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Abstract

Network community detection—the problem of di-
viding a network of interest into clusters for intelli-
gent analysis—has recently attracted significant at-
tention in diverse fields of research. To discover
intrinsic community structure a quantitative mea-
sure callednodularityhas been widely adopted as
an optimization objective. Unfortunately, modular-
ity is inherently NP-hard to optimize and approxi-
mate solutions must be sought if tractability is to be
ensured. In practice, a spectral relaxation method is
most often adopted, after which a community parti-
tionis recovered from relaxed fractional values by a
rounding process. In this paper, we proposéamn
ative roundingstrategy for identifying the partition
decisions that is coupled with a fasbnstrained
power methodthat sequentially achieves tighter
spectral relaxations. Extensive evaluation with this
coupled relaxation-rounding method demonstrates
consistent and sometimes dramatic improvements
in the modularity of the communities discovered.
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[Leskovecet al, 2014d. Recently, themodularity function,

@, which measures the quality of a particular grouping of
vertices in a network, has been widely accepted. Girvan and
Newman 2004 have shown across a variety of simulated and
real-world networks that largep values are correlated with
better graph vertex groupings.

Unfortunately, maximizing is fundamentally difficult,
hence heuristic approximation methods have been proposed
for locally optimizing it. Among them, a spectral method
proposedNewman, 200Fhas attracted broad attention. Af-
ter relaxation, the method computes a decision vector where
each element corresponds to the partition assignment af a ve
tex. To recover a hard partition from such a relaxed solu-
tion it has been standard practice to round each element in-
dividually based simply on their sign. Although simple sthi
conventional roundingtrategy has achieved good empirical
results and has been deployed extensively in the analysis of
real-world networks and other graph partition applicagion

In this paper we propose derative roundingstrategy for
recovering the final decisions. Unlike conventional round-
ing, which purely operates on the individual signs, we take
the magnitude of each element into consideration in a se-
quential manner. That is, in successive rounds only a por-
tion of elements with large magnitudes are rounded to hard

Many important systems can be represented as networks, wif#cisions. The remaining elements are then re-optimized in

entities represented by vertices and relationships repted  the next iteration by solving eesidualproblem. The solu-

by edges. Prominent examples include the world wide webtion to the residual problem is again partially rounded into

social networks, biological networks, communication net-decisions, and so on. At the core of our proposal is a new

works, etc.[Easley and Kleinberg, 2010Research on net- constrained power methdtiat achieves fast computation of

works has attracted significant recent interest, partiuin  the residual problem. This sequential approach more fightl

computing sciences and artificial intelligence, in respais ~ @Pproximates the global modularity objective by interlegv

the rapid increase in size and availability of real world-net Partial rounding with tighter spectral relaxation of theses-

Works and the practica' needs to ana|yze them .S|Ve r.eSIdual p.rOblemS. Through e?(tel:].S|Ve eVaIUauorS, th

often been “How many communities are there and what arénprovement over the conventional approach.

the memberships?”. Community (i.e. cluster) structuresee

to be inherent in real-world networks: vertices tend to €lus 2 preliminaries

ter in groups where vertex connections within the same group

are dense, while the connections are sparser betweenegrtioModularityis the standard objective function used in network

from different groups. The ability to find and analyze suchcluster analysis. It quantifies the quality of a given divrsi

groups has proved invaluable in understanding network-stru of a network into communities. Good divisions, which have

ture. high modularity values, are those with dense edge connec-
Computationally, the quality of a partition obtained de-tions between the vertices within a community but sparse

pends on the quality of the objective function being usedconnections between vertices in different communities.



Consider an undirected gragh = (V, E) whereV = 3.1 Two-Way Partitions

{v1,02,- -, v} IS @ set of vertices andl is a set of edges 1, gt yunderstand the spectral method, consider a simple

between vertex pairs. Let;; be an element of the adjacency (,qq \yhere the graph is divided into two groups. One defines
matrix I of the network, which gives the number of edges . "_" | | 1 indicate the group membershipaf yielding

between vertices; andv;. We further denoté; = Zj Wij

as the degree of andm = 1 3~ d; as the total edge number. 0= 1 Z boisis: — LSTBS
For a candidate partition of the vertices into clusters, the 4m =7

modularityis defined to be the portion of the edge connec- Y

tions within the same cluster minus the expected portidieft wheres is the column vector with elements.

connections were distributed randomly. Assuming the degre  The vectors can be expressed as a linear combination of

d; associated with each vertexis preserved, under uniform the normalized eigenvectors of the modularity matrix3,

random selection the expected number of edges between tw® thats = o agu; with a; = ul's. Then one obtains

verticesv; andv; is 4% . Thus the observed number minus

2m n
the expected number is;; — %% . Summing over all pairs _ 1 T . T2y
P i T om g P Q= 4mZazuiBZa]uj = 4mz:1(ui s)" A,

i j i=

of vertices within the same group, the modularity, denoted b
Q, is given by
1 did. where)\; is the eigenvalue of3 corresponding to the eigen-
Q= By Z [wij — 21 j] d (ciy c5) vectoru,.
me m Assume that the eigenvalues are labeled non-increasingly,
wherec; is the group to which vertex; belongs, and isthe A1 = A2 > --- > A,. To maximizeQ), the assignment vec-
Kronecker delta function. tor s needs to concentrate as much weight as possible in the
The value ofQ lies in the rangé—1, 1]. Itis positive when  terms involving the leading (largest algebraic) eigereaju
the observed connections within the same group exceed thghich, if s were unconstrained, could be achieved by setting
expected number under random connections. Given a largérProportional to the leading eigenvectoy. But with “+1"
than expected portion of connections, one can reasonably ifonstraintss cannot be chosen freely, which makes the opti-
fer the presence of an underlying cluster structure. Thnes, t Mization difficult.
cluster structure can be searched precisely by checking the Fortunately there is a convenient approximation available
network divisions that have large modularity values. Ignoring the inconvenient fact that it is not possible to mak
An equivalent formulation is often used. Defirg to s perfectly parallel ta:;, one simply divides the vertices into

be 1 if vertex v; belongs to group and0 otherwise. Then o groups according to the signs of each element of
5 (ci,¢j) = 3, sirsj» and hence Although this approximation is straightforward, it haseoft
' been found to give reasonable results in practice.

1 didj} 1 .
= — Wi — —=| 8ir8ir = —1r (S* BS ) .
=3 %:zr: [ 7 2m T 2m ( ) 3.2 Multi-Way Partitions

wheretr denotes the trace of a matrig,is the matrix having  The simple two-way partition method can be extended to
elementss;,., andB is themodularity matrixhaving elements multi-way partition method recursively. Thatis, using ses-

. sive two-way partitions that divide the graph into subgsaph
d;d; : -
bij = wij — o the process can be continued on each subgraph until no fur-
m ther increases i can be found.

All rows and columns of the modularity matrix sum to zero,
which means that the modularity of an undivided graph is,,,
always zero.

Unlike most statistical clustering models or graph pantiti
techniques, which require a prior setting of partition num- b d;d; stiin(d—a m’
bers or group sizeBJainet al, 1999; Shi and Malik, 2000; i = Wi T 5T (4,5) | di = i)
Ng et al, 2004, the modularity score determines the parti-
tion number and the group size automatically without manuaihered; = 3=, v, wi; andm’ = 337, . d;. The
intervention. This measure also allows the possibility f®  gypgraph modularity is given by’ = L sTB's, wheres

good division of a network exists, corresponding to the cases 5 column vector withh' elements. Maximizing)’ with
that the modularity value is zero (and cannot be increased %spect tos’ gives the further contribution to the modularity

Formally, for each subgragh = (V', E’) with n’ vertices
e define amn’ x n/ subgraph modularity matrix8’ with
elements

further division of vertices). Q obtained by subdividing the subgraph. Wheh= G, B’
. Lo reduces td3 sinced; — d; andm’ — m in that case.
3 Spectral Modularity Maximization The division process on each subgraph is halted when there

Maximizing @ is NP-hard[Brandeset al, 2004, therefore exists no division that further increases the graph moeular
researchers have sought approximate solutions. In peacticity; that is, no division that yields a positive value f¢Y.

a spectral relaxation method is widely used, that obtaias re This happens when the modularity matf#% has no positive
sonable empirical results in both optimization accuraay an eigenvalues, hence the leading eigenvalue provides aeimpl
computation tim¢Newman, 200B check for terminating the division process.



3.3 Combination with Exchange Heuristics
Problem G Optimal Suitatfle Integer
. . . . . —22T,, P optimal_ | Rounding  f—ancdCl_y,
In practice, the spectral method is often used in conjunctio lance ™| Cgover | TECUoral | pocire | Somten
with exchange heuristics. In this approach, one uses spectr
partitioning to obtain an initial broad division of the gtap () Conventional Rounding
into subgraphs, then refines this division by moving vestice
between groups using the Kernighan-Lin algoritHrin and Comvex _ Good Part | —gmieger
Kernighan, 1978 — o> Pogem 02
Given two groups of vertices, the refinement proceeds as ,—> SOVEr | solion | FrECE %‘
follows. Successively find the vertex that, when moved to the
other group, obtains the largest increasé&iror the smallest (b) Iterative Rounding

decrease if no increase exists. Repeatedly make such moves,
but ensuring that each vertex is moved only once. When all
vertices have been moved, search all intermediate states td-igure 1: Conventional Rounding and Iterative Rounding.
find the division that obtained the greatést Starting again
{:T?S:;Césmsetﬁﬁé Leopsi?élg'%;xmange process, until nodurth 4.1 Conventional Roundingvslterative Rounding

As reported in[Newman, 200F this combination gives !N the spectral approach, given the computed eigenvector, a
excellent results on many open networks and has becomeVgrtex partition is usually recovered by simple rounding

standard baseline when comparing community detection al- 11 v >0
gorithms. s = i =
—1  otherwise
3.4 Computational | ssues whereu,; denotes thé-th element of the leading eigenvector

u1. We refer to this strategy a®nventional rounding

The modularity matrix3 has special structure that can be ex- Note that the conventional rounding strategy is based on
ploited to efficiently compute the leading eigenvector via t the signs of the eigenvector elements, regardless of thegr m
power method. The power method approximates the domibitudes (qbsolute valqes). However, the elements witlediff
nant eigenvalue (the eigenvalue with the largest magnjtudeeNt magnitudes contribute differently €, and therefore af-
and its eigenvector by iteratively multiplying a given niatr fect the confidence in the rounding decisions. For examiple, i

with an initial vector. For example, starting from a random %1i has aT'arge magnitude, theywill have a significantinflu-
vectorv?, the power method iteratively refinesby matrix- ~ €Nce onu; s in the objective, and we would be more confident

o T Bo in inferring its rounded value. However, if the magnitude is
vector multiplication and reno.rmallzatmﬁ = o and gal, si’sgcontribution to the objective is less evigent, and
approximates the dominant eigenvectoirbéfficiently. one would be less confident to make the rounding decision.

For modularity matrices, although the leading eigenvectoin this latter case, we would like to postpone the rounding
might not be dominant, one can still apply the power methodiecision to a later phase.
by using a simple trick. Without loss of generality assume Based on the idea, we propose a successive rounding
the eigenvalues oB satisfyA; > A\ > --- > 0 > --- > method that only rounds variables with top magnitudes. That
An—1 > M. Using the power method, first compuigs is, unlike conventional rounding that makes the entireipart
dominant eigenvalue. If the eigenvalue is positive, ifis  tion decision in a single batch, we propose to recover more
and its eigenvector is precisely the leading eigenvectave  accurate community structure incrementally, using aerat
seek. If the eigenvalue is negative, itis, the most negative we will refer to asterative rounding
eigenvalue. In this case, shift the matfx- |A2_‘[ wherel is The two rounding schemes are illustrated in Figure 1. Init-
ann x n identity matrix. The shifted matrix has eigenvalues erative rounding, we first find an approximate solution to the
A+ ol xg 4 Bal oo da put the same eigenvectors as Original problem. Then, given a relaxed result, we do not tur
B. Applying the power method to this new matrix returns &/ E[heglenl"nents Irg?hdems'(')trrﬁ like conver)tt%nal r_(lgﬁndimg

Anl o . : instead only round those with large magnitudes. Then we pro-

M Jr_ ‘_2‘_’ \_N'th the_dga_red eigenvectar. ceed to they next iteration by stl?dyinggtlﬁsidualproblem, P
With trivial modifications, the power method can also behich often has a structure similar to the original but with

used to calculate the leading eigenvector for the subgrapfawer elements. This process is repeated until no variables
modularity matrixB’. We omit the details here. are left un-rounded.

4.2 Constrained Power Method

4 'tera“Ye Rounding for Community To explain how the residual problems are efficiently solved
Detection in the context of iterative rounding, consider an illusoatof
the approach. In the first iteration, we have the same prgblem
We now present our main proposal for improving the modu-max s Bs, as the conventional spectral method. We simply
larity of the communities discovered in a network. use the power method and get the leading eigenvector. Then,



rather than deploy conventional rounding, we only round thevertices andn < kn edges wheré is a constant, the power
elements with largest magnitudes into decisions. method effectively require® (n) matrix-vector multiplica-
After the first iteration, we are left a residual problem to tions to converge, where each multiplication requite&:)
B $1 floating point operations. In total, the power method reggiir
solve. Now suppose = ( _ | wheres; denotes the (n?) time to calculate the leading eigenvector of the mod-

rounded elements that are held fixed, apdontains the un-  ularity matrix. _
rounded elements yet to be set. We can re-write the objective Similarly to the power method, the constrained power

as the maximization of method has a complexity ab (n?) for a problem withn
T variables. Furthermore, suppose after each iteratior an
51 Bi1 Bio 81 (0 < € < 1) fraction of the variables are rounded into integer
S2 Ba1 B S2 decisions. Then in the subsequent round the residual proble

becomes one with: (1 — ¢) variables, and the constrained
power method would therefore requ'(De(n2 (1-— 6)2) oper-

ations to converge. Repeating this argument, the complexit
of iterative rounding becomes:

T T T
= 55 B22so + 255 Bo1s1 + 51 Biisi

where By, B12, B2 and By, are four sub-matrices oB.
Equivalently we have a residual problem to maximize

L=sIB 253
55 Bagsa + 2s5 Ba151 w4l (=2 +n2(l—e) +n2(1—e)+-..
with respect tosq, subject to the unit length constraint. 1
We can apply the gradient-based method for the maximiza- = Sy
tion by iteratively updatings> along the gradient direction €-¢
and renormalizing it, with which the convergence is guaran- < an

2

teed. €
We also find a procedure we cabinstrained power method g we come to the following observation.
that gives excellent results. In gradient-based upsiat®n- For a network withn vertices, the complexity of iterative

verges when the gradieRtL is parallel to the current esti- rounding isO (1n2) wheree is the fraction of variables to
mate ofsz, or VL = 2As; where\ is a scalar number. Then 4.,nd in each iteration.

we have ; ; i 2 i
_ Boosy + Bo1s1 Comparing with the complexity a (n ) for conventional

52 3 rounding in network community detection, we can see the
We can force) to be positive. Sinces is of unit length difference is up to a facto%, which is usually a constant
it must hold that] Bass + Barsi| — A. Thus we reach a value in practice. Suppose in each |teratﬁonf the variables

are rounded, then the run time of iterative rounding would
be around! times the run time of the conventional rounding
i Baysh + Bay sy methpd. AIFhough the es_timat_e i_s not th_eoretically Stiact,
o = ; . we will see in our evaluations, it fits practice well.
|| B22s + Baysi|

The update occurs in a similar manner as in the powes Eyaluation

method. WhenBs3;s; = 0, the constrained power method ) . ]

reduces exactly to the power method. We compared the proposed iterative rounding strategy to the
Starting with the previous fractional result g the con- ~ conventional spectral method. In a series of experiments we

strained power method often converges quickly in practiceobserved consistent and sometimes very large improvements

Given the updated relaxed solution produced by the conln particular,

strained power method, we again only round those elements 4 for two-way partitions (cf. Section 3.1), iterative round-

in s, that have large magnitude. After this partial rounding, ing demonstrates significantly improveékvalues;
we are left another residual problem sharing the same struc-

ture. The constrained power method and iterative rounding ® for multi-way partitions (cf. Section 3.2), iteratiye
are applied successively for each residual problem. The pro  rounding demonstrates significantly improv@dalues;
cess is terminated oneg has no elements, hence all vertex o for partitions refined by exchange heuristics (cf. Sec-

grouping decisions have been made. tion 3.3), iterative rounding demonstrates significantly
Itis also possible to apply the projected power method de-  improved( values;

veloped in[Xu et al, 2009 for the optimization problem in ) , ) )

each iteration, which exhibits similar performance as trec ~ ® itérative rounding has reasonable computation overhead

strained power method on community detections. We omit ~ comparing with conventional rounding.

simple update rule fas,:

the details here. These evaluations were conducted on all fourteen networks
lexi . contained in a standard benchmark collectibiihese bench-
4.3 Complexity Analysis mark networks cover a variety of application areas and are

To analyze the time complexity for iterative rounding inspe briefly described in Table 1.
tral partitions, we first borrow some results on the power
method from[Newman, 2006 For a sparse network with http://www-personal.umich.edwmejn/netdata/



Table 1: Networks used in the evaluations and their source§able 2: Q) values by conventional rounding (CR) and itera-
The vertex numbers are listed in brackets.

tive rounding (IR). Each item has three valugs B/C). A

Network  Source is for two-way partitions B is for multi-way partitions, and
Karate friendships of 34 members in a karate club C'is for multi-wgy partitions refineq by exchange heuristics.
(34) [Zachary, 1977 For networks with oveil0, 000 vertices, the refined results
dolphins  frequent associations of 62 dolphins were not obtained on our computer.

(62) [Lusseatet al., 2003

lesmis character interactions frdres Misérables Networks CR IR

(77) [Knuth, 1993 karate 371/.393/.420 .372/.417/.420

polbooks  co-purchase of politics booksfahazon.com dolphins  .390/.491/.519  .403/.526/.526

(105) (www.orgnet.com) lesmis .361/.532/.550  .381/.551/.560

adjnoun  adjacency of adjs and noun®iavid Copperfield polbooks .445/.467/.521  .457/.523/.527

(112) [Newman, 200p adjnoun  .191/.243/.308  .214/.298/.308

football US_ college football games during Fall 2000 football .376/.493/.599  .400/.601/.605

(115) [Girvan and Newman, 2002 celegan  .261/.332/.400 .313/.381/.401

celegans  neural network of C. Elegans polblogs  .424/.424/.425  .426/.426/.426

(297) [Watts and Strogatz, 1998 netsci 131/.671/.908  .496/.953/.954

polblogs  hyperlinks of US politics web logs power .062/.898/.924  .491/.933/.934

(1224)  [Adamic and Glance, 2005 hepth .034/.739/.812  .455/.829/.839

netsci co-authorship on network theory and experiment astroph .195/.586/ A17/.725/

(1461)  [Newman, 200 condmat .210/.677/ 453/.823/

power topology of US Western States Power Grid internet .301/.419/ .370/.620/

(4941) [Watts and Strogatz, 1998

hepth co-authorship on preprintsidigh-Energy Theory

(7610) [Newman, 2001 largest “internet” network the improvement is framt19 to
astroph co-authorship on preprintsAstrophysics 0.620.

(16046)  [Newman, 2001

condmat  co-authorship on preprints@bndensed Matter ; Fofi

(16264)  [Newman, 2001 5.3 With Exchange Heuristics

internet  snapshot of Internet in level of autonomous system  As discussed in Section 3.3, the spectral partition metkod i
(22963)  (www.routeviews.org) often used in conjunction with exchange heuristics, which

provides further refinement for the community partitions-di
covered. In our experiments, we also comparedhalues
achieved by the two rounding methods after this fine-tuning.
In this case, we divided each network into two partitions and The refined values are listed in Table 2. On “karate” net-
checked the) value obtained by two rounding methods re- work, both methods successfully detected the partitiarcstr
spectively. The results are listed in Table 2. On all fourtee ture with@ = 0.420 which is known to be optimal via math-
networks, iterative rounding demonstrates improadhlues  ematical programminfagarwal and Kempe, 20§80n “ad-
over conventional rounding. jnoun” network, the two methods obtained the same result
For small networks, two rounding methods reported com-after refinement. On all the other nine networks where the
parable() values and the improvement from iterative round-exchange heuristic was applicable on a conventional com-
ing is not large. On the smallest “karate” network with puter, iterative rounding achieved improv@dvalues to con-
34 vertices, the improvement is only slight, frod371 to  ventional rounding.
0.372. However, on larger networks the improvements are An interesting observation is that iterative rounding bene
much more significant. One example is on “hepth” networkfits less from the exchange heuristic. For conventionaldeun
with 7,610 vertices, where the conventional rounding resulting, the exchange heuristic helps to increé@ssignificantly
is 0.034 while the iterative rounding achieves a modularity on most networks. However for iterative rounding, the in-
score 0f0.455. crease is not as evident. On the other hand, on eight out
of eleven networks, the iterative rounding multi-way résul
alone (without refinement) are better than the conventional
rounding results with refinement, further exhibiting thieef
tiveness of iterative rounding.

5.1 Two-Way Partitions

5.2 Multi-Way Partitions

Next, we investigated multi-way partitioning, wherein two
way partitions are repeated until no further increas€)aé
possible. These results are listed in Table 2, where it caeg4 Run Time C .
be seen that improvements achieved by iterative rounding re™ un TimetL.omparison
main consistent. On all networks, iterative rounding aitdi  \We recorded the run time of conventional rounding and iter-
better@ values than conventional rounding. ative rounding on networks with more than000 vertices.
Similarly to the two-way case, the improvement is partic-Both rounding methods were implemented in Matlab and run
ularly significant on large networks. On “karate” network, on an Intel Xeon workstation witB2G RAM. For iterative
the increase is only frord.393 to 0.417; while on the larger rounding, we set = %, meaning tha& of the variables were
“hepth” network, it become®.739 to 0.829; and on the rounded in each iteration.



[Easley and Kleinberg, 201M. Easley and J. Kleinberg.

Two-Way Partition Time Networks, Crowds, and Markets: Reasoning About a
Highly Connected World Cambridge University Press,
10
2010.
[Fleischert al, 2004 L. Fleischer, K. Jain, and D.P.
1 Williamson. Iterative rounding 2-approximation algo-

rithms for minimum-cost vertex connectivity problends.
o Comput. Syst. S¢ir2(5):838—-867, 2006.

| ]
Al B [Girvan and Newman, 2002M. Girvan and M. Newman.
j I I I I Community structure in social and biological networks.
0.01 Proceedings of National Academy of Scien@%7821—

polblogs  netsci power hepth  astroph condmat internet 7826, 2002

_ o - [Jainetal, 1999 A.K. Jain, M.N. Murty, and P.J. Flynn.
Figure 2: Run time (in seconds) of two-way partitions by con-  Data clustering: A review. ACM Computing Surveys
ventional rounding (CR) and iterative rounding (IR) on net-  31(3):264-323, September 1999.

works with overl, 000 vertices. [Knuth, 1993 D. Knuth. The Stanford graphbase: a plat-
form for combinatorial algorithmsACM Press, 1993.

The two-way partition time is listed in Figure 2. The multi- [ eskovecet al, 2014 J. Leskovec, K.J. Lang, and M.W.
way partition time is not listed because the two rounding” \jahoney. Empirical comparison of algorithms for net-
methods typically produce partitions with different numeoe 61k community detection. IRroceedings of the 19th In-
and sizes which makes the results not directly comparable. iarnational Conference on World Wide W&ECM. 2010.

From these results, we can see that iterative rounding sbring[ ) ) i )
reasonable computation overhead, given the additional tim[Lin and Kernighan, 1973S. Lin and B.W. Kernighan. An
effective heuristic algorithm for the traveling salesman

required to solve the residual problems. It is approxinyatel -

3 to 7 times slower than conventional rounding in the experi- Problem.Operations Researc21:498-516, 1973.

ment, consistent with our complexity analysis in Sectidh 4. [Lusseatet al, 2003 D. Lusseau, K. Schneider, O.J. Bois-
seau, P. Haase, E. Slooten, and S.M. Dawson. The bot-

6 Conclusion tlenose dolphin community of doubtful sound features a

large proportion of long-lasting associations: Can geo-

CR
|

widely used in combination with a standard rounding strat- Ecology and Sociobiology4(4):396-405, 2003. S
egy. Our work focuses on improving the results of thesdNewman, 2001l M. Newman. The structure of scientific
methods by a sequential rounding approach. This rounding collaboration networks?roceedings of National Academy
strategy has achieved significantly improved results iniemp ~ Of Sciences98:404-409, 2001.

ical studies. _ S [Newman, 200b M. Newman. Modularity and commu-
The study of rounding strategies is difficult. Not much nity structure in networks.Proceedings of the National
work has been investigatéleischeret al, 2004. In prac- Academy of Sciences03(23):8577-8582, 2006.

tice, r|1|ov¥ever,| thet.stralt)egygan ktf gxtrepr\nely ir;]”nportant, ej;Ng etal, 2003 A. Ng, M. Jordan, and Y. Weiss. On spec-
pecially Tor relaxation-based methods. AS WE Nave SEen In 4, clustering: Analysis and an algorithm. Advances

Section 5, it sometimes governs the success of an algorithm. i, Neyra| Information Processing Systems Cambridge,
Thus more investigations along this line deserve our furthe MA 2002. MIT Press

attention. We expect such results to be applicable to atyarie

of related spectral partition problems, such as normalizéd  [Shi and Malik, 200D J.B. Shi and J. Malik. Normalized
cuts and image segmentatiolflEE Trans. Pattern Anal-
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