. . +]zi—2f|<a (B.6)

for any other d-m-initial concept h. Therefore, the a-neighborhood of ¢ consists of all d-m-initial concepts h
defined by tuples (z}, ...,z = (zl + &, ..., 28+ &4) where —a < & < a and |€1] + ... + [€4] < a. So all we
need to do is determine the volume of the simplex

d
Ra = {<€1w~~’€d>€[—a,a]d : ZI&IS@}.

Note that R, can be decomposed into 2¢ disjoint subregions, corresponding to the ways a sign (+1, —1) can
be chosen for each &;:

d
R, = > E@{({l,...,§d>E[O,a]dzz&ga}

Fe{+1,-1}4 i=1
LY sen,
sde{+1,-1}4
where @ means coordinate-wise multiplication: (z1,...,2g) ® (Y1, ..., Yk) = (Z1y1, ..., TxYk). Thus, the total

volume of R, is just 2¢ times the volume of a component simplex r,. By Lemma B.3(a) below we know
that vol(r,) = a?/(d!), and therefore

2dqd 2d)4 2ea\?
vl(Ra) = —= < (<d))d B <7) ’

132 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

since d! > (d/e)? by Stirling’s approximation [Purdom and Brown, 1985, Section 4.5.5].

Part 3: NB4(d—7r—initia|s,uniform) < 1.4(6e)%: Again, it will be useful to think of d-m-initial concepts as
tuples (zl,...,z%) € [0,1/d]? For a d-m-initial concept ¢ we can construct an a-cover of its 4a-neighborhood
as follows. Recall from (B.6) that the 4a-neighborhood of ¢ consists of all d-m-initial concepts h defined by
tuples (z}, ..., 2% = (2l + &1, ..., 28 + &4), where —4a < & < 4a and [&1]| + ... + |€4] < 4a. So we construct
an a-cover of the simplex

R4a

{<5h.“,5> —4a, 40]? §:|&|<:4a}
= Z 5@{<§1,...,§d [0, 4a]? Zgz<4a}

ge{+1,—-1}4

A -

= Z [ZON FP
sFe{+1,—-1}¢

To construct an a-cover of a component simplex r4,: Take an «/d-cover of [0,4a] for each coordinate
i = 1,...,d which consists of the 2d points {a(2n — 1)/d : n = 1,...,2d}. Then construct cover-tuples
(&1, ...,€4) by choosing an endpoint from each coordinate-cover; but maintaining the overall constraint that
> ;& < 5a. This forms an a-cover of r4, because for any tuple (z', ..., z?) € r4,, each component z! is at
most a/d away from the nearest cover-point ¢; in coordinate i, and by (B.6) this means (z!, ..., z%) can be
at most d x a/d = d away from the nearest cover-tuple (¢1, ..., &4).2

It remains to count the number of tuples (&1, ...,&4) satisfying the constraints that ¢ € {a(2n —1)/d :
n=1,..,2d} and ", & < ba. To make the counting problem easier, consider the transformed set of tuples
(C1y ..., Cq) where §; = (d€;/a+1)/2. This equinumerous set contains tuples (¢, .., (4) such that {; € {1, ...,2d}
and >~ ¢; < (bd + 1)/2. Now, enlarge this set to contain tuples ((1,...,(4) such that ¢; € {1,...,3d} and

>: G < 3d. By Lemma B.3(b) below, the number of tuples in this larger integer simplex is bounded by

3d + 1)¢
Z 1{n1+...+nd < 3d} < %
n1>0,...,ng>0
(3d+1)?
(d/e)?
1\¢
= (3e)d< +3d) < 1.4(3¢)" (B.7)

Finally, since R4, consists of 27 isomorphic copies of 744, repeating the construction for each rs, yields an
a-cover of Ry, with size less than 27 - 1.4(3¢)? = 1.4(6¢)¢. |

Lemma B.3 (a) For z > 0 and any integer k > 0,

k
z
/ 1{21+22+...+2k <z} dz1 ng de = F
2120,2220 220 H
(b) For integers ny,na,...,ng, and n, k >0,
) (n+ 1)
E {mitnatodne <} <A
n1>0,n2>0,...,n>0 !
2Note that this tuple (€1,...,€q) Is guaranteed to be in the cover for any (y e ,zd> € r4q, since the nearest potential

cover-tuple to {z!, ...,2%) must have Z & < Z z' + a/d) < 4o+ a = 5a, and hence gets included in the construction.

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 133

Proof We prove (a) by induction on k. Base case: For k = 1 it is obvious that f21>0 Iiz,<ydzr = 2.
Induction step: Assume the relation holds for numbers up to k — 1, then compute -

/ 1{21+“'+2k <z} le de
2120 220

Z Yy

z
= / / 1{Zl+"'+2k—1 < z—zk} d21 ...dzk_l dzk
0 2120,...,2x-120

2 _ k-1
— / <%) dzy. (by induction hypothesis)
0

(k—1)!
B (z — 2" k B 2k
k! 0 k!
Part (b) follows as a simple consequence of the fact that, for integers ny,ns, ..., ng,
Z 1{n1+~~~+nk <n} < / 1{21+...+2k < n+1} dzy ... dzg. I
n1>0,...,ng>0 2120,...,2, 20

Proposition 3.22 Sfoc can be implemented to solve (d-m-initials, uniform, ¢,d) in time

d? 1 1
0] (— <dlnd+1nln—+ln—)) .
€ €)

Proof The key to finding an efficient implementation of Procedure Sfoc (Figure 3.3) is to execute each stage
in polynomial time. Recall that at each Stage s, Procedure Sfoc calls sprt(h(z) # c(z), o, 4a, §/(|V5]5), 0)
for every hypothesis in some a-cover V; of a 4a-neighborhood, a = 2=+ The problem with the space
(d-m-initials, uniform) is that the size of the local a-covers we can construct is exponential in d (e.g., in
Proposition 3.20 (Part 3) above). So we cannot possibly implement Sfoc efficiently by constructing these
covers explicitly. Fortunately, for (d-m-initials, uniform) it is possible to implicitly test every concept in this
cover in polynomial time.

The idea is to notice that by (B.6) the error of a d-m-initial hypothesis h is just the sum of its errors
in each subdomain |2} — 2} + .-+ |zd — 2¢|. So if we construct local covers that permit us to test the
errors on each subdomain independently, we should be able to derive a polynomial time implementation.
Procedure NBtest (Figure B.1) does just this: given a hypothesis h, NBtest implicitly constructs an a-cover
of h’s 4a-neighborhood and decides in polynomial time whether any concept in the cover makes fewer than
M misclassifications on a given training sequence cx!.

This procedure can be used to implement each stage of Procedure Sfoc by calling NBtest(hs_1, a, My, cx’)
with o = 2-6+1) and

1—o |Vs|5
tIn 7= —In =5~

l1—o
In 7=~ +1In4

after each training example, where |V;| is the size of the local cover NBtest constructs at Stage s. This
mimics the behavior of calling sprt on every concept in an a-cover of h;_1’s 4a-neighborhood, Vj, since the
call to sprt halts as soon as some cover-concept makes a number of mistakes M (in ¢ training examples)
that causes

l—a > 1 |Vs|S
"T"4a = TS

So, given the correctness and polynomial time efficiency of NBtest, we are done.

1

Correctness: First, in Step 1 NBtest explicitly constructs an a/d-cover for each of the 4a-neighborhoods
of h’s endpoints. The cross-product of these subdomain covers then implicitly defines an a-cover of h’s

134

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Procedure NBtest (h,a, M, cx?)

INPUT: d-m-initial hypothesis h,

cover parameter a > 0,

mistake threshold M,

training sequence cx” .

CONSIDERS: a fixed a-cover, V', of h’s 4a-neighborhood B (h).

RETURN: a d-m-initial concept A* € V that makes fewer than M mistakes on cx”; “NONE” if no such

concept exists in V.

PROCEDURE:

1.

(Initialize.) For each subdomain X;, fix the 4d endpoints
Vi = # +{—(da—a/d), .., =3a/d, —a/d, a/d, 3a/d, ..., 4a —a/d}.
The mistake counts for each of these endpoints is stored in a subdomain array

Mi[—(4d —1),...,—3,—1,1,3,..., (4d — 1)].

(Tally the errors.) For each training example (z;, c(zs)), t = 1,...,T:
The domain object z; must “land” in some subdomain, say X;, (i.e., z; € X;,), so consider the set
of endpoints V;, C X;, (i.e., consider the array M;,).
o If ¢(x;) = 0, increment the mistake count M;, [j]++ for every v; > ;.
o If ¢(x;) = 1, increment the mistake count M;, [j]++ for every v; < ;.
(Find the cover-concept with minimum error.) For each dimension ¢ = 1,...,d, find the v;, € V; with

minimum mistake count M;[j;]. Let h* be the d-m-initial concept defined by these minimum error
endpoints (vj,, ..., vj,).

(Decide.) If Zle M;[ji] < M return h*, else return “NONE.”

Figure B.1: Procedure NBtest

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 135

4a-neighborhood (since the resulting set is a superset of the cover constructed in Proposition 3.20 (Part 3)
above). In Step 2, NBtest then counts the number of mistakes each endpoint makes in each subdomain.
Finally in Step 3, NBtest considers the cover-concept h* defined by the minimum error endpoints in each
subdomain. This concept is guaranteed to be the minimum error cover-concept because the errors in each
subdomain are additive. That is, some cover-concept beats the mistake bound if and only if A* beats it.

Efficiency: Note that an obvious incremental version of NBtest runs in O(d?) time per training example. So
we can use this procedure to implement Sfoc in time O(d?) times the number of training examples observed.
From Proposition 3.16, noting that NBtest constructs local covers of size NBy = (45[)‘17 we can determine
that Sfoc observes at most O (1/e[dInd + Inln(1/€) 4+ In(1/4)]) training examples on average. This gives an
overall (expected) running time of O ([d%/e€] - [dInd + InIn(1/€) + In(1/6)]). §

Proposition 3.23 For a = 27,

logo(1/)=1 logs(1/)
< N, ials, unif)
(z) < (monomials, uniform) < Z <z)

= i=0

< en)logz(l/a)
log,(1/a)

Proof Part 1: To show N,(monomials, uniform) < 210g2 1/e) (Z), construct an a-cover of the space
consisting of monomial concepts that contain log,(1/a) or fewer attributes; i.e., all ¢; such that |¢;| <

A

i~

log,(1/a). To see that this is indeed an a-cover of (monomials, uniform), consider any monomial concept ¢,
not in the cover. By construction ¢y contains at least log,(1/a)+1 attributes and must be the superset of some
cover-concept ¢;. By Proposition 3.38 (Part 2) below this implies dy(e1, ¢2) < a, since ¢; contains at most

log,(1/) (n)7

log,(1/€) attributes. Therefore, this collection is an a-cover. Obviously the cover has size >, :

and Blumer et al. [1989, Proposition A2.1(iii)] show that Z?:o (M) < (en/d)?.

Part 2: To show N,(monomials, uniform) > 210g2 1/e)= (’Z), construct a collection of monomial concepts
that are pairwise separated by 2a (a so-called “2a-packing” of the space). This will determine a lower
bound on N, since any concept that is within o~ of some packing-concept cannot be within o~ of any other
packing-concept, by the triangle inequality. This means that any a”-cover of the space must include a distinct
cover-concept for each packing-concept.

By Proposition 3.38 (Part 1) below, we know that any two concepts ¢; and ey of size |¢;| < log,(1/a) — 1
are separated by dy(c1, c2) > 2a. Therefore, the collection of all monomial concepts that contain log,(1/a)—1

or fewer attributes constitutes a 2a-packing of the space. Clearly, this collection has size Zi»ozgg(l/a)_l (2)

Proposition 3.24 For a = 27% > 2772 the smallest monomial ¢,, = {ay, ..., a,} has

Wi > (imt) = (i)

Proof From (3.3) we know that the distance between ¢, and any other monomial concept ¢ is given by
du(en,c) = 2-lel — 9=n Therefore, assuming a > 27772, the 4a-neighborhood of ¢, consists of all monomial
concepts that contain log,(1/a) — 2 or more attributes. (To see this, note that |¢| > log,(1/a) — 2 implies
du(cn,e) < 4a, but |c| < logy(1/a) — 3 implies dy(cn,c) > 8a — 27" > 8a — 4a = 4a for a > 27772
Now, consider a strict subset of ¢,,’s 4a-neighborhood consisting of the monomial concepts defined by exactly
log,(1/a) — 1 attributes. Notice that any two distinct concepts in this set have |ey U ea| > |ei| + 1, and
therefore dy(cy,cq) > 2-27le1l — 2. 9-leal=1 = 9=le1il = 924 by (3.3). So this set forms a 2a-packing within

Baa/(€n), and hence any o -cover of Byy(cp) requires at least 210g2)= (Z) distinet concepts. |

136 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Proposition 3.27 (D.f. cac-learning impossible) For any 0 < ¢ < 1, and any concept class C' containing
two non-mutually-exclusive concepts: Any learner L must fail to meet the cac(e)-criterion for some target
concept in C', for some domain distribution P.

Proof Consider two concepts ¢ and ¢s from C' that agree on at least one domain object zy and disagree
on at least one domain object z;. Fix an arbitrary € > 0. We want to show that no learner can meet the
cac(e)-criterion for both ¢; and ¢q for every possible distribution on {zg, z1}.

First, consider a distribution Py such that Pi{zq} > 0 and P1{z1} > ¢. For this distribution we have
dp, (c1,¢c2) > €, and therefore to meet the cac(e)-criterion a learner cannot guess ¢; with non-zero probability
when c¢5 is the target, nor guess c¢s with non-zero probability when ¢ is the target. However, by construction
we also have P1{c1x? = eax?} > 0 for all £. Therefore, to meet the cace-criterion with respect to Py, L must
halt with zero probability given {cix® = cax'} for all ¢.

Now, consider a distribution Py such that Po{zg} = 1. For this distribution we have Py{e1 () = c2(z)} =
1, and therefore to meet the cac(e)-criterion with respect to Py the learner must halt with non-zero probability
given {c1x" = cox'} for some ¢ < co (returning either ¢; or ¢3). This shows that no learner can meet the
cac(e)-criterion for both ¢; and ¢y with respect to both distributions P; and Ps. I

Proposition 3.28 (Fixed-sample-size cac-learning impossible) For any 0 < ¢ < 1, and any space
(C,P) that contains two concepts ¢1 and ca separated by ¢ < dp(e1,c2) < 1: Any fired-sample-size learner L
must fail to meet the cac(c)-criterion for some ¢ € C.

Proof Fix an arbitrary ¢ > 0 and choose two concepts ¢; and ey in (C, P) such that € < dp(eq,c2) < 1.
Since dp(c1,¢2) > €, a learner L cannot guess ¢; with positive probability when ¢z is the target, nor guess cq
with positive probability when ¢; is the target (if L is to meet the cac(e)-criterion for both concepts). But
we also have Pyt{e1xt = cax'} > 0 for any ¢; i.e., these two concepts remain undistinguished with positive
probability given any finite sequence of training examples.

Now consider an arbitrary fixed-sample-size learner L. We will have Tr(C, P, €) = ¢ for some ¢ < 0o, and
hence Pyi{cix® = eax'} > 0 for this t. Therefore, at termination the training sample fails to distinguish
between ¢; and e; with non-zero probability. Here, L must guess ¢; wpl to meet the cac(e)-criterion for ¢y,
but then L must fail to meet the cac(e)-criterion for cs since it returns an e-bad hypothesis with nonzero
probability. |

Proposition 3.30 (Correctness) For any ¢ > 0, and any concept space (C,P) with R.(C,P) < co: Scov
halts wpl and meets the cac(e)-criterion for every target c€C.

Proof Clearly, any hypothesis returned by Scov is guaranteed to be e-accurate by construction, so it
suffices to show that Scov halts wpl. Fix an arbitrary € > 0 and an arbitrary target concept ¢ € C, and
let » = R(C,P) and p = P.(C,P,r,c). By hypothesis we have that r < co and p > 0. Recall from
Definition 3.29 in Section 3.5.2 that this means all e-bad concepts are eliminated from C' with probability at
least p after r training examples.

A crude upper bound on Tg¢0y can be obtained by breaking the training sequence x into blocks x7, x5, ...
consisting of r examples each. That is, consider an alternative learning procedure Sblock that runs Scov
on blocks of r training examples; returning Scov’s hypothesis if it halts, but starting over again on the next
block if Scov fails. Let Rgpiock denote the number of blocks Sblock observes before terminating. Then
clearly

Tscov(x) < 7 Rsplock(X) (B.8)

Since Scov terminates with probability p on each block, we have Rgpiock ~ geometric(p), and hence
Rsblock < o0 wpl. By (B.8) this implies Tgcoy < 0o wpl as well. [

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 137

Proposition 3.31
1. ve(C) < oo implies R(C,P) < oo for all e > 0.

(In fact, ve(C) < oo if and only if for all € > 0 there exists an r < co and p > 0 such that P.(C,P,r) >
p for all domain distributions P.)

2. There are spaces (C,P) for which vc(C) = oo and yet R.(C,P) < oo.

Proof Recall the definition of R.(C,P) given in Definition 3.29.

Part 1: We actually prove the stronger equivalence stated in parentheses.

(=) Assume vc(C') < co. Fix an arbitrary € > 0 and choose any ¢ < 1. By Theorem 2.5 [Shawe-Taylor,
Anthony and Biggs, 1993] we have that r = Tsp,5(C, ¢, 1 — p) random training examples are sufficient to
eliminate every e-bad concept from C' with probability at least p, regardless of the domain distribution P.
This shows that P.(C,P, R;) > p by Definition 3.29.

(<) Fix an arbitrary ¢ > 0. By hypothesis, we know there exists an r < oo and p > 0 such that
P.(C,P,r) > p for every domain distribution P; i.e., every e-bad concept is eliminated from C' after r
training examples with probability at least p, regardless of the domain distribution P. Therefore, if we train
on k blocks of r training examples, the probability that some e-bad concept remains in ' is at most (1 — p)*.
This means that we can pac(e, d)-learn C under the d.f. model by collecting k¥ = (1/p)In(1/d) blocks of r
training examples and running Procedure F on the total collection. But by Theorem 2.7 [Ehrenfeucht et al.,
1989] this implies vc(C) < co.

Part 2: A simple example of a space where vc(C) = oo and yet R.(C,P) < oo is ({finite sets}, uniform) on
[0,1]. Clearly, the class {finite sets} has infinite VCdimension. However, every finite set has zero measure
under the uniform distribution, and hence the space ({finite sets}, uniform) has zero diameter. This means
that we automatically have R.({finite sets}, uniform) = 0 for any ¢ > 0. [

Proposition 3.32
1. If Re(C,P) < 0o for all € > 0, then N.(C,P) < oo for all e > 0.
2. There are concept spaces (C, P) for which R.(C,P) = oo and yet N.(C,P) < oco.

Proof Part 1: This is obvious from learnability concerns: If R.(C,P) < oo for ¢ > 0 then we know Scov
cac(e)-learns (C, P) by Theorem 3.30, and hence Scov pac(e, d)-learns (C, P) for any d. This means we have
N3 (C,P) < 0o by Theorem 3.5 [Benedek and Ttai, 1991].

Part 2: A trivial example of a space that is finitely coverable but not finitely reducible is ({finite sets} U
{[0, 1]}, uniform) on [0, 1]. The collection {@, [0, 1]} is an e-cover of this space for any ¢ > 0. On the other
hand, any finite training sample leaves consistent concepts a distance 1 from [0, 1], and therefore the space
is not e-reducible for any ¢ < 1. |

Proposition 3.33 (Data-efficiency) For any space (C,P) with R = R.(C,P) < co:

Re

ET: P < ———MM—.
Scov(C: aE) = PE(C,P,RE)

(3.4)

Proof Recall from (B.8) in the proof of Theorem 3.30 above that Tgcoy < 7 - Rsplock and Rgblock ~
geometric(p), for r = R.(C,P) and p = P.(C,P,r). Since a geometric(p) random variable has expected value
1/p, we automatically get E Tgcoy < 7/p-

Theorem 3.34 (Optimality) For any ¢, and any (well behaved) concept space (C,P) with Rc(c,P) < oo:
Scov meets the cac(e)-criterion with optimal expected training sample size for any target concept ¢ € C.

138 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Proof Since Scov stops as soon as an e-accurate hypothesis can be ensured, it seems intuitive that Scov
should be optimally data-efficient for learning with certainty. To prove this, we show that if any learner
L stops before Scov with non-zero probability for any target concept ¢y € C, then L cannot meet the
cac-criterion for every target concept in C'.

Fix ¢ > 0, and consider a learner L = (T, H) such that Py {T(cox] < Tscovlcox]} > 0 for some ¢q € C.
By construction of Scov, we know that the event {x : T[cox] < TgcovlcoX]} coincides with the event that L’s
final hypothesis Hlcox”] does not e-approximate every consistent concept ¢ € C (for otherwise Scov would
already have stopped as well). That is,

{x : Tlcox] < Tgcovlcox1}

= {x : 3¢ € C such that dp(H[coxT],¢') > ¢ and ¢'xT = coxT} (B.10)
= U {x dp(HlcoxT],¢') > e and ¢'xT = coxT}) (B.11)
ceC

By hypothesis, (B.11) occurs with non-zero probability, so it remains only to show that this event occurs
with nonzero probability for at least one ¢’ € C.

Notice that if (B.11) were a countable union (i.e., C' a countable class) we would automatically be finished,
since a countable union having non-zero measure implies one of the events in the union must have non-zero
measure (and therefore there would be some ¢’ € C' such that P {x cdp(Hie'xT,) > 6} > 0, which means
that L would not cac(e)-learn ¢’). However, C' can be uncountably infinite in general, so the union (B.11) is
not necessarily countable. This raises the possibility that L might be able to distribute its failure probability
among uncountably many hypotheses so as to yield a zero probability of failure for any one concept.? To
prove that this is impossible, I need to assume the concept space is suitably well behaved.

Definition B.4 (Consistent-separability) A concept space (C,P) is consistently-separable if C' contains
a countable subset D C C such that for every ¢ € C and cx! there is a d € D consistent with cxt that

approzimates c arbitrarily well under dp. (Le. for everyc € C, a > 0, t < oo, and x* € X!, there is a
d € D such that dx' = cx' and dp(d,c) < a).*

Given that (C,P) is consistently-separable, we can prove the theorem as follows. Assume D C C'is a
separating subset for (C, P). Consider an arbitrary object sequence x in the event (B.10) and let h = HiegxT].
Since x is in (B.10) there must be some ¢’ € C such that ¢'x” = cox? and yet dp(h,c') > ¢+ a for a > 0.
Then by the definition of D, there must be a d € D such that dx? = ¢/x? and dp(d,c’) < «, and by the
triangle inequality we have dp(h,d) > dp(h,¢') —dp(d,¢’) > ¢+ a —a = ¢ for this d. So we have shown that
for any object sequence x in (B.10) there is a consistent concept in the separating subset d € D that is not
e-approximated by L’s final hypothesis. Ie.,

{x : Tlcox] < TscovlcoXl}
= {x :3 ¢’ € C such that dp(HcoxT],¢') > ¢ and ¢'xT = coxT}
= {x :3d € D such that dp(H[cox],d) > ¢ and dxT = coxT}

= U {x dp(HlcoxT],d) > ¢ and dxT = COXT} , (B.12)
deD
where now the union (B.12) is countable. Since (B.12) has non-zero probability by hypothesis, there must
be some d' € D for which P {x cdp(Hd'xT),d") > e} > 0. That is, there must be some d’ € C' that is not
cac(e)-learned by L; proving the theorem. [}

3 Analogous to the way singletons have Lebesgue measure zero and yet the interval [0, 1] has measure 1.

4 This is a benign condition that is normally satisfied by all concept spaces encountered in practice. For example, any discrete
space is consistently-separable, and so are uncountable spaces like (initials, uniform) and (d-=-initials, uniform) on [0, 1], and even
(halfspaces, uniform) on [—1, 1]™; these can be consistently-separated by the class of concepts formed by rational coordinates.

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 139

Theorem 3.35 (Cac-learnability) For a (well behaved) space (C,P): If R.(C,P) = oo for some ¢ > 0,
then no learner L can cac(e)-learn (C,P) with a bounded expected training sample size for every € > 0.

Proof Assume Rs.(C,P) = co. We will show that Scov cannot cac(e)-learn (C, P) with a bounded expected
sample size at error level €. This will prove the theorem, since by Theorem 3.34 above we know that no
learner can stop before Scov and still meet the cac(e)-criterion for every ¢ € C.

Assume there is a ¢ < oo such that ETgcoy <t for all ¢ € C. Then

1
Py {Tycovlex] € 20} > (B.13)

for all ¢ € C, by Markov’s inequality. Recall that, by construction, Scov halts as soon as the set of
consistent concepts remaining in C' can be e-covered by a single hypothesis, which implies that every 2e-bad
concept must have been eliminated from C'. Combined with (B.13) this means (C, P) is reduced to a 2¢-ball
with probability at least 1/2 after 2¢ training examples, regardless of the target concept ¢ € C'. Recalling
Definition 3.29, this implies that Ps.(C, P, 2t) > 1/2 and hence Ra.(C, P) < 2¢, contradicting the assumption
that Rs.(C,P) = oo. |

Proposition 3.36 For 0 < ¢ < 1/2, and any c€initials with z. € [2¢,1 — 2¢],

Tscov(initials, uniform, ¢) ~ negative-binomial(p = 2¢, k = 2).

Proof This follows as a simple corollary to Proposition 3.37 (substituting d = 1). |

Theorem 3.37 For any 0 < ¢ < 1/(4d), and any target concept ¢ € d-w-initials defined by endpoints
zl, ... 22 wherezl € [(i — 1)/d+ 2¢,i/d —2¢c] fori=1,...,d,

c) c’?

Tscov(d-m-initials, uniform,e) ~ negative-binomial(p = 2¢, k = 2d).

Proof Fix € > 0 and consider a target ¢ satisfying the stated conditions. Now consider the “2e-brackets”
surrounding each endpoint of ¢: [; = [z — 2¢, i) and J; = [#%, ! 4+ 2¢], i = 1,...,d. Notice that each
training example can “hit” at most one of these intervals, and moreover that the probability of hitting each
interval is 2¢, and the location of any hit in an interval is uniformly distributed. Now recall that Scov halts

exactly when

(“smallest hit in J;” —zl) < 2e.

d
= 1

(xl — “largest hit in I;”) +

d
1 i=

K3

Therefore, this is isomorphic to a situation where we have k = 2d disjoint intervals 11, ..., Iy of length a = 2¢,
where hits are uniformly distributed in each, and we stop as soon as

Z “size of smallest hit in I;” < «a. (B.14)

=1

To formalize this, let I; = [a(i — 1), @d], i = 1,..., k; and define the random variable

S(xt) = Zzi(xt)a

where ()
_J x—a(r—-1), fzxel,
Zi(x) = { a, ifedl;. (B.15)

140 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Intuitively: Z;(z) is the size of a “hit” in I;, Z;(z)|(z € I;) ~ uniform[0,a], and Z;(x) £ ming ext Zi (%)
measures the size of the smallest hit in I; given sequence x'; finally S(x') is the sum of the smallest hits
from each I;, i = 1,..., k. In terms of this formalization, (B.14) above means that
{x:T3cov =t} = {x : S(x") < a but S(x™) > a for all m < t})
Therefore,
Py {TScov = t}

= Py {S(x') < a but S(x™) > a for all m < ¢} (B.16)

p 3 (min) zp,, ..., Tn,, € X' such that S{(zn,, ..., Tn,_,, 2t)) < @,
- but this holds for no other size k subset of x*

i1 every observation z € x'~F is larger
= <k 1) Poiok{ than @n,, o n, in Iy, Iy and | S(xF) < a3 P {S(xF) < a}.
larger than a — Z?;l Zp,(xn,) in I, (B.17)

To explain: the event (B.16) means there must be an observation z; € x' in each subdomain I; to cause
S(x') < a, and moreover this is caused for the first time by the last observation z; (which lands in I,).

Therefore, there must be minimum observations z,,, ..., £, _, in each subdomain I, ..., I, _, that, combined
with z; in I;,, cause termination. Also, no other observation in I, besides z; can be small enough to cause
termination with z,,, ..., 2,,_,. This is illustrated in Figure B.2.

Now consider the conditional probability in (B.17).
every observation z € x' % yields

PXt—k Zﬁj(m) Z Zﬁj(xnj)aj = 1, ~"ak— 1’ S(Xk) <a
and Z;,(z) > a — S(xF) + Zy, (%)

= T e ‘S(xk)m}t_k

since the observations are independent,

= Jn e e ‘5<"k)<a}]t_k (B18)

= (1-a)7", (B.19)

since the probability of the conditional event in (B.18) is obviously «, as shown in Figure B.2.
Next, consider the probability Py« {S(x*) < a} in (B.17). Notice that S(x') < a implies that x* contains

exactly one observation in each subdomain 7y, ..., I. Thus,
P {S(x*) <a} = kP {Zi(z1)+ Zi(ax) < alz; €;,j=1,....k}
a* k
S (8.20)

by Lemma B.3(a) above (recalling that Z;(z)|(z € I;) ~ uniform[0, a] by (B.15)).

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 141

k—1
= Zj:l Zlﬁj (Inj)

Tt

ZQj(xnj)

Ln

Tng_1

Iy, Iy, Iy

t

Figure B.2: For x!' to cause the stopping event for the first time at time ¢, every observation besides
Ty, ooy Tn,_y, & must occur outside the indicated region in the subdomains Ip,, ..., Ip, _,, Ie,.

So finally, combining (B.17), (B.19), and (B.20), we have
t—1\ 4 t—k
Pxoe {T5cov =1} = E—1 @ (l—a))

which shows that Tgcoy ~ negative-binomial(p = a = 2¢,k = 2d). |}

Proposition 3.38 For distinct monomial concepts c; and cy (assuming ¢ = 27%):
1. If |e1| <logy(1/€) — 1, then dy(cq, ca) > € for all ea # c1.
2. If |e1] = logy(1/€), then dy(c1, e2) < € iff e1 C ea, but dy(er,c2) > €/2 for all ea # e1.
3. If ler] > logy(1/€) + 1, then dy(c1, e2) < € if |ea] > logy(1/€) + 1.
Proof Recall that the distance dy between any two monomial concepts ¢1 and ¢y with respect to the uniform

distribution is given by

du(er,eq) = 271l gg=leal _ 9. g=lenveal (3.3)
where ¢; and ¢ are thought of as sets of attributes. Two facts are then immediate:
Fact 1: If ¢; ¢ ¢g then dy(cy, e2) > 2-leil: since ¢4 ¢ co implies |1 U cg| > |ea] + 1.
Fact 2: If ¢; C ey then dy(c1,e2) = 9-leil _9-le2l. gince ¢; C ¢y implies ler Ues| = ezl
From these facts it is easy to prove each of the three relations as follows.

Part 1: Assume |c1] < logy(1/€) — 1. Consider the two cases ¢1 ¢ ¢o and ¢1 C ca. If ¢; ¢ ¢g, then from
Fact 1 we have dy(c;,ca) > 27111 which immediately yields dy(c1, c2) > 2¢. If on the other hand ¢; C ¢3,
then we must have |ea]| > log,(1/¢), and from Fact 2 we get dy(c1,c2) > 2¢ — e = €.

Part 2: Assume |c1| = logy(1/¢). Consider the two cases ¢1 ¢ ¢z and ¢1 C ca. If ¢; ¢ e¢g, then from
Fact 1 we automatically have dy(e1,c2) > €. On the other hand, if ¢; C ¢z, then from Fact 2 we must have
du(er,e2) = e— 2-le2l « ¢, Also in this case we must have du(c1,e2) > €/2, since |ea] > logy(1/€) + 1.

Part 3: Assume |c1| > logy(1/€) + 1 and |ea]| > log,(1/€) 4+ 1. Clearly here we have dy(e1,¢c2) < €/2+
/2 =2 27lavel < ¢ |}

142

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Theorem 3.39 For ¢ < 1/2 and any target concept ¢ € monomials{0, 1}",

2 1
E Tscov(monomials, uniform;¢) < — (ln —) log,(en).
€ €

Proof We consider two cases: (1) the target monomial ¢ is large (defined by log,(1/€) or fewer attributes);
and (2) ¢ is small (defined by log,(1/€) + 1 or more attributes).

Part 1: Assume |c| < log,(1/€). Note that in this case Scov’s termination is guaranteed once every other
monomial concept has been eliminated from the space. We derive an upper bound on the expected time for
this to occur.

Without loss of generality, assume c¢ is defined by conjoining the first s attributes attributes, ¢ =

{(11,

<(11, ceey

,ast, where s < log,(1/€). Recall that the domain X = {0,1}" consists of domain objects z =
an) € {0,1}", and that ¢(z) = 1 if and only if = (1,..., 1, as41, .., an); i.e., if and only if @;, = 1 on

all indices specified by ec.

1. Then the following set of examples is sufficient to eliminate every monomial i that is defined by a strict

subset of the attributes {a1,...,a;s} in ¢ (i.e., h is “too general” on some domain object z: h(z) = 1

when ¢(z) = 0):

ay; dg ... Qg Ay

1 1 — 0
1 0 1 — 0
11 0 * = * — 0

Notice that: there are s such patterns, each pattern is a disjoint event from the other such patterns,
and each pattern occurs with probability 27° > e. Therefore, by Lemma B.5 below, we have that the
expected time to observe all such patterns is

H,
< = (B.22)
€

ET,

general

. Similarly, the following set of examples is sufficient to eliminate every monomial i that includes some

attribute outside of ¢ (i.e., h is “too specific” on some domain object z: h(z) = 0 when ¢(z) = 1):

ay; dg ... dg Ay

1 1 1 0 =« — 1
1 1 1 % 0 — 1
1 1 1 * * 0 — 1

Notice that: there are n — s such patterns, each pattern is an independent event from the other such
patterns given the initial 11...1 sequence, and each pattern occurs with probability 1/2 given the initial
11...1 sequence. Therefore, by Lemma B.6 below, we know that the expected time to observe all such
patterns is

Hy_
ET, = 9o Ios
specific —ln(l/?)
HTL—S
< (B.23)

eln2’

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 143

Therefore, in total we get Tscoy < Thenerat + Tapecinie: Combining (B.23) and (B.22) gives

1 Hy s
ETScov < _<Hs+ P)
€ In2

1
eln?2

A

(Hn—s + Hy) since 1 < (In2)71,

H, < logzn.

eln2 — € (B.24)
Part 2: Assume |c| > log,(1/€¢) + 1. Note that in this case Scov’s termination is guaranteed once every
large monomial has been eliminated from the space. This is because, by Proposition 3.38(Part 3) above, the
class of all small monomial concepts (defined by log,(1/¢) + 1 or more attributes) has diameter less than e,
and therefore Scov can terminate by guessing any one of these. In fact, it suffices to eliminate the monomials
defined by exactly log,(1/¢) attributes, since this will automatically eliminate every larger monomial defined
by fewer attributes. Thus, we derive an upper bound on the expected time for this to occur.

Notice that any monomial & defined by log,(1/¢) attributes must be eliminated with probability at least
€/2 on each training example. (This is because ¢’s positive extension can have size at most €¢/2 by assumption,
whereas h’s positive extension must have size ¢.) Also notice that there are (logjl/g)) monomial concepts
defined by exactly log,(1/€) attributes. Therefore, assuming (conservatively) that each large monomial is
eliminated on a disjoint portion of the domain, Lemma B.5 below shows that

2 n
E T < =1
Scov = “(bgzu/e))

21 en log,(1/¢€)
< " \logy(1/9)

2 1
< = (ln —) log, (en), for e < 1/2. (B.25)
€ €

Summary: For the two cases of (i) a large target concept, and (ii) a small target concept, we obtain the
bounds (B.24) and (B.25) respectively, so the theorem holds in general. [}

Lemma B.5 If T s the time to observe k disjoint events of size p, then

H Ink
ET:—kSH—,
p P

where Hy, 1s the kth harmonic number.

Proof Since the probability of observing any one of the k events is kp, the time 77 to observe the first
event is distributed geometric(kp) and hence ET; = 1/(kp). Similarly, given that the first event has been
observed, the probability of observing any one of the remaining k¥ — 1 events is (k — 1)p, and therefore the
time T3 to observe any one of these events is distributed geometric((k — 1)p); giving ETy = 1/[(k — 1)p].
Continuing in this manner for =Ty + To + ... + T; + ... + T, we get

1 1 1 1 1

ET = —+—— 4. . +——— 4 4+ — 4=
kp = (k—1)p (k—i+1)p 2p p

-

L S
ko k=1 T k—ig1 T2

[l
E|§
-

144 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

Lemma B.6 If T s the time to observe k independent events of size p, then

Hk Ink

<
o< —In(l1-p) = —In(1-p)

Proof (This proof is due to Russell Greiner.) First consider:

k
P{T <t} = P ﬂ{ event ¢ observed by time ¢ }
i=1
k
= H P{ event i observed by time ¢ } (by independence)
i=1
k

= [It-a-»" = -,
i=1
where ¢ = 1 — p. Thus,

P{T >t} = P{ not all events observed by time ¢ }
= 1—(1-q"".

Now, to determine ET', notice that

ET = > P{T>t}
t=1
= Y 1-(1-¢"H < / 1—(1—q%)*ds,
t=1 0
where s =t — 1. Consider the transformation u = 1 — ¢*, giving du = —(In¢)(1 — u)ds, and also note that

u=0for s =0, and u = 1 for s = co (since ¢ < 1). Therefore,

1 T — oy
ET < / Y du
—Ing J, 1—u

1 1
= /l—i—u—}—uz—l—...—l—uk_ldu
—Inq Jy
oot
1 u’
o —lanz_'
i=1 u=0
ol & H,
—Ing i " —Ing

2
Proposition 3.43 For (initials, uniform): Pyeo {Tgcoy > 1} < e—te(1-%) fort > 1/c. Thus, fore < e=3/2,
§ < e Y2 and using the cover constructed in Proposition 3.18, we get

Pxe{Tscov > TB1} < (66(5)30.

Proof This follows as a simple corollary to Proposition 3.44 below (setting d = 1). |

APPENDIX B. TECHNICAL DETAILS: CHAPTER 3 145

2
Proposition 3.44 For (d-m-initials, uniform): Pxee {Tgcoy > t} < emte(1=4) fort > dJ/e. Thus, for
e<e 32 § <e 42 and using the cover constructed in Proposition 3.20, we get

PX""{TSCOV > TBI} < (66)30(1530'

Proof Part 1: Recall from Theorem 3.37 that we have Tgcoy ~ negative-binomial(p = 2¢, k = 2d) for
(d-m-initials, uniform).> By definition, the probability that a negative-binomial random variable T' takes on
the value ¢ corresponds to the probability that the k*® success of a series of independent Bernoulli trials
(with probability p of success) occurs on the ** trial. Therefore, in our case

Py {Tscoy > t} = P{ 2d"" success after t** trial }

P{ fewer than 2d successes in ¢ trials }
< ete(i-%) (B.26)
for t > d/e, using Chernoff bounds [Hagerup and Riib, 1989/90].
Part 2: Recall from Figure 3.1 and Proposition 3.20 that

32 1 1
Tg1(d-7-initials, uniform, e, §) > 32 <d In—+1In —) :
€ ee)

Therefore, plugging in T for ¢ in (B.26) gives
Py {Tscov > T1} < e_ET'”(l_ﬁ)
< e_ET'”(l_%)2

since d/(eTpy) < 1/32 for ¢ < =3/ and § < e~ /2,

o—32(dIn L+ 1)(%)?

< e~30(dinE4in}) _ (66)30d630. [
Proposition 3.46) L
Tgeut (initials, uniform,¢,6) < — {14 -In=
€ 2 46
" . 2 1.1
Tscut (d-m-initials, uniform, ¢,0) < - (d+ 3 In 5
€

Proof Part 1: Follows as a simple corollary to the second part (plugging d = 1).

Part 2: Recall that Tgcye 1s given directly by é-tailgeoy for the problem under consideration. For

(d-m-initials, uniform, €) we have that Pye {Tgcoy > t} < emte(1=%)" for ¢ > d/e from Proposition 3.44
above. Therefore, we will show that
2 1.1
t = —|d+ =-In= B.2
€ < + 2 " ()) (B.27)

5Under the assumption that ¢ has % € [i/d+¢, (i + 1)/d—¢] for i = 1,...,d. Tt suffices to consider this case since Scov stops
faster for d-m-initial concepts with endpoints nearer the subdomain boundaries.

146 APPENDIX B. TECHNICAL DETAILS: CHAPTER 3

implies e=t(1=%)" < § and hence Py {Tgcov >1 } <. Let vy = In(1/4). Note that it suffices to show that
(B.27) implies te (1 — %)2 > 4. To this end, consider

2
te <1 — i)
te

1 ? . .
(2d +7) <1 — m) since te = 2d + 7,

dv<%+§> 1_7(21%)
v

1\2
dvya (1——) letting o = 2/y + 1/d.
Yo

We now show (1 — 1/[ya])? > 1/(da), and the result will follow.

21 (2 1y 1
ya o y2a? va da ~2a? da

_o bz ny,

N al\y d v2a? da

(e L1
o aa'y2a2da

Appendix C

Technical details: Chapter 4

C.1 Preliminaries

Recall that we are using the notation Z, to stand for the first order statistic of ¢ 1.1.d. observations of a real
random variable Z : X — RR; t.e., Z,(x") = ming,ex:{Z(21), ..., Z(z¢)}.

Proposition 4.5 For any bounded random variable Z : X — Rt with 0 < P{Z =0} < 1, EZ, = ®(-1).

Proof Let 0 < 7 < z. First, since EZ, < zP{Z > 0}, and P{Z > 0} < 1 by hypothesis, we get

EZ, =001, Next, since P{Z = 0} < 1 there must be some 2z’ > 0 such that P{Z > 2’} > 0, and hence
EZ, >2P{Z >} =0 |

Proposition 4.6 For any random variable Z ~ uniform(0,1), EZ, = O(t~1).

Proof It is not hard to show that for a bounded random variable 7,

EZ, = /OZ zt(1 — Fz(z))t_lfz(z)dz,

where 0 < 7 < z, and fz and Fz are Z’s density and distribution functions respectively [Larsen and Marx,
1981, p.99]. In particular, if Z ~ uniform(0, z) then it has density and distribution functions f; = % and
Fz = Z over 0 < z < z. A simple calculation then shows

z t—11 5
EZ, = /zt(l—i) Sd: = =
0

z z t+1

Proposition 4.7 (Finite UB) For any finite concept class C: Any consistent hypothesizer H for C' obtains
an exponential learning curve (i.e., Ext err(H, P, c,x") = 9=t) for every target concept ¢ € C, regardless
of the domain distribution P.

Proof Fix an arbitrary target concept ¢ € C' and domain distribution P. There will be at most N = |C|—1
non-zero difference sets Dy = {cAc; : P(eAe;) > 0}. Let pg be the minimum such probability. Then the
probability that some difference set remains unobserved after ¢ training examples is at most N (1 — pg)°’.
Notice that observing a domain object in each difference set implies that a consistent hypothesizer H for C
will produce a hypothesis with zero error. Therefore, E xt err(H, P, c,xt) < N(1 —po)t = 9=t |}

147

148 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Proposition 4.8 (Universal LB) For any non-trivial concept class C: There is a domain distribution P
that forces any hypothesizer H to obtain an exponential learning curve (i.e., E i err(H, P, ¢ xt) = ¥ (=1))
for some target concept ¢’ € C.

Proof Since C' is non-trivial there must be two concepts ¢1, ¢a € C such that (1 A ¢3) # @ and (¢; =
¢2) # @&. Therefore we can fix a domain distribution P such that dp(c1,¢2) = p for some 0 < p < 1 (e.g.,
choose an z1 € (¢1 A ¢3) and z3 € (¢1 = ¢2), and set P{z1} = p, P{z2} = 1 — p). For this distribution any
hypothesizer H must obtain for a given sample size ¢

avg E,:err(H, P, e, x)

ci€{ci,ca}
1
> 3 E 4t [err(H, P,ci,x") + err(H, P, ca, x") | X' = eoxt] PXt{Clxt = c2xt}
1
= 3 | D [err(H, P,c1,x") + err(H, P, cq,x") | X = ¢ox’] (1—-p)t
> 1 (1—p)t = 0(=1)
= 35 p P = ¢ .

The last inequality holds since, for any x’ such that c;x* = cox?, we get H[c1x!] = H[cox?'] = h and hence
dp(h,c1) + dp(h,c2) > dp(e1,c3) = p by the triangle inequality. Finally, note that obtaining an average
expected error of at least e2(~%) for every ¢ implies that H must obtain at least this expected error on one
of ¢1 or ¢y for infinitely many ¢. ||

Proposition 4.11 (Chain UB) For any concept chain C': Any consistent hypothesizer H for C' obtains a
rational learning curve (i.e., E xt err(H, P, e, x') = O(t~1)) for every target concept ¢ € C, regardless of the
domain distribution P.

Proof Since any non-trivial chain obviously has VCdimension 1, the results of Haussler, Littlestone and
Warmuth [1988] show that their special hypothesis strategy HLW obtains E x+ err(HLW, P, ¢, x%) = O(t71)
in this case. Also, by [Haussler, Littlestone and Warmuth, 1988, Theorem 6.1] we know that any consistent
hypothesizer H for C' must obtain E: err(H,P,c,x') = O((Int)/t). Here, we strengthen these results
slightly by showing that any consistent hypothesizer H for C' actually obtains E x+ err(H, P, c,x") = O(t71).
Proving this also allows us to introduce some definitions and notation that will be needed later.

Definition C.1 (Uncertainty interval) For a concept chain C, notice that any training sequence cx’

determines an uncertainty interval about the target concept ¢, denoted [s[ex'],fcx!]] = {h € C : s[ex!] C
h C flext1}, where s[cxt] and fcx!] are the smallest and largest concepts consistent with cx® respectively.
Formally, we define the smallest concept consistent with a single training example cx by sjcx] = & if ¢ & c,
and sfcx] = (J{h € C:h Ccand x € h} if x € ¢; and the largest consistent concept by llcx) = X if x € ¢,
and {icx) = [J{h € C:h Dcand x ¢ h} if x & c. Then, for a sequence cx* we define siex’] = [, ¢t slc2]
and fext] = ﬂxexf flex]. Finally, notice that any uncertainty interval [s[cx'], flex']] has a width under P
giwen by wid(C,P,c,x") = P ({lcx"] — s[cx"]).

So for a concept chain C', we can think of the training examples as monotonically reducing the width of
the uncertainty interval about an unknown target concept c¢. Clearly, any consistent hypothesizer H for C'
must guess a hypothesis from this interval, so the error of H’s hypothesis must be bounded by the width of
this interval; i.e., err(H, P, c,x") < wid(C,P,c,x"). So it only remains to show that E y: wid(C,P,c,x") =
O(t~1). To this end, we observe that the worst case situation is represented by the uniform chain.

Definition C.2 (Uniform chain) For a domain X = [0,1], let I = {i = [0,¢] : © € [0,1]} be the class
of initial segments of [0,1], and let U denote the uniform distribution over [0,1]. Then the uniform chain
is the concept space (I,U) formed from I and U. Note that the uniform chain (I,U) satisfies the identity

C.1. PRELIMINARIES 149

Lemma C.3 below shows that for any ¢ € (C, P) there is an i € (I, U) such that
E .t wid(C,P,c,x") < E o wid(I,U,i,x"). (C.1)

So it suffices to determine how quickly the uncertainty interval width shrinks for a uniform chain. Here it
turns out that we can determine an exact rate of decrease. In fact, Lemma C.4 below shows that for any
target interval i = [0,4] in (7, U),
2 (1= At+1 _ st+1
Ex wid(I,U,i,x%) = (tli 3 o (C.2)
which is explicitly rational in ¢. Therefore, combining (C.1) and (C.2) shows that any consistent hypothesizer
H for C must obtain E x: err(H,P,c,2') = O(t~"). |

Lemma C.3 For any ¢ € (C,P) there is an i € (I,U) such that
Ext wid(C,P,e,x") < Ewid(I,U,i,x").

Proof (There is a slight ambiguity here as the sequences x' actually range over different domains X* in
each case, but this has no bearing on the result.) First, consider the space (C,P) and choose an arbitrary
target ¢ € (C, P). For this ¢, define the random variables S¢(z) = P(e—s[cz]) and L¢(z) = P({cx]—c), which
measure the distance between ¢ and the smallest and largest concepts in the uncertainty interval [s[cz], £[cz]]
respectively. Then the variables S¢,(x") = min{S(z1), ..., S(z¢)} and L, (x") = min{L¢(z1), ..., L°(z¢)}
measure the distance between ¢ and the smallest and largest concepts in [s[cx'], flex!]]. Le.,

wid(C,P,e,x") = P({ex']— s[ex")
= P(lex'1— ¢) + P(c — s[ex)
= ict(xt)+L_ct(Xt)~
Now, turning our attention to the space (I,U), consider a corresponding target concept i = [0,P(c)] € I.

For this concept we can define iit and Et as above. Notice that, by construction, this concept i has the
property that the width of its uncertainty interval can shrink no faster than c¢’s:

P1 For any y < P(c) we have P{S¢ < y} > U{S! < y}; and for any y < 1 — P(c) we have P{L¢ < y} >
U{L! < y}.

This obviously yields the result since for positive random variables X and Y, Fix > Fy implies EX < EY.
Finally, to prove P1, note that U{S' < y} = y for y < P(c) by construction, whereas P{S° < y} > y over
this range. Similarly, U{L} < y} = y for y < 1 — P(c), and yet P{L® < y} > y over this range. (To see this
for L¢, let £, = (J{h € C : P(h — ¢) > y} and notice that P{L° < y} = P(¢, —¢) > y. A similar argument
works for 5¢.) i

Lemma C.4 For any initial segment i = [0,1] in (I,U),

2 — (1—q)tt! —jt+!
t+1

B wid(I,U,i x%) =

Proof Consider an arbitrary target concept i = [0,4] € I. Let S(z) and L(z) be random variables for
i as defined in the proof of Lemma C.3 above (dropping the superscript i). Then by definition we have
wid(I,U,1,x") = S,(x*) + L,(x"), and hence

Byt wid(I,Ui,x%) = Fo [S,(x%) 4+ Ly(x")]

t

Z (2) U(i)k U(iC)t_k (Exx [Skl 21,25 €1]

k=0

+ Eji-x [Lt—k| TRy, .-y Xy ¢ 1]) .

150 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Obviously in this case U(i) = 7 and U(i°) = 1 — i. Now notice that for S(z) and L(z) defined as above, we
have S|(z € i) ~ uniform[0,{) and L|(z € 1°) ~ uniform(0,1 — ¢). Therefore, Proposition 4.6 above shows
that for any random variable R ~ uniform(0,r) we have E xt [R,(x*)] = r/(¢t + 1), and hence

t) -z
B wid(1,Ui,x") = Z<k) S -9 (kiﬁt—kil)'

k=0

Each of these two terms can be reduced via the Binomial Theorem [Brualdi, 1977, Chapter 4] to yield the
stated result. For example, the first term yields

AR
(k)l(l R

P+ 1N kg1q A (t+1)—(k+1)
(1<:+1)2 (1-9)

D

t
k=0

k=0
t
- tll <t:1)lz(1_i)t+l_z
+ £=0
= il
tt1

C.2 Continuous chains

Theorem 4.12 (Continuous LB) For any continuous concept chain C': There is a domain distribution P
that forces any hypothesizer H to obtain a rational learning curve (i.e., Byt err(H, P, ¢/, x") = Q' (t71)) for
some target concept ¢’ € C.

Proof Since C' is continuous it can be indexed C' = {¢, : y € [0, 1]} where ¢,y C ¢, for y < z. Given this
indexing, we can fix a domain distribution P such that dp(cy,c.) = |y — z|.> Notice that the resulting space
(C, P) is isomorphic to the uniform chain (7, U) in Definition C.2. Therefore, it suffices to establish the lower
bound for (7,U).

For this space we already know by Lemma C.4 that the width of any uncertainty interval only decreases
rationally to zero; i.e., Byt wid(I,U,i,x") = Q(¢t71) for any i = [0,i] € I. So it would be surprising
if a hypothesizer could do significantly better than this for every target concept in I. To prove that any
hypothesizer is forced to exhibit rational convergence for some fixed target concept i € I, we employ the same
averaging argument used in Proposition 4.8. In particular, we fix a prior distribution @ on the collection of
initial segment concepts I, and argue that any hypothesizer H must obtain a large expected error on average
over the concepts 1 € I.

Consider the uniform prior Q on /. Here it turns out that the simple “midpoint” guessing strategy MP
(Figure C.1) is Bayes-optimal for this prior: that is; Lemma C.5 below shows that any hypothesizer H must
obtain

EiExerr(H,U)i,x") > E;E, err(MP, U, i, x%), (C.3)

where target concepts 1 are chosen randomly according to Q. Therefore, it suffices to establish a lower bound
on MP’s average expected error. Here we see that, not surprisingly, MP achieves an average expected error
that is a fixed fraction of the expected width of the uncertainty interval. In particular, Lemma C.6 below
shows

1
E; Ex err(MP, U i, x") =) E; By wid(I,U,i,x%). (C.4)

1 This distribution can be constructed by the same procedure used to construct the Lebesgue measure on [0, 1]; see e.g., [Ash,
1972, Chapter 1].

C.2. CONTINUOUS CHAINS 151

Strategy MP (ix") for the uniform chain (7, U).

INPUT: a training sequence ix’ labelled by some unknown target interval i € I,
which yields the uncertainty interval [s[ix’], Ifix*]].

PROCEDURE:

o Guess the midpoint concept m = [0, m] defined by the endpoint m = (s + £)/2.

Figure C.1: Strategy MP

So, combining (C.2), (C.3), and (C.4), we see that any hypothesizer H must obtain

1 12_ 1_'t+1_'t+1
EiExe err(H,U,i,x") > —/) ' di
1, 1+1

1
= —. C.b
2t +2) (C:5)
Clearly, since this lower bound holds on average over all i € I, it must hold for some i; € I for each
training sample size t. However, we need to establish the stronger claim that there is a single 1 in I that
forces E ¢ err(H,U,i,x") = Q(t~1) for infinitely many training sample sizes ¢{. To this end, Lemma C.7
below shows that for any a > 0

11—«
i€l :Egerr(HU LX) > — io0 ty>0.
o = el)2 57 o 1
I.e., any hypothesizer will be forced to obtain an expected error above this bound infinitely often for a
nontrivial portion of the concepts in 7. This gives the result.? [

Lemma C.5 For any hypothesizer H, E;Ext err(H,U,i,x") > E;Ext err(MP, U, 1, x").

Proof We will show that the hypotheses produced by MP are Bayes-optimal for the uniform prior Q on
I and the uniform domain distribution U on [0,1]. The result then follows by a well known fact about
Bayes-optimal prediction; ¢f. [Duda and Hart, 1973, Chapter 2].

Intuitively, this result is rather clear. Given a training sequence z' = {({(x1, 1), ..., (¢, y:)) yielding the
uncertainty interval [s[z],1[z’]), the posterior probability that a domain object = € [s[z'], {[z']) gets classified
as y = 1 is just the proportion of initial segment concepts i € [s[z'],1iz"]) that contain z. Therefore, the
Bayes-optimal classification for z is y = 1 just when z < m = (s[z] + {z°])/2.

To formally prove this, consider an arbitrary training sequence z* = ((z1, 1), ..., (z+, y:)) that is consistent
with some target segment 1 € 7. We can compute the posterior probability that a particular domain object
z gets classified as y = 1 as follows.

t

1
P(y| m,zt) = / p(y,1] I,Zt) di
0

1
/ P(y| i,éL‘,Zt) p(i| :L‘,Zt) di
0

/0 Ply|i,2) p(i | 2') di,

?Note that Haussler, Littlestone and Warmuth [Theorem 3.2, 1994] have independently established a result similar to (C.5)
(in subsequent work to [Haussler, Littlestone and Warmuth, 1988]). However their argument is quite different and they do not
supply the final step (Lemma C.7). The proof presented here generalizes more readily to Theorem 4.15 below.

152 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

since y is independent of z' given x and i, and i is independent of z. Now, notice that

0 if ¢ [siz'], (zY)
p(i|z') = 1

Lizt] — s[z?]

if i€ [s[z, lzh),

where s[z'] is the largest positive example and f[z’] is the smallest negative example in z*, and notice that
Ply=1]i,z)=1ifz >7and P(y = 1|1,z) = 0if 2 < i. Therefore, the posterior probability that an object
z is classified as y = 1 given z’ is given by

: Z[Zt] 1 .
P=tlnd) = [g
B hz'] — =
- 1) — st (o

for z € [s[z'], £1z"]). (Note that this posterior probability is 1 if z < s[z'], and 0 if z > {[z'].) Then, following
the standard Bayes decision procedure, given z’, we classify z as 1 exactly when P(y = 1| z,z") > 1/2. But
by (C.6) this occurs when z < (s[z'] + £[z'1)/2, which is exactly what MP’s hypothesis does.

1
Lemma C.6 E;Exterr(MP, U i, x") = 1 E;i E o wid(I,U,i,x").

Proof First, notice that E; Ext err(MP,U,1,x") = E: E;err(MP,U,i,x") by Fubini’s Theorem. Now
consider an arbitrary (ordered) object sequence x* = {z; < x5 < --- < z;} that partitions the chain T
into ¢ + 1 subintervals Ijo ¢,), l[z,,25), -+ [[e,,1], Where Iz, o) = {i €1 @y <@ < xpqq}. That is, each
subinterval contains initial segment concepts that identically label the objects in x*. Consider an arbitrary
subinterval I[z, +,,,) = [s,1). For this subinterval, MP always guesses the same hypothesis, m, defined by
the endpoint m = (s + £)/2. Thus,

‘ ¢
/err(l\/lP,U,i,xt) di = /dU(m,i) di

s
¢
|m —i| di
s

2/ m—1 di

1 Z
—/ﬁ—s di =
4 Js

o =

‘
/ wid(I,U,i,x") di.

The result then follows since

t Tn41
E;err(MP, U i, x") = Z/ err(MP, U, i, x") di
T

n=0 n
1 1

= —/ wid(I,U,i,x") di
4 Jo

1
= 3 E;i By wid(I,U,i,x%). |

C.3. DENSE CHAINS 153

Lemma C.7 For any a > 0,
Q{i el : Ext GTT(H,U,i,Xt) Z m i.0. t} > 0.

Proof We want to use the result that a large error is forced on average over all 1 € I for each ¢ to show
that a large error must be forced for a significant proportion of the concepts i € I for each ¢, and then show
that this means a large error must be forced for some particular i € I for infinitely many ¢.

Let err(i,t) = Ext err(H,U,1,x"). Focusing on the distribution Q over I, we are first interested in the
event

B, £ {i el:err(it) > Zéﬁ}
which contains the concepts i € I that force a large error for training sample size t. To prove that this event
has significant positive measure under Q for every ¢, fix an arbitrary ¢ > 0 and think of R = err(i,t) as a
random variable over i. Then by (C.5) we know that ER > 1/(2(¢ 4+ 2)), and by Lemma C.4 we know that
if H is consistent for I then R < 2/(t 4+ 1). Combining these two facts gives 0 < R < 8ER. Now, letting
q L Q(B:) = Q{i: R(1) > (1 — @)ER}, we have ER < (1 — ¢)(1 — a)ER + 8¢ER. Finally, notice that this
holds if and only if ¢ = Q(B;) > a/(a+7).3

Now we consider the event

B = (UBs
n=1t=n
which contains the concepts i € T that force H to exhibit err(i,t) > (1 — a)/(2(t 4+ 2)) for infinitely many
training sample sizes . We wish to prove that Q(B) > 0 and hence there exists some i € B C I that
forces err(i,t) > (1 — a)/(2(t + 2)) i.0. t. To do this, let BT = ﬂ:zl U;2,, B:. Notice that BT | B, and
hence Q(BT) | Q(B) by [Ash, 1972, Theorem 1.2.7]. But now see that By C BT for all T', and therefore
Q(B”) > Q(Br) > a/(a+7) for all T. This implies Q(B) > a/(a + 7), and we are done. |1

C.3 Dense chains

Theorem 4.15 (Dense LB) For any dense concept chain C: There is a domain distribution P that forces
any hypothesizer H to obtain a rational learning curve (i.e., E x err(H, P, ¢/, x*) = Q*(t~1)) for some target
concept ¢’ € C.

Proof We establish the slightly weakened proposition that E ,: err(H, P, e, x%) = Q'(¢t=17¢) for any € > 0
(hence the notation ©*). The basic idea is to generalize the proof of Theorem 4.12 to handle arbitrary dense
chains. Here we must face the fact that C' need not be continuous in general (e.g., C' might only be countably
infinite) so we cannot directly reduce the problem to a uniform chain, as before. Instead, we have to define a
domain distribution P that simulates the structure of a uniform chain as closely as possible. To do this, we
explicitly construct a dense subchain of C' on a countable subdomain of X and then define the appropriate
distributions P and Q.

Construction First, construct a dense chain Cy on a countable domain Xy by selecting concepts from C
and domain objects from X in a series of Stages £ = 0,1, 2, ... as follows: At Stage 0, select any two concepts
¢g C ¢1 from C and choose a domain object #1 between them (i.e., choose z1 € ¢1 — ¢ such that there
remains ¢s,cg € C' with ¢g C ca C ez C ¢1 and 1 € ¢3 — ¢q; see Figure C.2). Next, at Stage 1, choose a
domain object x5 and concept c¢s between ¢g and x1, and then a concept ¢z and domain object 3 between x;
and ¢1; maintaining the alternation between domain objects and target concepts shown in Figure C.2. Then

3Note that if H is not consistent for I then we can always construct a consistent hypothesizer H' such that err(H',U,i,x) <
min { err(H,U,i,x%), wid(I,U,i, xt)} for alli € I, x* € X%, so it suffices to consider a consistent hypothesizer.

154 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Cp C1
T
Stage 0 s . cs
T2 T3
Stage 1) .
Stage 2 . ‘ ‘ ° . ‘ ‘ ° . ‘ ‘ .
Sta,ge 3 [) [] [) [) [) | L J [) [] [) [) [) | L J [) [] [) [) [) | L J

Figure C.2: Constructing a dense subchain on a countable subdomain: Each line indicates a concept that
contains the domain objects to the left of the line (indicated by bullets). Repeating this construction for
stages k = 0,1,2, ... yields in a dense chain C' = {¢g, ¢1, ...} defined on a countable domain X = {z1, 2, ...}.

for all subsequent Stages £ > 2, choose a domain object and target concept in each “gap” left from previous
stages, maintaining the alternation between target concepts and domain objects after each stage, again, as
shown in Figure C.2. Notice that the density of C' permits us to continue this process indefinitely, and
therefore we obtain a dense subchain Cy defined on a countable subdomain Xy. This construction provides
us with a canonical structure on which to define our probability distributions. (We now drop the subscript
0 for the remainder of this proof, with the understanding that C' and X now refer to the constructed Cy and
Xy throughout.)

Now to define a domain distribution P on X: Notice that P cannot be uniform since X is only countably
infinite. However, we can approximate a uniform distribution by assigning probabilities as follows. First, at
Stage 0, assign P{z} = 0 to the only domain object added at Stage 0. Then for Stages k = 1,2, ..., assign a
probability of pr = (3° — 1)/(2 - 3¥(49)=1) to each of the domain objects z; added at Stage k. This gives a
well-defined probability distribution for any ¢ > 0, since there are a total of Ny = 2-3%~! objects added at
each Stage k, and summing over stages 1,2, ... yields a total probability of (3° — 1)} 7~ 37% = 1. Notice
that we can use the parameter € to control the “uniformity” of P, in that choosing smaller values of ¢ forces
the probabilities pj assigned at each stage to converge more slowly to 0, hence making the distribution more
uniform.

Finally, to define the prior distribution Q on C' we proceed in exactly the same way as for P on X above.
That is, at Stage 0 assign Q{co} = Q{c1} = 0, and then at each subsequent Stage k > 1 assign a probability
qr = pr to each of the concepts ¢; added at Stage k. This yields a well defined probability distribution Q on
C exactly as above, since during each Stage & > 0 an equal number of domain objects and target concepts
are added to the construction.

Given this explicit construction of C, X, P, and Q, we can now repeat the lower bound argument from
Theorem 4.12 as follows. First we must verify that P is indeed a “hard” domain distribution in the sense
that it forces uncertainty intervals to shrink rationally as a function of {. Lemma C.8 below shows that for
any ¢ € C
Qe

t+1

E xt wid(C,P,c,x") > , (C.7)
for a constant a, > 0.

Given that this slow convergence holds for all target concepts in C' it would be surprising if a hypothesizer
could achieve significantly faster convergence for every possible target ¢ € C'. To prove this, we follow the
same averaging argument used in Proposition 4.8 and Theorem 4.12 above: Given the prior distribution Q
over C, we argue that any hypothesizer H must achieve a large expected error on average over the target
concepts ¢ € C. To do this, we consider a simple learning strategy MC (Figure C.3) that turns out to achieve
near-optimal average expected error for the distributions P and Q defined above. Lemma C.9 below shows

C.3. DENSE CHAINS 155

Strategy MC (cx") for the constructed chain (C, P) with prior Q.

INPUT: a training sequence cx’ labelled by some unknown target concept ¢ € C,
which yields the uncertainty interval [s[ex!], £[cx"]].

PROCEDURE:

o Guess the concept h € [s,£] with maximum prior probability according to Q.

Figure C.3: Strategy MC

that any hypothesizer H must obtain
E.Exterr(H,P,c,;x') > B E.Eyt err(MC,P, ¢, x), (C.8)

for a fixed constant 3 > 0.

Therefore, it suffices to establish a rational lower bound on MC’s average expected error. Not surprisingly,
MC must obtain an average error that is at least a fixed fraction of the width of the uncertainty interval
(discounting the fact that MC can guess the target concept exactly with a small probability). Lemma C.10
below shows that

J

t
ECExt 67T(MC,P,C,X) 2 m

E.E, wid(C,P, ¢, x"), (C.9)
for a fixed constant § > 0.
Finally, combining (C.8), (C.9) and (C.7), we see that any hypothesizer H must obtain

E.Exerr(H,P c,x") > W,

for a constant vy = @B > 0 (where @ > 0 is the average value of a. over ¢ € C'). Clearly, since this bound
holds on average over all concepts in ', it must hold for some ¢; € C for each training sample size t. However,
as in Theorem 4.12, we need to establish the stronger claim that there is a single concept in C that forces
Ext err(H,P,c,x") = Q(t_l_ﬁ) for infinitely many training sample sizes ¢t. To this end, Lemma C.11 below
establishes that for any A >0

1—A .
Q{CEC : Extverr(H,P e, x") > % i.0. t} > 0.

That is, any hypothesizer must exhibit (near) rational convergence for a non-trivial portion of the concepts
in C', as measured by Q. Finally, notice that we can freely choose ¢ to be arbitrarily close to zero, so the
theorem follows. [J

Lemma C.8 Foranyce C, Ey wid(C,P,c,x") > a./(t+ 1) for a constant a. > 0.

Proof The key reason we obtain rational convergence here is that, by construction, the region around any
target concept is sufficiently dense to ensure (C,P) behaves like a uniform chain. To show this, consider an
arbitrary concept ¢ € C and let [¢ — D, ¢ + D] denote the subinterval of X containing all objects within a
dp-distance D of ¢. Also, let r = 311¢. Then we have

D

P2 E xn [wid(C’,P,c,x") | X1, .., Ty € [c—D,c—I—D]] > m

156 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Given P2, it is easy to prove the lemma by a simple application of the Binomial Theorem

E xt wid(C, P, ¢, x")

()
0

n=

>

]~

"(1=2D)""" Exn [wid(C,P,c,x")| 21,,20 € [c— D,c+ D]]

I
=)

o+

D

(2D)™(
(2D)™(Tt D)

(1 —2D)t="

D
r(t+1)

2

To prove P2: Consider an arbitrary concept ¢ added at some stage K of the construction. Notice that
by the definition of P, ¢ must have neighboring concepts (on both sides) at each distance D, = (3¢ —
1)(3/2) Z:O:n-}-l r~* = X. 77" for every n > K (where X is just a fixed positive constant). Let D = Dy =
A -r~K_ This means that inside a local neighborhood [c — D, ¢ + D] of ¢, the chain (C, P) must behave as if
it were a compressed version of the uniform chain (7, U). To see this, consider the right hand neighborhood
[¢,c + D] and notice that the distribution of distances from ¢ to its right-hand neighbors is bounded by r
times a uniform(0, 1) distribution (Figure C.4). In particular, for d < D we have P{L°[z] < d} < r P{R < d}
for R ~ uniform(0, 1). That is, given the event z € [¢, ¢+ D], the distribution for L°[z]|z € [¢, ¢+ D] is upper
bounded by a uniform(0, D/r) distribution, as shown in Figure C.4.

Now, recalling that for positive random variables X and Y, Fx < Fy implies EX > EY | we can simply
apply the Binomial Theorem to obtain

E xn [wid(C,P,c,x")|m1, vy € [c— D,e+ D]]

_ X_: (7;) (%) (Ex[85] 21,0mi€fo-D,cl]

+ Exn—’ [L_cn_z| Titl, ., Tn € [C,C—|— D]])

vV
3
o
TN
. 3
N
N
N | —
N
3
| |
=
+|T
=
=
3
|
~| T
+
=

Lemma C.9 For any hypothesizer H,
E.Exterr(H,P,c,x') > B E.Exterr(MC P, ¢ x),
for a fized constant 5 > 0.
Proof The main reason MC obtains near-optimal average expected error is that the max-weight concept in

any uncertainty interval, 7, possesses a minimum fraction of I’s total weight under Q. Let ¢* = maxcer Q(c)
denote the maximum prior probability of any concept in I.

P3 For any uncertainty interval I, ¢* > p Q(I) for a fized constant p = (1 — 37°)/2.

C.3. DENSE CHAINS 157

1
P{La) < d} - o——a
S ’
4 .
4 v
/:_/ ‘.l:"
pead
/"
- |
0 1 | i
0 D D D D 1
r3 2 r

dp-distance from ¢

Figure C.4: The solid lines indicate the distribution of dp-distances from a target concept ¢ to its right-side
neighbors in a dense chain C. Here D = X - r~% where K = stage(c), r = 3!*¢, and X is a fixed positive
constant. The dashed line shows how the distribution of dp-distances, given that the distance is less than
D, is bounded by a uniform(0, D/r) distribution.

158 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Given P3, we prove the lemma as follows: First note that we can rearrange the order of summation to obtain
E.Ext err(MC,P,c,x") = Ext E. err(MC, P, ¢, x"), so it suffices to consider an arbitrary fixed x*. Notice
that a sequence x* = {z; < x5 < --- < x;} partitions the chain C into ¢+ 1 subintervals Ciez1)s Clanyza)s -
Clz,,—), where C(y, y=1ce€ C:x, €c and xnq1 ¢ c}. lLe., the concepts in each subinterval identically
label x¢.

Now, consider an arbitrary subinterval I = C(;,, »,,,) and compare the performance of MC to an arbitrary
hypothesizer H in this subinterval. Since x’ is fixed, we can think of the target concepts ¢ € I as being drawn
randomly according to the distribution Q. Notice that, since c1x?! = cox® for any c1, cs € I, any hypothesizer
must produce the same hypothesis for all target concepts ¢ € I. Thus, given targets ¢ € I, H produces a
fixed hypothesis H[cx!] = h, and MC guesses the concept ¢* € I with maximum prior probability according
to Q.* We now show that any hypothesis A must obtain an average error over random concepts drawn from
I that is at least a fixed fraction of ¢*’s average error. Let ¢* = Q(c*) = maxcer Q(c), @ = 3., Q(e),
Q* =Q — ¢*, and d* = dp(h,c*). Then, by the triangle inequality, we get

D) & Y de(h,e) QL)

Trnt1

cel
> de(h,) + 3 Oldn(e,e”) — d(h,c")] Q0
cel—{c*}
> d'q+ 0[D() — Q7] (C.10)

where 6 is a threshold function such that #(z) = z if > 0 and 6(z) = 0 otherwise.

Now we just minimize this lower bound as a function of d*. Here we have two cases: If ¢* > @* then
(C.10) is minimized by choosing d* = 0, which gives D(h) > D(c*). If, on the other hand, ¢* < @* then
(C.10) is minimized by choosing d* = D(c¢*)/Q*, which gives D(h) > D(c*)¢*/Q*. In this case we can
just apply P3 to obtain D(h) > D(c*)p/(1 — p). Thus, in either case we obtain D(h) > BD(c*) for a fixed
constant 2 > p/(1 — p) > 0.

Finally, we note that this shows any hypothesizer H must obtain

E.err(H,P,c,x") = Z Z dp(Hex"1,¢) Q{c}

n=0 CEC(rn,a:n+1)

v

D8 Y. de(Mcex o) Qfe}

n=0 CEC(In:In+1)

= BE.err(MC,P, ¢ x").

Proof of P3: Note that any subinterval I of C contains at least one, and at most two concepts of maximum
weight under Q. (This is true since, by construction, any interval that contains three concepts from a stage
K, must contain at least one concept from an earlier stage N < K; ¢f. Figure C.2.) Therefore, if ¢* is a
max-weight concept of I, then T can have: at most one other concept of maximum weight ¢* = Q(c*); at
most 6 concepts of weight ¢*/r, » = 3'1¢; at most 2 - 3% concepts of weight ¢*/r* for all stages k > 0; etc.
(I.e., this is symmetric to considering 7 = C' — {eg, c1} in Figure C.2 and choosing ¢* = ¢3.) This gives a

total weight of Q(7) < ¢* Z:O:o 9.3kp—k — 2¢*/(1 = 37°). i

Lemma C.10 For a constant § > 0,
)
(t 4+ 2)%

4The proof of P3 below notes that there can be (at most) two concepts with maximum prior probability in an uncertainty
interval I, so we just assume MC deterministically picks one of them.

E.Ext err(MC, P, ¢, x") > E.Ex wid(C,P,¢c,x"),

C.3. DENSE CHAINS 159

Proof As in Lemma C.9 we rearrange the summation to obtain the identity E.Ext err(MC, P, ¢, x") =
Ext Ec err(MC, P, c,x"). So consider an arbitrary fixed x' = {z1 < 23 < -+ < x4}, think of the target
concept ¢ as being randomly drawn according to), and consider MC’s performance for x*. First note that
there is a nonzero probability that MC guesses the target concept exactly. So we need to argue that (a)
MC does not guess the target with too high a probability; and (b) given that MC does not guess the target,
it must achieve an average error that is at least a fixed fraction of the uncertainty interval width. Let

—MC[x'] = {c : MC[cx'] # ¢} denote the set of concepts in C' that MC does not guess given any possible
labelhng of the object sequence x*. Then for any fixed x* we have
1
P4 -MCx') > ————.
QEMEE) 2 ey
P5 E. [err(l\/IC, P, c,x") | —||\/IC[xt]]

1
> 5 E. [wid(C, P, c,x") | —d\/lC[xt]] Q(—=MCx") for r = 31+,
r

Given these two facts, it 1s easy to prove the lemma as follows. Applying P4 and P5 yields

E.err(MC,P,c,x") = E. [err(MC, P, ¢, x") | —||\/IC[xt]] Q(=MC[x")
> E.[wid(C,P,cx")|-MCx"1] 6(t+2)7?

for a constant § = (8r332¢)~1 > 0. Now, averaging over x’ and re-arranging the sum yields

ExtEcerr(MC, P e, x') > §(t+2)7% EuE. [wid(C’,P,c,xtH —d\/lC[xt]]
§(t+2)7% EcEx [wid(C,P, ¢, x") | -MC[e]],

where =MC[c] = {x MC[cx"] # ¢} is the set of object sequences x* € X where MC does not guess ¢. This
proves the lernrna, since for any ¢ we have

| D [wid(C,P,c,xt)| —d\/lC[c]] > E et wid(C,P,c,x").

(Intuitively, this follows because the uncertainty intervals where ¢ is the max-weight concept tend to be
small. That is, consider a fixed left boundary of an uncertainty interval around ¢ and notice that every right
boundary that gives ¢ € =MC[c] is strictly further away from ¢ than any boundary where MC[cx'] = c.)

Proof of PJ: We get this bound because x! partitions C into at most ¢ 4+ 1 subintervals and MC can guess
at most one concept per subinterval. Thus, the probability that MC guesses a randorn target concept ¢ € C
is bounded by the sum of the largest ¢ + 1 probabilities in C'. That is, Q(-~MC[x']) > >"°° 142 0i Wwhere {g;}72,
is the sequence of probabilities assigned in the construction of Q. So, letting Q7 = > i- 7 ¢;, we seek a lower
bound on Qp for T =1 + 2.

To determine this lower bound, notlce that by the construction of C', the total number of concepts added
in Stages 1 through K inclusive is Ek 12- 3%~1 = 3K _1, so the index of the last concept added at Stage K

is 3% . This means that Qp > Ek:[1+log3 T] Qr, where Qy L (3¢ — 1)37¢* is the total probability assigned
at Stage k of the construction. Thus,

o

QT Z (36 _ 1) Z 3—6k

k=[14log; T
3—6)[1+log3 T

1— 3¢

(3 - 1)/

— 36(3—6) [14log, T

v

36(3—6)2+10g3 T _ 3—e—e.

160 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Proof of P5: This inequality holds because the region around the max-weight concept in any uncertainty
interval is sufficiently dense in both P and Q to simulate the effects of a uniform prior on a uniform chain (as
in Lemma C.6). Here we are interested in the conditional distribution of Q given =MC[x"], which is defined
by
c * if ¢ € =MCrx?y,
Q(c) = { Q(c)/@Q

0 otherwise,

where Q* is the normalizing constant given by @* = Q(—=MC[x']). Let E} denote expectation over ¢ with
respect to this conditional distribution. We seek a lower bound on

t
EXerr(MC, P, c,x") = Z/ err(MC, P, ¢, x") dQ¥(c), (C.11)
n=0 Ce(

T\ Cnt1)

where (2, Z,41) denotes the subinterval of concepts ¢ € C' between z, and 4.
To establish this lower bound consider an arbitrary subinterval I = (2, 2,41) and let ¢* = argmax_c;Q(c).
Notice that we can split the summation over I into two halves

/ err(MC, P, ¢, x") dQ*(c)
cel

. / dp(c*¢) dQT(c) + / dp(c*,¢) dQ¥(e). (C.12)
E(rn,c*) €(c* ,Tnt1)

So consider one of the half intervals J = (¢*, 2,41). It is not hard to show that the average dp-distance from
c* to ¢ € J is at least a fixed fraction of J’s width under P:® To see this, note that by construction, for each
¢ € (¢, n41) added at Stage K of the construction we can assign a distinct z from Stage K + 1 between
¢* and ¢ (namely, the z at Stage K + 1 closest to ¢ in (c* ¢); see Figure C.2). Then, for any subinterval
(c* ¢) we get P(c* c) > Q(c* ¢)/r = Q*(c* ¢) @*/r, where r = 3'*¢. This means that for any dp-distance d
such that d < P(J) we get Q*{c € J : dp(c*, ¢) < d} < rd/Q*. So, thinking of dp(c* ¢) as a random variable
over ¢, we can see that the distribution function for dp(c* ¢)|c € J is bounded by a uniform (0,P(J) Q*/r)
distribution, as shown in Figure C.5. Thus we get E* [dp(c*¢) | J] > P(J) @*/(2r), and hence

[delene) d@e) = Ellde(ene) 1 7] Q1)

p

>
- 2r

(/) QJ). (C.13)

Now, re-considering the complete interval 7, note that one of the half intervals (z,,¢*) or (¢, 2,41) must
be at least half the dp-width of I. Without loss of generality, assume P(J) > P(I)/2. Then we can argue
that Q*(J) > P(J)/r > P(I)/(2r) > Q*(I)/(2r?) as above. Combining this with (C.12) and (C.13) gives

/ err(MC, P, ¢, x") dQ*(c) = / dp(c*, c) Q(c)
cel cel

@
8r3

- 53 /CEIwid(I,P) dQ(c).

v

P(1) Q*(1)

Substituting this back into (C.11) yields the stated bound. [

5Note that we use the notation (c*, zn41) to refer ambiguously to both the set of concepts and the set of domain objects
between c* and zy,41. The intended meaning should be clear from context.

C.3. DENSE CHAINS

Q*{c:dp(c",c) < d}

161

dp-distance from c*

Figure C.5: The solid lines indicate the Q*-distribution of dp-distances from a max-weight target concept c*
to its right-side neighbors in a dense chain C'. The dashed line shows how the Q*-distribution of dp-distances,
given that the distance is less than P(J), is bounded by a uniform(0, P(J)Q*/r) distribution.

162 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Lemma C.11 For any A > 0,

1—A .
Q{CEC : Exrerr(H,P e, x") > % 1.0. t} > 0.

Proof Follows from basically the same argument as Lemma C.7. ||

C.4 Scattered chains

Lemma 4.17 (Corollary to Hausdorff’s Theorem) For a scattered concept chain C, there is some least
ordinal v such that (i) every concept in C' has order 8 <+, and (ii) all limit concepts of a particular order
(3 are 1solated in concepts of the same or higher order.

Proof First we need to formalize the notion of the order of a limit concept.

Definition C.12 (Limits and order) For a chain C, let i(C) denote the set of isolated concepts in
C; i.e., concepts with a least-larger and greatest-smaller neighbor in C. Also let C° = i(C). Then we
define C'* = C — C° to be the limit concepts of C. The limit concepts with order exactly 1 are given by
Cl = i(C*). Continuing in this way for arbitrary ordinals a, we define the concepts with order at least a
by C**t =C — Uﬁ<a CP?, and the concepts with order exactly a by C* = i(C*+). Notice that for any ordinal

a we haUeC:CO‘+UUﬁ<aC’@‘

The key issue is to show that collecting successively higher order limit concepts in this way eventually
exhausts a scattered chain.

P6 For any scattered chain C, there exists some ordinal v such that C' = Uﬁ<v CcP.

Notice that P6 implies both properties (i) and (ii) above, by the definition of C*?. To prove P6 we must
resort to an inductive characterization of scattered linear orderings first developed by Hausdorff (an ex-
cellent treatment of this subject is given in Rosenstein’s monograph [Rosenstein, 1982]). This charac-
terization is based on constructing the following “condensation” map: We say that two concepts are a
finite distance apart if there are only finitely many concepts between them in the ordering. Then the
finite condensation map f : C — 2¢ is defined by f(c) = {d € C :c and d are a finite distance apart}.
The effect of this map is to collapse the chain into a collection of subintervals (that is, subintervals of
the chain C, not the domain X). The key point is to notice that these subintervals themselves form a
linear-ordering, so we can naturally define iterates of this map as follows. For a successor ordinal g + 1,
define f7*1(c) = {fﬁ(d) : f2(d) and fP(c) are a finite distance apart}; and for any limit ordinal A, define
e) = Uﬁ<>\ {fﬁ(c)} Then we have the following relations.

P7 f(C) = f(C) for all B > a if and only if f*(C) is dense or a singleton.

(This proposition is more or less immediate from the definitions; see e.g., [Rosenstein, 1982, p.81].) Now,
define 5 to be the least ordinal for which f7(C) = f7(C) for all 3 > . (We know that such a 4 must exist,
since for any chain C with cardinality & there is an ordinal a < k+ such that f#(C) = f*(C) for all 3 > a
[Rosenstein, 1982, Theorem 5.9].) From P7 it is easy to see that

P8 fY(C) is a singleton if and only if C is scattered [Rosenstein, 1982, Exercise 5.11.2].

This gives a necessary and sufficient characterization of scattered concept chains in terms of f7(C). So now
all we need to do is related this characterization of a scattered chain C' to its decomposition into limit points
as given in the definition above. Below we prove

P9 For any ordinal 3, there can be at most 2 concepts from CP* in any interval of f°(C).

C.4. SCATTERED CHAINS 163

This gives the result, since: From P8 we know that if C'is scattered then f7(C) is a single interval. Combined
with P9, this means C7* contains at most 2 concepts, and hence CV+1)+ = & Since by definition C' =
c*tu Uﬁ<a C? for any a, we have shown that C' = Uﬁ<v C?; establishing P6 and hence the lemma.

Proof of P9: Proof is by induction on ordinals. Base: Simply define f° to be the singleton intervals of C'.
Successor ordinal: For any successor ordinal 3 4+ 1 we know there are at most 2 concepts from C?+ in any
subinterval of f by the induction hypothesis. Now assume there are 3 concepts a C b C ¢ from C'(7+1)+ in
a single interval of f7*!. Since they are in a single interval in f°*! these concepts must have belonged to
intervals in f? that were only a finite distance apart. But then, by the induction hypothesis, a C b C ¢ must
only be a finite distance apart in C°*. But this means b must be isolated in C°*, and hence cannot belong
to CP*+1)+. a contradiction. Limit ordinal: For any limit ordinal A we know there are at most 2 concepts
from CP* in any subinterval of f?, for all # < A, by the induction hypothesis. Now assume there are 3
concepts a C b C ¢ from C** in a single interval of f*. Since they are in a single interval in f*, there must
be some B; < A such that a and b belong to an interval of f°1, and some 33 < A such that b and ¢ belong to
an interval of f%2. But then all 3 concepts must belong to a single interval of f7 for 3 = max{3;, 2} < X;
a contradiction. [

Lemma 4.18 Any chain C that is closed under U, N s also complete and bounded, and satisfies a natural
version of the Bolzano-Weierstrass property.

Proof We define the usual topological concepts for linear orderings (see e.g., [Rosenstein, 1982, Chapter

2]).

Definition C.13 (Compactness properties) For a chain C, a Dedekind cut of C' is a partition of C
into two nonempty subsets (U, V) where u C v for allu € U and v € V. A gap is a Dedekind cut (U, V)
where U has no mazimal concept and V' has no minimal concept. We say that a chain C is: (i) closed if it
is closed under N and U; (ii) bounded if it has a minimal and mazimal concept; (iii) Dedekind-complete if
it has no gaps; (iv) complete if every upper (lower) bounded subchain of C' has a least upper (greatest lower)
bound in C; and (v) Bolzano-Weierstrass if every infinite subchain of C' has a limit in C.

The definitions and results of this lemma will be used to prove the next two lemmas below. Observe
that being closed under U, N implies being Dedekind-complete and bounded, complete and bounded, and
Bolzano-Weierstrass. Therefore we call such a chain compact.

((i) = (ii)) Obvious: the maximal concept is just [J{c € C'} and the minimal concept is ({c € C'}, which
both must be in C since it is closed under N, U.

((i) = (ii1)) Consider any partition (U, V) of C. Since C is closed under N, U, both |J{u € U} and
(N {v € V} are in C, meaning that (U, V') cannot be a gap.

((ii1) = (iv)) For any subchain A of C consider the partition defined by
U={uecC: Jaec A such that u C a}.

Since (U, V) cannot be a gap, U must have a maximal concept or V' a minimal concept. In either case we
can supply a least upper bound on A.

((i))+(iv) = (v)) Without loss of generality, consider a countably infinite subchain A of C. Since C is
complete and bounded, A must have a greatest lower bound a; € C. If a; ¢ A we are done (since then
a; would be a limit concept of A), so assume a; € A. Continuing in this way, find as = glb(A — {a1}),
az = glb(A — {a1,a2}), etc. Note that if any a; is not in A then it must be a limit concept of A, so we
are left with the case where every ay C as C ... belongs to A. But then, since C' is complete and bounded,
b = lub({a;}$°) must also be in C, and since b & {a;}5° by construction, this must be a limit concept of A.

164 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Lemma 4.19 IfC is a scattered chain, then the chain C(C) formed by closing C' under U, N is still scattered.

Proof Notice that every concept ¢ € C(C') either belongs to C,orisgivenby c = J{u € U}ore = {v € V}
for some gap (U, V). Thus, C(C') = CUU(C) U V(C), where U (C') denotes the concepts added for gaps where
U has no maximal concept, and V(C') denotes the concepts added for gaps where V' has no minimal concept.
Assume that C' is scattered but C(C) is somewhere-dense. We will show that this leads to a contradiction.

First, since C(C') is somewhere-dense the following proposition shows that one of ¢ (C) or V(C') must also
be somewhere-dense.

P10 Remouving a scattered subchain S from a dense chain D leaves a somewhere-dense chain D — S.

(This proposition is easy to prove: Since S is scattered there must be two concepts s; C sz in S with no
s3 € S between them. But then the subinterval (sq, s3) of D, which is dense, is properly contained in D —S.)
So, without loss of generality, assume U (C) contains a dense subchain U. Notice that C' is between U in
the sense that for every pair w3 C ug in U there must be a ¢ € C such that u; C ¢ C ug (for if not, then
there would be two distinct gaps (U1, V1), (U, V2) of C with Uy — U; = @, which cannot be). But then the
following proposition shows that C' must be somewhere-dense as well; a contradiction.

P11 If a chain B is between a dense chain D, then B must also be somewhere-dense.

To prove this proposition, first note that we can find concepts b1,bs € B, di,ds € D such that by C d; C
dy C by (just pick four concepts dz C di C da2 C dy from D and choose by, by between the first and last pairs
respectively). Now, for any such quadruple by C dy C d2 C ba we can always find b3 € B and ds,ds € D
such that by C dy C ds C b3 C dy C dy C by (just choose ds and d4 between dy and da, and b3 between ds
and d4). Thus, we can continue this process indefinitely to construct a dense subchain of B. |

Lemma 4.20 For a scattered chain C' that is closed under N, U, there is always a concept ¢ € C' of maximal
order consistent with any finite sequence of training examples.

Proof Recall that any sequence of training examples e¢x® determines an uncertainty interval [s[cx'], £[cx]].
Also recall from the definition of an uncertainty interval (Definition C.1) that s and ¢ are defined by unions
and intersections of concepts from C, and hence must also belong to C'. This means that [s, £] is a compact
subinterval of C (i.e., [s,£] is also closed under N, U). Since [s, #] is also scattered, by Lemma 4.17 we know
that there exists a least ordinal y such that [s,] = [, [s, {)°. (That is, 7 is the least ordinal such that all
limit concepts in [s, £] have order at most v.) B

It suffices to show that [s, £]7 is non-empty, as this will supply the needed maximal order limit concepts.
Assume [s, £]7 is empty. Then clearly 4 must be infinite and [s, £]° must be non-empty for all 3 < 5 (otherwise
v would not be the least such ordinal). But then consider the subchain {cﬁ €Cl:p< 'y} of [s, £] formed
by choosing a single limit concept of each order 8 < 5. By the compactness of [s, £], this infinite subchain
must have a limit concept ¢ in [s,£] (¢f. the Bolzano-Weierstrass property of Lemma 4.18). This concept ¢
cannot be in [s, £]? for any 3 < 5, and hence must belong to [s, £]’*; a contradiction. [}

Theorem 4.21 (Scattered UB) For any scattered concept chain C: The hypothesis guessing strategy
CHOLC obtains an exponential learning curve (i.e., E xt err(CHOLC, P, ¢, x) = €9(=*)) for every target concept
c € C, regardless of the domain distribution P.

Proof By Lemmas4.19 and 4.20, CHOLC is well defined for any scattered concept chain C'. By Lemma 4.17,
CHOLC is guaranteed to achieve exponential convergence for any target concept ¢ in C, since fixing a domain
distribution preserves the order structure of the chain, or collapses subintervals of the chain together. (Note
that collapsing subintervals cannot produce new limit concepts or increase the order of existing target
concepts; beyond identifying them with already existing such concepts.) Therefore, the result holds for any
domain distribution P.]

C.5. OTHER RESULTS 165

1
/
/
/ .
// o : P
//
/ -
// o : .
// ’
/ -
/ o——
c d 4
P.{L°x1 < d} !
A S—
,
/
/ K
/
/
/ n
\,—/_
o
.y
s
0 | |
0 1 2 D
n n

dp, -distance from ¢

Figure C.6: Distribution of dp_-distances from a target concept ¢ to its right-side neighbors.

C.5 Other results

Proposition 4.24 For any ¢ € (Cp, Py),

0 1 2\" 2
-] — E xt wid(Cp, P, ¢, x' 1-2) =
< n) i+ wid ¢x) < <)t+1

Proof (Sketch of upper bound) Notice that we can embed the discrete chain (C,,P,) in a uniform chain
(1,U). This means that we can lower bound the distribution of distances from a target concept ¢ € C, by
a uniform distribution as shown in Figure C.6. Therefore, recalling that Fx < Fy implies EX > EY for
X >0 and Y > 0, we can upper bound the expected width of the uncertainty interval by assuming c is
in a uniform chain, and multiplying this width by the probability that neither of ¢’s nearest neighbors is
eliminated. Applying Lemma C.4 then gives

2

t
2
E .t wid(Cp, Py, c,x') < (1——)

n) t+1

(Sketch of lower bound) Consider an arbitrary target concept ¢ € C,,. We know that ¢ must be at least
a distance D > %(1 - %) from one end of the chain, so without loss of generality, assume P(X —¢) > D.
Now consider the distance between ¢ and the largest consistent concept in the chain, which we measure by
a random variable L¢. From Figure C.6 we can see that given c¢’s nearest neighbor is not eliminated, the
distribution of distances from ¢ to its largest consistent neighbor can be upper bounded by a uniform(0, K)

distribution, for K = ﬁ > 1/4. Therefore, we can lower bound this expected distance by

c 1 1*
B (L5 ornze e X o] PeX =0 2 gy (121 0

166 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Theorem 4.29 For any space (C, P) such that N,(C,P) = O(1/a)? for some d as a — 0:

1. Strategy BC achicves E xt err(BC, P, ¢, x*) = O((d/t) In(t/d)) for any target c € C.

2. Any hypothesizer H obtains E x+ err(H, P, ¢/, x') = eV (=t/d) for some target ¢’ € C.
Proof Part 1: Let a and d be constants such that N, (C,P) < (a/a)?. Fix an arbitrary ¢t > 32ed/a and
let o 2 oy = (32d/t) In(at/[32d]), as given in the definition of BC (Figure 4.6). First, it is obvious that

Exterr(BC,Pc,x) < 2a+ Py {err(BC, P,c,x") > 2a} . (C.14)

Now, to upper bound the probability term, recall that BC constructs an a-cover V of the space with size
|V| = No(C,P) and returns the hypothesis in V' that obtains minimum empirical error on the training

sequence. By construction, V is guaranteed to contain a hypothesis A* with true error at most a. Therefore,

Py {err(BC,P, c,x') > 2&}

= Pyt {for A’ = argminyey emp.err.(h, cx') we have err(h’) > 2a}

IN

p emp.err.(h*, ex') > 3a/2 or
**1 3 €V with err(h’) > 2a and emp.err.(h', ex') < 3a/2

< P{p<Layet y <3a/2} + (|[V|-1) P{p > 2a yet v, <3a/2}

< |V]emtel1s, (C.15)

by Chernoff bounds [Hagerup and Riib, 1989/90]. Finally, plugging (C.15) into (C.14) and using the fact
that |V| = No(C,P) < (a/a)?, we get

a d
E .t err(BC, P e, x") < 'Za—i—(—) o—tar/16

!
. 32d . at at
= 2a+exp<—dlngln3_ﬁ—2dln3_ﬁ)
32d at
< 2 —dIn — — 2dIn —
since In % > 1 for t > 32ed/a,
at
= 2a+exp <—dln32—d>
_ 64d, at (32 ¢
- 1 "3 at
64d . at 32d . at
< et o — > 3 >
< 5 ln32d+ prafiry for t > 32ed/a, d > 1,
96d . at
= —|n—

t 32d

C.5. OTHER RESULTS 167

Part 2: We prove this part by: (i) explicitly constructing a subset of the original class C, (i) defining a
prior over this subset, and then (7ii) arguing that any hypothesizer H must obtain a large expected error
on average over this subset, for all training sample sizes ¢. To do this we will construct “a-packings” of the
space, which consist of collections of pairwise a-separated concepts. If we let M, (C,P) denote the size of
the largest a-packing of the space (C, P), then it is well known that N, (C,P) < M,(C,P) < N,/»(C,P)
[Kolmogorov and Tihomirov, 1961]. Therefore, since we have constants b and d such that N, (C,P) > (b/a)?
by assumption, we know that M, (C,P) > (b/a)?.

Now, we define a subset of C' by constructing a series of a-packings of (C,P) at various scales a =
ag, a1, ..., etc. Specifically, let a,, = b3="/d for n = 0,1,2, ..., and consider a-packings Uy, Uqy, ... of size
|Us,| = 3". (We know there must be a-packings of size at least M,, > (b/a,)? = 3" for each a,.) Then
define the disjoint subsets

n—1
Van == Uocn - Z UOé,a
=0

where each V,_ contains at least 3" /2 pairwise a,-separated concepts. (We know that V,, contains this
many concepts, since |V, | > |Ua, | = S50 |Un| = 37 = 3207 37 = 37 — (3" —1)/2 > 37/2.) Now consider
the concept class Cy = |J_, Va,, and define a prior Q on Cy by setting Q(V,,) = (1 — 3=/ dy3—n/d for
each V,, and defining Q to be uniform within each class V,,. (The constant 1 — 3='/¢ merely ensures
> 0 Q(Va,) = 1.) Then for an arbitrary hypothesizer H we can calculate its average expected error for ¢
training examples as follows.
First notice that
E.Excerr(H,P,c,x") = EE.err(H,P,c x)

by Fubini’s theorem. Now for an arbitrary fixed x* we obtain

E.err(H,P,c,x") = Z E. [err(H,P,c,xt) | ceE Van] Q(Va,)
n=0

. an 2t
> 3 % (o) ave

n=t+1

by Lemma C.14 below (noting 2° < |V, | for n > + 1),

o~ b
— Z 53—77,/d(1_27&—1—13—77,)(1_3—1/(1)3—71/(1

n=t+1

a—1/dy
b(1 -3 Z q-2n/d

>
6 n=t+1
_ (- 37 o agig1ya
6(1— 3-2/9)
LTSN
- 12

The second inequality follows since 1 — 2t+13=" > 1/3 for n > ¢ + 1, and the last inequality follows because
(1—=3=14) /(1 =329 = (1 —x)/(1 —x) > 1/2 for & = 1/3 = 1. Thus, for the prior Q defined on Cy we

obtain b
Z 9-2(t+1)/d 1
123 . (C.16)

Finally, we need to prove that this forces H to obtain E xt err(H,P,c/,x") = eV (=t/d) on some ¢’ € C
for infinitely many training sample sizes . That is,

E.Ex err(H, P c,x) >

3¢ € C, 3B > 0s.t. Vig, It >ty st. Egeerr(H, P, x") > e~ Ptd,

168 APPENDIX C. TECHNICAL DETAILS: CHAPTER 4

Assume to the contrary that

Vee C, V8 >0, It s.t. Vt >ty, Exerr(H, P, ¢/ xt) < e Pt/
This means that for all priors Q on C' we must obtain

VQ, VB >0, Jtg s.t. Vit > tg, E. [Ext err(H,P,c/,xt)] < e Ptld

but this directly contradicts (C.16), and we are done. [

Lemma C.14 For any pairwise a-separated set of concepts V' with a uniform prior Q on V: Any hypothesizer
H must obtain an average error on t training objects x* (where 2 < |V,|) of at least

2t
E.err(H,P,c,x') > % <1 — m))

Proof First, it 1s obvious that

E.err(H,P c,x") > % Q{c cerr(H,P,c,x") > %}

= - (1 - Q{c cerr(H,P,c,x") < %}) . (C.17)

N R

Finally, Claim B.2 in Appendix B shows that

2t

Q{c cerr(H,P,c,x") < %} < m,

so combining this with (C.17) directly gives the result. [

Bibliography

Aha, D. W., Kibler, D., and Albert, M. K. 1991. Instance-based learning algorithms. Machine Learning,
6(1):37-66.

Albert, M. K. and Aha, D. W. 1991. Analyses of instance-based learning algorithms. In Proceedings of the
Ninth American National Conference on Artificial Intelligence (AAAI-91), pages 553-558.

Amari, S., Fujita, N., and Shinomoto, S. 1992. Four types of learning curves. Neural Computation, 4:605-618.
Angluin, D. 1988. Queries and concept learning. Machine Learning, 2(4):319-342.

Angluin, D. and Laird, P. 1988. Learning from noisy examples. Machine Learning, 2(4):343-370.

Ash, R. B. 1972. Real Analysis and Probability. Academic Press, San Diego.

Barnard, E. 1994. A model for nonpolynomial decrease in error rate with increasing sample size. IEEE
Transactions on Neural Networks, 5(6):994-997.

Bartlett, P. L. and Williamson, R. C. 1991. Investigating the distributional assumptions of the pac learning
model. In Proceedings of the Fourth Annual Conference on Computational Learning Theory (COLT-91),
pages 24-32.

Baum, E. B. 1990. The perceptron algorithm is fast for nonmalicious distributions. Neural Computation,

2:248-260.

Baum, E. B. and Haussler, D. 1989. What size net gives valid generalization? Neural Computation, 1:151—
160.

Baum, E. B. and Lyuu, Y.-D. 1991. The transition to perfect generalization in perceptrons. Neural Compu-
tation, 3:386-401.

Ben-David, S., Benedek, G. M., and Mansour, Y. 1989. A parameterization scheme for classifying models
of learnability. In Proceedings of the Second Annual Conference on Computational Learning Theory

(COLT-89), pages 285-302.

Ben-David, S., Cesa-Bianchi, N., and Long, P. M. 1992. Characterizations of learnability for classes of
{0, ..., n}-valued functions. In Proceedings of the Fifth Annual Conference on Computational Learning

Theory (COLT-92), pages 333-340.

Benedek, G. and Itai, A. 1988a. Learnability by fixed distributions. In Proceedings of the Conference on
Computational Learning Theory (COLT-88), pages 80-90.

Benedek, G. and Itai, A. 1988b. Nonuniform learnability. In Proceedings of the Fifteenth International
Colloguium on Automata, Languages and Programming (ICALP-88), pages 82-92.

Benedek, G. and Itai, A. 1991. Learnability with respect to fixed distributions. Theoretical Computer
Science, 86:377-389.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. 1989. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM, 36(4):929-965.

169

170 BIBLIOGRAPHY

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 1984. Classification and Regression Trees.
Wadsworth, Belmont, CA.

Brualdi, R. A. 1977. Introductory Combinatorics. North-Holland, New York.

Buchanan, B. G. and Mitchell, T. M. 1978. Model directed learning of production rules. In Waterman,
D. A. and Hayes-Roth, F., editors, Pattern Directed Inference Systems. Academic Press, New York.

Chernoff, H. 1972. Sequential Analysis and Optimal Design. SITAM, Philadelphia.
Clancey, W. J. 1985. Heuristic classification. Artificial Intelligence, 27:289-350.

Cohn, D. and Tesauro, G. 1990. Can neural networks do better than the Vapnik-Chervonenkis bounds? In
Touretzky, D., editor, Advances in Neural Information Processing Systems 3. Morgan Kaufmann, San

Mateo, CA.

Cohn, D. and Tesauro, G. 1992. How tight are the Vapnik-Chervonenkis bounds? Neural Computation,
4:249-269.

Dennis, J. E. and Schnabel, R. B. 1983. Numerical Methods for Unconstrained and Nonlinear Equations.
Prentice-Hall, Englewood Cliffs, NJ.

Duda, R. O. and Hart, P. 1973. Pattern Classification and Scene Analysis. Wiley, New York.

Dudley, R. M., Kulkarni, S., Richardson, T., and Zeitouni, O. 1994. A metric entropy bound is not sufficient
for learnability. IEEE Transactions on Information Theory, 40(3):883-885.

Ehrenfeucht, A., Haussler, D., Kearns, M. J., and Valiant, L. 1989. A general lower bound on the number
of examples needed for learning. Information and Computation, 82:247-261.

Furst, M. L., Jackson, J. C., and Smith, S. W. 1991. Improved learning of AC° functions. In Proceedings of
the Fourth Annual Conference on Computational Learning Theory (COLT-91), pages 317-325.

Gallant, S. 1. 1990. Perceptron-based learning algorithms. IEFE Transactions on Neural Networks, 2(1):179-
191.

Geman, S., Bienenstock, E.; and Doursat, R. 1992. Neural networks and the bias/variance dilemma. Neural
Computation, 4(1):1-58.

Gold, E. M. 1967. Language identification in the limit. Information and Control, 10:447-474.

Goldman, S., Kearns, M. J., and Schapire, R. 1990. Exact identification of circuits using fixed points of
amplification functions. In Proceedings of the Thirty First Annual IEEE Symposium on Foundations of
Computer Science (FOCS-90), pages 193-202.

Golea, M. and Marchand, M. 1993. Average case analysis of the clipped Hebb rule for nonoverlapping
Perceptron networks. In Proceedings of the Sizth Annual Conference on Computational Learning Theory

(COLT-93), pages 151-157.

Hagerup, T. and Riib, C. 1989/90. A guided tour of Chernoff bounds. Information Processing Letters,
33:305-308.

Hampson, S. E. and Volper, D. J. 1986. Linear function neurons: Structure and training. Biological Cyber-

netics, 53:203-217.

Hancock, T. and Mansour, Y. 1991. Learning monotone ky DNF formulas on product distributions. In
Proceedings of the Fourth Annual Conference on Computational Learning Theory (COLT-91), pages
179-183.

Haussler, D. 1988. Quantifying inductive bias: Al learning algorithms and Valiant’s learning framework.
Artificial Intelligence, 36:117-221.

BIBLIOGRAPHY 171

Haussler, D. 1992. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Information and Computation, 100:78-150.

Haussler, D., Kearns, M. J., and Schapire, R. 1991. Bounds on the sample complexity of Bayesian learning
using information theory and the VC dimension. In Proceedings of the Fourth Annual Conference on
Computational Learning Theory (COLT-91), pages 61-74.

Haussler, D., Kearns, M. J., Seung, H. S., and Tishby, N. 1994. Rigorous learning curve bounds from
statistical mechanics. In Proceedings of the Seventh Annual Conference on Computational Learning

Theory (COLT-94), pages 76-87.

Haussler, D., Littlestone, N., and Warmuth, M. K. 1988. Predicting {0,1}-functions on randomly drawn
points. In Proceedings of the Conference on Computational Learning Theory (COLT-88), pages 280-
296.

Haussler, D., Littlestone, N., and Warmuth, M. K. 1994. Predicting {0,1}-functions on randomly drawn
points. Information and Computation, 115:248-292.

Hinton, G. 1989. Unpublished lecture notes.
Hinton, G. 1995. Personal communication.

Jackson, J. 1994. An efficient membership-query algorithm for learning DNF with respect to the uniform
distribution. In Proceedings of the Thirty Fifth Annual IEEE Symposium on Foundations of Computer
Science (FOCS-94), pages 42-52.

Kearns, M. J. 1993. Efficient noise-tolerant learning from statistical queries. In Proceedings of the Twenty

Fifth Annual ACM Symposium on Theory of Computing (STOC-93), pages 392-401.

Kearns, M. J. and Li, M. 1988. Learning in the presence of malicious errors. In Proceedings of the Twentieth

Annual ACM Symposium on Theory of Computing (STOC-88), pages 267-280.

Kearns, M. J., Li, M., Pitt, L., and Valiant, L.. 1987a. On the learnability of boolean formulae. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing (STOC-87), pages 285-295.

Kearns, M. J., Li, M., Pitt, L., and Valiant, L. 1987b. Recent results on boolean concept learning. In
Proceedings of the Fourth International Conference on Machine Learning (ML-87), pages 337-352.

Kearns, M. J. and Valiant, L. G. 1989. Cryptographic limitations on learning Boolean formulae and fi-
nite automata. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing
(STOC-89), pages 433-444.

Kharitonov, M. 1993. Cryptographic hardness of distribution-specific learning. In Proceedings of the Twenty
Fifth Annual ACM Symposium on Theory of Computing (STOC-93), pages 372-381.

Kolmogorov, A. N. and Tihomirov, V. M. 1961. e-entropy and e-capacity of sets in functional spaces. Amer.

Math. Soc. Transl. Ser. 2, 17:277-364.

Kulkarni, S. 1991. Problems of Computational and Information Complexity in Machine Vision and Learning.
PhD thesis, MIT, EECS Department.

Langley, P., Iba, W., and Thompson, K. 1992. An analysis of Bayesian classifiers. In Proceedings of the
Tenth American National Conference on Artificial Intelligence (AAAI-92), pages 223-228.

Larsen, R. J. and Marx, M. L. 1981. An Introduction to Mathematical Statistics and its Applications.
Prentice-Hall, Englewood Cliffs, NJ.

le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, D. E., Hubbard, W., and Jackel, L. D. 1989.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:541-551.

172 BIBLIOGRAPHY

Linial, N., Mansour, Y., and Nisan, N. 1989. Constant depth circuits, Fourier transform, and learnability. In
Proceedings of the Thirtieth Annual IEEE Symposium on Foundations of Computer Science (FOCS-89),
pages 574-579.

Linial, N., Mansour, Y., and Rivest, R. L. 1991. Results on learnability and the Vapnik-Chervonenkis
dimension. Information and Computation, 90:33-49.

Littlestone, N. 1988. Learning quickly when irrelevant attributes abound: A new linear threshold algorithm.
Machine Learning, 2(4):285-318.

Littlestone, N. 1989. From online to batch learning. In Proceedings of the Second Annual Conference on
Computational Learning Theory (COLT-89), pages 269-284.

Lyuu, Y.-D. and Rivin, I. 1992. Tight bounds on transition to perfect generalization in Perceptrons. Neural
Computation, 4:854-862.

Michalski, R. S. 1983. A theory and methodology of inductive learning. In Michalski, R. S., Carbonell,
J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial Intelligence Approach, pages 83—
129. Morgan Kaufmann, Los Altos, CA.

Minsky, M. L. and Papert, S. A. 1969. Perceptrons. MIT Press, Cambridge, MA.

Mitchell, T. M. 1980. The need for biases in learning generalizations. Technical Report CBM-TR-117,
Rutgers University.

Nilsson, N. J. 1965. Learning Machines. Morgan Kaufmann, San Mateo, CA.

Oblow, E. M. 1992. Implementing Valiant’s learnability theory using random sets. Machine Learning,
8(1):45-73.

Opper, M. and Haussler, D. 1991. Generalization performance of Bayes optimal classification algorithm for
learning a Perceptron. Physical Review Letters, 66(20):2677-2680.

Pazzani, M. J. and Sarrett, W. 1990. Average case analysis of conjunctive learning algorithms. In Proceedings
of the Seventh International Conference on Machine Learning (ML-90), pages 339-347.

Piatetsky-Shapiro, G. and Frawley, W. J., editors 1991. Knowledge Discovery in Databases. AAAI Press,
Menlo Park, CA.

Pitt, L. and Valiant, L. G. 1988. Computational limitations on learning from examples. Journal of the ACM,
35(4):965-984.

Pollard, D. 1984. Convergence of Stochastic Processes. Springer-Verlag, New York.

Purdom, P. W. J. and Brown, C. A. 1985. The Analysis of Algorithms. Holt, Rinehart and Winston, New
York.

Qian, N. and Sejnowski, T. J. 1988. Predicting the secondary structure of globular proteins using neural
network models. Journal of Molecular Biology, 202:865-884.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning, 1(1):81-106.
Rivest, R. L. 1987. Learning decision lists. Machine Learning, 2(3):229-246.
Rosenstein, J. G. 1982. Linear Orderings. Academic Press, New York.

Schaffer, C. 1994. A conservation law for generalization performance. In Proceedings of the Eleventh Inter-
national Conference on Machine Learning (ML-94), pages 259-265.

Schapire, R. E. 1992. The Design and Analysis of Efficient Learning Algorithms. MIT Press, Cambridge,
MA.

BIBLIOGRAPHY 173

Schuurmans, D. 1995. Characterizing rational versus exponential learning curves. In Proceedings of the
Second European Conference on Computational Learning Theory (EuroCOLT-95), pages 272-286.

Schuurmans, D. 1996a. Characterizing rational versus exponential learning curves. Journal of Computer
and System Sciences. Invited submission to special issue. (Under review).

Schuurmans, D. 1996b. Fast distribution-specific learning. In Greiner, R., Petsche, T., Hanson, S., and
Rivest, R., editors, Computational Learning Theory and Natural Learning Systems, volume 4. MIT
Press, Cambridge, MA. (In press).

Schuurmans, D. and Greiner, R. 1995a. Practical PAC learning. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-95), pages 1169-1175.

Schuurmans, D. and Greiner, R. 1995b. Sequential PAC learning. In Proceedings of the Eighth Annual
Conference on Computational Learning Theory (COLT-95), pages 377-384.

Schwartz, D. B., Samalam, V. K., Solla, S. A., and Denker, J. S. 1990. Exhaustive learning. Neural
Computation, 2:374-385.

Seung, H. S., Sompolinsky, H., and Tishby, N. 1991. Learning curves in large neural networks. In Proceedings
of the Fourth Annual Conference on Computational Learning Theory (COLT-91), pages 112-127.

Shawe-Taylor, J., Anthony, M., and Biggs, N. L. 1993. Bounding sample size with the Vapnik-Chervonenkis
dimension. Discrete Applied Mathematics, 42:65-73.

Shiryayev, A. N. 1978. Optimal Stopping Rules. Springer-Verlag, New York.
Valiant, L. G. 1984. A theory of the learnable. Communications of the ACM, 27(11):1134-1142.

Vapnik, V. N. and Chervonenkis, A. Y. 1971. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264-280.

Verbeurgt, K. 1990. Learning DNF under the uniform distribution in quasi-polynomial time. In Proceedings
of the Third Annual Conference on Computational Learning Theory (COLT-90), pages 314-326.

Wald, A. 1947. Sequential Analysis. John Wiley & Sons, New York.

Wantanabe, S. 1987. Inductive ambiguity and the limits of artificial intelligence. Computational Intelligence,
3(4):304-309.

Weiss, S. M. and Kulikowski, C. A. 1991. Computer Systems that Learn. Morgan Kaufmann, San Mateo,
CA.

