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Semi-supervised learning methods typically require an explicit relationship to be asserted
between the labeled and unlabeled data—as illustrated, for example, by the neighbour-
hoods used in graph-based methods. Semi-supervised model selection and regularization
methods are presented here that instead require only that the labeled and unlabeled data
are drawn from the same distribution. From this assumption, a metric can be constructed
over hypotheses based on their predictions for unlabeled data. This metric can then be
used to detect untrustworthy training error estimates, leading to model selection strate-
gies that select the richest hypothesis class while providing theoretical guarantees against
over-fitting. This general approach is then adapted to regularization for supervised regres-
sion and supervised classification with probabilistic classifiers. The regularization adapts
not only to the hypothesis class but also to the specific data sample provided, allowing for
better performance than regularizers that account only for class complexity.

24.1 Introduction

The tradeoff between over-fitting and under-fitting is a fundamental dilemma in machine
learning and statistics. Given a collection of data points x ∈ X , each associated with
a dependent value y ∈ Y , one often wishes to learn a function or hypothesis which
effectively predicts the correct y given any x. If a hypothesis is chosen from a class that is
too complex for the data, there is a good chance it will exhibit large test error even though
its training error is small—i.e., over-fitting the training data. This occurs because complex
classes generally contain several hypotheses that behave similarly on the training data and
yet behave quite differently in other parts of the domain—thus diminishing the ability
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to distinguish good hypotheses from bad. Since significantly different hypotheses cannot
be simultaneously accurate, one must restrict the set of hypotheses to be able to reliably
differentiate between accurate and inaccurate predictors. On the other hand, selecting
hypotheses from an overly restricted class can prevent one from being able to express
a good approximation to the ideal predictor, thereby causing important structure in the
training data to be ignored—i.e., under-fitting the training data. Since both under-fitting and
over-fitting result in large test error, they must be avoided simultaneously. Consequently, a
popular research topic in learning is to find automated methods for calibrating hypothesis
complexity. The work presented here exploits unlabeled data in a novel fashion to achieve
this goal.

We consider two classical approaches to this problem, typically referred to as model
selection and regularization respectively [CM98, Vap96, Vap98]. In model selection one
first takes a base hypothesis class, H , decomposes it into a discrete collection of subclasses
H0 ⊂ H1 ⊂ · · · = H (say, organized in a nested chain, or lattice) and then, given training
data, attempts to identify the optimal subclass from which to choose the final hypothesis.1

There have been a variety of methods proposed for choosing the optimal subclass, but most
techniques fall into one of two basic categories: complexity penalization (e.g., the minimum
description length principle [Ris86] and various statistical selection criteria [FG94]); and
hold-out testing (e.g., cross-validation and bootstrapping [Efr79]). Regularization is similar
to model selection except that one does not impose a discrete decomposition on the base
hypothesis class. Instead a penalty criterion is imposed on the individual hypotheses, which
either penalizes their parametric form (e.g., as in ridge regression or weight decay in neural
network training [CM98, Rip96, Bis95]) or penalizes their global smoothness properties
(e.g., minimizing curvature [PG90]). These methods have shown impressive improvements
over naive learning algorithms in every area of supervised learning research. However, one
difficulty with these techniques is that they usually require expertise to apply properly, and
often involve free parameters that must be set by an informed practitioner.

The contribution presented here is the derivation of parameter-free methods for model
selection and regularization that improve on the robustness of standard approaches by using
unlabeled data. As has been seen in other sections of the book, most semi-supervised
learning techniques require explicit assumptions about the relationship between labeled
and unlabeled data. For the methods presented here, the only assumption required is that
the labeled data and the unlabeled data come from the same distribution. The methods we
propose automatically differentiate hypotheses based on the difference of their behaviour
off of the labeled training set (i.e., behaviour at points not covered by the training set). Like
many of the semi-supervised learning approaches proposed in this book (e.g., Chapter 10),
our methods regularize in a data-specific fashion rather than simply penalizing model
complexity. This allows modern techniques to potentially outperform traditional fixed
regularizers that penalize complexity identically across different training samples.

1. The term model selection has also been used to refer to other processes in machine learning and
statistics, such as choosing the kernel for support vector machines or Bayesian model selection, but
we restrict our attention to the classical form described above.
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To begin, Section 24.2 introduces the idea of metric spaces for hypotheses, allowing
the geometric characterization of the supervised learning problem. Section 24.3 investi-
gates how unlabeled data can be used to perform model selection in nested sequences of
hypothesis spaces. The strategies developed are shown to experimentally outperform stan-
dard model selection methods and have been proved to be robust in theory. Section 24.4
considers regularization and shows how the proposed model selection strategies can be
extended to a generalized training objective for supervised regression. Here the idea is to
use unlabeled data to automatically tune the degree of regularization for a given task with-
out having to set free parameters by hand. The resulting regularization technique adapts
its behaviour to a given training set and can outperform standard fixed regularizers for a
given problem. Section 24.5 extends the earlier regression approach from Section 24.4 to
probabilistic classifiers. Finally, Section 24.6 concludes with an examination of potential
avenues for future research.

24.2 Metric structure of supervised learning

In supervised learning, one takes a sequence of training pairs 〈x1, y1〉 , ..., 〈xl, yl〉 and
attempts to infer a hypothesis function h : X → Y that achieves small prediction error
err(h(x), y) on future test examples. This basic paradigm covers many of the tasks studied
in machine learning research.

For model selection and regularization tasks it is necessary to be able to compare
hypothesis functions. The approach we pursue in this chapter is to exploit a concrete notion
of distance between hypothesis functions. Consider the metric structure on a space of
hypothesis functions that arises from a simple statistical model of the supervised learning
problem: Assume the examples 〈x, y〉 are generated by a fixed joint distribution PXY

on X × Y . In learning a hypothesis function h : X → Y the primary interest is in
modeling some aspect of the conditional distribution PY|X . Here the utility of using extra
information about the marginal domain distribution PX to choose a good hypothesis is
investigated. Note that information about PX can be obtained from a collection of unlabeled
training examples xl+1, ...,xn. The significance of having information about the domain
distribution PX is that it defines a natural (pseudo) metric on the space of hypotheses. That
is, for any two hypothesis functions f and g, one can obtain a measure of the distance
between them by computing the expected disagreement in their predictions

d(f, g)
4
= ϕ

(∫

err(f(x), g(x)) dPX

)

(24.1)

where err(ŷ, y) is the natural measure of prediction error for the problem at hand (e.g.,
regression or classification) and ϕ is an associated normalization function that recovers the
standard metric axioms.

For the problem of regression, prediction error can be measured by squared difference
err(ŷ, y) = (ŷ − y)2 or some similar loss. For classification problems, prediction error
can be measured with the misclassification loss err(ŷ, y) = 1(ŷ 6=y). The standard metric
properties to be satisfied are non-negativity d(f, g) ≥ 0, symmetry d(f, g) = d(g, f), and
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the triangle inequality d(f, g) ≤ d(f, h) + d(h, g). It turns out that most typical prediction
error functions admit a metric of this type.

For example, in regression the distance between two prediction functions can be mea-
sured by:

d(f, g) =

(∫

(f(x) − g(x))2 dPX

)1/2

where the normalization function ϕ(z) = z1/2 establishes the metric properties. In classi-
fication, the distance between two classifiers can be measured by:

d(f, g) =

∫

1(f(x)6=g(x)) dPX

= PX(f(x) 6= g(x))

where no normalization is required to achieve a metric. Importantly, these definitions can
be generalized to include the target conditional distribution in an analogous manner:

d(PY|X , h)
4
= ϕ

(∫ ∫

err(h(x), y) dPY|x dPX

)

(24.2)

That is, one can interpret the true error of a hypothesis function h with respect to a target
conditional PY|X as a distance between h and PY|X . The significance of this definition is that
it is consistent with the previous definition (Equation 24.1) and one can therefore embed
the entire supervised learning problem in a common metric space structure.

To illustrate: in regression, Equation 24.2 yields the root mean squared error of a
hypothesis:

d(PY|X , h) =

(∫ ∫

(h(x) − y)2 dPY|x dPX

)1/2

and in classification it gives the true misclassification probability:

d(PY|X , h) =

∫ ∫

1(h(x)6=y) dPY|x dPX

= PXY (h(x) 6= y)

Together, the definitions in Equations 24.1 and 24.2 show how to impose a global
metric space view of the supervised learning problem (Figure 24.1). Given labeled training
examples 〈x1, y1〉 , ..., 〈xl, yl〉, the goal is to find the hypothesis h in a space H that is
closest to a target conditional PY|X under the distance measure (Equation 24.2). If there
is also a large set of u auxiliary unlabeled examples xl+1, ...,xn, such that u = n − l,
then one can also accurately estimate the distances between alternative hypotheses f and
g within H , effectively giving Equation 24.1:

d̃(f, g)
4
= ϕ





1

u

n
∑

j=l+1

err(f(xj), g(xj))



 (24.3)
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Figure 24.1 Metric space view of supervised learning: Unlabeled data can accurately estimate
distances between functions f and g within H , however only limited labeled data is available to
estimate the closest function h to PY|X .

That is, for sufficiently large u, the distances defined in Equation 24.3 will be very close
to the distances defined in Equation 24.1. In fact, below we sill generally assume that u

is large enough to ensure d̃(f, g) ≈ d(f, g). However, the distances between hypotheses
and the target conditional PY|X (Equation 24.2) can only be weakly estimated using the
(presumably much smaller) set of labeled training data:

d̂(PY|X , h)
4
= ϕ

(

1

l

l
∑

i=1

err(h(xi), yi)

)

(24.4)

This measure need not be close to Equation 24.2. The challenge then is to approximate
the closest hypothesis to the target conditional as accurately as possible using the available
information (Equations 24.3 and 24.4) in place of the true distances (Equations 24.1 and
24.2).

This metric space perspective will be used to devise novel model selection and regu-
larization strategies that exploit inter-hypothesis distances measured on an auxiliary set
of unlabeled examples. The proposed approach is applicable to any supervised learning
problem that admits a reasonable metric structure. In particular, all strategies will be ex-
pressed in terms of a generic distance measure that does not depend on other aspects of the
problem.

24.3 Model selection

First consider the process of using model selection to choose the appropriate level of hy-
pothesis complexity to fit to data. This is, conceptually, the simplest approach to automatic
complexity control for supervised learning. The idea is to stratify the hypothesis class
H into a sequence (or lattice) of nested subclasses H0 ⊂ H1 ⊂ · · · = H , and then,
given training data, somehow choose a class that has the proper complexity for the given
data. To understand how one might make this choice, note that for a given training sample
〈x1, y1〉 , . . . , 〈xl, yl〉 one can, in principle, obtain the corresponding sequence of empiri-
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Figure 24.2 Sequence of empirically optimal functions induced by a chain H0 ⊂ H1 ⊂ ...
on a given training set: Dotted lines indicate decreasing optimal training distances d̂(h0, PY|X),
d̂(h1, PY|X), ... and solid lines indicated distances between hypotheses. The final hypothesis must
be selected on the basis of these estimates.

cally optimal functions h0 ∈ H0, h1 ∈ H1, . . .

hk = arg min
h∈Hk

ϕ

(

1

l

l
∑

i=1

err(h(xi), yi)

)

= arg min
h∈Hk

d̂(PY|X , h)

That is, here we assume an empirical risk minimization procedure is used to select a
candidate function from each class, and moreover we assume a unique minimizer exists for
each Hk.2 The problem is to select one of these functions based on the observed training
errors d̂(PY|X , h0), d̂(PY|X , h1), . . . (Figure 24.2). However, because each hypothesis class
subsumes those before it, these errors must monotonically decrease (assuming one can
fully optimize in each class) and therefore choosing the function with smallest training
error inevitably leads to over-fitting. Some other criterion beyond mere empirical-error
minimization must be invoked to make the final selection.

As mentioned, two basic model selection strategies currently predominate: complexity
penalization and hold-out testing. However, neither of these approaches attends to the
metric distances between hypotheses, nor do they offer an obvious way to exploit auxiliary
unlabeled data. By adopting the metric space view of Section 24.2, however, a useful new
perspective on model selection can be obtained. In our setting, the chain H0 ⊂ H1 ⊂

· · · ⊂ H can be interpreted as a sequence of hypothesis spaces wherein one can measure
the distance between candidate hypotheses using unlabeled data. Note that it is still not
possible to directly measure the distances from hypotheses to the target conditional PY|X

and therefore they must be estimated based on a small labeled training sample. However,
the fact that there are distances between functions in the sequence can be exploited—this
additional information being used to make a better choice (Figure 24.2).

24.3.1 Strategy 1: Triangle inequality

The first intuition explored is that inter-hypothesis distances can help detect over-fitting in a
very simple manner. Consider two hypotheses hk and hk+1 that both have a small estimated
distance to PY|X and yet have a large true distance between them. In this situation their

2. This uniqueness assumption is reasonable for regression problems but generally does not hold for
classification problems under 0-1 loss; see Section 24.5 below.
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Procedure TRI
• Given hypothesis sequence h0, h1, ...
• Choose the last hypothesis h` in the sequence that satisfies the triangle inequality,

d̃(hk, h`) ≤ d̂(hk, PY|X) + d̂(PY|X , h`), with every preceding hypothesis hk, 0 ≤ k < `.

Figure 24.3 Triangle inequality model selection procedure.

should be concern in selecting the second hypothesis, because if the true distance between
hk and hk+1 is indeed large then both functions cannot be simultaneously close to PY|X ,
by simple geometry. This implies that at least one of the distance estimates to PY|X must
be inaccurate. The earlier estimate should be more trusted because it comes from a more
restricted class that is less likely to overfit. In fact, if both d̂(PY|X , hk) and d̂(PY|X , hk+1)

really were accurate estimates they would have to satisfy the triangle inequality with the
known distance d(hk, hk+1); that is:

d̂(PY|X , hk) + d̂(PY|X , hk+1) ≥ d(hk, hk+1) (24.5)

Since these empirical distances eventually become significant underestimates in general
(because a particular hi is explicitly chosen to minimize the empirical distance on the
labeled training set) the triangle inequality provides a useful test for detecting when these
estimates become inaccurate. In fact, this basic test forms the basis of a simple model
selection strategy, TRI (Figure 24.3), that works surprisingly well in many situations.

24.3.2 Example: Polynomial regression

To demonstrate this method (and all subsequent methods developed here), first consider
the problem of polynomial curve fitting. This is a supervised learning problem where
X = R, Y = R, and the goal is to minimize the squared prediction error, err(ŷ, y) =

(ŷ − y)2. Specifically, consider polynomial hypotheses h : R → R under the natural
stratification H0 ⊂ H1 ⊂ ... into polynomials of degree at most 0, 1, ..., etc. The
motivation for studying this task is that it is a well-studied problem that still attracts a lot of
interest [CMV97, GRV96, Vap96, Vap98]. Moreover, polynomials create a difficult model
selection problem that has a strong tendency to produce catastrophic over-fitting effects.
Another benefit is that polynomials are an interesting and non-trivial class for which there
are efficient techniques for computing best-fit hypotheses.

To apply the metric-based approach to this task, define the metric d in terms of the
squared prediction error err(ŷ, y) = (ŷ−y)2 with a square root normalization ϕ(z) = z1/2,
as discussed in Section 24.2. To evaluate the efficacy of TRI on this problem, its per-
formance was compared to a number of standard model selection strategies, including
structural risk minimization (SRM) [CMV97, Vap98], RIC [FG94], SMS [Shi81], GCV
[CW79], BIC [Sch78], AIC [Aka74], CP [Mal73], and FPE [Aka70]. TRI was also com-
pared to 10-fold cross validation, CVT (a standard hold-out method [Efr79, Koh95]).

A simple series of experiments was conducted by fixing a domain distribution PX on
X = R and then fixing various target functions f : R → R. The specific target functions
used in the experiments are shown in Figure 24.4. To generate training samples a sequence
of values (x1, . . . ,xl) were drawn, then the target function values (f(x1), . . . , f(xl)
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Figure 24.4 Target functions used in the polynomial curve fitting experiments (in order): step(x ≥
0.5), sin(1/x), sin2(2πx), and a fifth degree polynomial.

computed and perturbed by adding independent Gaussian noise with standard deviation
σ = 0.05 to each. This resulted in a labeled training sequence 〈x1, y1〉 , . . . , 〈xl, yl〉. For
a given training sample the series of best fit polynomials h0, h1, . . . of degree 0, 1, . . .

was computed. Given this sequence, each model selection strategy will choose some
hypothesis hk on the basis of the observed empirical errors. The implementation of TRI
was given access to u auxiliary unlabeled examples xl+1, . . . ,xn in order to estimate the
true distances between polynomials in the sequence.

The main emphasis in these experiments was to minimize the true distance between the
final hypothesis and the target conditional PY|X . That is, the primary concern was choosing
a hypothesis that obtained a small prediction error on future test examples, independent
of its complexity level. To determine the effectiveness of the various selection strategies,
the ratio of the true error (distance) of the polynomial they selected to the best true error
among polynomials in the sequence h0, h1, ..., was measured. This means that the optimum
achievable ratio was 1. The rationale for doing this was to measure the model selection
strategy’s ability to approximate the best hypothesis in the given sequence—not find a
better function from outside the sequence.3

Table 24.1 shows the results obtained for approximating a step function f(x) =

step(x ≥ 0.5) corrupted by Gaussian noise, where the marginal distribution PX is uni-
form on [0, 1]. The strategy ADJ in the tables is explained in Section 24.3.3 below. These
results were obtained by repeatedly generating training samples of a fixed size and record-
ing the approximation ratio achieved by each strategy. The tables record the distribution
of ratios produced by each strategy for a training sample size of l = 30, using u = 200

unlabeled examples to measure inter-hypothesis distances, repeated over 1000 trials. The
initial results appear to be quite positive. TRI achieves a median approximation ratio of
1.08. This compares favorably to the median approximation ratio 1.54 achieved by SRM,
and 1.17 achieved by CVT. The remaining complexity penalization strategies—GCV, FPE,
etc.—all performed significantly worse on these trials. However, the most notable differ-
ence was TRI’s robustness against over-fitting. In fact, although the penalization strategy
SRM performed reasonably well much of the time, it was prone to making periodic but
catastrophic over-fitting errors. Even the normally well-behaved cross-validation strategy

3. One could consider more elaborate strategies that choose hypotheses from outside the sequence;
e.g., by averaging several hypotheses together [KV95, OS96, Bre96]. However, this idea will not be
pursued further here.
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l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 1.00 1.08 1.17 4.69 1.51 5.41 5.45 2.72 1.06

50 1.08 1.17 1.54 34.8 9.19 39.6 40.8 19.1 1.14

75 1.19 1.37 9.68 258 91.3 266 266 159 1.25

95 1.45 6.11 419 4.7e3 2.7e3 4.8e3 5.1e3 4.0e3 1.51

100 2.18 643 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 2.10

Table 24.1 Fitting f(x) = step(x ≥ 0.5) with PX = U(0, 1) and σ = 0.05. Table gives
distribution of approximation ratios achieved at training sample size l = 30, showing percentiles
of approximation ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 1.02 1.08 1.34 2.80 1.89 3.16 3.67 2.80 1.08

50 1.14 1.20 4.74 12.1 9.67 14.1 15.8 13.8 1.17

75 1.30 1.63 33.2 61.5 55.2 70.1 81.6 72.4 1.30

95 1.72 23.5 306 1.2e3 479 1.3e3 1.3e3 1.3e3 1.81

100 2.68 325 1.4e5 5.2e5 1.4e5 5.2e5 5.2e5 3.9e5 9.75

Table 24.2 Fitting f(x) = sin(1/x) with PX = U(0, 1) and σ = 0.05. Table gives distribution of
approximation ratios achieved at training sample size l = 30, showing percentiles of approximation
ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01

50 3.51 1.16 1.03 1.05 1.11 1.02 1.08 1.45 1.27

75 4.15 1.64 1.45 1.48 2.02 1.39 1.88 6.44 1.60

95 5.51 5.21 5.06 4.21 26.4 5.01 19.9 295 3.02

100 9.75 124 1.4e3 20.0 9.1e3 28.4 9.4e3 1.0e4 8.35

Table 24.3 Fitting f(x)= sin2(2πx) with PX =U(0, 1) and σ =0.05. Table gives distribution of
approximation ratios achieved at training sample size l = 30, showing percentiles of approximation
ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 7.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 8.58 1.01 1.00 1.00 1.01 1.00 1.00 1.08 1.00

75 9.36 1.11 1.01 1.00 1.20 1.01 1.14 2.40 1.02

95 11.0 2.59 1.42 1.13 8.92 1.35 5.46 131 1.18

100 14.2 45.3 24.1 8.00 3.1e4 11.8 9.9e3 1.4e5 13.6

Table 24.4 Fitting a fifth degree polynomial f(x) with PX = U(0, 1) and σ = 0.05. Table gives
distribution of approximation ratios achieved at training sample size l = 30, showing percentiles of
approximation ratios achieved in 1000 repeated trials.
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CVT made significant over-fitting errors from time to time. This is evidenced by the fact
that in 1000 trials with a training sample of size 30 (Table 24.1) TRI produced a maximum
approximation ratio of 2.18, whereas CVT produced a worst case approximation ratio of
643, and the penalization strategies SRM and GCV both produced worst case ratios of
1.6 × 107. The 95th percentiles were TRI 1.45, CVT 6.11, SRM 419, GCV 2.7 × 103.
Similar results for TRI are obtained for larger labeled sample sizes, such as l = 100 and
l = 200. 4 For a broader selection of results see [SS02].

The results showing TRI’s robustness against over-fitting are encouraging but it is
further possible to prove that TRI cannot produce an approximation ratio greater than 3

due to over-fitting. That is, we can bound TRI’s approximation ratio under two simple
assumptions. First, that TRI makes it to the best hypothesis hm in the sequence. Second,
that the empirical error of hm is an underestimate—that is, d̂(PY|X , hm) ≤ d(PY|X , hm).
Note that this second assumption is likely to hold because hypotheses are chosen by
explicitly minimizing d̂(PY|X , hm) rather than d(PY|X , hm) (see Table 24.5). The proof for
the following proposition can be found in [SS02].

Proposition 24.1 Let hm be the optimal hypothesis in the sequence h0, h1, ... (that is,
hm = arg minhk

d(PY|X , hk)) and let h` be the hypothesis selected by TRI. If (i) m ≤ `

and (ii) d̂(PY|X , hm) ≤ d(PY|X , hm) then:

d(PY|X , h`) ≤ 3d(PY|X , hm) (24.6)

Note that in Proposition 24.1, as well as in Propositions 24.2 and 24.3 below, it is
implicitly assumed that the true inter-hypothesis distances d(hm, h`) are known. This, in
principle, must be measured on the true marginal PX . This assumption will be relaxed in
Section 24.3.4 below.

Continuing with the experimental investigation, the basic flavor of the results remains
unchanged at different noise levels and for different domain distributions PX . In fact, much
stronger results are obtained for wider tailed domain distributions like Gaussian [SS02] and
“difficult” target functions like sin(1/x) (Table 24.2). Here the complexity penalization
methods (SRM, GCV, etc.) can be forced into a regime of constant catastrophe, CVT
noticeably degrades, and yet TRI retains performance similar to the levels shown in
Table 24.1.

Of course, these results might be due to considering a pathological target function from
the perspective of polynomial curve fitting. It is therefore important to consider other
more natural targets that might be better suited to polynomial approximation. In fact, by
repeating the previous experiments with a more benign target function, f(x) = sin2(2πx),
quite different results are obtained. Table 24.3 shows that procedure TRI does not fare as
well in this case—obtaining a median approximation ratio of 3.51 (compared to 1.03 for
SRM, and 1.16 for CVT). A closer inspection of TRI’s behaviour reveals that the reason for

4. Although one might suspect that the large failures could be due to measuring relative instead of
absolute error, it turns out that all of these large relative errors also correspond to large absolute
errors. This is verified in Section 24.4.1 below.
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Figure 24.5 The real and estimated distances between successive hypotheses hk and h` and the
target PY|X . Solid lines indicate real distances, dotted lines indicate empirical distance estimates.

this performance drop is that TRI systematically gets stuck at low even-degree polynomials
(cf. Table 24.5). In fact, there is a simple geometric explanation for this. The even-degree
polynomials (after degree 4) all give reasonable fits to sin2(2πx) whereas the odd-degree
fits have a tail in the wrong direction. This creates a significant distance between successive
polynomials and causes the triangle inequality test to fail between the even and odd degree
fits, even though the larger even-degree polynomials give a good approximation. Therefore,
although the metric-based TRI strategy is robust against over-fitting, it can be prone to
systematic under-fitting in seemingly benign cases. Similar results were obtained for fitting
a fifth degree target polynomial corrupted by the same level of Gaussian noise (Table 24.4).
This problem demonstrates that the first assumption used in Proposition 24.1 above can be
violated in natural situations (see Table 24.5). Consideration of this difficulty leads to the
development of a reformulated procedure.

24.3.3 Strategy 2: Adjusted distance estimates

Assume for the sake of argument that d̃ = d (i.e., our estimate of inter-hypothesis distance,
based on unlabeled data, is the true distance). The final idea explored for model selection
is to observe that there would then be two metrics—the true metric d defined by the joint
distribution PXY and an empirical metric d̂ determined by the labeled training sequence
〈x1, y1〉 , . . . , 〈xl, yl〉. Note that the previous model selection strategy TRI ignored the
fact that one could measure the empirical distance between hypotheses d̂(hk, h`) on the
labeled training data, as well as estimate their “true” distance d(hk, h`) on the unlabeled
data. However, the fact that one can measure both inter-hypothesis distances actually gives
an observable relationship between d̂ and d in the local vicinity. This observation is now
exploited in an attempt to derive an improved model selection procedure.

Given the two metrics d and d̂, consider the triangle formed by two hypotheses hk

and h` and the target conditional PY|X (Figure 24.5). Notice that there are six distances
involved—three real and three estimated—of which the true distances to PY|X are the only
two of importance, and yet these are the only two that are not available. However, the
observed relationship between d and d̂ can be exploited to adjust the empirical training
error estimate d̂(PY|X , h`). In fact, one could first consider the simplest possible adjustment
based on the naive assumption that the observed relationship of the metrics d̂ and d between
hk and h` also holds between h` and PY|X . Note that if this were actually the case, a
better estimate of d(PY|X , h`) could be obtained by simply re-scaling the training distance
d̂(PY|X , h`) according to the observed ratio d̃(hk, h`)/d̂(hk, h`). Since d̂ is expected to be
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Procedure ADJ
• Given hypothesis sequence h0, h1, ...
• For each hypothesis h` in the sequence

– multiply its estimated distance to the target d̂(PY|X , h`) by the worst ratio of unlabeled
and labeled distance to some predecessor hk to obtain an adjusted distance estimate:

ď(PY|X , h`)
4

= d̂(PY|X , h`)
d̃(hk, h`)

d̂(hk, h`)
.

• Choose the hypothesis hn with the smallest adjusted distance ď(hn, PY|X).

Figure 24.6 Adjusted-distance-estimate model selection procedure.

an underestimate in general, because we assume the hk are chosen by minimizing d̂, this
ratio should be larger than one. In fact, adopting this as a simple heuristic yields another
model selection procedure, ADJ, which is also surprisingly effective (Figure 24.6). This
simple procedure overcomes some of the under-fitting problems associated with TRI and
yet retains much of TRI’s robustness against over-fitting.

Although at first glance this procedure might seem to be ad hoc, it turns out that one
can prove an over-fitting bound for ADJ that is analogous to that established for TRI. In
particular, if one assumes that ADJ makes it to the best hypothesis hm in the sequence, and
the adjusted error estimate ď(PY|X , hm) is an underestimate, then ADJ cannot over-fit by a
factor much greater than three. Again, the formal proposition is stated, but refer to [SS02]
for a proof.

Proposition 24.2 Let hm be the optimal hypothesis in the sequence h0, h1, . . . and let h`

be the hypothesis selected by ADJ. If (i) m ≤ ` and (ii) ď(PY|X , hm) ≤ d(PY|X , hm) then

d(PY|X , h`) ≤

(

2 +
d̂(PY|X , hm)

d̂(PY|X , h`)

)

d(PY|X , hm) (24.7)

In this respect, not only does ADJ exhibit robustness against over-fitting, it also has a
(weak) theoretical guarantee against under-fitting. That is, with the assumptions that the
empirical distance estimates are underestimates and that the adjusted distance estimates
strictly increase the empirical distance estimates, then if the true error of a successor
hypothesis hm improves the true error of all of its predecessors h` by a significant factor,
hm will be selected in lieu of its predecessors. See [SS02] for a proof of this proposition.

Proposition 24.3 Consider a hypothesis hm, and assume that (i) d̂(PY|X , h`) ≤ d(PY|X , h`)

for all 0 ≤ ` ≤ m, and (ii) d̂(PY|X , h`) ≤ ď(PY|X , h`) for all 0 ≤ ` < m. Then if:

d(PY|X , hm) <
1

3

d̂(PY|X , h`)
2

d(PY|X , h`)
(24.8)

for all 0 ≤ ` < m (that is, d(PY|X , hm) is sufficiently small) it follows that ď(PY|X , hm) <

ď(PY|X , h`) for all 0 ≤ ` < m, and therefore ADJ will not choose any predecessor of hm.

Therefore, although ADJ might not have originally appeared to be well motivated, it pos-
sesses worst case bounds against over-fitting and under-fitting that are different from those
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step(x ≥ 0.5) sin(1/x) sin2(2πx) poly5(x)

(Table 24.1) (Table 24.2) (Table 24.3) (Table 24.4)

Proposition 24.1(i) holds 73 80 10 4

Proposition 24.1(ii) holds 87 86 99 98

Proposition 24.1 holds 61 66 9 4

Proposition 24.2(i) holds 27 32 28 67

Proposition 24.2(ii) holds 22 26 14 24

Proposition 24.2 holds 15 17 12 21

Table 24.5 Strengths of the assumptions used in Propositions 24.1 and 24.2. Table shows frequency
(in percent) that the assumptions hold over 1000 repetitions of the experiments conducted in Tables
24.1, 24.2, 24.3 and 24.4 (at sample size l = 20).

that have been established for conventional methods. However, these bounds remain some-
what weak. Table 24.5 shows empirical results on the frequency with which the underlying
assumptions hold on experimental data, demonstrating that both ADJ and TRI systemati-
cally under-fit in the experiments. That is, even though assumption (ii) of Proposition 24.1
is almost always satisfied (as expected), assumption (ii) of Proposition 24.2 is only true
one quarter of the time. Therefore, Propositions 24.1 and 24.2 can only provide a loose
characterization of the quality of these methods. However, both metric-based procedures
remain robust against over-fitting.

To demonstrate that ADJ is indeed effective, the previous experiments were repeated
with ADJ as a new competitor. The results show that ADJ robustly outperformed the stan-
dard complexity penalization and hold-out methods in all cases considered—spanning a
wide variety of target functions, noise levels, and domain distributions PX . Tables 24.1–
24.4 show the previous data along with the performance characteristics of ADJ. In particu-
lar, Tables 24.3–24.5 show that ADJ avoids the extreme under-fitting problems that hamper
TRI; it appears to responsively select high order approximations when this is supported by
the data. Moreover, Tables 24.1–24.2 show that ADJ is still extremely robust against over-
fitting, even in situations where the standard approaches make catastrophic errors. Overall,
this is the best model selection strategy observed for these polynomial regression tasks,
even though it possesses a weaker guarantee against over-fitting than TRI [SS02].

Note that both proposed model selection procedures add little computational overhead
to traditional methods, since computing inter-hypothesis distances involves making only
a single pass down the reference list of unlabeled examples. This is an advantage over
standard hold-out techniques like CVT which repeatedly call the hypothesis generating
mechanism to generate pseudo-hypotheses—which can sometimes be expensive.

Finally, note that ADJ possesses a subtle limitation: the multiplicative re-scaling it
employs cannot penalize hypotheses that have zero training error (hence the limiting of
the degree of the polynomials to l − 2 in the above experiments to avoid null training
errors). However, despite this shortcoming the ADJ procedure turns out to perform very
well in experiments and most often outperforms the more straightforward TRI strategy.
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percentiles of approximation ratios

l = 30 25 50 75 95 100

TRI (u = 500) 1.00 1.07 1.19 1.48 2.21

TRI (u = 200) 1.00 1.08 1.19 1.45 2.18

TRI (u = 100) 1.00 1.08 1.19 1.45 2.49

TRI (u = 50) 1.01 1.08 1.19 1.65 7.26

TRI (u = 25) 1.01 1.10 1.27 2.74 64.6

ADJ (u = 500) 1.06 1.14 1.26 1.51 1.99

ADJ (u = 200) 1.06 1.14 1.25 1.51 2.10

ADJ (u = 100) 1.07 1.16 1.31 1.67 2.21

ADJ (u = 50) 1.07 1.17 1.29 1.58 3.19

ADJ (u = 25) 1.09 1.22 1.40 1.85 8.68

Table 24.6 Fitting f(x) = step(x ≥ 0.5) with PX = U(0, 1) and σ = 0.05 (as in Table 24.1).
This table gives distribution of approximation ratios achieved with l = 30 labeled training examples
and u = 500, u = 200, u = 100, u = 50, u = 25 unlabeled examples, showing percentiles of
approximation ratios achieved after 1000 repeated trials. The experimental set up of Table 24.1 is
repeated, except that a smaller number of unlabeled examples are used.

24.3.4 Robustness to unlabeled data

Before moving on to regularization, a comment on the robustness of these model selection
techniques to limited amounts of auxiliary unlabeled data. In principle, one can always
argue that the preceding empirical results are not useful because the metric-based strategies
TRI and ADJ might require significant amounts of unlabeled data to perform well in
practice. However, the 200 unlabeled examples used in the previous experiments does
not seem that onerous. In fact, the previous theoretical results (Propositions 24.1–24.3)
assumed knowledge of the true marginal PX . To explore the issue of robustness to limited
amounts of unlabeled data, the previous experiments were repeated but TRI and ADJ
were only given a small auxiliary sample of unlabeled data to estimate inter-hypothesis
distances. In this experiment it was found that these strategies were actually quite robust to
using approximate distances. Table 24.6 shows that small numbers of unlabeled examples
were still sufficient for TRI and ADJ to perform nearly as well as before. Moreover,
Table 24.6 shows that these techniques only seem to significantly degrade with fewer
unlabeled than labeled training examples. This robustness was observed across the range
of problems considered.

Although the empirical results in this section are anecdotal, the paper [SUF97] pursues
a more systematic investigation of the robustness of these procedures and reaches similar
conclusions (also based on artificial data). Recently, Bengio and Chapados have also found
that using a density estimate for PX based only on labeled data allows one to dispense with
unlabeled data and, surprisingly, still achieve beneficial results [BC03]. Rather than present
a detailed investigation of these model selection strategies in more serious case studies, the
focus now changes to a further improvement to the basic method.
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24.4 Regularization

One difficulty when doing model selection is that the generalization behaviour depends on
the specific decomposition of the base hypothesis class into subclasses. That is, different
decompositions of H can lead to different outcomes. To avoid this issue, the previous ideas
need to be extended to a more general training criterion that uses unlabeled data to decide
how to penalize individual hypotheses in the global space H . The main contribution of
this section is a simple, generic training objective that can be applied to a wide variety of
supervised learning problems.

As before, assume a sizable collection of unlabeled data that can now be used to
globally penalize complex hypotheses. Specifically, an alternative training criterion can
be formulated that measures the behaviour of individual hypotheses on both the labeled
and unlabeled data. The intuition behind this criterion is simple—instead of minimizing
empirical training error alone, also seek hypotheses that behave similarly both on and off
the labeled training data. This objective arises from the observation that a hypothesis which
fits the training data well but behaves erratically off the labeled training set is not likely to
generalize to unseen examples. To detect such behaviour one can measure the distances of
a hypothesis from a fixed simple “origin” function φ on both data sets. If a hypothesis is
behaving erratically off the labeled training set then it is likely that these two distances will
disagree. This effect is demonstrated in Figure 24.7 for two large-degree polynomials that
both fit the labeled training data well but differ dramatically in their true error and their
differences between distances, both on and off training set, to the origin function. Trivial
origin functions are used throughout this section—such as the zero function, φ = 0, or the
constant function at the mean of the y labels, φ = ȳ. In practice, these work quite well.

To formulate a concrete training objective first requires the following tentative measures:

empirical training error plus an additive penalty

d̂(h,PY|X) + d̃(φ, h) − d̂(φ, h) (24.9)

empirical error times a multiplicative penalty

d̂(h,PY|X) ×
d̃(φ, h)

d̂(φ, h)
(24.10)

In each case, the behaviour of a candidate hypothesis h is compared to the fixed origin
φ. Thus, both cases will minimize empirical training error d̂(h,PY|X) plus (or times) a
penalty that measures the discrepancy between the distance to the origin on the labeled
training data and the distance to the origin on unlabeled data. The regularization effect
of these criteria is illustrated in Figure 24.7. Somewhat surprisingly, the multiplicative
objective (Equation 24.10) generally performs much better than the additive objective
(Equation 24.9), as it more harshly penalizes discrepancies between on and off training
set behaviour. Consequently, this is the form adopted from now on.

Although these training criteria might appear ad hoc, they are not entirely unprincipled.
One useful property they have is that if the origin function φ happens to be equal to the tar-
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Figure 24.7 Two nineteenth degree polynomials h and g that fit 20 given training points. Here h
approximately minimizes d̂(h, PY|X), whereas g optimizes an alternative training criterion defined in
(24.10). This plot demonstrates how the labeled training data estimate d̂(g, PY|X) for the smoother
polynomial g is much closer to its true distance d(g, PY|X). However, for both functions the proximity
of the estimated errors d̂(·, PY|X) to the true errors d(·, PY|X) appear to be reflected on the relative
proximity of the estimated distances d̂(·, φ) to the unlabeled distances d̃(·, φ) to the simple constant
origin function φ.

get conditional PY|X , then minimizing Equation 24.9 or Equation 24.10 becomes equivalent
to minimizing the true prediction error d(h,PY|X). However, it turns out that these training
objectives have the inherent drawback that they subtly bias the final hypotheses towards
the origin function φ. That is, both Equation 24.9 and Equation 24.10 allow minima that
have “artificially” large origin distances on the labeled data, d̂(φ, h), and simultaneously
small distances on unlabeled data, d̃(φ, h). This is illustrated in Figure 24.7 for a hypothe-
sis function g that minimizes Equation 24.10 but is clearly attracted to the origin, φ, at the
right end of the domain (off of the labeled training data).

Nevertheless, there is an intuitive way to counter this difficulty. To avoid the bias towards
φ, one can use symmetric forms of the previous criteria that also penalize hypotheses that
are unnaturally close to the origin off of the labeled data. That is, one could consider a
symmetric form of the additive penalty (Equation 24.9)

d̂(h,PY|X) +
∣

∣

∣
d̃(φ, h) − d̂(φ, h)

∣

∣

∣
(24.11)

as well as a symmetrized form of the multiplicative penalty (Equation 24.10)

d̂(h,PY|X) × max

(

d̃(φ, h)

d̂(φ, h)
,
d̂(φ, h)

d̃(φ, h)

)

(24.12)

These penalties work in both directions: hypotheses that are much further from the origin
on the training data than off are penalized, but so are hypotheses that are significantly
closer to the origin on the training data than off. The rationale behind this symmetric
criterion is that both types of erratic behaviour indicate that the observed training error is
likely to be an unrepresentative reflection of the true error of the hypothesis. The value of
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Figure 24.8 A comparison of the asymmetric and symmetrized training objectives. Here g is
the nineteenth degree polynomial which minimizes the original asymmetric criterion (24.10) on
20 data points, whereas f minimizes the symmetrized criterion (24.12). This plot shows how g is
inappropriately drawn towards the origin φ near the right end of the interval, whereas f behaves
neutrally with respect to φ.

this intuition is demonstrated in Figure 24.8, where the hypothesis f that minimizes the
new symmetric criterion (Equation 24.12) is not drawn towards the origin inappropriately,
and thereby achieves a smaller true prediction error than the hypothesis g that minimizes
Equation 24.10. More technical justifications for this criterion are offered in [SS02].

The final outcome is a new regularization procedure that uses the training objective from
Equation 24.12 to penalize hypotheses based on the given training data and the unlabeled
data. In effect, the resulting procedure uses the unlabeled data to automatically set the level
of regularization for a given problem. This procedure has an additional advantage—since
the penalization factor in Equation 24.12 also depends on the specific labeled training set
under consideration, the resulting procedure regularizes in a data-dependent fashion. That
is, the procedure adapts the penalization to a particular set of observed data. This raises
the possibility of outperforming any regularization scheme that keeps a fixed penalization
level across different training samples drawn from the same problem. In fact, such an
improvement can be achieved in realistic hypothesis classes on real data sets—as shown in
the next section.

One drawback with the minimization objective in Equation 24.12 is that it is not convex
and therefore local minima likely exist. Typically one has to devise reasonable initialization
and restart procedures to effectively minimize such an objective. Here we simply started the
optimizer from the best fit polynomial of each degree, or in the case of RBF regularization
(below), we started from a single initialization point. Once initialized, a standard optimiza-
tion routine (Matlab 5.3 “fminunc”) was used to determine coefficients that minimized
Equations 24.11 and 24.12. Although the non-differentiability of Equation 24.12 creates
difficulty for the optimizer, it does not prevent reasonable results from being achieved.
Therefore, we did not find it necessary to smooth the objective with a softmax, although
this is a reasonable idea. Another potential problem could arise if h gets close to the origin
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φ. However, since simple origins were chosen that were never near PY|X , h was not drawn
near φ in these experiments and thus the resultant numerical instability did not arise.

24.4.1 Example: Polynomial regression

The first supervised learning task considered is the polynomial regression problem from
Section 24.3.2. The regularizer introduced above (Equation 24.12) turns out to perform
very well in such problems. In this case, our training objective can be expressed as choosing
a hypothesis to minimize:

l
∑

i=1

(h(xi)−yi)
2/l × max















n
∑

j=l+1

(h(xj) − φ(xj))
2/u

l
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(h(xi) − φ(xi))
2/l
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l
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where {〈xi, yi〉}
l
i=1 is the set of labeled training data, {〈xj〉}

n
j=l+1 is the set of unlabeled

examples, and φ is a fixed origin function (usually set to the constant function at the mean
of the y labels). Note again that this training objective seeks hypotheses that fit the labeled
training data well while simultaneously behaving similarly on labeled and unlabeled data.

To test the basic effectiveness of this approach, the experiments of Section 24.3.2 were
repeated. The first class of methods compared against were the same model selection
methods considered before: 10-fold cross validation CVT, structural risk minimization
SRM [CMV97], RIC [FG94]; SMS [Shi81], GCV [CW79], BIC [Sch78], AIC [Aka74],
CP [Mal73], FPE [Aka70], and the metric based model selection strategy, ADJ, introduced
in Section 24.3.3. However, since none of the classical model selection methods performed
competitively in these experiments, they are not reported here (see [SS02] for more
complete results). Instead, for comparison, results are reported for the optimal model
selector, OPT*, which makes an oracle choice of the best available hypothesis in any given
model selection sequence based on the test data. In these experiments, the model selection
methods considered polynomials of degree 0 to l − 2.5

The second class of methods compared against were regularization methods that con-
sider polynomials of maximum degree l − 2 but penalize individual polynomials based
on the size of their coefficients or their smoothness properties. The specific methods con-
sidered were: a standard form of “ridge” penalization (or weight decay) which places a
penalty λ

∑

k a2
k on polynomial coefficients ak [CM98], and Bayesian maximum a posteri-

ori inference with zero-mean Gaussian priors on polynomial coefficients ak with diagonal
covariance matrix λI [Mac92]. Both of these methods require a regularization parameter
λ to be set by hand. These methods are referred to as REG and MAP respectively.

To test the ability of the new regularization technique to automatically set the regular-

5. Note that the degree is restricted to be less than l−1 to prevent the maximum degree polynomials
from achieving zero training error which, as discussed in Section 24.3, destroys the regularization
effect of the multiplicative penalty.
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mean median stdev

ADA (24.12) φ = mean y 0.391 0.366 0.113

asymmetric (24.10) 0.403 0.378 0.111

REG λ = 1.0 0.483 0.468 0.048

REG* 0.371 0.355 0.049

model sel OPT* 0.387 0.374 0.076

ADJ 0.458 0.466 0.112

Table 24.7 Fitting f(x) = step(x ≥ 0.5) with PX = U(0, 1) and σ = 0.05. Absolute test errors
(true distances) achieved. Results of 1000 repeated trials. This repeats the conditions of Table 24.1.

mean median stdev

ADA (24.12) φ = mean y 0.444 0.425 0.085

asymmetric (24.10) 0.466 0.439 0.102

REG λ = 1.0 0.484 0.473 0.040

REG* 0.429 0.424 0.041

model sel OPT* 0.433 0.427 0.049

ADJ 0.712 0.504 0.752

Table 24.8 Fitting f(x) = sin(1/x) with PX = U(0, 1) and σ = 0.05. Absolute test errors (true
distances) achieved. Results of 1000 repeated trials. This repeats the conditions of Table 24.2.

mean median stdev

ADA (24.12) φ = mean y 0.107 0.081 0.066

asymmetric (24.10) 0.111 0.087 0.060

REG λ = 5.0 0.353 0.341 0.040

REG* 0.140 0.092 0.099

model sel OPT* 0.122 0.085 0.086

ADJ 0.188 0.114 0.150

Table 24.9 Fitting f(x) = sin2(2πx) with PX = U(0, 1) and σ = 0.05. Absolute test errors (true
distances) achieved. Results of 1000 repeated trials. This repeats the conditions of Table 24.3.

mean median stdev

ADA (24.12) φ = mean y 0.077 0.060 0.090

asymmetric (24.10) 0.110 0.074 0.088

REG λ = 10−1 0.454 0.337 0.508

REG* 0.147 0.082 0.121

model sel OPT* 0.071 0.060 0.071

ADJ 0.116 0.062 0.188

Table 24.10 Fitting a fifth degree polynomial with PX =U(0, 1) and σ=0.05. Absolute test errors
(true distances) achieved. Results of 1000 repeated trials. This repeats the conditions of Table 24.4.
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ization level, a range of (fourteen) regularization parameters λ were tried for the fixed
regularization methods REG and MAP, showing the single best value of λ obtained on the
test data. For comparison purposes, the results of the oracle regularizer, REG*, is also re-
ported. This oracle selects the best λ value for each training set based on examining the
test data (MAP* gives similar results here [SS02]). The experiments were conducted by
repeating the conditions of Section 24.3.2. Specifically, Table 24.7 repeats Table 24.1 (fit-
ting a step function), Table 24.8 repeats Table 24.2 (fitting sin(1/x)), Table 24.9 repeats
Table 24.3 (fitting sin2(2πx)), and Table 24.10 repeats Table 24.4 (fitting a fifth degree
polynomial). The regularization criterion based on minimizing Equation 24.12 is listed as
ADA in our figures (for “adaptive” regularization). Additionally, the asymmetric version
of ADA (24.10) was tested to verify the benefits of the symmetrized criterion (24.12).

The results are positive. The new adaptive regularization scheme ADA performed the
best among all procedures in these experiments. Tables 24.7–24.10 show that it outper-
formed the fixed regularization strategy REG for the best fixed choice of regularization
parameter (λ), even though the optimal choice varies across problems. This demonstrates
that ADA is able to effectively tune its penalization behaviour to the problem at hand.
Moreover, since it outperforms even the best choice of λ for each data set, ADA also
demonstrates the ability to adapt its penalization behaviour to a specific training set, not
just a given problem. In fact, ADA is competitive with the oracle regularizer REG* in these
experiments, and even sometimes outperformed the oracle model selection strategy OPT*.
The results also show that the asymmetric version of ADA based on (24.10) is inferior to
the symmetrized version in these experiments, confirming our prior expectations.

24.4.2 Example: Radial basis function regression

To test the approach on a more realistic task, the problem of regularizing radial basis
function (RBF) networks for regression was considered. RBF networks are a natural
generalization of interpolation and spline fitting techniques. Given a set of prototype
centers c1, ..., ck, an RBF representation of a prediction function h is given by

h(x) =

k
∑

i=1

wi g

(

‖x − ci‖

σ

)

(24.13)

where ‖x − ci‖ is the Euclidean distance between x and center ci and g is a response
function with width parameter σ. In this experiment a standard local Gaussian basis
function, g(z) = e−z2/σ2

, was used.
Fitting with RBF networks is straightforward. The simplest approach is to place a

prototype center on each training example and then determine the weight vector, w, that
allows the network to fit the training labels. The best fit weight vector can be obtained by



24.4 Regularization 21

solving for w in:
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The solution is guaranteed to exist and be unique for distinct training points and most
natural basis functions, including the Gaussian basis used here [Bis95].

Although exactly fitting data with RBF networks is natural, it has the problem of gener-
ally over-fitting the training data in the process of replicating the y labels. Many approaches
therefore exist for regularizing RBF networks. However, these techniques are often hard to
apply because they involve setting various free parameters or controlling complex methods
for choosing prototype centers, etc. [CM98, Bis95]. The simplest regularization approach
is to add a ridge penalty to the weight vector, and minimize

l
∑

i=1

(h(xi) − yi)
2 + λ

l
∑

i=1

w2
i (24.14)

where h is given as in Equation 24.13 [CM98]. An alternative approach is to add a non-
parametric penalty on curvature [PG90], but the resulting procedure is similar. To apply
these methods in practice one has to make an intelligent choice of the width parameter
σ and the regularization parameter λ. Unfortunately, these choices interact and it is often
hard to set them by hand without visualization and experimentation with the data set.

This section investigates how effectively the ADA regularizer is able to automatically
select the width parameter σ and regularization parameter λ in an RBF network on real
regression problems. Here the basic idea is to use unlabeled data to make these choices
automatically and adaptively. ADA (Equation 24.12) is compared to a large number of
ridge regularization procedures, each corresponding to the penalty in Equation 24.14 with
different fixed choices of σ and λ—thirty five in total. To apply ADA in this case a standard
optimizer was run over the parameter space (σ, λ) while explicitly solving for the w vector
that minimized Equation 24.14 for each choice of σ and λ (this involved solving a linear
system [CM98, Bis95]). Thus, given σ, λ and w Equation (24.12) could be calculated and
the result supplied to the optimizer as the objective to be minimized.

A number of regression problems from the StatLib and UCI machine learning repos-
itories were investigated.6 In the experiments, a given data set was randomly split into
training (1/10), unlabeled (7/10), and test (2/10) sets. Each of the methods was then run on
this split—this process being repeated 100 times for each data set to obtain results. Tables
24.11–24.14 show that ADA regularization was able to choose width and regularization
parameters that achieved effective generalization performance across a range of data sets.
The loss for ADA and REG* are given at the top of each table and the loss for each fixed
parameter setting is given below. The best such setting is italicized. Furthermore, all set-

6. The URLs are lib.stat.cmu.edu and www.ics.uci.edu/∼mlearn/MLRepository.html.
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ADA (24.12) 0.0197 ± 0.004 | REG* 0.0329 ± 0.009

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 0.0005 0.0363 0.0447 0.0482 0.0515 0.0554

0.001 0.0353 0.0435 0.0475 0.0512 0.0554

0.0025 0.0350 0.0425 0.0473 0.0514 0.0555

0.005 0.0359 0.0423 0.0475 0.0516 0.0554

0.0075 0.0368 0.0424 0.0478 0.0517 0.0553

Table 24.11 RBF results showing mean test errors (distances) on the AAUP data set (1074 in-
stances on 12 independent attributes). Results are averaged over 100 splits of the dataset.

ADA (24.12) 0.034 ± 0.0046 | REG* 0.049 ± 0.0063

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 4 0.4402 0.04954 0.04982 0.05008 0.05061

6 0.3765 0.04952 0.04979 0.05007 0.05063

8 0.3671 0.04951 0.04979 0.05007 0.05069

10 0.3474 0.04952 0.04979 0.05007 0.05073

12 0.3253 0.04953 0.04979 0.05008 0.05079

Table 24.12 RBF results showing mean test errors (distances) on the ABALONE data set (1000
instances on 8 independent attributes). Results are averaged over 100 splits of the dataset.

ADA (24.12) 0.131 ± 0.0171 | REG* 0.125 ± 0.0151

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 0.1 0.1658 0.1299 0.1325 0.1341 0.1354

0.5 0.1749 0.1294 0.1321 0.1337 0.1352

1 0.1792 0.1294 0.1321 0.1336 0.1353

2 0.1837 0.1296 0.1322 0.1337 0.1356

4 0.1883 0.1299 0.1323 0.1339 0.1362

Table 24.13 RBF results showing mean test errors (distances) on the BODYFAT data set (252
instances on 14 independent attributes). Results are averaged over 100 splits of the dataset.

ADA (24.12) 0.150 ± 0.0212 | REG* 0.151 ± 0.0197

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 0.075 0.1619 0.15785 0.1614 0.1645 0.1679

0.1 0.1624 0.15779 0.1614 0.1645 0.1679

0.15 0.1633 0.15776 0.1615 0.1646 0.1680

0.2 0.1642 0.15777 0.1615 0.1647 0.1682

0.25 0.1649 0.15780 0.1616 0.1648 0.1683

Table 24.14 RBF results showing mean test errors (distances) on the BOSTON-C data set (506
instances on 12 independent attributes). Results are averaged over 100 splits of the dataset.
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tings that outperform ADA are shown in bold. Therefore, tables showing few bold entries
indicate that ADA is outperforming most fixed regularizers.

On these datasets, ADA performs better than any fixed regularizer on every problem
(except BODYFAT). This shows that the adaptive criterion is not only effective at choosing
good regularization parameters for a given problem, but can choose them adaptively
based on the specific sample of training data given, yielding improvements over fixed
regularizers.

24.5 Classification

The regularization approach developed in this chapter can also be applied to classifi-
cation problems. For classification, the label set Y is usually a small discrete set and
prediction error is typically measured by the misclassification loss, err(ŷ, y) = 1(ŷ 6=y).
With this loss function, distances are measured by the disagreement probability d(f, g) =

PX(f(x) 6= g(x)) [BDIK95]. Using this metric, the generic regularization objective from
Equation 24.12 can be directly applied to classification problems. As it turns out, a direct
application of our approach to this case gives poor results [SS02]. An intuitive explana-
tion for this weakness is that classification functions are essentially histogram-like (i.e.,
piecewise constant), and this tends to limit the ability of unlabeled data to detect erratic
behaviour off the labeled training sample. A recent generalization analysis by Kääriäinen
and Langford [Kää05, KL05] suggests that effective model selection strategies might be
achieved by using tight generalization bounds derived from unlabeled data as a complexity
penalizer. This idea has yet to be investigated in detail however. Rather than pursue mod-
ified techniques for classification here, we instead consider a straightforward regression-
based approach for the remainder of this chapter.

A natural alternative to misclassification loss exists for the subset of classification
methods that return a distribution over class labels instead of a single class label. With
these methods, Kullback-Leibler (KL) divergence [CT91] can be used instead of distance
metrics to compare hypothesis functions with the origin function φ.7 With such a distance,
penalized training objectives8 can be derived similar to Equations 24.11 and 24.12, the
terms of which are:

d̃(φ‖h) =
1

u

n
∑

i=l+1

φ(xi) log
φ(xi)

h(xi)
+ (1 − φ(xi)) log

1 − φ(xi)

1 − h(xi)
(24.15)

d̂(φ‖h) =
1

l

l
∑

i=1

φ(xi) log
φ(xi)

h(xi)
+ (1 − φ(xi)) log

1 − φ(xi)

1 − h(xi)
(24.16)

7. Note that KL divergence is not a proper distance metric but it is frequently used in such contexts.
8. For the sake of simplicity, only binary classification is considered.
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Set1 Set2 Set3 Set4 Set5 Set7

ADA 0.653 0.379 0.687 0.325 0.042 0.188

λ = 0 0.570 1.006 18.89 2.788 0.982 1.042

0.1 0.502 0.621 4.765 1.607 0.692 0.734

0.5 0.537 0.524 4.142 1.254 0.667 0.696

1.0 0.568 0.494 3.878 1.120 0.660 0.684

2.0 0.606 0.472 3.617 1.001 0.655 0.675

5.0 0.655 0.459 3.278 0.874 0.653 0.667

10.0 0.682 0.460 3.026 0.804 0.654 0.664

Table 24.15 Logistic regression (LR) results for six book data sets showing mean testing error
(log-loss) for ADA and regularized LR with various settings of λ.

d̂(PY|X‖h) =
1

l

l
∑

i=1

−yi log h(xi) − (1 − yi) log(1 − h(xi)) (24.17)

Experiments were run on three classifiers that return class-membership probabilities.
The ADA penalization strategy was tested on logistic regression (LR) [HTF01], kernel
logistic regression (KLR) [HT90], and a neural network (NN) [HTF01]. Experiments were
run on the two data sets used throughout this book and on a set of UCI data sets. The LR
prediction function h is:

h(x) =
1

1 + e−w
T
x

(24.18)

The prediction functions for KLR and neural networks are closely related in the experi-
ments presented here. KLR simply kernalizes Equation 24.18. For the neural network used
here, the activation function in the first layer is tanh() and the output layer uses the logistic
function in Equation 24.18. The ADA penalized objectives for all three are therefore very
similar.

In all cases, gradient descent was used to optimize the ADA objective. We compare
against regularized versions of LR, using the penalty term λw

T
w, 0 ≤ λ. All experiments

were repeated ten times, and the average log-loss test error reported. 10 labeled training
points and 100 unlabeled points were used during training, and the remaining points were
used for testing.

The results for LR on the book data sets (sets 1 through 5 and 7—set 6 was omitted
because it is non-binary; sets 8 and 9 were omitted due to excessive size/dimensionality
respectively) are shown in Table 24.15 for a variety of λ settings. The results show that
ADA-penalized LR is competitive on Set1 and beats the best fixed regularizer on all
other sets. Results on six UCI data sets (AUSTRALIAN, CRX, DIABETES, FLARE,
GERMAN, and PIMA) are shown in Table 24.16. Again, results are competitive, coming
close to the best fixed regularizer in most cases and surpassing it on two data sets.

Similar experiments were run on kernel logistic regression using a Gaussian kernel and
a variety of settings for the standard deviation, σ. Results are shown in Table 24.17 for the
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AUST. CRX DIAB. FLARE GERM. PIMA

ADA 0.697 0.716 0.703 0.541 0.697 0.683

λ = 0 1.240 1.176 1.282 1.741 0.710 1.442

0.1 0.927 0.797 0.785 0.833 0.715 0.881

0.5 0.814 0.707 0.733 0.618 0.715 0.773

1.0 0.773 0.689 0.716 0.572 0.713 0.739

2.0 0.742 0.679 0.703 0.546 0.710 0.715

5.0 0.715 0.676 0.694 0.533 0.703 0.697

10.0 0.704 0.678 0.691 0.531 0.697 0.692

Table 24.16 Logistic regression (LR) results for six UCI data sets showing mean testing error for
ADA and regularized LR with various settings of λ.

book data sets 9 and in Table 24.18 for the UCI data. Like the earlier regression results, the
best fixed parameter setting is italicized and all settings that outperform ADA are shown in
bold.

On the book data, the results are excellent, beating the oracle regularizer on all but Set2
and coming very close even there. On the UCI data, the results are more mixed but still
quite positive. While the oracle is not surpassed on any dataset, ADA is still better than
many fixed regularizers.

Finally, we present results on three un-regularized neural networks, with three, five, and
ten hidden units respectively. Results for the book data are shown in Table 24.19 and for the
UCI data in Table 24.20. The results against un-regularized NN are striking, dramatically
reducing the tendency to over-fit, even as the model complexity increases (performance on
the PIMA data set with ten hidden nodes is the only notable anomaly to be found).

Overall, these results show considerable promise for the use of ADA with probabilistic
classifiers but there clearly improvements still to be made. Adapting the technique to work
with discrete classifiers also remains as a key challenge.

24.6 Conclusion

A new approach to the classical complexity-control problem has been introduced that is
based on the intrinsic geometry of the function-learning task. This geometry is exploited in
such a way as to be able to incorporate information from both labeled and unlabeled data
in a semi-supervised learning task. Unlike the majority of such techniques, this approach
requires no assumptions about the relationship between labeled and unlabeled data other
than the key assumption that they are drawn from the same probability distribution.

These new techniques seem to outperform standard approaches in a wide range of re-
gression problems and either outperform or are competitive with standard approaches in

9. We presume the similar scores achieved by so many of the fixed regularizes on the book data are
due to some regularity in that data.
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Set1 ADA 0.518

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.691 0.572 0.569 0.701

0.1 0.693 0.692 0.636 0.690 0.723

0.5 0.693 0.693 0.667 0.716 0.725

1.0 0.693 0.693 0.677 0.718 0.724

2.0 0.693 0.693 0.684 0.717 0.721

5.0 0.693 0.693 0.689 0.712 0.715

10.0 0.693 0.693 0.691 0.706 0.709

Set2 ADA 0.456

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.691 0.478 0.480

0.1 0.693 0.693 0.692 0.444 0.477

0.5 0.693 0.693 0.693 0.481 0.498

1.0 0.693 0.693 0.693 0.503 0.504

2.0 0.693 0.693 0.693 0.531 0.511

5.0 0.693 0.693 0.693 0.578 0.526

10.0 0.693 0.693 0.693 0.615 0.549

Set3 ADA 0.685

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.693 0.693

0.1 0.693 0.693 0.693 0.693 0.693

0.5 0.693 0.693 0.693 0.693 0.693

1.0 0.693 0.693 0.693 0.693 0.693

2.0 0.693 0.693 0.693 0.693 0.693

5.0 0.693 0.693 0.693 0.693 0.693

10.0 0.693 0.693 0.693 0.693 0.693

Set4 ADA 0.580

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.811 1.045

0.1 0.693 0.693 0.693 0.710 0.769

0.5 0.693 0.693 0.693 0.697 0.731

1.0 0.693 0.693 0.693 0.695 0.721

2.0 0.693 0.693 0.693 0.694 0.713

5.0 0.693 0.693 0.693 0.693 0.704

10.0 0.693 0.693 0.693 0.693 0.698

Set5 ADA 0.513

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.693 0.754

0.1 0.693 0.693 0.693 0.693 0.701

0.5 0.693 0.693 0.693 0.693 0.695

1.0 0.693 0.693 0.693 0.693 0.694

2.0 0.693 0.693 0.693 0.693 0.693

5.0 0.693 0.693 0.693 0.693 0.693

10.0 0.693 0.693 0.693 0.693 0.693

Set7 ADA 0.514

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.693 0.736

0.1 0.693 0.693 0.693 0.693 0.697

0.5 0.693 0.693 0.693 0.693 0.693

1.0 0.693 0.693 0.693 0.693 0.693

2.0 0.693 0.693 0.693 0.693 0.693

5.0 0.693 0.693 0.693 0.693 0.693

10.0 0.693 0.693 0.693 0.693 0.693

Table 24.17 Kernel logistic regression (KLR) results for six book data sets showing mean testing
error for ADA and regularized KLR with various settings of λ and σ.

a range of classification problems, with only one comparatively weak instance (ADA reg-
ularized KLR). The primary source of this advantage is that the proposed metric-based
strategies are able to detect dangerous situations and avoid making catastrophic over-fitting
errors while still being responsive enough to adopt reasonably complex models when this
is supported by the data. This is accomplished by attending to the real distances between
hypotheses. Standard complexity-penalization strategies completely ignore this informa-
tion. Hold-out methods implicitly take some of this information into account, but do so
indirectly and less effectively than the metric-based strategies introduced here. Although
there is no “free lunch” in general [Sch94] and a universal improvement cannot be claimed
for every complexity-control problem [Sch93], one should be able to exploit additional in-
formation about the task (i.e., knowledge of PX) to obtain significant improvements across
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AUSTRALIAN ADA 0.685

σ = 0.1 0.5 1 5 10

λ = 0 0.851 0.772 0.748 0.708 0.710

0.1 0.670 0.681 0.682 0.705 0.705

0.5 0.653 0.671 0.682 0.703 0.705

1.0 0.654 0.671 0.683 0.702 0.704

2.0 0.658 0.673 0.685 0.701 0.703

5.0 0.667 0.674 0.685 0.697 0.699

10.0 0.675 0.677 0.685 0.694 0.696

CRX ADA 1.111

σ = 0.1 0.5 1 5 10

λ = 0 1.141 1.153 1.033 0.946 0.851

0.1 0.770 0.826 0.826 0.830 0.787

0.5 0.703 0.760 0.779 0.798 0.779

1.0 0.689 0.739 0.762 0.784 0.772

2.0 0.681 0.721 0.744 0.767 0.762

5.0 0.679 0.700 0.720 0.742 0.742

10.0 0.682 0.690 0.704 0.723 0.725

DIABETES ADA 0.666

σ = 0.1 0.5 1 5 10

λ = 0 0.683 0.897 0.933 0.744 0.694

0.1 0.683 0.638 0.692 0.685 0.686

0.5 0.688 0.619 0.658 0.680 0.687

1.0 0.690 0.623 0.649 0.678 0.685

2.0 0.691 0.633 0.645 0.675 0.681

5.0 0.692 0.652 0.645 0.669 0.674

10.0 0.693 0.666 0.652 0.666 0.670

FLARE ADA 0.540

σ = 0.1 0.5 1 5 10

λ = 0 0.700 0.660 0.652 0.646 0.473

0.1 0.656 0.636 0.558 0.465 0.474

0.5 0.667 0.656 0.592 0.468 0.481

1.0 0.675 0.667 0.616 0.474 0.483

2.0 0.682 0.677 0.639 0.482 0.485

5.0 0.688 0.686 0.664 0.500 0.494

10.0 0.690 0.689 0.676 0.526 0.511

GERMAN ADA 0.804

σ = 0.1 0.5 1 5 10

λ = 0 0.968 1.480 1.574 0.888 0.720

0.1 0.717 0.814 0.845 0.680 0.640

0.5 0.683 0.699 0.716 0.640 0.633

1.0 0.682 0.678 0.683 0.632 0.633

2.0 0.684 0.669 0.664 0.628 0.633

5.0 0.688 0.670 0.657 0.628 0.634

10.0 0.690 0.676 0.661 0.632 0.636

PIMA ADA 0.680

σ = 0.1 0.5 1 5 10

λ = 0 0.678 0.906 0.818 0.714 0.684

0.1 0.679 0.646 0.679 0.683 0.682

0.5 0.686 0.636 0.670 0.680 0.681

1.0 0.688 0.641 0.666 0.679 0.679

2.0 0.690 0.648 0.663 0.677 0.678

5.0 0.692 0.661 0.661 0.673 0.674

10.0 0.693 0.672 0.664 0.671 0.671

Table 24.18 Kernel logistic regression (KLR) results for six UCI data sets showing mean testing
error for ADA and regularized KLR with various settings of λ and σ.

a wide range of problem types and conditions. The empirical results support this view. Fur-
thermore, ADJ remains very competitive with newer model-selection techniques [BC03].
Additionally, ADJ has been independently extended along three lines [CVB02]: (i) produc-
ing excellent results on time-series data, (ii) using estimated densities in lieu of unlabeled
data, and (iii) hybridizing ADJ with cross-validation.

An important direction for future research is to develop theoretical support for these
strategies—in particular, a stronger theoretical justification of the regularization methods
proposed in Section 24.4, an improved analysis of the model selection methods proposed
in Section 24.3, and investigation of how to apply the technique in Section 24.5 to a more
general set of classifiers . It remains open as to whether the proposed methods TRI, ADJ,
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hidden=3 Set1 Set2 Set3 Set4 Set5 Set7

ADA 0.756 0.579 11.282 1.162 2.120 1.108

unreg NN 84.567 51.020 22.769 154.388 122.308 160.653

hidden=5 Set1 Set2 Set3 Set4 Set5 Set7

ADA 0.829 1.422 2.998 1.324 30.349 3.108

unreg NN 77.577 47.166 41.629 165.090 151.790 139.809

hidden=10 Set1 Set2 Set3 Set4 Set5 Set7

ADA 1.828 9.985 2.070 0.993 4.742 1.253

unreg NN 83.693 61.913 24.233 118.572 124.658 142.555

Table 24.19 NN results for the book data sets (except set 6) showing mean testing error for ADA
and un-regularized NN with 3, 5 and 10 hidden nodes.

hidden=3 AUST. CRX DIAB. FLARE GERM. PIMA

ADA 0.90 0.78 2.45 0.64 0.64 0.93

unreg NN 34.40 79.53 13.95 40.73 0.64 8.87

hidden=5 AUST. CRX DIAB. FLARE GERM. PIMA

ADA 1.53 1.19 1.71 0.53 0.82 0.89

unreg NN 41.13 88.43 46.47 62.41 0.73 58.43

hidden=10 AUST. CRX DIAB. FLARE GERM. PIMA

ADA 1.09 1.33 2.10 0.72 1.03 11.64

unreg NN 110.13 48.96 30.23 80.88 13.89 55.94

Table 24.20 NN results for six UCI data sets showing mean testing error for ADA and un-
regularized NN with 3, 5 and 10 hidden nodes.

and ADA are in fact the best possible ways to exploit the hypothesis distances provided
by PX . A clear direction for future research is the investigation of alternative strategies
that could potentially be more effective in this regard. For example, it remains future
work to extend the multiplicative ADJ and ADA methods to cope with zero training
errors. Additionally, more exploration of the effects of alternative origin functions (perhaps
even ensembles of origin functions) is necessary. Finally, it would be interesting to adapt
the approach to model combination methods, extending the ideas of [KV95] to other
combination strategies, including boosting [FS97] and bagging [Bre96].
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