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Graphical Models and Point Pattern Matching
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Abstract

This paper describes a novel solution to the rigid point pattern matching problem in Euclidean
spaces of any dimension. Although we assume rigid motion, jitter is allowed. We present a non-iterative,
polynomial time algorithm that is guaranteed to find an optimal solution for the noiseless case. First
we model point pattern matching as a weighted graph matching problem, where weights correspond
to Euclidean distances between nodes. We then formulate graph matching as a problem of finding a
maximum probability configuration in a Graphical Model. By using graph rigidity arguments, we prove
that a sparse Graphical Model yields equivalent results to the fully connected model in the noiseless
case. This allows us to obtain an efficient Junction Tree algorithm that runs in polynomial time and is
provably optimal for exact matching between noiseless point sets. For inexact matching, we can still
apply the same algorithm to find approximately optimal solutions. Experimental results obtained by
our approach show improvements in accuracy over current methods, even when matching noisy point

patterns.

Index Terms

Structural pattern recognition, graph-theoretic methods, Markov random fields, pattern matching

. INTRODUCTION

Point pattern matching (or point set matching) is a basic problem in Pattern Recognition
that is fundamental to Computer Vision (stereo correspondence, image registration and model-

based object recognition [1]-[4]), Astronautics [5], [6], Computational Chemistry [7], [8] and
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Computational Biology [9], [10]. Here we consider the (possibly noisy) rigid body case: when
one pattern differs from a subset of the other by an isometry, but where position jitter may be

present.

A. Problem Description and Related Problems

In general terms, the problem consists of finding a correspondence between elements of two
point sets inR? or R? (or in R*,n € N, for general—not necessarily visual—patterns). In
the case ofexact matching, one point set differs from a subset of the other by an isometric
transformation. In thenexactcase, there is position jitter in one point set with respect to the
other. This always occurs in practical application domains like those cited above, thus we face
aninexactmatching problem in practice, and matching algorithms need to take this into account.

A related, but more general problem, is thatgrph matching, which consists of finding
correspondences (one-to-one [11], many-to-one [12] or many-to-many [13], [14]) between the
nodes of two graphs so as to achieve some form of global consistency. In this case, nodes and
edges may have vector attributes or labels. There is a vast literature addressing the graph matching
problem in pattern recognition, which can be divided generally into work on search methods [12],
[15]-[21], and work on non-search methods, such as probabilistic relaxation [22]-[33], spectral
and least-squares methods [3], [34]-[38], graduated assignment [11], genetic optimization [39]
and other principles [13], [14], [40], [41]. For a recent comprehensive review on graph matching
for pattern recognition, see [42]. We have shown how ideas similar to those presented in this
paper can be applied to the graph matching problem in [12] and [43], however in this paper we

focus specifically on the point pattern matching problem.

B. Potential Applications

Isometric point pattern matching (with jitter) is encountered in many application domains.

In Computer Vision, two sets of interest points extracted from two stereo images are ap-
proximately related by an isometry when the stereo pair has a narrow baseline. An accurate
correspondence between the features results in an accurate depth map or the recovery of the
3D geometry of the scene [44]. This form of stereo correspondence constitutes one of the

fundamental point pattern matching problems of Computer Vision.
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In Astronautics, the attitude of sounding rockets or satellites can be estimated by matching
stellar images acquired from the onboard star sensor (a CCD camera) to those in an empirical
star catalog [45]. Images acquired from the same region of the sky but from different viewpoints
reveal sets of stars whose coordinates are related by an isometric transformation [5]. In this way,
the star matching problem can be posed as a rigid point pattern matching problem.

In Computational Chemistry, rigid point pattern matching is a recurrent problem in drug
design, specifically in the identification of pharmacophores—common subsets of molecules that
systematically interact with some receptor (i.e. that perform some specific task). By matching a
set of molecules (called ligands) that activate (“bind”) a given receptor, one can identify whether
there is a common sub-conformation among the ligands. If this is the case, the structure encoun-
tered becomes a candidate pharmacophore, which is a distillation of the functional attributes of
ligands that accomplish some specific task. The pharmacophore can then be used in the design
of a new drug which is expected to systematically interact with the given receptor [8].

Finally, a similar problem arises in Computational Biology, when the interest is to detect
specific structural motifs within a family of proteins (or DNA sequences). Identification of these
motifs contributes to uncovering the mechanism of the proteins’ operation [10].

In all these problems, rigid point pattern matching is a reasonable assumption, but small
stochastic deviations in the point positions must be accommodated (jitter). This latter condition
excludes methods that only apply to exact point pattern matching problems (like [46]). The
technique proposed in this paper is precisely designed for this case: we make the rigid body

assumption (isometric assumptidot jitter is allowed.

C. Related Literature

Several approaches have been proposed to solve the inexact point pattern matching problem.
Major classes of solutions are basedspectralmethods [2], [3], [35] relaxation labeling[26]—
[28], [31]-[33], andgraduated assignmeiill], [47]. The first compares the eigen-structure of
proximity matrices of the point sets. The second defines a probability distribution over mappings
and optimizes using a discrete relaxation algorithm. The third combines the “softassign” method
[48] with Sinkhorn’s method [49] to optimize the mapping. All these approaches can be seen
as using optimal representations (complete data models) and approximate inference procedures.

Spectral methods use the spectrum of the adjacency matrix, but it is well-known that different
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graphs can be co-spectral [50]; probabilistic relaxation labeling typically uses compatibility
functions defined over all points, but the optimization procedure is iterative and known to be
convergent to local minima [27]; graduated assignment also uses the entire set of pairwise
compatibilities, being a continuous relaxation of the original combinatorial problem which aims
at tractability, but is also only convergent to local minima [11]. These sources of approximation
impact on performance in various ways. For example, it has been frequently reported that spectral
methods are not robust to structural corruption nor to matching patterns of very different sizes
[2], [3]. Relaxation methods degrade with significant increases in point set sizes [11]. Graduated
assignment, although extremely robust with respect to jitter, has a number of heuristic parameters
that need to be tuned and, more importantly, is very sensitive to matching sets of significantly
different sizes [11], [51]. All these methods are polynomial time approximations that do not

guarantee global optimization.

D. The Proposed Technique

In this paper, we propose a conceptually different approach that overcomes many of the
limitations of previous techniques. Rather than using a complete data model and an approximate
inference algorithm, we do the opposite: we approximate the representation but show how
optimal polynomial time algorithms can be applied to the approximated data model. However, the
hallmark of this approach is that the “approximated” data model can be provenemgubealent
to the complete data model in the limit case of exact matching. In other words, the result is an
optimal algorithm that runs over an optimal representation. This allows us to obtain guaranteed
optimal solutions in the noiseless case, and excellent approximate solutions for moderate noise,
as will be shown. The resulting technique is robust with respect to size increases in the point
patterns, as well as with respect to extreme differences in their sizes. It is also robust to moderate
point jitter. Moreover, contrary to heuristic formulations, it is derived from first principles using
Markov random field theory: the technique is non-iterative and has no intrinsic parameters to be
tuned (the only parameter involved being inherent to all techniques that aim to cope with jitter).

Our formulation is based on posing the problem of deriving the best assignment as one of
finding the maximum a posteriori (MAP) configuration of random variables in a probabilistic
Graphical Model. We draw a fundamental connection between exact inference in Graphical

Models and the “rigidity of graphs”: by formalizing the redundancies present in point sets
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embedded in Euclidean Spaces, we prove that there is a sparse Graphical Model topology that has
the same MAP solutions as the fully connected model in the limit of exact matching. Remarkably,
the sparse model has sufficient structure to allow us to perform exact MAP computation in
polynomial time—a computation that is intractable in the fully connected model. To the best of
our knowledge, this constitutes the first provably optimal polynomial time algorithm for exact
point set matching irR" that is also applicable to inexact matching (optimal algorithms which

are exclusive to the unrealistic exact case do exist [46]).

For the realistic problem of matching noisy point patterns, we present experimental results
comparing the proposed algorithm with well-known alternative methods. Our results show that
the proposed technique offers accuracy improvements, particularly when matching patterns of
different sizes.

Some of the basic ideas in this paper were first presented in [52].

[I. POINT MATCHING AS A WEIGHTED GRAPH MATCHING PROBLEM

We start by showing how point pattern matching can be formulated as a weighted graph
matching problem. Assume we have two point set®in(n € N), named7 for “template” and
S for “scene”, with cardinalityl” and .S, respectively. The idea is that some noisy instanc& of
(denoted7”) is present inS, up to an isometric transformation. Our goal is to find this instance
7’ in § and, moreover, determine a mgp: 7 — S that maximizes some “global similarity
measure” betweeff and7’. The only restriction we impose oif is that it must be a function:
every point in7 must map to some point i§. This is in contrast to the one-to-one mapping
[11], which considers a smaller class of solutions. It is natural to understaasl the point set
corresponding to a “model” anfl as the point set obtained from a “scene” wherein we want to
find some instance of the model.

Here we will refer to the template pattern as a “domain pattern” and the scene pattern as a
“codomain pattern”, in analogy to their role played with respect to the mapping fungtidhe
it" point in the domain pattern is denotdg whereas thé&*" point in the codomain pattern is
denotedc;,. The Euclidean distance betweénandd; is denotedyglj, and between;, and; is
denotedyy,.

The key idea for modeling point pattern matching as a weighted graph matching problem

is as follows. Recall that an isometry exists between two point sets if and only if they have
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the same Euclidean Distance Matrix [S3](EDM) under some permutation [54]. Consequently,
an isometry can be tested by comparing all the permutations of two EDMs entry-wise. In our
case, we would like to handle inexact matching, which means we must also accommodate noisy
situations and sets of different sizes. Thus, we define the matching problem as finding the map

f that minimizes the cost

T T
=> Y D ) 1)

i=1 j=1
under the constraint that the map is a function (many-to-one mapping).ltH€r9 is the “total”
cost to be minimized (the reason for calling it “total” will be clear later), dnd, -) is some
dissimilarity measurdetween distances. Note that the argument®©f-) represent the entries
in the EDMs under the permutation induced py

This definition is equivalent (apart froribeing many-to-one instead of one-to-one) to that of
the weighted graph matching problem of [11], where edge weights are restricted to be relative
Euclidean distances between points corresponding to the respective vertices embedded in
(Note that since all distances are taken into account, the graphfsilgreeonnected Eq. (1)
actually represents an instance of the quadratic assignment problem which, in general, is known
to be NP-complete [11]. Due to this graph matching formulation, we will refer to the “domain
graph” G; and the “codomain grapht7. as the graph abstractions of the point sets. This gives

the formulation of our problem as a “Euclidean” weighted graph matching problem.

I1l. WEIGHTED GRAPH MATCHING AS AMAP PROBLEM IN A GRAPHICAL MODEL

This problem can be further reformulated as finding a maximum probability (MAP) configura-
tion in a probabilistic Graphical Model [55]-[58]. Before presenting our formulation, we briefly

review the main ideas about Graphical Models that will be required in our exposition.

A. Graphical Models

Graphical Models are graphical representations for families of factored joint probability dis-
tributions [55], [57], [59]. We will be considering exclusivelyndirected Graphical Models,
sometimes referred to ddarkov random fieldsn certain application domains. (In this paper,
“Graphical Models” and “Markov random fields” are complete synonyms.) A Graphical Model

is essentially a graph where nodes represent random variables and the edges represent a set of
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conditional independence assumptions made among the random varidftdesubset of nodes

B separates (in the graph-theoretic sense) the set of nédesn the set of node§’, then this
means, in the Graphical Model formalism, thatand C' are conditionally independent of;

that isp(AC|B) = p(A|B)p(C|B). For examples of Graphical Models that induce different sets

of conditional independence assumptions among their variables, see Figure 1.

OO Go——(x)

Fig. 1. Example of three undirected Graphical Modélsft: every imaginable conditional independence assumption holds.

Middle: some conditional independence assumptions hold, some doRigit: there are no conditional independence

assumptions.

Figure 1 shows three Graphical Models. Each noXg,in a model corresponds to a random
variable, which can assume a set of different realizations (in our context this set will be dis-
crete). A fundamental result about Graphical Models is the Hammersley-Clifford (HC) theorem,
which states that any strictly positive probability distribution that respects the set of conditional
independencies implied by a graph can be written in a factored form, namely as a product of
functions over the maximal cliqué$s5], [57]:

p(x) = [ velao) /2, 2

ceC
wherec is a maximal clique( is the set of all maximal cliques ang. is the restriction ofr

to the cliquec. Z is the normalization constant that rendérs, p(z) = 1. The non-negative
function ¢.(z.) is called thepotential functionwhich, in our case, will be a table with the
dimensionality ofx.. From this theorem, it is clear that all we need to specify a probability
distribution is a connectivity pattern for the Graphical Model and a set of potential functions.
The basic “query” that we will be then interested in answering about a Graphical Model is the

following: what is the most likely joint realization of all the random variables? In other words,

LAll our statements about Graphical Models in this paper will be restrictatisitreterandom variables.

%Recall that a clique is a complete subgraph and a maximal clique is a clique which is not a proper subset of another clique.
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what is the mode of the joint probability distribution defined by a Graphical Model and its
potential functions? This is known as the MAP (maximum a posteriori) problem in a Graphical
Model. For fully connected models, like the one in Figure 1-Right, this problem is intractable
(for discrete random variables). For completely independent models, like that in Figure 1-Left,
this problem is trivial: the joint mode can be obtained by computing each of the individual modes
independently. Models that lie between these two extremes, of which the one in Figure 1-Middle
is an example, can be either tractable or not.

At this point, it is important to state what determines the tractability of the model. The
fundamental algorithm for exact inference in Graphical Models is the Junction Tree algorithm
[55]-[57], [59]. It works by creating a hypergraph (a “Junction Tree”) from the original graph
and then running a dynamic programming algorithm on this hypergraph. However, Junction
Trees can only be created faiangulated (i.e. chordal) graphs [55], [57], so the effective
computational complexity depends on triangulated versions of the original frimpheneral,
there are many possible triangulations for a given graph. The exponential complexity of the MAP
computation for a given Graphical Model will be determined by the minimum size, taken over
all possible triangulations, of the maximal clique in the triangulation. If this exponent grows
with the size of the graph, then the model is intractable, otherwise it is tractable. For example,
a fully connected graph is triangulated with maximal clique size equal to the size of the graph
itself, which immediately implies intractability. Naturally, in practice one requires the exponent
to be not only fixed but also small. Notice also that, if a graplalieady triangulated, other
triangulations will only potentiallyincreasethe size of the maximal clique, so the exponential
complexity will be given directly by the size of the maximal clique of the graph, without any
need for triangulation. Since the problem of finding a triangulation that has minimal maximal
cligue size is NP-complete [57] (one calls it an “optimal triangulation”), the “ideal” scenario
would be one in which the graph is already triangulated. We exploit this fact below by identifying
a triangulated Graphical Model structure for our problem that has a small maximum clique size.

Next we show how the point pattern matching problem can be formulated as a MAP problem

A graph becomes triangulated (or, equivalently, chordal) by adding edges in such a way that all cycles of length greater than
three have a chord. A chord is an edge between two non-consecutive nodes in the cycle.

“Note that “transforming” a graph by triangulating it is not restrictive, since triangulation can only add edges and therefore

only reduces the set of conditional independence assumptions implied by the original graph.

June 22, 2005 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 9

in a Graphical Model. Although in the initial formulation the Graphical Model will be fully
connected (and thus intractable) we will show afterwards how we can otbtaisameMAP

solutions with a sparse, tractable model.

B. Formulation

The key idea for modeling weighted graph matching as a MAP problem in a Graphical Model
is as follows. Assume that each vertex in the domain graph is a random vakiglaad that each
such random variable has a finite set of possible realizations coinciding with the set of vertices
in the codomain graph. This means that a particular realizatjoof a random variableX;
corresponds to a particular map between the pdimt the domain pattern and a poigt in the
codomain pattern. Thus, a joint realizatior= {x;} of the set of variableX = {X;,Vi|d; € T}
corresponds to a particular match between the pointBeasdS. In this spirit, one can define
a probability distribution such that the most likely joint realization of the variables (the MAP
configuration) corresponds to the minimum of Eq. (1).

In order to accomplish this, we specify a Markov random field based on edge-wise potentials
over thefully connected graphLet ¢;; denote the local potential function for ed@e;j). Then,

the joint probability distribution over the pairwise Markov random field is

pX=2) = H¢1] =1, Xj = x5) (3

= —exp ZVW i =2, X; = ;)

whereV;(X;, X;) = —log(v;;(X;, X;)), andZ is a global normalization constant determined by
summing the product of potentials over all possible joint realizatiortor clarity, in Eq. (3), we
have used standard notation whetedenotes aenericrealization of X; (i.e., any realization,
not one in particular indexed by). In the context of this paper, we find it more convenient
to modify this notation such thakj is still the random variable, but; is now thespecific
realization indexed by (7).

To relate this problem to Eg. (1) (and here we use the new notation), all we have to do is
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specify appropriate potentials. In particular, define
Vii(Xi =2, Xy = 25) = Vij(di = cp0), dj = cy5))
_ d c
= DWi: Y5 0))-

The resulting model becomes

T T
W) = e (— >_ 2 Pl y;(i)f(ﬂ)) (4)

thus maximizingp(f) is equivalent to minimizind/r(f). Note that we now write the realization
X =z in the form of a mapf: each random variabl&’;, which corresponds to a poinat, will
“map” to a realizationz(;), which corresponds to point ;) (note the new notation).

Although this observation is interesting, it does not immediately yield a useful approach to
solving the problem because MAP computations over a fully connected Markov random field
are intractable. The key idea in this paper isafgproximateUr(f) in such a way that only a
subset of all the pairwise cliques in the fully connected model is taken into account. This will
eventually lead us to a Graphical Model that is tractable. However, the hallmark of the particular
model that we will obtain is that its MAP solutions can be proven tahH®e sameas those of

the fully connected model in the noiseless case. This makes the “approximation” exact.

IV. THE MODEL

To construct a sparse alternative to the fully connected Graphical Model given in Eq. (4)
we need to specify: (i) a set of potential functions that will define the funciiprand (ii) a

connectivity pattern that will define the subgitof edges on which we will define potentials.

X1 X1

Xg X g

Fig. 2. Local “kernel” structure of the Graphical Model. Each random variable can asSypussible realizations, so that the

sample space for two connected random variablesSRaslements.
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First, to specify the potentials, consider the local “kernel” structure of our model shown in
Figure 2. Generally speaking, a potential function associates to each element of the sample space
a non-negative real number [55], [57]. In our model, potentials will be defined on edges, where
each node contained in an edge (a random variable) represents one ‘Dfvéréices inGy,
which, in turn, can assume a set 8fpossible realizations (which themselves correspond to
vertices inG,). Thus the sample space for each edge $taglements, and we can specify the

potential function for an edge (i.e., a pdiX;, X;} in G;) by anS x S matrix

S vn) - Sy vis)
Vi (X, Xj) = : : , (5)

S vs) - Sy vés)
whereyglj denotes the edge weight between vertices with indéxasd j in graphG, (which
corresponds to the Euclidean distance between pdinésdd;). An analogous notation holds
for y;,. S is a function that measures the compatibility of the two arguments. Note that the
compatibilities are a function of thdistancesbetween a pair of points in the domain pattern
and corresponding points in the codomain, not similarities betvpeants themselves.

To measure compatibility in the exact matching case (no noise) we can simply use the indicator

function
1, if yldj =5

For inexact matching, where we assume jitter in the point positions (typical in practice), we need

S(yfj,yil) = 1(9;3 = Yp) = (6)

a more general “proximity measure” to cope with uncertainty. Thus, in these cases we measure

compatibility using the Gaussian kerpel
C 1 (&
S(yij: yia) = exp (——20_2 ly; — ykMQ) : (7)

Other similarity measures could be chosen, but we do not focus on this choice in this plter
that any technique for matching noisy patterns requires some soft similarity measure, including

the methods we compare to in this paper (where we use the same kernel). For example, relaxation

®In the exact matching case, the Gaussian kernel actually gives identical results to the indicator, since its maximum is attained

uniquely at an exact match. However, the indicator makes the upcoming theoretical results clearer.

An early attempt do evaluate different measures is reported in [60].
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labeling [27] and graduated assignment [11] both userapatibility measurdetween pairs of
assignments to score any putative matching. These scores use a parameter to adjust for the level
of position jitter in the data. Thus, the single parameter in Eq. (7) is not, itself, an artifact of
our method, but a necessary element in any matching model that aims to cope with noise.

Having specified the potential functions, it remains to determine the connectivity of the
Graphical Model. Here we will simply propose the Graphical Model structure shown in Figure 3,
and assert that this Graphical Model structpreserves the MAP solutions of the fully connected

model—a fact we will verify in Section V below.

Fig. 3. A model for matching ifR2. The topology of the model corresponds to that of a 3-tree graph, whose maximal clique

size is 4 (thus independent @n the number of nodes, ang, the number of possible realizations for each random variable).

Before proceeding with the proof of its optimality, we make a few remarks about this model.
First, Figure 3 illustrates a model that is specifically constructed for matchiRg.iRor matching
in R*~1, an analogous topology can be used: instead of a 3-clique in the upper layer, one simply
uses ak-clique, and each of the oth&f— k nodes is then connected to each of thksedes.
For anyk (andT > k), this generic model topology has two important features: (i) @lisady
triangulated, and (ii) the size of the maximal cliquetis- 1, independentf both the number of
nodesT and of the number of possible realizatiofisAs explained in Section Ill, because it is
triangulated, we know that this model has a Junction Tree, and because it has a bounded maximal
clique size, the “Junction Tree algorithm” has polynomial complexity in this model. That is, for
models like the one in Figure 3 thexactMAP solutions can be computed in polynomial time.

It might sound artificial to define the “candidate” topology as a triangulated Graphical Model

with a fixed maximal clique size (which together form sufficient conditions for polynomial

"We might then claim that our proposed method has no “intrinsic” parameter, in the sense that it does not introduce any

parameter other than the one required to noise modeling.
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time complexity). However, in the next section we show that this topology is not postulated,
but derived from first principles, which reveals a subtle connection between exact inference in

Graphical Models and the “global rigidity of graphs”.

V. OPTIMALITY OF THE MODEL

In this section, we present theoretical results that lead to a special kind of grapkree®.
The properties of this graph will allow us to draw a connection to the problem of exact inference
in Graphical Models, and will ultimately lead us to prove that the model shown in Figure 3,
although sparse and computationally tractable, yielgsivalentresults to the fully connected

model in the limit case of exact matching.

A. A relevant lemma

We start by presenting a lemma that will be necessary to obtain the subsequent results.

Lemma 1:Let Sy, Ss,. .., S,+1 be(n+1) spheres irR™ whose centers are in general position
(do not lie in a(n — 1)-dimensional vector subspace). Then the intersectiomgtS; is either

a single point or the empty set.

Proof: We use induction over n. Recall that a sphere in a vector space is the set of points
equidistant to a fixed point.
The Lemma obviously holds for the base case when 1. See Figure 4.

Not concentric Not concentric
N\ I\ I\
- -
Sphere 1 Sphere 2 Spherel  Sphere 2
Intersection is the empty set Intersection is asingle point

Fig. 4. lllustration forn = 1: 2 spheres iR! whose centers do not lie in a O-dimensional vector space (i.e. they are not

concentric).Left: empty intersectionRight: intersection is a single point.

Now let S; NSy = I;,—see Figure 5(a). Ther, is a (n — 2)-sphere lying in a(n — 1)

vector subspacé). (We use the convention of topology, which states that(an- 2)-sphere
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is spanned necessarily bycmpletebasis inR"~!. For example, the 3D sphere ®? is a
2-sphere, not a 3-sphere.) Let= S;,1NQ fori =2,3,...,n. Thenly, I>,..., I, aren spheres

in Q = R*! (= denotes congruency) and, obviousty,_, I; = N+lS,—see Figure 5(b-d).
Given the above definitions, the natural induction hypothesis that arises is: if the centers of the
spheresly, I, ..., I, do not lie in a(n — 2) vector subspace, then the intersection of these
spheres consists of at most a single point. Sinfe 7; = N*+LS;, we have from the hypothesis

that N'*1S; consists of at most a single point. So, what is left to prove is that the centers of
the spheres, Ss, ..., S,+1 do not lie in a(n — 1) dimensional vector space (i.e. are in general
position). Let(zy, xo, ..., x,) be the coordinates dk”. Let (a;1, @i, - .., a;,) be the center of

S;. Without loss of generality, we may assume thais given byz; = 0. ThenQ = R"! is

parameterized by, xs, ..., x,). The center ofl,_, has coordinat€a;s,a;s, ..., a;,), j > 2.
The centers ofy, I»,--- , I,, are in general position if and only if the matrix
[ 99 Q93 - Ao, 1_
Q39 ass ... Qz, 1 ®
| Ont12 Qng13 -+ Qpyign 1]

is invertible, i.e. has maximal rank.

But this matrix is precisely the x n lower-right submatrix of the following matrix

a1 a12 e A1y 1
21 22 - Ao, 1
9)
_an+1,1 an4+1,2 -+ Qpntin 1_
which is the analogous matrix for the centersSef.S,, ..., S, 1. By subtracting the second row
from the first row of matrix (9), we obtain
-au — a921 0 e 0 0-
921 929 Ce Qon, 1 (10)
| On41,1 an+1,2 -+ Qntin 1_
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Note that@ = {x; = 0} implies that(ais, a3, ..., a1,) = (a2, ass, ..., as,), Which creates the
zeros in the first row. It is evident that matrix (10) is invertible if and only:if # a,; and
matrix (8) is invertible, which is the induction hypothesis. This implies that the centess dd

not lie in a(n — 1) vector subspace i®", which completes the proof]

a Q={x= 0)
b Q=1{x,= 0}
C Q={x,= 0}
d

Fig. 5. lllustration of the construction used to prove Lemmé) The intersection of spheres and.S» in R™ is another sphere

I1, which lies inQ = R"™!; (b) and (c) (spheresS; and.S» are omitted for clarity),l;’s, j > 1, are obtained by intersecting

n

Si’s, 1 > 2, with Q; (d) The intersection of thd;’s is a single point (and so is that of th&’s, due ton}_;I; = m;fsi)- In
this example inR3, the 4 spheres, S, S3, S4 have their centers in general position. The key equatiomnis, I; = nrtls,,
which allows us to construct an appropriate induction hypothesis relatisgheres I;'s) in R"~* with n + 1 spheres §,’s)
in R™.

Another way to see this result is the following: if the distances from an unknown point to
n + 1 known points inR™ are determined, then this point is unique—providedthge1 points
are in general position. In order to see this fact, note first that the unknown point is clearly in
the intersection of the spheres whose centers are:ithel fixed points and the radii are the

respective distances between their centers and the unknown point. Second, note that Lemma 1
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states that the intersection is either a single point or empty (which is not the case because we
have assumed the existence of this unknown point). This implies that the point is unique. This
result will be used in the following in order to obtain another result concerning the “global

rigidity of graphs”.

B. Global rigidity of k-trees

Here we use Lemma 1 to infer a second result that will ultimately lead us to obtain the
main theorem about the topology of the Graphical Model. The theory of graph rigidity, although
mathematically rich and sophisticated [61], involves concepts that are easy to understand. Strictly
speaking, we talk about the rigidity afraph embeddingsn R™ where the edges are straight
lines (these embeddings are calfe@mimework$. Simply put, we say that a framework is globally
rigid if the lengths of the edges uniquely determine the lengths of the “absent edges” (the edges
of the complement graph).

To present the key result about the global rigidity of a special kind of framework-tr@e—
we start by reviewing some basic definitions from graph theory [62]. In what follows a complete
graph withn vertices is denoted ak’,,, and ak-clique is a clique withk vertices. Also recall

that aframeworkis a straight line embedding of a graph.

Definition 1 (-tree, basek-clique): A k-treeis a graph that arises froli, by zero or more
iterations of adding a new vertex to the graph and connecting it kvighlges to an existing-

clique in the previous graph. Thecliques defined by the new vertices are calbede k-cliques

Figure 6 shows the process of creating-&ree, in the particular case wheke= 3. We start
with a K5 graph. Then we add a vertex (4) and connect it to every vertex of the (so far unique)
base 3-clique. Vertex (5) is then added and is connected, in this example, to the same base
3-clique. Vertex (6) is then added and connected to another base 3-clique, formed by vertices
(2), (3) and (4). Note that all intermediate graphs generated in this way are themselves legitimate
3-trees. Also note that, in general, the resulting graph is sparse (the graph with 5 nodes is the
first to present sparseness, since the edge (4-5) is absent).

A careful examination reveals that the size of the maximal clique loftr@e withn vertices

is preciselyk if n = k and preciselyk + 1 if n > k. (This is easy to see because every time a
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new vertex is added it is connected to exadtlyertices of ak-clique, forming a(k + 1)-clique.)
q/ﬂ

Base 3—cliques

Fig. 6. The process of constructing 3-trees. At each step, a new node is added and connected to all nodes of an existent

3-cliqgue (which is then called a “base 3-clique”).

We are now equipped to present the second result:

Lemma 2:A k-tree framework with all basg-cliques in general position iR*~! is globally
rigid in R*1,

Proof: We use induction on the number of verticesn the k-tree framework. Fomn = k
the result is obvious because the graph is simphr@dique, which is fully connected and by
definition is globally rigid. Now assume the lemma is true for some k. First, choose a fixed
(but arbitrary) coordinate systes\. If the lemma holds for some > k, then all the points in
the framework are determined  Now include a new vertex with given distances from all the
k vertices of any existent bageclique in general position. By drawing edges corresponding to
these known distances, we generate a new frameworkmwith vertices. But since the inserted
vertex has determined distances from all vertices of a bad&ue which is in general position,
its position is determined ity by virtue of Lemma 1. If its position is determined §) then
the positions of all vertices in the new framework are determined ifbecause the previous
framework was globally rigid by the induction hypothesis). If all the positions are determined
in S, all pairwise distances are determined (irrespectivelyspfThis guarantees that the new
framework is globally rigid inR*~!, which completes the proof]

The direct implication of this result is that thetree framework, from the perspective of

pairwise distances, haxactlythe same information content as a fully connected framework. We
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now show, using this fact, that our sparse model yields equivalent results to the fully connected

model in the noiseless case.

C. Equivalence of-tree versus full model

To present the main theoretical result, we introduce some new terminology to that established
in Section Il. We specifically analyze the noiseless case, wifemnd 7~ are related by an
isometry. Consider the domain and codomain graphsand G. defined in Section II. Define
Gkt = (V,;,EM) as a graph with the same nodes(@g but with edge connectivity given by a
k-tree whose bask-cliques are in general position B!, Let G* = (V¥ £X) be the subgraph
of G. whose nodes are those to which the notdgsnap under an optimal map. We define as
G* = (V,;, EX) the complement graph af%!, while G* = (V¥ £F) is the complement graph
of Gkt

Now, if we choose the edge set of the model (the set of pairwise cliG)e® be ak-tree,
the “approximated” optimization problem over thistree graphG*%’ can be defined as one of
minimizing the following “partial” cost function ovef (as opposed to the “total” cost; from
Eq. (2)):

Usse(f) = > Dl i) (11)

i,j\dijesj;t
whered,; is the edge between verticdsandd; in G, and £} is the edge set of grapf’'.

We can now state our main result.

Theorem 1:In the exact matching case, a mapping functfowhich minimizesUGSt(f) also

minimizesUr(f).

Proof: If we define a cost function over the complement graplG§f (G%) :

Usse(f) = > Dl Yo (12)
i,jldi;€ER?
we have
Ur(f) = Ugre(f) + Uz (f)- (13)
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In the noiseless case, the dissimilarity functibi-,-) associated to a particular match is

described simply in terms of an indicator function (Eq. (6)):

Dy viws) = 1= 105 = viwsg)- (14)

The optimal matching functiorf is such thatU;(f) = 0. Obviously, from Eq. (13) it holds
that Ur(f) = 0 = Ugre(f) = 0, sinceUgn (f) and Ugr:(f) are non-negative becauss(, -)
is non-negative (Egs. (11) and (12)). Our purpose is to prove the converse, i.éfcgh(@t) =
0 = Ur(f) = 0. According to Eq. (13), in order to do so, it suffices to prove tﬁggt(f) =
0= Ugr(f)=0.

Here we use Lemma 2, which asserts that if the distances corresponding to the edges of
a k-tree framework whose bagecliques are in general position are determined, then all the
remaining distances between vertices not connected by an edge are determined.

Let us write this result symbolically, for A-tree in the domain graph, as

{y” = const?. Vi, jldi; € & M = {yw = const? Vi, jldi; € gy (15)

177 1]7

Whereconstflj is a constant for fixed and j.

SinceUG;;t(f) = 0, every term of the sum in Eq. (11) must be zero, since they are non-negative:
Dy, v5wyp) = 0, Vi, jldi; € EF. (16)
However, from the definition oD(-, -) for exact matching (Eq. (14)), this means that
yz] = yf ])7vz j|dl] E . (17)
Notice that the statement (Eq. (15)) holds for d@nyree whose bask-cliques are in general
position, so it holds forG* in particular. (Recall thatz** has its basek-cliques in general
position in R*~! because it is assumed isometric &', which by assumption has its base
k-cligues in general position and so is globally rigid.) Therefore we conclude:
c c . k
Wi = constio s Vi ildsasg € &7}
= {Viwsw = consti i) Visdlesisg) € €7 (18)
Notice that Eq. (17) implies that the left hand sides of implications (15) and (18) are equivalent.

As a result, their right hand sides are equivalent and we obtain:
Y = Y iy Vi dldiy € E. (19)
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Substituting this into Eq. (12), yields
Ugre(f) =0, (20)

which was what we wanted to provel

Note now that the model shown in Figure 3 has the topology/otr@e (a 3-tree). As a result,
the solution obtained by the Junction Tree algorithm over this model will not only minimize the
cost functionUGQt(f), but also the cost function of a complete modé},(f) (Eq. (1)). This is
our main theoretical result.

Actually, other models can be used, as long as they have the topology-tvéa. The specific
choice of 3-tree for Figure 3 was made simply because it has a single base 3-clique, and therefore
only requires these 3 points to be non-collinear (the points corresponding to random variables
X1, X5 and X3). In the case of exact matching, as long as these points are not collamsar,
choice can be made and Theorem 1 will still hold. However, when there is position jitter, different
choices can give different results, and the variance of the results over different selections of the
reference points will increase with jitter (experimental evidence of this fact will be provided).

A principled way of selecting the reference points in this case is still an open problem which
we are currently investigating, and for the purposes of the experiments presented in this paper

the selection of the reference points is made randomly.

VI. INFERENCE

Given thek-tree model, we must solve the MAP problem, i.e. determine the most likely joint
realization of the random variables in the model. This is done with the Junction Tree algorithm.

In this section we describe how the Junction Tree algorithm is applied to our particular case (for
details of the general case, see [57] and [55], [56]).

The Junction Tree for the model shown in Figure 3 is given in Figure 7.

The tree in this case is actually just a chain, thus we have a “Junction Chain”. The maximal
cliques in a Junction Tree are denoted by circles, called “cligue nodes”, whereas the set of
variables common to adjacent clique nodes are represented by rectangles, called “separator
nodes”. The Junction Tree algorithm is a dynamic programming procedure that systematically
changes the potentials in the clique nodes and separator nodes in a two-way “message-passing”

scheme, similar to the Viterbi algorithm for MAP computation in Hidden Markov Chain models
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Fig. 7. The Junction Tree for the model in Figure 3. Circles (“clique nodes”) correspond to the maximal cliques of the original
graph, whereas rectangles (“separator nodes”) correspond to the intersection between adjacent clique nodes. Non-filled arrows
correspond to the first message-passing, whereas filled arrows correspond to the second. The value adjacent to an arrow denotes
the order in which the corresponding message is passed. Dashed arrows correspond to Eq. (21), whereas solid arrows correspond
to Eq. (22).

[63]. These updates preserve the joint distribution, but achieve a useful form of local consistency.
Just like the Viterbi algorithm, which after the forward and backward operations delivers the
individual MAP distributions for each node, the Junction Tree algorithm delivers the MAP
distribution for each cligue node (which, in this case, possibly involves multiple nodes of the
original graph—four in the case of Figure 7). The final MAP distribution for each individual
node X; can then be computed by “maximizing out” the remaining individual nodes within the
clique node [55], [57]. For example, the final MAP distribution for nodgin Figure 7 can be
computed byp(x;) = max,, max,, max,, p(x1, T2, 3, x4). This operation is clearly exponential
on the number of variables in the clique node, and that is one of the reasons why the Junction
Tree algorithm is only efficient for graphs with small maximal clique size.

The message-passing scheme works as follows. First we initialize the potential functions for
each of the clique nodes by combining the pairwise potential functions (which are obtained from
the compatibilities described in Section INM){(x;, x;, xk, x;) = Y(z4, ;)Y (2, 2k (2k, 7). The

separator nodes are all then initialized to 1 [57]. Then we perform message-passing: starting

June 22, 2005 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 22

with a clique node/ that is a leaf of the chain, we compute

o = /] 21

s = max Wy (21)
@*

Uy, = 20y, (22)
o5

where W is the clique node to which is “sending a message”. This “message” actually
consists of two updates: (i) substituting the potential in the sepafalyy computing the MAP
of cligue nodeV with respect to the nodes that are common with the separator; and (ii) re-
weighting the potential in clique nod& by the ratio between the new and the previous separator
potentials. This local operation is then propagated until the other leaf is reached, when it is
repeated in the reverse direction. Once complete, the joint distribution has been preserved, but
the marginalization property Eg. (21) has now been established between every clique node and
its separators. This ensures that we have obtained the desired MAP distribution at each clique
node [57], as mentioned above.

To compute the messages, note that each potehtigla 4D table, withS bins per dimension;
see Figure 7. Thus, the maximization operation in Eq. (21) runs over the dimension of the 4D
table, Uy, that is not common to the 3D tablég. Similarly, the division and multiplication
operations of Eq. (22) are performed entry-wise in the tables. Figure 7 shows details of how the
overall dynamic programming procedure works. As mentioned above, after the two-way message-
passing is finished, local maximization yields the final MAP distributions of the singleton nodes
X;, from which the mode indicates the point in the codomain pattern that matches the point in
the domain corresponding t&,.

The complexity of computing each of the messages (Eq. (21) and Eq. (22))Si), since
the largest tablesl('s) are 4-dimensional witl$' bins per dimension. There are in tof&ll" — 2)
messages, so that the overall computational complexity for this mod@l155*), which is
polynomial in the size of the domain patterfi)(and in the size of the codomain patteis$)(
Note that there is no iterative procedure involved, and no concept of “initialization” is present.
The algorithm runs is preciseB(7T — 2) steps and will always deliver the same result for the
same input. This is because the algorithm is strictly deterministic, based solely on the dynamic
programming principle [55], [57], [59]. Since the dynamic programming finds the global optimum

for the given modebnd the model itself is optimal in the noiseless case, we have an algorithm
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for point pattern matching that has polynomial complexity and is provably optimal in the limit

case of exact matching.

VIlI. EXPERIMENTS AND RESULTS

One obvious shortcoming of this theory is that it only addresses the exact matching case. For
inexact matching, the theoretical guarantee that the minimum of Eq. (11) equals the minimum
of Eg. (1) no longer holds. However, there remains value to the framework: in the noisy case,
one can still run the Junction Tree algorithm with the compatibility measure of Eq. (7) to
cope with approximate matches, requiring the same polynomial time. The only question is: how
significantly does the quality of the approximate match degrade?

To evaluate this question, we conducted a number of experiments to compare our method
(denoted simply as JT) to standard techniques in the literature, including probabilistic relaxation
labeling (PRL), as described in [26], the spectral method (SB) presented in [35], and Graduated
Assignment (GA) [47]. Note that these methods encode all pairwise distances in their objectives,
whereas our method only encodes those distances that correspond:ttrébetopology. On the
other hand, our approach uses an optimal non-iterative algorithm, whereas the others are based
on approximate heuristic algorithms. None of the standard approaches—PRL, SB or GA—have
any optimality guarantees, even in the noiseless case. The experiments involve matching tasks

in R?, so we use the 3-tree model of Figure 3.

A. Synthetic data

To compare techniques across a range of problem conditions, we generated random points
according to a bivariate uniform distribution in the intervak [0, 1], y = [0, 1]. We conducted
two sets of synthetic experiments: (i) point sé&tsand 7 of equal sizes comparing JT, GA,
PRL and SB, (ii) point sets and7 of different sizes comparing JT, GA and PRL (SB is not
suited for different graph sizes). In order to compute the similarity measure between pairwise
assignments, we use the same Gaussian kernelowith).4 for all methods (see Section (1V)).
This is the only parameter involved in our method, but is also necessary in the other ones. The
problem of selecting is far from trivial [3], and in this paper we do not aim at optimizing over
this parameter. See [60] for tentative experiments in this sense. We basically choose a value that

we know will not underflow the kernel computation in the case of extremal differences between
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the argument and the mean of the Gaussian function. For the construction of the 3-tree, the 3
reference points were selected randomly.

In the first experiment, we used patterns of size (10,10), (20,20), (30,30) and (40,40) points.
For each of these 4 instances, we perturbed the codomain pattern with progressive levels of
noise: from small levels (std = 0 to 1), to moderate levels (std = 2), to high levels (std = 4). The
value ‘std’ is 256 times the real standard deviation used (i.i.d. Gaussian noise). Typical instances
of patterns perturbed with jitter of std = 1 and std = 4 are shown in Figure 8. Figure 9 shows
the obtained curves under these experimental conditions. Each point in a curve is the average

over 300 trials.

Jitter = 1 Jitter = 4
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Fig. 8. Instances of patterns when different levels of jitter are introduced. Circles correspond to the jittered pattern whereas
“plus” corresponds to the original pattern (the patterns were superimposed for the purpose of visual comparison; in practice, as
should be clear from the text, they may be translated/rotated/reflected with respect to each other and may also have different

cardinalities).

The graphs show that JT, GA and PRL are much more robust under jitter than SB, confirming
the known fact that spectral methods are very sensitive to structural corruption (which is one of
the reasons why significant research effort has been recently dedicated to alleviating this problem
with spectral techniques [2], [3], [38], [51]). The graphs also show that, when the pattern sizes
are increased, GA and PRL are still very robust across the whole range (the curves are almost
horizontal), whereas JT is more sensitive to high jitter. However, it is clear that JT is competitive
for small to moderate jitter (std = 0-2). The curves for GA and PRL essentially just undergo a

change in offset for different pattern sizes, which reveals decreasing performance in the low jitter
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Fig. 9. Comparison of JT, GA, PRL and SB in matching equal-sized point sets under varying jitter. Results shown for 10, 20,
30 and 40 node graphs.

region. PRL is particularly more sensitive than GA for large matching problems, as reported in
[11].

In the second experiment we held the size of the domain pafieconstant (10 nodes) and
varied the size of the codomain patte¥n(from 10 to 35 nodes in steps of 5), for various jitter
levels (std = 1,2,3,4). In this experiment, we compared JT, GA and PRL only, since SB is not
suited for graphs with different sizes. Figure 10 shows the results of this experiment. Each point
in a graph corresponds to the average over 300 trials. Clearly the accuracy of JT does not degrade
significantly for larger codomain patterns, even under high jitter, whereas the performances of
GA and PRL begin to fail dramatically.

Overall, it is possible to notice that, whereas GA and PRL are more robust with respect to
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Fig. 10. Comparison of JT, GA and PRL for matching under varying relative sizes. Results for various levels of jitter (std =

1, 2, 3 and 4).

noise, JT is more robust with respect to increases in the sizes of the patterns, across a wide range

of jitter. SB is only satisfactory in the uninteresting case of equal pattern armbsirtually no

jitter. Despite the fact that it only gives theoretical guarantee of optimality in the noiseless limit

(which was confirmed in the experiments by noting the perfect performance in all cases where

std = 0), the proposed technique, JT, presents excellent performance for small jitter, regardless

of the pattern sizes. Even for high jitter, it significantly outperforms the alternative techniques if

the pattern sizes are significantly different. This is a very important result: in real applications

where either (i) we have equal pattern sizes and the jitter is small, or (ii) we have different

pattern sizes (regardless of jitter), this approach finds its best applicability.

June 22, 2005

DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 27

B. Real-world data

We also conducted experiments on real image data to evaluate the techniques on a realistic
Computer Vision problem. In the real-world experiments, we used the CMU house sequence
available at http://vasc.ri.cmu.edu/idb/html/motion/house/index.html. This database consists of
111 frames of a moving sequence of a toy house. We matched all images spaced by 10, 20, 30,
40, 50, 60, 70, 80, 90 and 100 frames and computed the average correct correspondence. Since
there are 111 frames, note that the number of image pairs spaced by these amount of frames

are, respectively, 101, 91, ..., 11.

Figure 11 shows typical images separated by these quantities of frames.

Fig. 11. Images from the CMU house sequence (top row: frames 1, 11, ..., 41; bottom row: frames 51, 61, ..., 91.)

Since all the images have size 384576 (contrary to the synthetic experiments, where the
point sets lied onc,y = [0, 1]), we need to use, accordingly, a large valuedqisee Eq. 7) that
does not underflow the kernel computation for very large deviations in the pairwise assignments.
Here we used the value = 150. Also, as in the synthetic experiments, the 3 reference points
for the 3-tree were selected randomly.

Figure 12 shows examples of correspondences between different views of the same object
obtained with the proposed technique for (i), narrow baseline (top) and (ii), wide baseline
(bottom). For the narrow baseline case, all points are matched correctly in this example, whereas
for the wide baseline case there are mistakes induced by the fact that rigid motion in the plane
is no longer a reasonable assumption.

In total, 30 landmark points were manually marked in each of the images. We then conducted
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Fig. 12. Correspondences obtained with the proposed algorithm. Top: narrow baseline. Bottom: wide baseline. Note that several

mistakes occur for wide baseline, since the isometric assumption is no longer appropriate.

four different experiments. We matched 15 against 30, 20 against 30, 25 against 30 and finally
30 against 30 points for every image pair in the experimental setting defined above. This allows
us to evaluate how the techniques perform in a real problem with different point set sizes. For
the 30 x 30 case, we run all 4 techniques (JT, GA, PRL and SB), whereas for the remaining cases
SB was not used since it is not suitable for patterns of different sizes, as already mentioned.
Figure 13 shows the results for these experiments. The average value is taken over different
spacings between image pairs in the frame sequence. Here we can observe that, as the relative
sizes of the patterns become progressively different, the advantage of JT over the other techniques
increases, which agrees with the synthetic experiments. For the reported values of different pattern
sizes, JT performs significantly better than the competing methods, even for a wide baseline.
Although the isometric assumption clearly does not hold for a wide baseline, we note that the
same pairwise distances were used as featuresveémy algorithm, so we expect this to be a
fair comparisorf. For the experiment with patterns of the same sixe X 30), JT has similar

performance to GA and PRL when the baseline is increased. For the narrow baseline case, JT

81t should be clear that in real problems, any of these approaches, since they rely exclusively on distance features, will only

be competitive in the narrow baseline case.
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Fig. 13.
separation) and different domain/codomain sizes (15/30, 20/30, 25/30, 30/30).

slightly outperforms the competing methods.
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Performances of JT, GA, PRL and SB in the CMU houses sequence for increasing baselines (10 to 100 frame

Our results in the real-world experiments lead us to conclude that, in the particular real-world

problem of stereo correspondence, JT finds its best applicability in the narrow baseline case for

patterns of different sizes where the isometric assumption is guaranteed to hold (apart from jitter

of course). This finding agrees with the synthetic experiments.

Given the positive results on both synthetic and real-world experiments where there is a

narrow baseline, we expect that in other applications, like those involving matching of star

constellations, flexible ligands and protein motifs (where the isometric assumption also holds

with good approximation) the proposed technique should perform similarly well.
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Performance variation across different k-trees Influence of k-tree choice with respect to jitter
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Fig. 14. \Variation in performance of JT when different k-trees are used: matching two patterns of 20 nodes each. For each
jitter level, 100 experiments were carried out (100 different domain-codomain point sets). For each of these, 100 random k-trees
were generated and for each of these the JT algorithm wad afin. each error bar corresponds to the average, over the 100
experiments, of the standard deviation computed over the 100 different k-trees of each expeRigtantthe growth of the

variance is plotted explicitly. Note the linear behavior.

C. Empirical performance evaluation for varying k-trees

We mentioned previously that there is a theoretical problem that remains unsolved in this
framework: how to select thé-tree when there is position jitter. When there is no jitter, any
k-tree will find the same—optimal—solution. However, when jitter is present, differarges
can result in different accuracy. Here we provide empirical evidence of this fact by measuring
the variance of the performance of a matching task over a range of possible choictses.

Figure 14 shows the results of our experiments. We used the same setting of the previous
synthetic experiments: random point patterns{(ini]?>. We randomly generated 100 domain-
codomain pairs in this range, each with 20 points. For each of these 100 configurations, we
randomly selected 100 3-trees for the domain pattern. Finally, the JT algorithm was run in each
of these 100 3-trees. This allows us to measure the performance variability within the same pair
domain-codomain over a wide selection of 3-trees. We simply computed the standard deviation
over the 100 runs in each pair and averaged the results over the 100 configurations. This “average
standard deviation” is plotted in the error bars in Figure 14-Left.

We observe from Figure 14-Right something that was already expected: the performance

variance increases with jitter. In particular, it is zero for zero jitter, confirming the theoretical
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results. Note that the average standard deviation grows only linearly with respect to the jitter.

D. Processing Times

The computational complexity of the proposed method is higher than in the other approaches.
Spectral, graduated assignment and relaxation methods are, respetiZly,(S=T), O(7>5?)
and O(T?S3%), while the proposed Junction Tree approachOi&’s*) (for matching inRR?).
However, the graphs showing real processing times (see Figure 15) indicate that even for a
reasonable size, like 40, the actual running time is just twice that of PRL and 4 times that of

GA. For graphs with about 30 nodes, the technique is about as fast as relaxation labelling.

Processing times

——JT
sol| =@ -GA
=O= PRL
|| A sB

20 'fé T
Graph size T (S=T)

Fig. 15. Processing times for JT, GA, PRL and SB all in MATLAB implementations running on a Pentium 4, 3.2 GHz and
1GB of RAM.

VIIl. DI1SCUSSION ANDFUTURE WORK

A matching algorithm should, ideally, present high robustness with respect to jitter as well
as with respect to size increases of the patterns. Our experiments revealed, essentially, two
things. First, for matching patterns of the same size, the proposed method is very robust to
small and moderate position jitter and reasonably robust to high position jitter. Second, and
more important, the method is extremely robust to increasing differences in the pattern sizes. In
experiments where the sizes of the two patterns are significantly different, the performance of JT

is by far superior to that of the alternative methods. This is an important result, because in many
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relevant application domains the problem of finding a “small” model within a “large” scene is of
primary concern. (A typical such scenario that arises in Computer Vision is model-based object
recognition in cluttered scenes.) We believe that the results presented in this paper indicate a
possible direction in the search for robust algorithms for subgraph matching, where the sizes of
the graphs can differ significantly.

This research has opened a wide field of investigation. There are several ways in which the
current work can be extended. First, by considering higher-order potentials one might be able to
cope with more complex invariances, such as invariance to affine transformations. Second, non-
rigid matching might be attainable by augmenting the clique potentials with terms that allow for
some kind of nonlinear transformation. Third, theoretical results on the accuracy of the method
for the noisy case can be investigated. Fourth, the framework should be extended to deal robustly
with outliers. Also, a deeper understanding of the noisy case might lead to a principled technique

for the k-tree selection problem.

IX. CONCLUSION

This paper proposed a new solution to the rigid point pattern matching problem where |jitter
is allowed. The approach consisted of modelling the point matching task as a weighted graph
matching problem and solving it using exact probabilistic inference in an appropriately designed
Graphical Model. By using graph rigidity arguments, we showed that this Graphical Model,
while allowing for exact MAP computation in polynomial time, still remains equivalent to the
fully connected model in the noiseless limit. Contrary to many alternative heuristic approaches,
the method we obtain is built from first principles (it has no intrinsic parameters), is non-iterative,
obtains results independent of initialization, and provably finds a global optimum in polynomial
time in the exact matching case. For inexact matching, our experiments indicate that the proposed

technique is more accurate than standard methods when matching patterns of different sizes.
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