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Abstract

Training principles for unsupervised learning
are often derived from motivations that ap-
pear to be independent of supervised learn-
ing. In this paper we present a simple uni-
fication of several supervised and unsuper-
vised training principles through the concept
of optimal reverse prediction: predict the in-
puts from the target labels, optimizing both
over model parameters and any missing la-
bels. In particular, we show how supervised
least squares, principal components analysis,
k-means clustering and normalized graph-cut
can all be expressed as instances of the same
training principle. Natural forms of semi-
supervised regression and classification are
then automatically derived, yielding semi-
supervised learning algorithms for regression
and classification that, surprisingly, are novel
and refine the state of the art. These al-
gorithms can all be combined with standard
regularizers and made non-linear via kernels.

1. Introduction

Unsupervised learning is one of the key foundational
problems of machine learning and statistics, encom-
passing problems as diverse as clustering (MacQueen,
1967; Shi & Malik, 2000), dimensionality reduction
(Mika et al., 1998), system identification (Katayama,
2005), and grammar induction (Klein, 2004). It is also
one of the most studied problems in both fields. Yet,
despite the long parallel history with supervised learn-
ing, the principles that underly unsupervised learn-
ing are often distinct from those underlying supervised
learning. For example, classical methods such as prin-
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cipal components analysis and k-means clustering are
derived from principles for re-representing the input
data, rather than minimizing prediction error on any
associated output variables. Minimizing prediction er-
ror on associated outputs is obviously related to, but
not directly determined by input reconstruction in any
single, obvious way. Although some unification can be
achieved between supervised and unsupervised learn-
ing in a pure probabilistic framework, here too it is
not known which unifying principles are appropriate
for discriminative models, and a similar diversity of
learning principles exists (Smith & Eisner, 2005; Cor-
duneanu & Jaakkola., 2006).

The lack of a unification between supervised and un-
supervised learning might not be a hindrance if the
two tasks are considered separately, but for semi-
supervised learning one is forced to consider both to-
gether. Given both labeled and unlabeled training ex-
amples, we would like to know how to infer a bet-
ter predictor than just using the labeled data alone.
Unfortunately, the lack of a foundational connection
has led to a proliferation of semi-supervised learning
strategies (Zhu, 2005), while there are no guarantees
that any of these methods will ensure improvements
over using labeled data alone (Ben-David et al., 2008).

The dominant approaches to semi-supervised learning
currently appear to be to use unsupervised loss as a
regularizer for supervised training (Zhou & Schölkopf,
2006; Belkin et al., 2006; Corduneanu & Jaakkola.,
2006); to combine self-supervised training on the un-
labeled data with supervised training on the labeled
data (Joachims, 1999; De Bie & Cristianini, 2003); to
train a joint probability model generatively (Bishop,
2006); and to follow alternatives such as co-training
(Blum & Mitchell, 1998). Unfortunately, the lack of
a unified perspective has led to the slow development
of supporting theory (although there has been contin-
ued progress (Balcan & Blum, 2005)). Instead, the
literature relies on intuitions like the “cluster assump-
tion” and the “manifold assumption” to provide help-
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ful guidance (Belkin et al., 2006), but these have yet
to lead to a general characterization of the potential
and limits of semi-supervised learning.

In this paper we demonstrate a unification of several
classical unsupervised and supervised training prin-
ciples. In particular, we show how supervised least
squares, principal components analysis, k-means clus-
tering and normalized graph-cut can all be expressed
as the same training principle. These methods differ
only in the assumptions they make about the training
labels (i.e. whether the labels are missing, continuous
or discrete).1 Interestingly, the unification is not based
on predicting target labels from input descriptions (an
approach that does not work), but rather the other
way around: predicting input descriptions from asso-
ciated labels. We will show that reverse prediction
allows classical unsupervised training principles to be
unified, while, importantly, it still allows standard for-
ward regression to be recovered exactly. This unifica-
tion encompasses both regularization and kernels.

Once this unification is established, we can then
achieve our main result: a natural principle for semi-
supervised learning. In particular, for least squares,
we show that the reverse prediction loss decomposes
into a sum of two independent losses: a loss defined
on the labeled and unlabeled parts of the data, and
another, orthogonal loss defined only on the unlabeled
parts of the data. Given auxiliary unlabeled data, one
can then reduce the variance of the latter loss estimate
without affecting the former, hence achieving a strict
variance reduction over using labeled data alone.

In the sequel, we first establish some preliminary foun-
dations of forward least squares and then present the
reverse prediction model, showing how the standard
forward solution can be recovered even in the presence
of ridge regularization and kernels. We then present
the unification of supervised least squares with princi-
pal components analysis, k-means clustering and nor-
malized graph-cut. With this unification, we demon-
strate the reverse loss decomposition and present the
new semi-supervised training principle. The paper
concludes with an empirical evaluation on both regres-
sion and classification problems.

2. Preliminaries

Assume we are given input data in a t × n matrix
X, with rows corresponding to instances and columns
to features. For supervised learning, we assume we are
given a t×k matrix of prediction targets Y . Regression
and classification problems can be represented simi-

1Normalized graph-cut also incorporates a re-weighting.

larly, where for classification one assumes the rows in
Y indicate the class label; that is, Y ∈ {0, 1}t×k such
that Y 1 = 1 (a single 1 in each row).

Notation: We will use 1 to denote the vector of all
ones, tr(·) to denote matrix trace, ′ to denote matrix
transpose, and † to denote matrix pseudo-inverse.

For supervised learning, training typically consists of
finding parameters W for a model fW : X 7→ Y that
minimizes some loss with respect to the targets. We
will focus on minimizing least squares loss. The follow-
ing results are all standard, but specific variants our
approach has been designed to handle are outlined.

For linear models, least squares training amounts to
solving for an n× k matrix W that minimizes

min
W

tr ((XW − Y )(XW − Y )′) (1)

This convex minimization is easily solved to obtain the
global minimizer W = X†Y . The result can then be
used to make predictions on test data via ŷ = W ′x
(thresholding ŷ in the case of classification).

Linear least squares can be trivially extended to incor-
porate regularization, kernels and instance weighting.
For example, (ridge) regularization can be introduced

min
W

tr ((XW − Y )(XW − Y )′) + α tr (W ′W ) (2)

yielding the altered solution W = (X ′X + αI)−1X ′Y .

A kernelized version of (2) can then be easily derived
from the identity (X ′X+αI)−1X ′ = X ′(XX ′+αI)−1,
since this implies the solution of (2) can be expressed
as W = X ′A for A = (XX ′ + αI)−1Y . Thus, the in-
put data X need only appear in the problem through
the inner product matrix XX ′. Once the input data
appears only as inner products, positive definite ker-
nels can be used to obtain non-linear prediction mod-
els (Schölkopf & Smola, 2002). For least squares, the
kernelized training problem can then be expressed as

min
A

tr ((KA− Y )(KA− Y )′) + α tr (AA′K) (3)

where K corresponds to XX ′ in some implicit feature
representation. It is easy to verify that A = (K +
αI)−1Y is the global minimizer. Given this solution,
test predictions can be made via ŷ = A′k where k
corresponds to the implicit inner products Xx.

Finally, we will need to make use of instance weighting
in some cases below. To express weighting, let Λ be
a diagonal matrix of strictly positive instance weights.
Then the previous training problem can be expressed

min
A

tr (Λ(KA− Y )(KA− Y )′) + α tr (AA′K) (4)

with the optimal solution A = (ΛK + αI)−1ΛY .
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3. Reverse Prediction

Our first key observation is that the previous results
can all be replicated in the reverse direction, where one
attempts to predict inputs X from targets Y . In par-
ticular, given optimal solutions to reverse prediction
problems, the corresponding forward solutions can be
recovered exactly. Although reverse prediction might
seem counterintuitive, it will play a central role in uni-
fying classical training principles in what follows.

For reverse linear least squares, we seek a k×n matrix
U that minimizes

min
U

tr ((X − Y U)(X − Y U)′) (5)

This minimization can be easily solved to obtain the
global solution U = Y †X. Interestingly, as long as
X has full rank, n, the forward solution to (1) can be
recovered from the solution of (5).2 In particular, from
the solutions of (1) and (5) we obtain the identity that
X ′XW = X ′Y = U ′Y ′Y , hence

W = (X ′X)−1U ′Y ′Y (6)

For the other problems, invertibility is assured and
the forward solution can always be recovered from the
reverse without any additional assumptions. For ex-
ample, the optimal solution to the regularized problem
(2) can always be recovered from the solution to the
plain reverse problem (5) by using the straightforward
identity that relates their solutions, (X ′X + αI)W =
X ′Y = U ′Y ′Y , allowing one to conclude that

W = (X ′X + αI)−1U ′Y ′Y (7)

Extending reverse prediction to kernels on the input
space is also particularly easy, since the reverse solu-
tions always have the form U = BX (where above we
had B = Y †). Thus the kernelized training problem
corresponding to (5) is given by

min
B

tr ((I − Y B)K(I − Y B)′) (8)

where K corresponds to XX ′ in some feature repre-
sentation. It is easy to verify that the global minimizer
is given by B = Y †. Interestingly, the forward solution
can again be recovered from the reverse solution. In
particular, using the identity arising from the solutions
of (3) and (8), (K + αI)A = Y = B′Y ′Y , we get

A = (K + αI)−1B′Y ′Y (9)

Finally, as in the forward case, we will need to make
use of instance weighting. Given the diagonal weight-
ing matrix Λ the weighted problem is

min
B

tr (Λ(I − Y B)K(I − Y B)′) (10)

2If X is not rank n, we can drop dependent columns.

where B = (Y ′ΛY )−1Y ′Λ is the global minimizer. The
forward solution can be recovered by

A = (ΛK + αI)−1B′Y ′ΛY (11)

Therefore, for all the major variants of supervised least
squares, one can solve the reverse problem and use the
result to recover a solution to the forward problem.

4. Unsupervised Learning

Given the relation between forward and reverse pre-
diction, we can now unify classical supervised with
unsupervised learning principles. The key connection
between supervised and unsupervised is a simple prin-
ciple of optimism: if the training targets Y are not
given, optimize over guessed labels to achieve a best
possible reconstruction of the input data. That is

min
Z

min
U

tr ((X − ZU)(X − ZU)′) (12)

Before outlining specific unifications below, we first
observe that the corresponding formulation of optimal
forward prediction does not work. In fact, forward
prediction fails to preserve useful structure in the un-
supervised learning problem. To see why, note that
optimistic forward training with missing labels is

0 = min
Z

min
W

tr ((XW − Z)(XW − Z)′) (13)

Unfortunately, as long as rank(X) > k, which we as-
sume, this problem gives vacuous results. For any set
of model parameters W one can merely set the guessed
labels to achieve Z = XW and the prediction error is
reduced to zero. Thus, the standard forward view has
no ability to distinguish between alternative parame-
ter matrices W under optimistic guessing. However,
given rank(X) > k, optimal reverse prediction is not
vacuous. In fact, it leads to several interesting results.

Proposition 1 Unconstrained reverse prediction

min
Z

min
U

tr ((X − ZU)(X − ZU)′) (14)

is equivalent to principal components analysis.

Proof: Note that (14) is equivalent to

min
Z

tr
(
(I − ZZ†)XX ′(I − ZZ†)′

)
(15)

= min
Z

tr
(
(I − ZZ†)XX ′) (16)

The first equivalence follows from U = Z†X by the
solution of (5), and the second from the fact that ZZ†

is symmetric and I − 2ZZ† + ZZ†ZZ† = I − ZZ†.
Clearly, (16) has the same optimizer as

max
Z

tr
(
ZZ†XX ′) = max

Z:Z′Z=I
tr (ZZ ′XX ′) (17)
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The latter equality can be shown from the singular
value decomposition of Z: if Z = V ΣQ′ for V ′V = I,
Q′Q = I and Σ diagonal, then ZZ† = V V ′. Thus the
solution is given by the top k eigenvectors of XX ′.

This same observation has been made (surprisingly re-
cently) in the statistics literature (Jong & Kotz, 1999),
but can be extended.

Corollary 1 Kernelized reverse prediction

min
Z

min
B

tr ((I − ZB)K(I − ZB)′) (18)

is equivalent to kernel principal components analysis.

Thus, least squares regression and principal compo-
nents analysis can both be expressed by (14), where Z
is set to Y if the labels are known.

A similar unification can be achieved for least squares
classification. In classification, recall that the rows
in the target label matrix, Y , indicate the class la-
bel of the corresponding instance. If the target la-
bels are missing, we would like to guess a label ma-
trix Z that satisfies the same constraints, namely that
Z ∈ {0, 1}t×k and Z1 = 1. Simply adding these con-
straints to (14) gives another interesting result.

Proposition 2 Constrained reverse prediction

min
Z:Z∈{0,1}t×k, Z1=1

min
U

tr ((X − ZU)(X − ZU)′) (19)

is equivalent to k-means clustering.
Proof: Consider the equivalent objective (15) and
notice that it is a sum of squares of the difference
(I − ZZ†)X = X − ZZ†X = X − Z(Z ′Z)−1Z ′X. To
interpret this difference matrix, we exploit some ob-
servations from (Peng & Wei, 2007). First note that
Z ′X is a k × n matrix where row i is the sum of rows
in X that have class i in Z (that is, the sum of rows
in X for which the ith entry in the corresponding row
of Z is 1). Next, notice that Z ′Z is a diagonal ma-
trix that contains the count of ones in each column of
Z. Hence (Z ′Z)−1 is a diagonal matrix of reciprocals
of column counts. Combining these facts shows that
U = (Z ′Z)−1Z ′X is a k×n matrix whose row i is the
mean of the rows in X that correspond to class i in Z.
Finally, note that ZU = Z(Z ′Z)−1Z ′X is a t× n ma-
trix where row i contains the mean corresponding to
class i in Z. Therefore, X − Z(Z ′Z)−1Z ′X is a t× n
matrix containing rows from X with the mean row
for each corresponding class subtracted. The problem
(19) can now be seen to be equivalent to assigning k
centers, encoded by U = (Z ′Z)−1Z ′X, and assigning
each row in X to a center, encoded by Z, so as to min-
imize the sum of the squared distances between each
row and its assigned center.

Corollary 2 Constrained kernelized prediction

min
Z:Z∈{0,1}t×k, Z1=1

min
B

tr ((I − ZB)K(I − ZB)′) (20)

is equivalent to kernel k-means.

This striking similarity between PCA and k-means
clustering has been previously observed (Ding & He,
2004), but here we have shown that both use identical
objectives to supervised (reverse) least squares.

Interestingly, even normalized graph-cut can be unified
in a similar manner. Here we only need to introduce
a weighting on the training instances. To show this
connection, we first establish a preliminary result.

Proposition 3 For a nonnegative matrix K and
weighting Λ = diag(K1), weighted reverse prediction

min
Z:Z∈{0,1}t×k,Z1=1

min
B

tr
(
Λ(Λ−1−ZB)K(Λ−1−ZB)′

)
(21)

is equivalent to normalized graph-cut.

Proof: For any Z, the inner minimization can be
solved to obtain B = (Z ′ΛZ)−1Z ′. Substituting back
into the objective and reducing yields

min
Z:Z∈{0,1}t×k, Z1=1

tr
(
(Λ−1 − Z(Z ′ΛZ)−1Z ′)K

)
(22)

The first term is constant and can be altered without
affecting the minimizer, hence (22) is equivalent to

min
Z:Z∈{0,1}t×k, Z1=1

tr (I)− tr
(
Z(Z ′ΛZ)−1Z ′K

)
(23)

= min
Z:Z∈{0,1}t×k, Z1=1

tr
(
(Z ′ΛZ)−1Z ′(Λ−K)Z

)
(24)

Xing & Jordan (2003) have shown that with Λ =
diag(K1), Λ−K is the Laplacian and (24) is equivalent
to normalized cut.

From this result, we can now relate normalized graph-
cut to the same reverse least squares formulation.

Corollary 3 The weighted least squares problem

min
Z∈{0,1}t×k, Z1=1

min
U

tr
(
Λ(Λ−1X−ZU)(Λ−1X−ZU)′

)
(25)

is equivalent to norm-cut (21) on K = XX ′ if K ≥ 0.

As far as we know, this connection has not been pre-
viously realized. These results simplify some of the
connections observed in (Dhillon et al., 2004; Chen
& Peng, 2008; Kulis et al., 2009) relating k-means to
normalized graph-cut, but generalizes them to relate
to supervised least squares. This generalized connec-
tion is crucial to obtaining simple and principled ap-
proaches to semi-supervised training.
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5. Semi-supervised Learning

We have shown how the perspective of reverse pre-
diction unifies classical supervised and unsupervised
training principles. Both can be viewed as minimizing
an identical least squared reconstruction cost, differ-
ing only in imposing constraints on the labels (and
altering the instance weights in the case of normalized
graph-cut). This connection between supervised and
unsupervised learning provides several obvious and yet
apparently new strategies for semi-supervised learning.

The first and simplest strategy we explore is based on
the following objective

min
Z

min
U

tr ((XL − YLU)(XL − YLU)′) /tL (26)

+µ tr ((XU − ZU)(XU − ZU)′) /tU

Here (XL, YL) and XU denote the labeled and unla-
beled data, tL and tU denote the respective number
of examples, and the parameter µ trades off between
the two losses (see below). The strategy proceeds by
first solving for the optimal reverse model U in (26),
and then recovering the corresponding forward model.
This basic procedure can be adapted to any of the re-
verse prediction models we have presented, including
regularized, kernelized, and instance weighted versions
of both regression and classification.

Although this particular strategy for combining su-
pervised and unsupervised training is straightforward
(and we show how to improve it below), it already ex-
hibits some advantages over existing methods. For ex-
ample, by using the normalized graph-cut formulation
(25) one obtains a semi-supervised learning algorithm
that is very similar to state of the art approaches (Zhou
& Schölkopf, 2006; Belkin et al., 2006; Kulis et al.,
2009). However, none of these previous approaches use
the reverse loss on the supervised component. Instead,
they couple the reverse loss on the unsupervised com-
ponent with a forward prediction loss on the labeled
data. Given the previous discussion, such a combina-
tion seems ad hoc. Below we show that by using re-
verse losses on both the supervised and unsupervised
components beneficial results can be achieved. First,
however, we can go deeper and derive a principled com-
bination of supervised and unsupervised learning that
achieves a strict variance reduction.

6. Reverse Loss Decomposition

A principled approach to semi-supervised training can
be based on a decomposition of the reverse least
squares loss that can be arrived at both geometri-
cally and algebraically. The decomposition can be
understood by considering Figures 1 and 2 respec-

x1

x2

x3

x4

x̂1

x̂2

x̂3

x̂4

Figure 1. Supervised reverse training attempts to find a
linear subspace (determined by the model) in the original
data space so that reconstruction of the training examples
x1, ...,x4 from the targets y1, ...,y4 minimizes the sum of
squared reconstruction errors.

x1

x2

x3

x4

x∗1 x∗2

x∗3

x∗4

Figure 2. Unsupervised reverse training is the same as su-
pervised, except that for any given linear model, the tar-
gets z1, ..., z4 are adjusted to ensure a least squares solution
(given by the orthogonal projection of x1, ...,x4 onto the
linear subspace). This leads to a Pythagorean decomposi-
tion of squared supervised error into squared unsupervised
error plus the squared distance between the supervised x̂i

and unsupervised x∗ reconstructions.

tively. Assume we have a fixed model U and a given
set of data X. Let X̂ = Y U denote the supervised
reconstruction of X using given labels Y ; see Fig-
ure 1. On the other hand, in the unsupervised case
the optimal target labels Z∗ are chosen to minimize
the sum of squared reconstruction error of the data X
under reverse model U . Let X∗ = Z∗U denote the
optimistic unsupervised reconstruction, where Z∗ =
arg minZ tr ((X − ZU)(X − ZU)′); see Figure 2.

Now observe that X̂ and X∗ must be members of the
same linear subspace determined by U . In the unsu-
pervised case, each data point is projected to its near-
est point in the subspace (Figure 2). In the supervised
case, each data point is reconstructed by a point in the
subspace determined by its corresponding label in Y
(Figure 1). To minimize the sum of squared loss, the
goal of both optimizations is to find a model U that
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maps reconstructions to a linear subspace that mini-
mizes the squared lengths of the dotted reconstruction
lines in the figures—supervised being constrained by
the given labels and unsupervised free to project.

These two figures reveal the key relationship be-
tween the supervised and unsupervised losses: by the
Pythagorean Theorem the squared supervised error
equals the squared unsupervised error plus the squared
distance between the supervised and unsupervised re-
constructions in the linear subspace. That is, con-
sider data point x3 in Figures 1 and 2. For this point,
‖x3 − x̂3‖2 in Figure 1 equals ‖x3 − x∗3‖2 in Figure 2
plus ‖x̂3−x∗3‖2 from Figures 1 and 2 respectively. Al-
gebraically, we have

Proposition 4 For any X, Y , and U

tr ((X − Y U)(X − Y U)) (27)
= tr ((X − Z∗U)(X − Z∗U)) (28)
+ tr ((Z∗U − Y U)(Z∗U − Y U)) (29)

where Z∗ = arg minZ tr ((X − ZU)(X − ZU)).

This additive decomposition provides one of the key
insights of this paper. It shows that the reverse pre-
diction loss of any model U decomposes into a sum of
two losses, where one loss (28) depends only on the in-
put data X, and the other loss (29) depends on both
the target labels Y and the inputs X (through the
dependence of Z∗ on X). This allows us to use auxil-
iary data to obtain an unbiased estimate of (27) that
strictly reduces its variance.

Corollary 4 For any U

E [tr ((XL − YLU)(XL − YLU)) /tL] (30)
= E [tr ((X − Z∗U)(X − Z∗U)) /tS ] (31)
+ E [tr ((Z∗LU − YLU)(Z∗LU − YLU)/tL)] (32)

where Z∗ = arg minZ tr ((X − ZU)(X − ZU)).

Here, X and Z∗ are defined over the union of labeled
and unlabeled data, YL is the supervised label ma-
trix, Z∗L is the corresponding component of Z∗ on
the labeled portion, and tL and tS are the number of
labeled and labeled plus unlabeled examples respec-
tively. Since the middle term is unbiased but based
on a larger sample, it reduces the variance of the total
(supervised) loss estimate for a given model U .

For large amounts of unlabeled data, the naive semi-
supervised approach (26) closely approximates the un-
biased principle (30), but introduces a bias due to dou-
ble counting the unlabeled loss (31). One advantage of
(26) over the approach based on (30), though, is that it
admits more straightforward optimization procedures.

7. Regression Experiments

We implemented variants of semi-supervised regres-
sion based on (26). Although the supervised and unsu-
pervised terms in the loss can be efficiently optimized
in isolation, it is not clear how they can be efficiently
minimized jointly. Therefore, we first solve the su-
pervised training problem to obtain an initial U , then
alternate between optimizing Z and U in the semi-
supervised objective to reach a local solution. The
forward model, W , can then be recovered from U .

To evaluate this approach, we compared against stan-
dard supervised learning methods and the transduc-
tive regression algorithm of (Cortes & Mohri, 2007)—
which has been reported to outperform earlier trans-
ductive regression algorithms (Chapelle et al., 1999;
Belkin et al., 2006). The latter algorithm has two
steps: (1) locally estimate the unlabeled data by us-
ing the labeled points within r of the unlabeled point;
and (2) find a solution that best fits the labeled data
and data estimated in Step 1. We used kernel ridge
regression to estimate the unlabeled targets in Step 1,
as suggested in (Cortes & Mohri, 2007).

Experiments were run on two datasets from (Cortes
& Mohri, 2007), kin-32fh and Cal-housing, plus an
additional dataset, Pumadyn-32h.3 Performance was
evaluated based on the average of 10 random splits
of the data. For the kernel-based methods we used a
Gaussian kernel with width parameter set to 1. For
the transductive regression algorithm, we additionally
selected the distance r in Step 1 to include 2.5% of
the labeled data, as in (Cortes & Mohri, 2007), and
set the remaining parameters with 10-fold cross val-
idation. For the semi-supervised approach based on
(26), we set µ = 1 and selected the regularization pa-
rameter α by 10-fold cross validation.

Table 1 summarizes the performance of three variants
of the semi-supervised algorithm, compared to the su-
pervised techniques and the transductive regression al-
gorithm. Here we see that the straightforward semi-
supervised approach we propose, with kernels and reg-
ularization, obtains competitive performance in each
case. (On Pumadyn-32h the three kernel-based algo-
rithms obtain the same error, likely due to the fact
that all three found the same local minima.)

8. Classification Experiments

In addition to regression, we also considered classifi-
cation problems and investigated the performance of
semi-supervised learning based on (26) using kernel-

3
http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html
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Table 1. Forward error rates (average root mean squared error, ± standard deviations) for different regression algorithms
on various data sets. The values of (k, n; tL, tU ) are indicated for each data set.

kin-32fh Pumadyn-32h Cal-housing
(1, 32; 10, 1000) (1, 32; 30, 3000) (1, 8; 10, 500)

Sup. LeastSquares 18.150 ± 23.30 0.577 ± 0.190 12.520 ± 3.755
Sup. Regularized 0.408 ± 0.039 0.109 ± 0.060 2.083 ± 2.210
Sup. RegKernel 1.070 ± 0.038 0.030 ± 0.001 2.504 ± 0.615
TransductiveKernel (Cortes & Mohri, 2007) 1.350 ± 0.010 0.030 ± 0.001 2.423 ± 0.727
Semi. LeastSquares 0.365 ± 0.067 0.043 ± 0.014 12.210 ± 3.660
Semi. Regularized 0.278 ± 0.039 0.050 ± 0.060 6.249 ± 3.660
Semi. RegKernel 0.554 ± 0.069 0.030 ± 0.001 1.492 ± 0.448

ized k-means and normalized graph-cut. We com-
pared the proposed algorithms to spectral graph based
transduction (SGT) (Joachims, 2003), and the semi-
supervised extensions of regularized least squares and
support vector machines utilizing Laplacian regular-
ization (LapRLS and LapSVM respectively) (Sind-
hwani et al., 2005). To enable these competitors, our
experiments were conducted in a transductive setting;
that is, given a partially labeled data set, we measured
test error on the unlabeled data points. (Note, how-
ever, that the algorithms proposed in this paper are
not limited to the transductive setting.)

Experiments were run on four well-investigated data
sets from the semi-supervised learning literature: g50c
is an artificial data set generated from two Gaussians
in 50-dimensional space (known to have a Bayes mis-
classification error rate of 5%); MNIST-069 is a sam-
ple of three digits (0, 6, and 9) from the MNIST
digit data set; mac-mswindows is a binary classifica-
tion task that involves two classes, mac and mswindows,
from the 20Newsgroup data set respectively; and
faculty-course is taken from the WebKB data set,
comprising of the categories faculty and course.

Performance was evaluated based on the average of 10
random splits of the data. We used a Gaussian kernel
and set the width by 10-fold cross validation for each
algorithm. For the semi-supervised approaches based
on (26), we set µ = 10 and α = 0. The remaining
parameters for the competing methods, SGT, LapRLS
and LapSVM, were set optimistically on the test set.

From Table 2 one can see that the semi-supervised
k-means and normalized cut algorithms perform very
well on the four data sets, competing with and some-
times surpassing the current state of the art. On
data set g50c, the prediction errors of the proposed
algorithms approach the Bayes optimal error. One
can also observe that semi-supervised normalized cut
is more stable and accurate than semi-supervised k-
means, possibly due to the weighting effect.

9. Conclusion

The principled approach to semi-supervised learning
derived in this paper depended heavily on using least
squares. The main enabling property of least squares
is that we were able to exactly recover forward from
reverse solutions and obtain an additive decomposi-
tion of the reverse loss into supervised and unsuper-
vised components. Changing the loss function, un-
fortunately, blocks both aspects. Nevertheless, the
least squares decompositions can provide guidance for
developing heuristic algorithms for alternative losses.
Current self-supervised learning approaches, such as
those based on hinge loss (De Bie & Cristianini, 2003;
Xu et al., 2004), can be seen as a rough version of this
heuristic. It remains to determine whether the obser-
vations of this paper can be used to further improve
such methods.
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