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Protein structure prediction is one of the most important and difficult problems in computational molecular biology.
Protein threading represents one of the most promising techniques for this problem. One of the critical steps in

protein threading, called fold recognition, is to choose the best-fit template for the query protein with the structure

to be predicted. The standard method for template selection is to rank candidates according to the z-score of the
sequence-template alignment. However, the z-score calculation is time-consuming, which greatly hinders structure

prediction at a genome scale. In this paper, we present a machine learning approach that treats the fold recognition
problem as a regression task and uses a least-squares boosting algorithm (LS Boost) to solve it efficiently. We test

our method on Lindahl’s benchmark and compare it with other methods. According to our experimental results we
can draw the conclusions that: (1) Machine learning techniques offer an effective way to solve the fold recognition

problem. (2) Formulating protein fold recognition as a regression rather than a classification problem leads to a
more effective outcome. (3) Importantly, the LS Boost algorithm does not require the calculation of the z-score as

an input, and therefore can obtain significant computational savings over standard approaches. (4) The LS Boost
algorithm obtains superior accuracy, with less computation for both training and testing, than alternative machine
learning approaches such as SVMs and neural networks, which also need not calculate the z-score. Finally, by using

the LS Boost algorithm, one can identify important features in the fold recognition protocol, something that cannot
be done using a straightforward SVM approach.

1. INTRODUCTION

In the post-genomic era, understanding protein func-

tion has become a key step toward modelling com-

plete biological systems. It has been established

that the functions of a protein are directly linked to

its three-dimensional structure. Unfortunately, cur-

rent “wet-lab” methods used to determine the three-

dimensional structure of a protein are costly, time-

consuming and sometimes unfeasible. The ability

to predict a protein’s structure directly from its se-

quence is urgently needed in the post-genomic era,

where protein sequences are becoming available at

a far greater rate than the corresponding structure

information.

Protein structure prediction is one of the most

important and difficult problems in computational

molecular biology. In recent years, protein threading

has turned out to be one of the most successful ap-

proaches to this problem 7, 14, 15. Protein threading

predicts protein structures by using statistical knowl-

edge of the relationship between protein sequences

and structures. The prediction is made by aligning

each amino acid in the target sequence to a posi-

tion in a template structure and evaluating how well

the target fits the template. After aligning the se-
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quence to each template in the structural template

database, the next step then is to separate the cor-

rect templates from incorrect templates for the target

sequence—a step we refer to as template selection or

fold recognition. After the best-fit template is chosen,

the structural model of the sequence is built based on

the alignment between the sequence and the chosen

template.

The traditional fold recognition technique is

based on calculating the z-score, which statistically

tests the possibility of the target sequence folding

into a structure very similar to the template 3. In this

technique, the z-score is calculated for each sequence-

template alignment by first determining the distribu-

tion of alignment scores among random re-shufflings

of the sequence, and then comparing the alignment

score of the correct sequence (in standard deviation

units) to the average alignment score over random se-

quences. Note that the z-score calculation requires

the alignment score distribution to be determined by

randomly shuffling the sequence many times (approx.

100 times), meaning that the shuffled sequence has

to be threaded to the template repeatedly. Thus,

the entire process of calculating the z-score is very

time-consuming. In this paper, instead of using the

traditional z-score technique, we propose to solve the

fold recognition problem by treating it as a machine

learning problem.

Several research groups have already proposed

machine learning methods, such as neural networks
9, 23 and support vector machines (SVMs) 20, 22 for

fold recognition. In this general framework, for each

sequence-template alignment, one generates a set of

features to describe the instance, treats the extracted

features as input data, and the alignment accuracy or

similarity level as a response variable. Thus, the fold

recognition problem can be expressed as a standard

prediction problem that can be solved by supervised

machine learning techniques for regression or classifi-

cation. In this paper we investigate a new approach

that proves to be simpler to implement, more ac-

curate and more computationally efficient. In par-

ticular, we combine the gradient boosting algorithm

of Friedman 5 with a least-squares loss criterion to

obtain a least-squares boosting algorithm, LS Boost.

We use LS Boost to estimate the alignment accuracy

of each sequence-template alignment and employ this

as part of our fold recognition technique.

To evaluate our approach, we experimentally

test it on Lindahl’s benchmark 12 and compare the

resulting performance with other fold recognition

methods, such as the z-score method, SVM regres-

sion, SVM classification, neural networks and Bayes

classification. Our experimental results demonstrate

that the LS Boost method outperforms the other

techniques in terms of both prediction accuracy and

computational efficiency. It is also a much easier al-

gorithm to implement.

The remainder of the paper is organized as fol-

lows. We first briefly introduce the idea of us-

ing protein threading for protein structure predic-

tion. We show how to generate features from each

sequence-template alignment and convert protein

threading into a standard prediction problem (mak-

ing it amenable to supervised machine learning tech-

niques). We discuss how to design the least-squares

boosting algorithm by combining gradient boosting

with a least-squares loss criterion, and then describe

how to use our algorithm to solve the fold recognition

problem. Finally, we will describe our experimental

set-up and compare LS Boost with other methods,

leading to the conclusions we present in the end.

2. Protein Threading and Fold

Recognition

2.1. The threading method for protein

structure prediction

The idea of protein threading originated from the ob-

servation that the number of different structural folds

in nature may be quite small, perhaps two orders of

magnitude fewer than the number of known protein

sequences 11. Thus, the structure prediction problem

can be potentially reduced to a problem of recog-

nition: choosing a known structure into which the

target sequence will fold. Or, put another way, pro-

tein threading is in fact a database search technique,

where given a query sequence of unknown structure,

one searches a structure (template) database and

finds the best-fit structure for the given sequence.

Thus, protein threading typically consists of the fol-

lowing four steps:

(1) Build a template database of representative

three-dimensional protein structures, which usu-
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ally involves removing highly redundant struc-

tures.

(2) Design a scoring function to measure the fit-

ness between the target sequence and the tem-

plate based on the knowledge of the known re-

lationship between the structures and the se-

quences. Usually, the minimum value of the

scoring function corresponds to the optimal

sequence-template alignment.

(3) Find the best alignment between the target se-

quence and the template by minimizing the scor-

ing function.

(4) Choose the best-fit template for the sequence ac-

cording to a criterion, based on all the sequence-

template alignments.

In this paper, we will only focus on the final

step. That is, we only discuss how to choose the

best template for the sequence, which is called fold

recognition. We use our existing protein threading

server RAPTOR 21, 22 to generate all the sequence-

structure alignments. For the fold recognition prob-

lem, there are two different approaches: the z-score

method 3 and the machine learning method 9, 23.

2.2. The z-score method for fold

recognition

The z-score is defined to be the “distance” (in stan-

dard deviation units) between the optimal alignment

score and the mean alignment score obtained by ran-

domly shuffling the target sequence. An accurate z-

score can cancel out the sequence composition bias

and offset the mismatch between the sequence size

and the template length. Bryant et al. 3 proposed

the following procedures to calculate z-score:

(1) Shuffle the aligned sequence residues randomly.

(2) Find the optimal alignment between the shuffled

sequence and the template.

(3) Repeat the above two steps N times, where N is

on the order of one hundred. Then calculate the

distribution of these N alignment scores.

After the N alignment scores are obtained, we cal-

culate the deviation of the optimal alignment score

from the distribution of these N alignment scores.

We can see from above that in order to calcu-

late the z-score for each sequence-template align-

ment, we need to shuffle and rethread the target se-

quence many times, which takes a significant amount

of time and essentially prevents this technique from

being applied to genome-scale structure prediction.

2.3. Machine learning methods for fold

recognition

Another approach to the fold recognition problem

is to use machine learning methods, such as neu-

ral networks, as in the GenTHREADER 9 and

PROSPECT-I systems 23, or SVMs, as in the RAP-

TOR system 22. Current machine learning methods

generally treat the fold recognition problem as a clas-

sification problem. However, there is a limitation to

the classification approach that arises when one real-

izes that there are three levels of similarity that one

can draw between two proteins: fold level similarity,

superfamily level similarity and family level similar-

ity. Currently, classification-based methods treat the

three different similarity levels as a single level, and

thus are unable to effectively differentiate one simi-

larity level from another while maintaining a hierar-

chical relationship between the three levels. Even a

multi-class classifier cannot deal with this limitation

very well since the three levels are in a hierarchical

relationship.

Instead, we use a regression approach, which

simply uses the alignment accuracy as the response

value. That is, we reformulate the fold recognition

problem as predicting the alignment accuracy of a

threading pair, which then is used to differentiate the

similarity level between proteins. In our approach,

we use SARF 2 to generate the alignment accuracy

between the target protein and the template pro-

tein. The alignment accuracy of threading pair is de-

fined to be the number of correctly aligned positions,

based on the correct alignment generated by SARF.

A position is correctly aligned only if its alignment

position is no more than four position shifts away

from its correct alignment. On average, the higher

the similarity level between two proteins, the higher

the value of the alignment accuracy will be. Thus

alignment accuracy can help to effectively differenti-

ate the three similarity levels. Below we will show in

our experiments that the regression approach obtains

much better results than the standard classification

approach.
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3. Feature Extraction

One of the key steps in the machine learning ap-

proach is to choose a set of proper features to be

used as inputs for predicting the similarity between

two proteins. After optimally threading a given se-

quence to each template in the database, we generate

the following features from each threading pair.

(1) Sequence size, which is the number of residues in

the sequence.

(2) Template size, which is the number of residues

in the template.

(3) Alignment length, which is the number of aligned

residues. Usually, two proteins from the same

fold class should share a large portion of similar

sub-structure. If the alignment length is consid-

erably smaller than the sequence size or the tem-

plate size, then it indicates that this threading

pair is unlikely to be in the same SCOP class.

(4) Sequence identity. Although a low sequence

identity does not imply that two proteins are

not similar, a high sequence identity can indi-

cate that two proteins should be considered as

similar.

(5) Number of contacts with both ends being aligned

to the sequence. There is a contact between two

residues if their spatial distance is within a given

cutoff. Usually, a longer protein should have

more contacts.

(6) Number of contacts with only one end being

aligned to the sequence. If this number is

big, then it might indicate that the sequence is

aligned to an incomplete domain of the template,

which is not good since the sequence should fold

into a complete structure.

(7) Total alignment score.

(8) Mutation score, which measures the sequence

similarity between the target protein and the

template protein.

(9) Environment fitness score. This feature mea-

sures how well to put a residue into a specific

environment.

(10) Alignment gap penalty. When aligning a se-

quence and a template, some gaps are allowed.

However, if there are too many gaps, it might

indicate that the quality of the alignment is bad,

and therefore the two sequences may not be in

the same similarity level.

(11) Secondary structure compatibility score, which

measures the secondary structure difference be-

tween the template and the sequence in all posi-

tions.

(12) Pairwise potential score, which characterizes the

capability of a residue to make a contact with

another residue.

(13) The z-score of the total alignment score and

the z-score of a single score item such as muta-

tion score, environment fitness score, secondary

structure score and pairwise potential score.

Notice that here we still take into consideration

the traditional z-score for the sake of performance

comparison. But later we will show that we can ob-

tain nearly the same performance without using the

z-score, which means it is unnecessary to calculate

the z-score as one of the features.

We calculate the alignment accuracy between

the target protein and the template protein using

a structure comparison program SARF. We use the

alignment accuracy as the response variable. Given

the training set with input feature vectors and the

response variable, we need to find a prediction func-

tion that maps the features to the response vari-

able. By using this function, we can estimate the

alignment accuracy for each sequence-template align-

ment. Then, all the sequence-template alignments

can be ranked based on the predicted alignment ac-

curacy and the first-ranked one is chosen as the best

alignment for the sequence. Thus we have converted

the protein structure problem to a function estima-

tion problem. In the next section, we will show how

to design our LS Boost algorithm by combining the

gradient boosting algorithm of Friedman 5 with a

least-squares loss criterion.

4. Least-Squares Boosting Algorithm

For Fold Recognition

The problem can be formulated as follows. Let x de-

note the feature vector and y the alignment accuracy.

Given an input variable x, a response variable y and

some samples {yi, xi}
N
i=1, we want to find a function

F ∗(x) that can predict y from x such that over the

joint distribution of {y, x} values, the expected value

of a specific loss function L(y, F (x)) is minimized 5.
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The loss function is used to measure the deviation

between the real y value and the predicted y value.

F ∗(x) = arg min
F (x)

Ey,xL(y, F (x))

= arg min
F (x)

Ex[EyL(y, F (x))|x] (1)

Normally F (x) is a member of a parameterized class

of functions F (x;P ), where P is a set of parame-

ters. We use the form of the “additive” expansions

to design the function as follows:

F (x;P ) =

M
∑

m=0

βmh(x;αm) (2)

where P = {βm, αm}M
m=0. The functions h(x;α)

are usually simple functions of x with parameters

α = {α1, α2, . . . , αM}. When we wish to estimate

F (x) non-parametrically the task becomes more dif-

ficult. In general, we can choose a parameterized

model F (x;P ) and change the function optimization

problem to parameter optimization. That is, we fix

the form of the function and optimize the parameters

instead. A typical parameter optimization method is

a “greedy-stagewise” approach. That is, we optimize

{βm, αm} after all of the {βi, αi}(i = 0, 1, . . . ,m−1)

are optimized. This process can be represented by

the following two recursive equations.

(βm, αm) = arg min
β,α

N
∑

i=1

L(yi, Fm−1(xi) + βh(xi;α))

(3)

Fm = Fm−1(x) + βmh(x;αm) (4)

Friedman proposed a steepest-descent method to

solve the optimization problem described in Equa-

tion 2 5. This algorithm is called the Gradient Boost-

ing algorithm and its entire procedure is given in

Figure 1.

Algorithm 1: Gradient Boost

• Initialize F0(x) = arg minρ

∑N
i−1 L(yi, ρ)

• For m = 1 to M do:

• Step 1. Compute the negative gradient

ỹi = −

[

∂L(yi, F (xi))

∂Fxi

]

• Step 2. Fit a model

αm = arg min
α,β

N
∑

i=1

[ỹ − βh(xi;αm)]2

• Step 3. Choose a gradient descent step size

as

ρm = arg min
ρ

N
∑

i−1

L(yi, Fm − 1(xi)+ρh(xi;α))

• Step 4. Update the estimation of F (x)

Fm(x) = Fm−1(x) + ρmh(x;αm)

• end for

• Output the final regression function Fm(x)

Fig. 1. Gradient boosting algorithm

Algorithm 2: LS Boost

• Initialize F0 = ȳ = 1
N

∑

i yi

• For m = 1 to M do:

• ỹi = yi − Fm−1(xi, i = 1, . . . , N)

• (ρm, αm) = arg min
ρ,α

N
∑

i=1

[ỹi − ρh(xi;αm)]2

• Fm(x) = Fm−1(x) + ρmh(x;αm)

• end for

• Output the final regression function Fm(x)

Fig. 2. LS Boost algorithm

By employing the least square loss function

(L(y, F )) = (y−F )2/2 we have a least-squares boost-

ing algorithm shown in Figure 2. For this procedure,
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ρ is calculated as follows:

(ρ, αm) = arg min
ρ,α

N
∑

i=1

[ỹi − ρh(xi;αm)]2

and therefore ρ = N × ỹi/
N

∑

i=1

h(xi;αm) (5)

The simple function h(x, α) can have any form

that can be conveniently optimized over α. In terms

of boosting, optimizing over α to fit the training data

is called weak learning. In this paper, for consider-

ations of speed, we choose some function for which

it is easy to obtain α. The simplest function to use

here is the linear regression function:

y = ax + b (6)

where x is the input feature and y is the alignment

accuracy. The parameters of the linear regression

function can be solved easily by the following equa-

tion:

a =
lxy

lxx

, b = y − ax

where lxx = n ×

n
∑

i=1

x2
i − (

n
∑

i=1

xi)
2

lxy = n ×

n
∑

i=1

xiyi − (

n
∑

i=1

xi)(

n
∑

i=1

yi)

There are many other simple functions one can

use, such as an exponential function y = a+ebx, log-

arithmic function y = a + blnx, quadratic function

y = ax2 + bx+ c, or hyperbolic function y = a+ b/x,

etc.

In our application, for each round, we choose one

feature and obtain the simple function h(x, α) with

the minimum least-squares error. The underlying

reasons for choosing a single feature at each round

are: i) we would like to see the role of each feature

in fold recognition; and ii) we notice that alignment

accuracy is proportional to some features. For exam-

ple, the higher the alignment accuracy, the lower the

mutation score, fitness score and pairwise score. Fig-

ure 3 shows the relation between alignment accuracy

and mutation score.
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Fig. 3. The relation between alignment accuracy and muta-
tion score.

In the end, we combine these simple functions

to form the final regression function. As such, Algo-

rithm 2 translates to the following procedures.

(1) Calculate the difference between the real align-

ment accuracy and the predicted alignment ac-

curacy. We call this difference the alignment

accuracy residual. Assume the initial predicted

alignment accuracy is the average alignment ac-

curacy of the training data.

(2) Choose a single feature which correlates best

with the alignment accuracy residual. The pa-

rameter ρ is calculated by using Equation 5.

Then the alignment accuracy residual is pre-

dicted by using this chosen feature and the pa-

rameter.

(3) Update the predicted alignment accuracy by

adding the predicted alignment accuracy resid-

ual. Repeat the above two steps until the pre-

dicted alignment accuracy does not change sig-

nificantly.

5. Experimental Results

When one protein structure is to be predicted, we

thread its sequence to each template in the database

and obtain the predicted alignment accuracy using

the LS Boost algorithm. We choose the template

with the highest alignment accuracy as the basis to

build the structure of the target sequence.

We can describe the relationship between two

proteins at three different levels: the family level,

superfamily level and the fold level. If two proteins
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are similar at the family level, then these two pro-

teins have evolved from a common ancestor and usu-

ally share more than 30% sequence identity. If two

proteins are similar only at the fold level, then their

structures are similar even though their sequences

are not similar. The superfamily-level similarity is

something in between family level and fold level. If

the target sequence has a template that is in the

same family as the sequence, then it is easier to pre-

dict the structure of the sequence. If two proteins

are similar only at fold level, it means they share

less sequence similarity and it is harder to predict

their relationship.

We use the SCOP database 16 to judge the sim-

ilarity between two proteins and evaluate our pre-

dicted results at different levels. If the predicted tem-

plate is similar to the target sequence at the family

level according to the SCOP database, we treat it as

correct prediction at the family level. If the predicted

template is similar at the superfamily level but not

at the family level, then we assess this prediction as

being correct at the superfamily level. Similarly, if

the predicted template is similar at the fold level but

not at the other two levels, we assess the prediction

as correct at the fold level. When we say a predic-

tion is correct according to the top K criterion, we

mean that there are no more than K − 1 incorrect

predictions ranked before this prediction. The fold-

level relationship is the hardest to predict because

two proteins share very little sequence similarity in

this case.

To train the parameters in our algorithm, we

randomly choose 300 templates from the FSSP list 1

and 200 sequences from Holm’s test set 6. By thread-

ing each sequence to all the templates, we obtain a

set of 60,000 training examples.

To test the algorithm, we use Lindahl ’s bench-

mark, which contains 976 proteins, each pair of which

shares at most 40% sequence identity. By threading

each one against all the others, we obtain a set of

976 × 975 threading pairs. Since the training set is

chosen randomly from a set of non-redundant pro-

teins, the overlap between the training set and Lin-

dahl’s benchmark is fairly small, which is no more

than 0.4 percent of the whole test set. To ensure

the complete separation of training and testing sets,

these overlap pairs are removed from the test data.

We calculate the recognition rate of each method at

the three similarity levels.

5.1. Sensitivity

Figure 4 shows the sensitivity of our algorithm at

each round. We can see that the LS Boost algo-

rithm nearly converges within 100 rounds, although

we train the algorithm further to obtain higher per-

formance.
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Fig. 4. Sensitivity curves during the training process.

Table 5.1 lists the results of our algorithm

against several other algorithms. PROSPECT II

uses the z-score method, and its results are taken

from Kim et al.’s paper 10. We can see that the

LS Boost algorithm is better than PROSPECT II at

all three levels. The results for the other methods

are taken from Shi et al’s paper 18. Here we can see

that our method apparently outperforms the other

methods. However, since we use different sequence-

structure alignment methods, this disparity may be

partially due to different threading techniques. Nev-

ertheless, we can see that the machine learning ap-

proaches normally perform much better than the

other methods.

Table 5.1 shows the results of our algorithm

against several other popular machine learning meth-

ods. Here we will not describe the detail of each

method. In this experiment, we use RAPTOR to

generate all the sequence-template alignments. For

each different method, we tune the parameters on the

training set and test the model on the test set. In

total we test the following six other machine learning
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Table 1. Sensitivity of the LS Boost method compared with other structure pre-

diction servers.

Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

RAPTOR (LS Boost) 86.5% 89.2% 60.2% 74.4% 38.8% 61.7%

PROSPECT II 84.1 % 88.2% 52.6% 64.8% 27.7% 50.3%

FUGUE 82.3% 85.8% 41.9% 53.2% 12.5% 26.8%

PSI BLAST 71.2% 72.3% 27.4% 27.9% 4.0% 4.7%

HMMER PSIBLAST 67.7% 73.5% 20.7% 31.3% 4.4% 14.6%

SAMT98-PSIBLAST 70.1% 75.4% 28.3% 38.9% 3.4% 18.7%

BLASTLINK 74.6% 78.9% 29.3% 40.6% 6.9% 16.5%

SSEARCH 68.6% 75.7% 20.7% 32.5% 5.6% 15.6%

THREADER 49.2% 58.9% 10.8% 24.7% 14.6% 37.7%

Table 2. Performance comparison of seven machine learning methods. The se-
quence-template alignments are generated by RAPTOR.

Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

LS Boost 86.5% 89.2% 60.2% 74.4% 38.8% 61.7%

SVM (regression) 85.0% 89.1% 55.4% 71.8% 38.6% 60.6%

SVM (classification) 82.6% 83.6% 45.7% 58.8% 30.4% 52.6%

Ada Boost 82.8% 84.1% 50.7% 61.1% 32.2% 53.3%

Neural Networks 81.1% 83.2% 47.4% 58.3% 30.1% 54.8%

Bayes classifier 69.9% 72.5% 29.2% 42.6% 13.6% 40.0%

Näıve Bayes Classifier 68.0% 70.8% 31.0% 41.7% 15.1% 37.4%

methods.

(1) SVM regression. Support vector machines are

based on the concept of structural risk minimiza-

tion from statistical learning theory 19. The fold

recognition problem is treated as a regression

problem, therefore we consider SVMs used for

regression. Here we use the svm light software

package 8 and an RBF kernel to obtain the best

performance. As shown in Table 5.1, LS Boost

performs slightly better than SVM regression.

(2) SVM classification. The fold recognition prob-

lem is treated as a classification problem, and

we consider an SVM for classification. The soft-

ware and kernel we consider is the same as for

SVM regression. In this case, one can see that

SVM classification performs worse than SVM re-

gression, especially at the superfamily level and

the fold level.

(3) AdaBoost. Boosting is a procedure that com-

bine the outputs of many “weak” classifiers to

produce a powerful “committee”. We use the

standard AdaBoost algorithm 4 for classification,

which is similar to LS Boost except that it per-

forms classification rather than regression and

uses the exponential instead of least-squares loss

function. The AdaBoost algorithm achieves a

comparable result to SVM classification but is

worse than both of the regression approaches,

LS Boost and SVM regression.

(4) Neural networks. Neural networks are one of the

most popular methods used in machine learning
17. Here we use a multi-layer perceptron for clas-

sification, based on the Matlab neural network

toolbox. The performance of the neural network

is similar to SVM classification and Adaboost.

(5) Bayesian classifier. A Bayesian classifier is a

probability based classifier which assigns a sam-

ple to a class based on the probability that it

belongs to the class 13.

(6) Näıve Bayesian classifier. The Näıve Bayesian

classifier is similar to the Bayesian classifier ex-

cept that it assumes that the features of each

class are independent, which greatly decreases

computation 13. We can see both Bayesian clas-

sifier and Näıve Bayesian classifier obtain poor

performance.

Our experimental results show clearly that: (1)

The regression based approaches demonstrate bet-

ter performance than the classification based ap-

proaches. (2) LS Boost performs slightly better than
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SVM regression and significantly better than the

other methods. (3) The computational efficiency of

LS Boost is much better than SVM regression, SVM

classification and the neural network.

One of the advantages of our boosting approach

over SVM regression is its ability to identify impor-

tant features, since at each round LS Boost only

chooses a single feature to approximate the align-

ment accuracy residual. The following are the top

five features chosen by our algorithm. The corre-

sponding simple functions associated with each fea-

ture are all linear regression functions y = ax + b,

showing that there is a strong linear relation between

the features and the alignment accuracy. For exam-

ple, from the figure 3, we can see that the linear

regression function is the best fit.

(1) Sequence identity;

(2) Total alignment score;

(3) Fitness score;

(4) Mutation score;

(5) Pairwise potential score.

It seems surprising that the widely used z-score

is not chosen as one of the most important fea-

tures. This indicates to us that the z-score may

not be the most important feature and redundant.

To confirm our hypothesis, we re-trained our model

using all the features except all the z-scores. That

is, we conducted the same training and test proce-

dures as before, but with the reduced feature set.

The results given in Table 3 show that for LS Boost

there is almost no difference between using the z-

score as an additional feature or without using it.

Thus, we conclude that by using the LS Boost ap-

proach it is unnecessary to calculate z-score to ob-

tain the best performance. This means that we can

greatly improve the computational efficiency of pro-

tein threading without sacrificing accuracy, by com-

pletely avoiding the calculation of the expensive z-

score.

To quantify the margin of superiority of

LS Boost over the other machine-learning methods,

we use bootstrap method to get the error analy-

sis. After training the model, we randomly sample

600 sequences from Lindahl’s benchmark and calcu-

late the sensitivity using the same method as be-

fore. We repeat the sampling for 1000 times and

get the mean and standard deviation of the sensi-

tivity of each method as listed in 5.1. We can see

that LS Boost method is slightly better than SVM

regression and much better than other methods.

5.2. Specificity

We further examine the specificity of the LS Boost

method with Lindahl’s benchmark. All threading

pairs are ranked by their confidence score (i.e., the

predicted alignment accuracy or the classification

score if an SVM classifier is used) and the sensitivity-

specificity curves are drawn in Figure 5, 6 and 7. Fig-

ure 6 demonstrates that at the superfamily level, the

LS boost method is consistently better than SVM

regression and classification within the whole spec-

trum of sensitivity. At both the family level and

fold level, LS Boost is a little better when the speci-

ficity is high while worse when the specificity is low.

At the family level, LS Boost achieves a sensitiv-

ity of 55.0% and 64.0% at 99% and 50% specifici-

ties, respectively, whereas SVM regression achieves

a sensitivity of 44.2% and 71.3%, and SVM classifi-

cation achieves a sensitivity of 27.0% and 70.9% re-

spectively. At the superfamily level, LS Boost has a

sensitivity of 8.2% and 20.8% at 99% and 50% speci-

ficities, respectively. In contrast, SVM regression has

a sensitivity of 3.6% and 17.8%, and SVM classifica-

tion has a sensitivity of 2.0% and 16.1% respectively.

Figure 7 shows that at the fold level, there is no big

difference between LS Boost method, SVM regres-

sion and SVM classification method.
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Fig. 5. Family-level specificity-sensitivity curves on Lin-

dahl’s benchmark set. The three methods LS Boost, SVM
regression and SVM classification are compared.
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Table 3. Comparison of fold recognition performance with zscore and without zscore.

Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

LS Boost with z-score 86.5% 89.2% 60.2% 74.4% 38.8% 61.7%

LS Boost without z-score 85.8% 89.2% 60.2% 73.9% 38.3% 62.9%

Table 4. Error Analysis of seven machine learning methods. The sequence-template alignments are generated by RAPTOR.

Family Level Superfamily Level Fold Level

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

mean std mean std mean std mean std mean std mean std

LS Boost 86.57% 0.0290 89.15% 0.0305 60.17% 0.0294 74.29% 0.0342 38.86% 0.0273 61.75% 0.0362

SVM (regression) 85.15% 0.0309 89.15% 0.0307 55.57% 0.0290 71.97% 0.0329 38.68% 0.0269 60.70% 0.0349

SVM (classification) 82.49% 0.0276 83.76% 0.0298 45.75% 0.0264 58.86% 0.0304 30.45% 0.0244 52.80% 0.0321

Ada Boost 82.94% 0.0296 84.22% 0.0291 50.74% 0.0279 61.26% 0.0308 32.18% 0.0254 53.40% 0.0336

Neural Networks 81.75% 0.0290 83.47% 0.0298 47.52% 0.0271 58.40% 0.0313 30.24% 0.0244 54.99% 0.0326

Bayes classifier 69.97% 0.0271 72.55% 0.0270 29.13% 0.0213 42.60% 0.0262 13.68% 0.0155 40.06% 0.0282

Näıve Bayes Classifier 68.77% 0.0261 70.97% 0.0277 31.05% 0.0216 41.87% 0.0248 15.10% 0.0166 37.34% 0.0270
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Fig. 6. Superfamily-level specificity-sensitivity curves on

Lindahl’s benchmark set. The three methods LS Boost, SVM
regression and SVM classification are compared.
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Fig. 7. Fold-level specificity-sensitivity curves on Lindahl’s

benchmark set. The three methods LS Boost, SVM regression
and SVM classification are compared.

5.3. Computational Efficiency

Overall, the LS Boost procedure achieves superior

computational efficiency during both training and

testing. By running our program on a 2.53 GHz Pen-

tium IV processor, after extracting the features, the

training time is less than thirty seconds and the to-

tal test time is approximately two seconds. Thus we

can see that our technique is very fast compared to

other approaches, in particular the machine learn-

ing approaches such as neural networks and SVMs

which require much more time to train. Table 5.3

lists the running time of several different fold recog-

nition methods. From this table, we can see that the

boosting approach is more efficient than the SVM

regression method, which is desirable for genome-

scale structure prediction. The running time shown

in this table does not contain the computational time

of sequence-template alignment.

6. Conclusion

In this paper, we propose a new machine learn-

ing approach—LS Boost—to solve the protein fold

recognition problem. We use a regression approach

which is proved to be both more accurate and effi-

cient than classification based approaches. One of

the most significant conclusions of our experimen-

tal evaluation is that we do not need to calculate the

standard z -score, and can thereby achieve a substan-

tial computational savings without sacrificing predic-

tion accuracy. Our algorithm achieves strong sen-

sitivity results compared to other fold recognition
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Table 5. Running time of different machine learning ap-

proaches.

Training time Testing time

LS Boost 30 seconds 2 seconds

SVM classification 19 mins 26 mins

SVM regression 1 hour 4.3 hours

Neural Network 2.3 hours 2 mins

Näıve Bayes Classifier 1.8 hours 2 mins

Bayes Classifier 1.9 hours 2 mins

methods, including both machine learning methods

and z -score based methods. Moreover, our approach

is significantly more efficient for both the training

and testing phases, which may allow genome-scale

scale structure prediction.
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