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Abstract

This paper describes a novel solution to the rigid point pattern matching problem in Euclidean

spaces of any dimension. Although we assume rigid motion, jitter is allowed. We present a non-iterative,

polynomial time algorithm that is guaranteed to find an optimal solution for the noiseless case. First

we model point pattern matching as a weighted graph matching problem, where weights correspond

to Euclidean distances between nodes. We then formulate graph matching as a problem of finding a

maximum probability configuration in a Graphical Model. By using graph rigidity arguments, we prove

that a sparse Graphical Model yields equivalent results to the fully connected model in the noiseless

case. This allows us to obtain an efficient Junction Tree algorithm that runs in polynomial time and is

provably optimal for exact matching between noiseless point sets. For inexact matching, we can still

apply the same algorithm to find approximately optimal solutions. Experimental results obtained by

our approach show improvements in accuracy over current methods, even when matching noisy point

patterns.

Index Terms

Structural pattern recognition, graph-theoretic methods, Markov random fields, pattern matching

I. I NTRODUCTION

Point pattern matching (or point set matching) is a basic problem in Pattern Recognition

that is fundamental to Computer Vision (stereo correspondence, image registration and model-

based object recognition [1]–[4]), Astronautics [5], [6], Computational Chemistry [7], [8] and
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Computational Biology [9], [10]. Here we consider the (possibly noisy) rigid body case: when

one pattern differs from a subset of the other by an isometry, but where position jitter may be

present.

A. Problem Description and Related Problems

In general terms, the problem consists of finding a correspondence between elements of two

point sets inR2 or R3 (or in Rn, n ∈ N, for general—not necessarily visual—patterns). In

the case ofexact matching, one point set differs from a subset of the other by an isometric

transformation. In theinexactcase, there is position jitter in one point set with respect to the

other. This always occurs in practical application domains like those cited above, thus we face

an inexactmatching problem in practice, and matching algorithms need to take this into account.

A related, but more general problem, is that ofgraph matching, which consists of finding

correspondences (one-to-one [11], many-to-one [12] or many-to-many [13], [14]) between the

nodes of two graphs so as to achieve some form of global consistency. In this case, nodes and

edges may have vector attributes or labels. There is a vast literature addressing the graph matching

problem in pattern recognition, which can be divided generally into work on search methods [12],

[15]–[21], and work on non-search methods, such as probabilistic relaxation [22]–[33], spectral

and least-squares methods [3], [34]–[38], graduated assignment [11], genetic optimization [39]

and other principles [13], [14], [40], [41]. For a recent comprehensive review on graph matching

for pattern recognition, see [42]. We have shown how ideas similar to those presented in this

paper can be applied to the graph matching problem in [12] and [43], however in this paper we

focus specifically on the point pattern matching problem.

B. Potential Applications

Isometric point pattern matching (with jitter) is encountered in many application domains.

In Computer Vision, two sets of interest points extracted from two stereo images are ap-

proximately related by an isometry when the stereo pair has a narrow baseline. An accurate

correspondence between the features results in an accurate depth map or the recovery of the

3D geometry of the scene [44]. This form of stereo correspondence constitutes one of the

fundamental point pattern matching problems of Computer Vision.
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In Astronautics, the attitude of sounding rockets or satellites can be estimated by matching

stellar images acquired from the onboard star sensor (a CCD camera) to those in an empirical

star catalog [45]. Images acquired from the same region of the sky but from different viewpoints

reveal sets of stars whose coordinates are related by an isometric transformation [5]. In this way,

the star matching problem can be posed as a rigid point pattern matching problem.

In Computational Chemistry, rigid point pattern matching is a recurrent problem in drug

design, specifically in the identification of pharmacophores—common subsets of molecules that

systematically interact with some receptor (i.e. that perform some specific task). By matching a

set of molecules (called ligands) that activate (“bind”) a given receptor, one can identify whether

there is a common sub-conformation among the ligands. If this is the case, the structure encoun-

tered becomes a candidate pharmacophore, which is a distillation of the functional attributes of

ligands that accomplish some specific task. The pharmacophore can then be used in the design

of a new drug which is expected to systematically interact with the given receptor [8].

Finally, a similar problem arises in Computational Biology, when the interest is to detect

specific structural motifs within a family of proteins (or DNA sequences). Identification of these

motifs contributes to uncovering the mechanism of the proteins’ operation [10].

In all these problems, rigid point pattern matching is a reasonable assumption, but small

stochastic deviations in the point positions must be accommodated (jitter). This latter condition

excludes methods that only apply to exact point pattern matching problems (like [46]). The

technique proposed in this paper is precisely designed for this case: we make the rigid body

assumption (isometric assumption)but jitter is allowed.

C. Related Literature

Several approaches have been proposed to solve the inexact point pattern matching problem.

Major classes of solutions are based onspectralmethods [2], [3], [35],relaxation labeling[26]–

[28], [31]–[33], andgraduated assignment[11], [47]. The first compares the eigen-structure of

proximity matrices of the point sets. The second defines a probability distribution over mappings

and optimizes using a discrete relaxation algorithm. The third combines the “softassign” method

[48] with Sinkhorn’s method [49] to optimize the mapping. All these approaches can be seen

as using optimal representations (complete data models) and approximate inference procedures.

Spectral methods use the spectrum of the adjacency matrix, but it is well-known that different
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graphs can be co-spectral [50]; probabilistic relaxation labeling typically uses compatibility

functions defined over all points, but the optimization procedure is iterative and known to be

convergent to local minima [27]; graduated assignment also uses the entire set of pairwise

compatibilities, being a continuous relaxation of the original combinatorial problem which aims

at tractability, but is also only convergent to local minima [11]. These sources of approximation

impact on performance in various ways. For example, it has been frequently reported that spectral

methods are not robust to structural corruption nor to matching patterns of very different sizes

[2], [3]. Relaxation methods degrade with significant increases in point set sizes [11]. Graduated

assignment, although extremely robust with respect to jitter, has a number of heuristic parameters

that need to be tuned and, more importantly, is very sensitive to matching sets of significantly

different sizes [11], [51]. All these methods are polynomial time approximations that do not

guarantee global optimization.

D. The Proposed Technique

In this paper, we propose a conceptually different approach that overcomes many of the

limitations of previous techniques. Rather than using a complete data model and an approximate

inference algorithm, we do the opposite: we approximate the representation but show how

optimal polynomial time algorithms can be applied to the approximated data model. However, the

hallmark of this approach is that the “approximated” data model can be proven to beequivalent

to the complete data model in the limit case of exact matching. In other words, the result is an

optimal algorithm that runs over an optimal representation. This allows us to obtain guaranteed

optimal solutions in the noiseless case, and excellent approximate solutions for moderate noise,

as will be shown. The resulting technique is robust with respect to size increases in the point

patterns, as well as with respect to extreme differences in their sizes. It is also robust to moderate

point jitter. Moreover, contrary to heuristic formulations, it is derived from first principles using

Markov random field theory: the technique is non-iterative and has no intrinsic parameters to be

tuned (the only parameter involved being inherent to all techniques that aim to cope with jitter).

Our formulation is based on posing the problem of deriving the best assignment as one of

finding the maximum a posteriori (MAP) configuration of random variables in a probabilistic

Graphical Model. We draw a fundamental connection between exact inference in Graphical

Models and the “rigidity of graphs”: by formalizing the redundancies present in point sets
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embedded in Euclidean Spaces, we prove that there is a sparse Graphical Model topology that has

the same MAP solutions as the fully connected model in the limit of exact matching. Remarkably,

the sparse model has sufficient structure to allow us to perform exact MAP computation in

polynomial time—a computation that is intractable in the fully connected model. To the best of

our knowledge, this constitutes the first provably optimal polynomial time algorithm for exact

point set matching inRn that is also applicable to inexact matching (optimal algorithms which

are exclusive to the unrealistic exact case do exist [46]).

For the realistic problem of matching noisy point patterns, we present experimental results

comparing the proposed algorithm with well-known alternative methods. Our results show that

the proposed technique offers accuracy improvements, particularly when matching patterns of

different sizes.

Some of the basic ideas in this paper were first presented in [52].

II. POINT MATCHING AS A WEIGHTED GRAPH MATCHING PROBLEM

We start by showing how point pattern matching can be formulated as a weighted graph

matching problem. Assume we have two point sets inRn (n ∈ N), namedT for “template” and

S for “scene”, with cardinalityT andS, respectively. The idea is that some noisy instance ofT

(denotedT ′) is present inS, up to an isometric transformation. Our goal is to find this instance

T ′ in S and, moreover, determine a mapf : T 7→ S that maximizes some “global similarity

measure” betweenT andT ′. Theonly restriction we impose onf is that it must be a function:

every point inT must map to some point inS. This is in contrast to the one-to-one mapping

[11], which considers a smaller class of solutions. It is natural to understandT as the point set

corresponding to a “model” andS as the point set obtained from a “scene” wherein we want to

find some instance of the model.

Here we will refer to the template pattern as a “domain pattern” and the scene pattern as a

“codomain pattern”, in analogy to their role played with respect to the mapping functionf . The

ith point in the domain pattern is denoteddi, whereas thekth point in the codomain pattern is

denotedck. The Euclidean distance betweendi anddj is denotedyd
ij, and betweenck and cl is

denotedyc
kl.

The key idea for modeling point pattern matching as a weighted graph matching problem

is as follows. Recall that an isometry exists between two point sets if and only if they have
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the same Euclidean Distance Matrix [53](EDM) under some permutation [54]. Consequently,

an isometry can be tested by comparing all the permutations of two EDMs entry-wise. In our

case, we would like to handle inexact matching, which means we must also accommodate noisy

situations and sets of different sizes. Thus, we define the matching problem as finding the map

f that minimizes the cost

UT (f) =
T∑

i=1

T∑
j=1

D(yd
ij, y

c
f(i)f(j)) (1)

under the constraint that the map is a function (many-to-one mapping). HereUT (f) is the “total”

cost to be minimized (the reason for calling it “total” will be clear later), andD(·, ·) is some

dissimilarity measurebetween distances. Note that the arguments ofD(·, ·) represent the entries

in the EDMs under the permutation induced byf .

This definition is equivalent (apart fromf being many-to-one instead of one-to-one) to that of

the weighted graph matching problem of [11], where edge weights are restricted to be relative

Euclidean distances between points corresponding to the respective vertices embedded inRn.

(Note that since all distances are taken into account, the graphs arefully connected.) Eq. (1)

actually represents an instance of the quadratic assignment problem which, in general, is known

to be NP-complete [11]. Due to this graph matching formulation, we will refer to the “domain

graph”Gd and the “codomain graph”Gc as the graph abstractions of the point sets. This gives

the formulation of our problem as a “Euclidean” weighted graph matching problem.

III. W EIGHTED GRAPH MATCHING AS AMAP PROBLEM IN A GRAPHICAL MODEL

This problem can be further reformulated as finding a maximum probability (MAP) configura-

tion in a probabilistic Graphical Model [55]–[58]. Before presenting our formulation, we briefly

review the main ideas about Graphical Models that will be required in our exposition.

A. Graphical Models

Graphical Models are graphical representations for families of factored joint probability dis-

tributions [55], [57], [59]. We will be considering exclusivelyundirectedGraphical Models,

sometimes referred to asMarkov random fieldsin certain application domains. (In this paper,

“Graphical Models” and “Markov random fields” are complete synonyms.) A Graphical Model

is essentially a graph where nodes represent random variables and the edges represent a set of
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conditional independence assumptions made among the random variables1. If a subset of nodes

B separates (in the graph-theoretic sense) the set of nodesA from the set of nodesC, then this

means, in the Graphical Model formalism, thatA andC are conditionally independent onB;

that isp(AC|B) = p(A|B)p(C|B). For examples of Graphical Models that induce different sets

of conditional independence assumptions among their variables, see Figure 1.

X1

X2

X3

X4

X5
X6

X1

X2

X3

X4

X5
X6

X1

X2

X3

X4

X5
X6

Fig. 1. Example of three undirected Graphical Models.Left: every imaginable conditional independence assumption holds.

Middle: some conditional independence assumptions hold, some do not.Right: there are no conditional independence

assumptions.

Figure 1 shows three Graphical Models. Each node,Xi, in a model corresponds to a random

variable, which can assume a set of different realizations (in our context this set will be dis-

crete). A fundamental result about Graphical Models is the Hammersley-Clifford (HC) theorem,

which states that any strictly positive probability distribution that respects the set of conditional

independencies implied by a graph can be written in a factored form, namely as a product of

functions over the maximal cliques2 [55], [57]:

p(x) =
∏
c∈C

ψc(xc)/Z, (2)

wherec is a maximal clique,C is the set of all maximal cliques andxc is the restriction ofx

to the cliquec. Z is the normalization constant that renders
∑

X p(x) = 1. The non-negative

function ψc(xc) is called thepotential functionwhich, in our case, will be a table with the

dimensionality ofxc. From this theorem, it is clear that all we need to specify a probability

distribution is a connectivity pattern for the Graphical Model and a set of potential functions.

The basic “query” that we will be then interested in answering about a Graphical Model is the

following: what is the most likely joint realization of all the random variables? In other words,

1All our statements about Graphical Models in this paper will be restricted todiscreterandom variables.

2Recall that a clique is a complete subgraph and a maximal clique is a clique which is not a proper subset of another clique.

June 22, 2005 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 8

what is the mode of the joint probability distribution defined by a Graphical Model and its

potential functions? This is known as the MAP (maximum a posteriori) problem in a Graphical

Model. For fully connected models, like the one in Figure 1-Right, this problem is intractable

(for discrete random variables). For completely independent models, like that in Figure 1-Left,

this problem is trivial: the joint mode can be obtained by computing each of the individual modes

independently. Models that lie between these two extremes, of which the one in Figure 1-Middle

is an example, can be either tractable or not.

At this point, it is important to state what determines the tractability of the model. The

fundamental algorithm for exact inference in Graphical Models is the Junction Tree algorithm

[55]–[57], [59]. It works by creating a hypergraph (a “Junction Tree”) from the original graph

and then running a dynamic programming algorithm on this hypergraph. However, Junction

Trees can only be created fortriangulated3 (i.e. chordal) graphs [55], [57], so the effective

computational complexity depends on triangulated versions of the original graph.4 In general,

there are many possible triangulations for a given graph. The exponential complexity of the MAP

computation for a given Graphical Model will be determined by the minimum size, taken over

all possible triangulations, of the maximal clique in the triangulation. If this exponent grows

with the size of the graph, then the model is intractable, otherwise it is tractable. For example,

a fully connected graph is triangulated with maximal clique size equal to the size of the graph

itself, which immediately implies intractability. Naturally, in practice one requires the exponent

to be not only fixed but also small. Notice also that, if a graph isalready triangulated, other

triangulations will only potentiallyincreasethe size of the maximal clique, so the exponential

complexity will be given directly by the size of the maximal clique of the graph, without any

need for triangulation. Since the problem of finding a triangulation that has minimal maximal

clique size is NP-complete [57] (one calls it an “optimal triangulation”), the “ideal” scenario

would be one in which the graph is already triangulated. We exploit this fact below by identifying

a triangulated Graphical Model structure for our problem that has a small maximum clique size.

Next we show how the point pattern matching problem can be formulated as a MAP problem

3A graph becomes triangulated (or, equivalently, chordal) by adding edges in such a way that all cycles of length greater than

three have a chord. A chord is an edge between two non-consecutive nodes in the cycle.

4Note that “transforming” a graph by triangulating it is not restrictive, since triangulation can only add edges and therefore

only reduces the set of conditional independence assumptions implied by the original graph.
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in a Graphical Model. Although in the initial formulation the Graphical Model will be fully

connected (and thus intractable) we will show afterwards how we can obtainthe sameMAP

solutions with a sparse, tractable model.

B. Formulation

The key idea for modeling weighted graph matching as a MAP problem in a Graphical Model

is as follows. Assume that each vertex in the domain graph is a random variableXi, and that each

such random variable has a finite set of possible realizations coinciding with the set of vertices

in the codomain graph. This means that a particular realizationxk of a random variableXi

corresponds to a particular map between the pointdi in the domain pattern and a pointck in the

codomain pattern. Thus, a joint realizationx = {xk} of the set of variablesX = {Xi,∀i|di ∈ T }

corresponds to a particular match between the point setsT andS. In this spirit, one can define

a probability distribution such that the most likely joint realization of the variables (the MAP

configuration) corresponds to the minimum of Eq. (1).

In order to accomplish this, we specify a Markov random field based on edge-wise potentials

over thefully connected graph. Let ψij denote the local potential function for edge(i, j). Then,

the joint probability distribution over the pairwise Markov random field is

p(X = x) =
1

Z

∏
(i,j)

ψij(Xi = xi, Xj = xj) (3)

=
1

Z
exp

−∑
(i,j)

Vij(Xi = xi, Xj = xj)


whereVij(Xi, Xj) = − log(ψij(Xi, Xj)), andZ is a global normalization constant determined by

summing the product of potentials over all possible joint realizationsx. For clarity, in Eq. (3), we

have used standard notation wherexi denotes agenericrealization ofXi (i.e., any realization,

not one in particular indexed byi). In the context of this paper, we find it more convenient

to modify this notation such thatXi is still the random variable, butxf(i) is now thespecific

realization indexed byf(i).

To relate this problem to Eq. (1) (and here we use the new notation), all we have to do is
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specify appropriate potentials. In particular, define

Vij(Xi = xi, Xj = xj) = Vij(di 7→ cf(i), dj 7→ cf(j))

≡ D(yd
ij, y

c
f(i)f(j)).

The resulting model becomes

p(f) =
1

Z
exp

(
−

T∑
i=1

T∑
j=1

D(yd
ij, y

c
f(i)f(j))

)
(4)

∝ exp (−UT (f)) ,

thus maximizingp(f) is equivalent to minimizingUT (f). Note that we now write the realization

X = x in the form of a mapf : each random variableXi, which corresponds to a pointdi, will

“map” to a realizationxf(i), which corresponds to pointcf(i) (note the new notation).

Although this observation is interesting, it does not immediately yield a useful approach to

solving the problem because MAP computations over a fully connected Markov random field

are intractable. The key idea in this paper is toapproximateUT (f) in such a way that only a

subset of all the pairwise cliques in the fully connected model is taken into account. This will

eventually lead us to a Graphical Model that is tractable. However, the hallmark of the particular

model that we will obtain is that its MAP solutions can be proven to bethe sameas those of

the fully connected model in the noiseless case. This makes the “approximation” exact.

IV. T HE MODEL

To construct a sparse alternative to the fully connected Graphical Model given in Eq. (4)

we need to specify: (i) a set of potential functions that will define the functionD; and (ii) a

connectivity pattern that will define the subsetC2 of edges on which we will define potentials.

x

Xi Xj
x S

1x

x S

1

Fig. 2. Local “kernel” structure of the Graphical Model. Each random variable can assumeS possible realizations, so that the

sample space for two connected random variables hasS2 elements.
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First, to specify the potentials, consider the local “kernel” structure of our model shown in

Figure 2. Generally speaking, a potential function associates to each element of the sample space

a non-negative real number [55], [57]. In our model, potentials will be defined on edges, where

each node contained in an edge (a random variable) represents one of theT vertices inGd,

which, in turn, can assume a set ofS possible realizations (which themselves correspond to

vertices inGc). Thus the sample space for each edge hasS2 elements, and we can specify the

potential function for an edge (i.e., a pair{Xi, Xj} in Gd) by anS × S matrix

ψij(Xi, Xj) =


S(yd

ij, y
c
11) . . . S(yd

ij, y
c
1S)

...
...

...

S(yd
ij, y

c
S1) . . . S(yd

ij, y
c
SS)

 , (5)

whereyd
ij denotes the edge weight between vertices with indexesi and j in graphGd (which

corresponds to the Euclidean distance between pointsdi anddj). An analogous notation holds

for yc
kl. S is a function that measures the compatibility of the two arguments. Note that the

compatibilities are a function of thedistancesbetween a pair of points in the domain pattern

and corresponding points in the codomain, not similarities betweenpoints themselves.

To measure compatibility in the exact matching case (no noise) we can simply use the indicator

function

S(yd
ij, y

c
kl) = 1(yd

ij = yc
kl) ≡

 1, if yd
ij = yc

kl

0, if yd
ij 6= yc

kl

(6)

For inexact matching, where we assume jitter in the point positions (typical in practice), we need

a more general “proximity measure” to cope with uncertainty. Thus, in these cases we measure

compatibility using the Gaussian kernel5

S(yd
ij, y

c
kl) = exp

(
− 1

2σ2
|yd

ij − yc
kl|2
)
. (7)

Other similarity measures could be chosen, but we do not focus on this choice in this paper6. Note

that any technique for matching noisy patterns requires some soft similarity measure, including

the methods we compare to in this paper (where we use the same kernel). For example, relaxation

5In the exact matching case, the Gaussian kernel actually gives identical results to the indicator, since its maximum is attained

uniquely at an exact match. However, the indicator makes the upcoming theoretical results clearer.

6An early attempt do evaluate different measures is reported in [60].
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labeling [27] and graduated assignment [11] both use acompatibility measurebetween pairs of

assignments to score any putative matching. These scores use a parameter to adjust for the level

of position jitter in the data. Thus, the single parameter in Eq. (7) is not, itself, an artifact of

our method, but a necessary element in any matching model that aims to cope with noise.7

Having specified the potential functions, it remains to determine the connectivity of the

Graphical Model. Here we will simply propose the Graphical Model structure shown in Figure 3,

and assert that this Graphical Model structurepreserves the MAP solutions of the fully connected

model—a fact we will verify in Section V below.

T−1

X X X

XXX

1 2 3

4 5 TX

Fig. 3. A model for matching inR2. The topology of the model corresponds to that of a 3-tree graph, whose maximal clique

size is 4 (thus independent onT , the number of nodes, andS, the number of possible realizations for each random variable).

Before proceeding with the proof of its optimality, we make a few remarks about this model.

First, Figure 3 illustrates a model that is specifically constructed for matching inR2. For matching

in Rk−1, an analogous topology can be used: instead of a 3-clique in the upper layer, one simply

uses ak-clique, and each of the otherT − k nodes is then connected to each of thesek nodes.

For anyk (andT > k), this generic model topology has two important features: (i) it isalready

triangulated, and (ii) the size of the maximal clique isk+1, independentof both the number of

nodesT and of the number of possible realizationsS. As explained in Section III, because it is

triangulated, we know that this model has a Junction Tree, and because it has a bounded maximal

clique size, the “Junction Tree algorithm” has polynomial complexity in this model. That is, for

models like the one in Figure 3 theexactMAP solutions can be computed in polynomial time.

It might sound artificial to define the “candidate” topology as a triangulated Graphical Model

with a fixed maximal clique size (which together form sufficient conditions for polynomial

7We might then claim that our proposed method has no “intrinsic” parameter, in the sense that it does not introduce any

parameter other than the one required to noise modeling.
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time complexity). However, in the next section we show that this topology is not postulated,

but derived from first principles, which reveals a subtle connection between exact inference in

Graphical Models and the “global rigidity of graphs”.

V. OPTIMALITY OF THE MODEL

In this section, we present theoretical results that lead to a special kind of graph: a “k-tree”.

The properties of this graph will allow us to draw a connection to the problem of exact inference

in Graphical Models, and will ultimately lead us to prove that the model shown in Figure 3,

although sparse and computationally tractable, yieldsequivalentresults to the fully connected

model in the limit case of exact matching.

A. A relevant lemma

We start by presenting a lemma that will be necessary to obtain the subsequent results.

Lemma 1:Let S1, S2, . . . , Sn+1 be(n+1) spheres inRn whose centers are in general position

(do not lie in a(n− 1)-dimensional vector subspace). Then the intersection set∩n+1
i=1 Si is either

a single point or the empty set.

Proof: We use induction over n. Recall that a sphere in a vector space is the set of points

equidistant to a fixed point.

The Lemma obviously holds for the base case whenn = 1. See Figure 4.

Intersection is the empty set

Sphere 1 Sphere 2

Not concentric

Sphere 1 Sphere 2

Not concentric

Intersection is a single point

Fig. 4. Illustration forn = 1: 2 spheres inR1 whose centers do not lie in a 0-dimensional vector space (i.e. they are not

concentric).Left : empty intersection.Right: intersection is a single point.

Now let S1 ∩ S2 = I1—see Figure 5(a). ThenI1 is a (n − 2)-sphere lying in a(n − 1)

vector subspaceQ. (We use the convention of topology, which states that an(n − 2)-sphere
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is spanned necessarily by acompletebasis inRn−1. For example, the 3D sphere inR3 is a

2-sphere, not a 3-sphere.) LetIi = Si+1∩Q for i = 2, 3, . . . , n. ThenI1, I2, . . . , In aren spheres

in Q ∼= Rn−1 (∼= denotes congruency) and, obviously,∩n
j=1Ij = ∩n+1

i=1 Si—see Figure 5(b-d).

Given the above definitions, the natural induction hypothesis that arises is: if the centers of the

spheresI1, I2, . . . , In do not lie in a (n − 2) vector subspace, then the intersection of these

spheres consists of at most a single point. Since∩n
j=1Ij = ∩n+1

i=1 Si, we have from the hypothesis

that ∩n+1
i=1 Si consists of at most a single point. So, what is left to prove is that the centers of

the spheresS1, S2, . . . , Sn+1 do not lie in a(n− 1) dimensional vector space (i.e. are in general

position). Let(x1, x2, . . . , xn) be the coordinates ofRn. Let (ai1, ai2, . . . , ain) be the center of

Si. Without loss of generality, we may assume thatQ is given byx1 = 0. ThenQ ∼= Rn−1 is

parameterized by(x2, x3, . . . , xn). The center ofIj−1 has coordinate(aj2, aj3, . . . , ajn), j ≥ 2.

The centers ofI1, I2, · · · , In are in general position if and only if the matrix


a22 a23 . . . a2n 1

a32 a33 . . . a3n 1
...

. ..
...

...
...

an+1,2 an+1,3 . . . an+1,n 1

 (8)

is invertible, i.e. has maximal rank.

But this matrix is precisely then× n lower-right submatrix of the following matrix


a11 a12 . . . a1n 1

a21 a22 . . . a2n 1
...

...
. ..

...
...

an+1,1 an+1,2 . . . an+1,n 1

 (9)

which is the analogous matrix for the centers ofS1, S2, . . . , Sn+1. By subtracting the second row

from the first row of matrix (9), we obtain


a11 − a21 0 . . . 0 0

a21 a22 . . . a2n 1
...

...
...

...
...

an+1,1 an+1,2 . . . an+1,n 1

 (10)
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Note thatQ = {x1 = 0} implies that(a12, a13, . . . , a1n) = (a22, a23, . . . , a2n), which creates the

zeros in the first row. It is evident that matrix (10) is invertible if and only ifa11 6= a21 and

matrix (8) is invertible, which is the induction hypothesis. This implies that the centers ofSi do

not lie in a (n− 1) vector subspace inRn, which completes the proof.�

S

S

Q = {x  =  0}1
I

1

1

2

a

Q = {x  =  0}1
I1

IS3
2

b

Q = {x  =  0}1
I1S4

I 3

I 2

c

asdfd

Fig. 5. Illustration of the construction used to prove Lemma 1:(a) The intersection of spheresS1 andS2 in Rn is another sphere,

I1, which lies inQ ∼= Rn−1; (b) and (c) (spheresS1 andS2 are omitted for clarity),Ij ’s, j > 1, are obtained by intersecting

Si’s, i > 2, with Q; (d) The intersection of theIj ’s is a single point (and so is that of theSi’s, due to∩n
j=1Ij = ∩n+1

i=1 Si). In

this example inR3, the 4 spheresS1, S2, S3, S4 have their centers in general position. The key equation is∩n
j=1Ij = ∩n+1

i=1 Si,

which allows us to construct an appropriate induction hypothesis relatingn spheres (Ij ’s) in Rn−1 with n + 1 spheres (Si’s)

in Rn.

Another way to see this result is the following: if the distances from an unknown point to

n+ 1 known points inRn are determined, then this point is unique—provided then+ 1 points

are in general position. In order to see this fact, note first that the unknown point is clearly in

the intersection of the spheres whose centers are then + 1 fixed points and the radii are the

respective distances between their centers and the unknown point. Second, note that Lemma 1
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states that the intersection is either a single point or empty (which is not the case because we

have assumed the existence of this unknown point). This implies that the point is unique. This

result will be used in the following in order to obtain another result concerning the “global

rigidity of graphs”.

B. Global rigidity of k-trees

Here we use Lemma 1 to infer a second result that will ultimately lead us to obtain the

main theorem about the topology of the Graphical Model. The theory of graph rigidity, although

mathematically rich and sophisticated [61], involves concepts that are easy to understand. Strictly

speaking, we talk about the rigidity ofgraph embeddingsin Rn where the edges are straight

lines (these embeddings are calledframeworks). Simply put, we say that a framework is globally

rigid if the lengths of the edges uniquely determine the lengths of the “absent edges” (the edges

of the complement graph).

To present the key result about the global rigidity of a special kind of framework—ak-tree—

we start by reviewing some basic definitions from graph theory [62]. In what follows a complete

graph withn vertices is denoted asKn, and ak-clique is a clique withk vertices. Also recall

that aframeworkis a straight line embedding of a graph.

Definition 1 (k-tree, basek-clique): A k-tree is a graph that arises fromKk by zero or more

iterations of adding a new vertex to the graph and connecting it withk edges to an existingk-

clique in the previous graph. Thek-cliques defined by the new vertices are calledbase k-cliques.

Figure 6 shows the process of creating ak-tree, in the particular case wherek = 3. We start

with aK3 graph. Then we add a vertex (4) and connect it to every vertex of the (so far unique)

base 3-clique. Vertex (5) is then added and is connected, in this example, to the same base

3-clique. Vertex (6) is then added and connected to another base 3-clique, formed by vertices

(2), (3) and (4). Note that all intermediate graphs generated in this way are themselves legitimate

3-trees. Also note that, in general, the resulting graph is sparse (the graph with 5 nodes is the

first to present sparseness, since the edge (4-5) is absent).

A careful examination reveals that the size of the maximal clique of ak-tree withn vertices

is preciselyk if n = k and preciselyk + 1 if n > k. (This is easy to see because every time a
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new vertex is added it is connected to exactlyk vertices of ak-clique, forming a(k+1)-clique.)

5

2

5

4 4 6

13

2

1

2

3
1

Base 3−cliques

1
3 3

42

Fig. 6. The process of constructing 3-trees. At each step, a new node is added and connected to all nodes of an existent

3-clique (which is then called a “base 3-clique”).

We are now equipped to present the second result:

Lemma 2:A k-tree framework with all basek-cliques in general position inRk−1 is globally

rigid in Rk−1.

Proof: We use induction on the number of verticesn in the k-tree framework. Forn = k

the result is obvious because the graph is simply ak-clique, which is fully connected and by

definition is globally rigid. Now assume the lemma is true for somen > k. First, choose a fixed

(but arbitrary) coordinate systemS. If the lemma holds for somen > k, then all the points in

the framework are determined inS. Now include a new vertex with given distances from all the

k vertices of any existent basek-clique in general position. By drawing edges corresponding to

these known distances, we generate a new framework withn+1 vertices. But since the inserted

vertex has determined distances from all vertices of a basek-clique which is in general position,

its position is determined inS by virtue of Lemma 1. If its position is determined inS, then

the positions of all vertices in the new framework are determined inS (because the previous

framework was globally rigid by the induction hypothesis). If all the positions are determined

in S, all pairwise distances are determined (irrespectively ofS). This guarantees that the new

framework is globally rigid inRk−1, which completes the proof.�

The direct implication of this result is that thek-tree framework, from the perspective of

pairwise distances, hasexactlythe same information content as a fully connected framework. We
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now show, using this fact, that our sparse model yields equivalent results to the fully connected

model in the noiseless case.

C. Equivalence ofk-tree versus full model

To present the main theoretical result, we introduce some new terminology to that established

in Section II. We specifically analyze the noiseless case, whereT and T ′
are related by an

isometry. Consider the domain and codomain graphsGd andGc defined in Section II. Define

Gkt
d = (Vd, Ekt

d ) as a graph with the same nodes asGd but with edge connectivity given by a

k-tree whose basek-cliques are in general position inRk−1. LetGkt
c = (Vkt

c , Ekt
c ) be the subgraph

of Gc whose nodes are those to which the nodesVd map under an optimal mapf . We define as

Ḡkt
d = (Vd, Ēkt

d ) the complement graph ofGkt
d , while Ḡkt

c = (Vkt
c , Ēkt

c ) is the complement graph

of Gkt
c .

Now, if we choose the edge set of the model (the set of pairwise cliquesC2) to be ak-tree,

the “approximated” optimization problem over thisk-tree graphGkt
d can be defined as one of

minimizing the following “partial” cost function overf (as opposed to the “total” costUT from

Eq. (1)):

UGkt
d

(f) =
∑

i,j|dij∈Ekt
d

D(yd
ij, y

c
f(i)f(j)), (11)

wheredij is the edge between verticesdi anddj in Gd andEkt
d is the edge set of graphGkt

d .

We can now state our main result.

Theorem 1:In the exact matching case, a mapping functionf which minimizesUGkt
d

(f) also

minimizesUT (f).

Proof: If we define a cost function over the complement graph ofGkt
d (Ḡkt

d ) :

UḠkt
d

(f) =
∑

i,j|dij∈Ēkt
d

D(yd
ij, y

c
f(i)f(j)), (12)

we have

UT (f) = UGkt
d

(f) + UḠkt
d

(f). (13)
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In the noiseless case, the dissimilarity functionD(·, ·) associated to a particular match is

described simply in terms of an indicator function (Eq. (6)):

D(yd
ij, y

c
f(i)f(j)) = 1− 1(yd

ij = yc
f(i)f(j)). (14)

The optimal matching functionf is such thatUT (f) = 0. Obviously, from Eq. (13) it holds

that UT (f) = 0 ⇒ UGkt
d

(f) = 0, sinceUGkt
d

(f) andUḠkt
d

(f) are non-negative becauseD(·, ·)

is non-negative (Eqs. (11) and (12)). Our purpose is to prove the converse, i.e. thatUGkt
d

(f) =

0 ⇒ UT (f) = 0. According to Eq. (13), in order to do so, it suffices to prove thatUGkt
d

(f) =

0 ⇒ UḠkt
d

(f) = 0.

Here we use Lemma 2, which asserts that if the distances corresponding to the edges of

a k-tree framework whose basek-cliques are in general position are determined, then all the

remaining distances between vertices not connected by an edge are determined.

Let us write this result symbolically, for ak-tree in the domain graph, as

{yd
ij = constdij,∀i, j|dij ∈ Ekt

d } ⇒ {yd
ij = constdij,∀i, j|dij ∈ Ēkt

d } (15)

whereconstdij is a constant for fixedi and j.

SinceUGkt
d

(f) = 0, every term of the sum in Eq. (11) must be zero, since they are non-negative:

D(yd
ij, y

c
f(i)f(j)) = 0,∀i, j|dij ∈ Ekt

d . (16)

However, from the definition ofD(·, ·) for exact matching (Eq. (14)), this means that

yd
ij = yc

f(i)f(j),∀i, j|dij ∈ Ekt
d . (17)

Notice that the statement (Eq. (15)) holds for anyk-tree whose basek-cliques are in general

position, so it holds forGkt
c in particular. (Recall thatGkt

c has its basek-cliques in general

position in Rk−1 because it is assumed isometric toGkt
d , which by assumption has its base

k-cliques in general position and so is globally rigid.) Therefore we conclude:

{yc
f(i)f(j) = constcf(i)f(j),∀i, j|df(i)f(j) ∈ Ekt

c }

⇒ {yc
f(i)f(j) = constcf(i)f(j),∀i, j|cf(i)f(j) ∈ Ēkt

c } (18)

Notice that Eq. (17) implies that the left hand sides of implications (15) and (18) are equivalent.

As a result, their right hand sides are equivalent and we obtain:

yd
ij = yc

f(i)f(j),∀i, j|dij ∈ Ēkt
d . (19)

June 22, 2005 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED MANUSCRIPT 20

Substituting this into Eq. (12), yields

UḠkt
d

(f) = 0, (20)

which was what we wanted to prove.�

Note now that the model shown in Figure 3 has the topology of ak-tree (a 3-tree). As a result,

the solution obtained by the Junction Tree algorithm over this model will not only minimize the

cost functionUGkt
d

(f), but also the cost function of a complete model,UT (f) (Eq. (1)). This is

our main theoretical result.

Actually, other models can be used, as long as they have the topology of ak-tree. The specific

choice of 3-tree for Figure 3 was made simply because it has a single base 3-clique, and therefore

only requires these 3 points to be non-collinear (the points corresponding to random variables

X1, X2 andX3). In the case of exact matching, as long as these points are not collinear,any

choice can be made and Theorem 1 will still hold. However, when there is position jitter, different

choices can give different results, and the variance of the results over different selections of the

reference points will increase with jitter (experimental evidence of this fact will be provided).

A principled way of selecting the reference points in this case is still an open problem which

we are currently investigating, and for the purposes of the experiments presented in this paper

the selection of the reference points is made randomly.

VI. I NFERENCE

Given thek-tree model, we must solve the MAP problem, i.e. determine the most likely joint

realization of the random variables in the model. This is done with the Junction Tree algorithm.

In this section we describe how the Junction Tree algorithm is applied to our particular case (for

details of the general case, see [57] and [55], [56]).

The Junction Tree for the model shown in Figure 3 is given in Figure 7.

The tree in this case is actually just a chain, thus we have a “Junction Chain”. The maximal

cliques in a Junction Tree are denoted by circles, called “clique nodes”, whereas the set of

variables common to adjacent clique nodes are represented by rectangles, called “separator

nodes”. The Junction Tree algorithm is a dynamic programming procedure that systematically

changes the potentials in the clique nodes and separator nodes in a two-way “message-passing”

scheme, similar to the Viterbi algorithm for MAP computation in Hidden Markov Chain models
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X3X1 X2X 3X1 X2

X TX3X1 X2XXX1 X2 T−13X 4X 3X1 X2 X 5X 3X1 X2

1 2 3 T−4 T−3 T−2

2(T−2)−(T−5) 2(T−2)−(T−4) 2(T−2)−(T−3)2(T−2)−22(T−2)−12(T−2)

Fig. 7. The Junction Tree for the model in Figure 3. Circles (“clique nodes”) correspond to the maximal cliques of the original

graph, whereas rectangles (“separator nodes”) correspond to the intersection between adjacent clique nodes. Non-filled arrows

correspond to the first message-passing, whereas filled arrows correspond to the second. The value adjacent to an arrow denotes

the order in which the corresponding message is passed. Dashed arrows correspond to Eq. (21), whereas solid arrows correspond

to Eq. (22).

[63]. These updates preserve the joint distribution, but achieve a useful form of local consistency.

Just like the Viterbi algorithm, which after the forward and backward operations delivers the

individual MAP distributions for each node, the Junction Tree algorithm delivers the MAP

distribution for each clique node (which, in this case, possibly involves multiple nodes of the

original graph—four in the case of Figure 7). The final MAP distribution for each individual

nodeXi can then be computed by “maximizing out” the remaining individual nodes within the

clique node [55], [57]. For example, the final MAP distribution for nodeX1 in Figure 7 can be

computed byp(x1) = maxx2 maxx3 maxx4 p(x1, x2, x3, x4). This operation is clearly exponential

on the number of variables in the clique node, and that is one of the reasons why the Junction

Tree algorithm is only efficient for graphs with small maximal clique size.

The message-passing scheme works as follows. First we initialize the potential functions for

each of the clique nodes by combining the pairwise potential functions (which are obtained from

the compatibilities described in Section IV):Ψ(xi, xj, xk, xl) = ψ(xi, xj)ψ(xj, xk)ψ(xk, xl). The

separator nodes are all then initialized to 1 [57]. Then we perform message-passing: starting
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with a clique nodeV that is a leaf of the chain, we compute

Φ∗
S = max

V \S
ΨV (21)

Ψ∗
W =

Φ∗
S

ΦS

ΨW , (22)

whereW is the clique node to whichV is “sending a message”. This “message” actually

consists of two updates: (i) substituting the potential in the separatorS by computing the MAP

of clique nodeV with respect to the nodes that are common with the separator; and (ii) re-

weighting the potential in clique nodeW by the ratio between the new and the previous separator

potentials. This local operation is then propagated until the other leaf is reached, when it is

repeated in the reverse direction. Once complete, the joint distribution has been preserved, but

the marginalization property Eq. (21) has now been established between every clique node and

its separators. This ensures that we have obtained the desired MAP distribution at each clique

node [57], as mentioned above.

To compute the messages, note that each potentialΨ is a 4D table, withS bins per dimension;

see Figure 7. Thus, the maximization operation in Eq. (21) runs over the dimension of the 4D

table, ΨV , that is not common to the 3D table,ΦS. Similarly, the division and multiplication

operations of Eq. (22) are performed entry-wise in the tables. Figure 7 shows details of how the

overall dynamic programming procedure works. As mentioned above, after the two-way message-

passing is finished, local maximization yields the final MAP distributions of the singleton nodes

Xi, from which the mode indicates the point in the codomain pattern that matches the point in

the domain corresponding toXi.

The complexity of computing each of the messages (Eq. (21) and Eq. (22)) isO(S4), since

the largest tables (Ψ’s) are 4-dimensional withS bins per dimension. There are in total2(T −2)

messages, so that the overall computational complexity for this model isO(TS4), which is

polynomial in the size of the domain pattern (T ) and in the size of the codomain pattern (S).

Note that there is no iterative procedure involved, and no concept of “initialization” is present.

The algorithm runs is precisely2(T − 2) steps and will always deliver the same result for the

same input. This is because the algorithm is strictly deterministic, based solely on the dynamic

programming principle [55], [57], [59]. Since the dynamic programming finds the global optimum

for the given modeland the model itself is optimal in the noiseless case, we have an algorithm
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for point pattern matching that has polynomial complexity and is provably optimal in the limit

case of exact matching.

VII. E XPERIMENTS AND RESULTS

One obvious shortcoming of this theory is that it only addresses the exact matching case. For

inexact matching, the theoretical guarantee that the minimum of Eq. (11) equals the minimum

of Eq. (1) no longer holds. However, there remains value to the framework: in the noisy case,

one can still run the Junction Tree algorithm with the compatibility measure of Eq. (7) to

cope with approximate matches, requiring the same polynomial time. The only question is: how

significantly does the quality of the approximate match degrade?

To evaluate this question, we conducted a number of experiments to compare our method

(denoted simply as JT) to standard techniques in the literature, including probabilistic relaxation

labeling (PRL), as described in [26], the spectral method (SB) presented in [35], and Graduated

Assignment (GA) [47]. Note that these methods encode all pairwise distances in their objectives,

whereas our method only encodes those distances that correspond to thek-tree topology. On the

other hand, our approach uses an optimal non-iterative algorithm, whereas the others are based

on approximate heuristic algorithms. None of the standard approaches—PRL, SB or GA—have

any optimality guarantees, even in the noiseless case. The experiments involve matching tasks

in R2, so we use the 3-tree model of Figure 3.

A. Synthetic data

To compare techniques across a range of problem conditions, we generated random points

according to a bivariate uniform distribution in the intervalx = [0, 1], y = [0, 1]. We conducted

two sets of synthetic experiments: (i) point setsS and T of equal sizes comparing JT, GA,

PRL and SB, (ii) point setsS andT of different sizes comparing JT, GA and PRL (SB is not

suited for different graph sizes). In order to compute the similarity measure between pairwise

assignments, we use the same Gaussian kernel withσ = 0.4 for all methods (see Section (IV)).

This is the only parameter involved in our method, but is also necessary in the other ones. The

problem of selectingσ is far from trivial [3], and in this paper we do not aim at optimizing over

this parameter. See [60] for tentative experiments in this sense. We basically choose a value that

we know will not underflow the kernel computation in the case of extremal differences between
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the argument and the mean of the Gaussian function. For the construction of the 3-tree, the 3

reference points were selected randomly.

In the first experiment, we used patterns of size (10,10), (20,20), (30,30) and (40,40) points.

For each of these 4 instances, we perturbed the codomain pattern with progressive levels of

noise: from small levels (std = 0 to 1), to moderate levels (std = 2), to high levels (std = 4). The

value ‘std’ is 256 times the real standard deviation used (i.i.d. Gaussian noise). Typical instances

of patterns perturbed with jitter of std = 1 and std = 4 are shown in Figure 8. Figure 9 shows

the obtained curves under these experimental conditions. Each point in a curve is the average

over 300 trials.
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Fig. 8. Instances of patterns when different levels of jitter are introduced. Circles correspond to the jittered pattern whereas

“plus” corresponds to the original pattern (the patterns were superimposed for the purpose of visual comparison; in practice, as

should be clear from the text, they may be translated/rotated/reflected with respect to each other and may also have different

cardinalities).

The graphs show that JT, GA and PRL are much more robust under jitter than SB, confirming

the known fact that spectral methods are very sensitive to structural corruption (which is one of

the reasons why significant research effort has been recently dedicated to alleviating this problem

with spectral techniques [2], [3], [38], [51]). The graphs also show that, when the pattern sizes

are increased, GA and PRL are still very robust across the whole range (the curves are almost

horizontal), whereas JT is more sensitive to high jitter. However, it is clear that JT is competitive

for small to moderate jitter (std = 0-2). The curves for GA and PRL essentially just undergo a

change in offset for different pattern sizes, which reveals decreasing performance in the low jitter
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Fig. 9. Comparison of JT, GA, PRL and SB in matching equal-sized point sets under varying jitter. Results shown for 10, 20,

30 and 40 node graphs.

region. PRL is particularly more sensitive than GA for large matching problems, as reported in

[11].

In the second experiment we held the size of the domain patternT constant (10 nodes) and

varied the size of the codomain patternS (from 10 to 35 nodes in steps of 5), for various jitter

levels (std = 1,2,3,4). In this experiment, we compared JT, GA and PRL only, since SB is not

suited for graphs with different sizes. Figure 10 shows the results of this experiment. Each point

in a graph corresponds to the average over 300 trials. Clearly the accuracy of JT does not degrade

significantly for larger codomain patterns, even under high jitter, whereas the performances of

GA and PRL begin to fail dramatically.

Overall, it is possible to notice that, whereas GA and PRL are more robust with respect to
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Fig. 10. Comparison of JT, GA and PRL for matching under varying relative sizes. Results for various levels of jitter (std =

1, 2, 3 and 4).

noise, JT is more robust with respect to increases in the sizes of the patterns, across a wide range

of jitter. SB is only satisfactory in the uninteresting case of equal pattern sizesand virtually no

jitter. Despite the fact that it only gives theoretical guarantee of optimality in the noiseless limit

(which was confirmed in the experiments by noting the perfect performance in all cases where

std = 0), the proposed technique, JT, presents excellent performance for small jitter, regardless

of the pattern sizes. Even for high jitter, it significantly outperforms the alternative techniques if

the pattern sizes are significantly different. This is a very important result: in real applications

where either (i) we have equal pattern sizes and the jitter is small, or (ii) we have different

pattern sizes (regardless of jitter), this approach finds its best applicability.
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B. Real-world data

We also conducted experiments on real image data to evaluate the techniques on a realistic

Computer Vision problem. In the real-world experiments, we used the CMU house sequence

available at http://vasc.ri.cmu.edu/idb/html/motion/house/index.html. This database consists of

111 frames of a moving sequence of a toy house. We matched all images spaced by 10, 20, 30,

40, 50, 60, 70, 80, 90 and 100 frames and computed the average correct correspondence. Since

there are 111 frames, note that the number of image pairs spaced by these amount of frames

are, respectively, 101, 91, ..., 11.

Figure 11 shows typical images separated by these quantities of frames.

Fig. 11. Images from the CMU house sequence (top row: frames 1, 11, ..., 41; bottom row: frames 51, 61, ..., 91.)

Since all the images have size 384× 576 (contrary to the synthetic experiments, where the

point sets lied onx, y = [0, 1]), we need to use, accordingly, a large value forσ (see Eq. 7) that

does not underflow the kernel computation for very large deviations in the pairwise assignments.

Here we used the valueσ = 150. Also, as in the synthetic experiments, the 3 reference points

for the 3-tree were selected randomly.

Figure 12 shows examples of correspondences between different views of the same object

obtained with the proposed technique for (i), narrow baseline (top) and (ii), wide baseline

(bottom). For the narrow baseline case, all points are matched correctly in this example, whereas

for the wide baseline case there are mistakes induced by the fact that rigid motion in the plane

is no longer a reasonable assumption.

In total, 30 landmark points were manually marked in each of the images. We then conducted
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Fig. 12. Correspondences obtained with the proposed algorithm. Top: narrow baseline. Bottom: wide baseline. Note that several

mistakes occur for wide baseline, since the isometric assumption is no longer appropriate.

four different experiments. We matched 15 against 30, 20 against 30, 25 against 30 and finally

30 against 30 points for every image pair in the experimental setting defined above. This allows

us to evaluate how the techniques perform in a real problem with different point set sizes. For

the30×30 case, we run all 4 techniques (JT, GA, PRL and SB), whereas for the remaining cases

SB was not used since it is not suitable for patterns of different sizes, as already mentioned.

Figure 13 shows the results for these experiments. The average value is taken over different

spacings between image pairs in the frame sequence. Here we can observe that, as the relative

sizes of the patterns become progressively different, the advantage of JT over the other techniques

increases, which agrees with the synthetic experiments. For the reported values of different pattern

sizes, JT performs significantly better than the competing methods, even for a wide baseline.

Although the isometric assumption clearly does not hold for a wide baseline, we note that the

same pairwise distances were used as features inevery algorithm, so we expect this to be a

fair comparison.8 For the experiment with patterns of the same size (30 × 30), JT has similar

performance to GA and PRL when the baseline is increased. For the narrow baseline case, JT

8It should be clear that in real problems, any of these approaches, since they rely exclusively on distance features, will only

be competitive in the narrow baseline case.
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Fig. 13. Performances of JT, GA, PRL and SB in the CMU houses sequence for increasing baselines (10 to 100 frame

separation) and different domain/codomain sizes (15/30, 20/30, 25/30, 30/30).

slightly outperforms the competing methods.

Our results in the real-world experiments lead us to conclude that, in the particular real-world

problem of stereo correspondence, JT finds its best applicability in the narrow baseline case for

patterns of different sizes where the isometric assumption is guaranteed to hold (apart from jitter

of course). This finding agrees with the synthetic experiments.

Given the positive results on both synthetic and real-world experiments where there is a

narrow baseline, we expect that in other applications, like those involving matching of star

constellations, flexible ligands and protein motifs (where the isometric assumption also holds

with good approximation) the proposed technique should perform similarly well.
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Fig. 14. Variation in performance of JT when different k-trees are used: matching two patterns of 20 nodes each. For each

jitter level, 100 experiments were carried out (100 different domain-codomain point sets). For each of these, 100 random k-trees

were generated and for each of these the JT algorithm was run.Left: each error bar corresponds to the average, over the 100

experiments, of the standard deviation computed over the 100 different k-trees of each experiment;Right: the growth of the

variance is plotted explicitly. Note the linear behavior.

C. Empirical performance evaluation for varying k-trees

We mentioned previously that there is a theoretical problem that remains unsolved in this

framework: how to select thek-tree when there is position jitter. When there is no jitter, any

k-tree will find the same—optimal—solution. However, when jitter is present, differentk-trees

can result in different accuracy. Here we provide empirical evidence of this fact by measuring

the variance of the performance of a matching task over a range of possible choices ofk-trees.

Figure 14 shows the results of our experiments. We used the same setting of the previous

synthetic experiments: random point patterns in[0, 1]2. We randomly generated 100 domain-

codomain pairs in this range, each with 20 points. For each of these 100 configurations, we

randomly selected 100 3-trees for the domain pattern. Finally, the JT algorithm was run in each

of these 100 3-trees. This allows us to measure the performance variability within the same pair

domain-codomain over a wide selection of 3-trees. We simply computed the standard deviation

over the 100 runs in each pair and averaged the results over the 100 configurations. This “average

standard deviation” is plotted in the error bars in Figure 14-Left.

We observe from Figure 14-Right something that was already expected: the performance

variance increases with jitter. In particular, it is zero for zero jitter, confirming the theoretical
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results. Note that the average standard deviation grows only linearly with respect to the jitter.

D. Processing Times

The computational complexity of the proposed method is higher than in the other approaches.

Spectral, graduated assignment and relaxation methods are, respectively,O(T 3) (S=T),O(T 2S2)

and O(T 2S3), while the proposed Junction Tree approach isO(TS4) (for matching inR2).

However, the graphs showing real processing times (see Figure 15) indicate that even for a

reasonable size, like 40, the actual running time is just twice that of PRL and 4 times that of

GA. For graphs with about 30 nodes, the technique is about as fast as relaxation labelling.
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Fig. 15. Processing times for JT, GA, PRL and SB all in MATLAB implementations running on a Pentium 4, 3.2 GHz and

1GB of RAM.

VIII. D ISCUSSION ANDFUTURE WORK

A matching algorithm should, ideally, present high robustness with respect to jitter as well

as with respect to size increases of the patterns. Our experiments revealed, essentially, two

things. First, for matching patterns of the same size, the proposed method is very robust to

small and moderate position jitter and reasonably robust to high position jitter. Second, and

more important, the method is extremely robust to increasing differences in the pattern sizes. In

experiments where the sizes of the two patterns are significantly different, the performance of JT

is by far superior to that of the alternative methods. This is an important result, because in many
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relevant application domains the problem of finding a “small” model within a “large” scene is of

primary concern. (A typical such scenario that arises in Computer Vision is model-based object

recognition in cluttered scenes.) We believe that the results presented in this paper indicate a

possible direction in the search for robust algorithms for subgraph matching, where the sizes of

the graphs can differ significantly.

This research has opened a wide field of investigation. There are several ways in which the

current work can be extended. First, by considering higher-order potentials one might be able to

cope with more complex invariances, such as invariance to affine transformations. Second, non-

rigid matching might be attainable by augmenting the clique potentials with terms that allow for

some kind of nonlinear transformation. Third, theoretical results on the accuracy of the method

for the noisy case can be investigated. Fourth, the framework should be extended to deal robustly

with outliers. Also, a deeper understanding of the noisy case might lead to a principled technique

for the k-tree selection problem.

IX. CONCLUSION

This paper proposed a new solution to the rigid point pattern matching problem where jitter

is allowed. The approach consisted of modelling the point matching task as a weighted graph

matching problem and solving it using exact probabilistic inference in an appropriately designed

Graphical Model. By using graph rigidity arguments, we showed that this Graphical Model,

while allowing for exact MAP computation in polynomial time, still remains equivalent to the

fully connected model in the noiseless limit. Contrary to many alternative heuristic approaches,

the method we obtain is built from first principles (it has no intrinsic parameters), is non-iterative,

obtains results independent of initialization, and provably finds a global optimum in polynomial

time in the exact matching case. For inexact matching, our experiments indicate that the proposed

technique is more accurate than standard methods when matching patterns of different sizes.
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