
CS 486/686—Introduction to Artificial Intelligence

Assignment 2

Spring 2003
School of Computer Science
University of Waterloo

Due: Wednesday, June 11 at 23:59:59 local time

Worth: 10% of final grade
(4 questions worth 1%, 3%, 4% and 2%, plus a 2% bonus question.)

Instructors: Relu Patrascu, DC2127, x3299, rpatrasc@cs.uwaterloo.ca
Dale Schuurmans, DC1310, x3005, dale@cs.uwaterloo.ca

Note: Submit four Java files:
Randep.java containing the public class Randep, which contains the function randep;
Ids.java containing the public class Ids, which contains the function ids;
Idas.java containing the public class Idas, which contains the function idas; and
Idasfast.java containing the public class Idasfast, which contains the function idasfast.
If you choose to answer the bonus question, submit a fifth file Rubik.java containing the
public class Rubik, which contains the functions randep and ids.

The eight-puzzle

The eight puzzle consists of a 3× 3 board with numbered squares 1, ..., 8 and a special blank

square. The blank can be swapped with any square that is immediately above, below, to
the left, or to the right of it. The goal state is given by the configuration

1 2 3
8 4
7 6 5

An instance of the eight-puzzle problem is specified by giving an initial state. The objective
is to find a shortest sequence of moves that takes the initial state to the goal state. For
example

1 3 4
8 5
7 2 6

d

→

1 3 4
8 2 5
7 6

r

→

1 3 4
8 2 5
7 6

u

→

1 3 4
8 2
7 6 5

u

→

1 3
8 2 4
7 6 5

l

→

1 3
8 2 4
7 6 5

d

→

1 2 3
8 4
7 6 5

In this assignment you will implement a random initial state generator, randep, and three
procedures for solving eight-puzzle problems: an iterative deepening search, ids; an iterative
deepening A∗ search, idas; and a faster version of IDA∗ search, idasfast.

1



Representation

To implement these search procedures you will need to represent states and actions in Java.
For this assignment you will represent states by an array of integers where the ith location
of the array contains the number of the square in the ith location of the board. The board
locations will be indexed

`0 `3 `6

`1 `4 `7

`2 `5 `8

Thus, the goal state,
1 2 3
8 4
7 6 5

, will be represented by

an array {1, 8, 7, 2, 0, 6, 3, 4, 5 }, where the blank square is represented by a 0.

• The action move-up (“u”) is implemented by swapping 0 with the number one position
to the left, as long as 0 is not in the `0, `3 or `6 position.

• The action move-down (“d”) is implemented by swapping 0 with the number one
position to the right of it in the array, as long as 0 is not in the `2, `5 or `8 position.

• The action move-right (“r”) is implemented by swapping 0 with the number three
positions to the right (if possible).

• The action move-left (“l”) is implemented by swapping 0 with the number three
positions to the left of it in the array (if possible).

Part 1 (Generating eight-puzzle problems—1%)

Write a Java function “randep” with the signature

public static int[] randep(int d)

which, for an argument d≥ 0, generates a random initial state by starting with the goal
state and taking d random (legal) moves from the goal. The function should return an array
representing the state it reaches.

Part 2 (Iterative deepening search—3%)

Write a Java function “ids” with the signature

public static char[] ids(int[] s, int[] g)

The function takes two arguments—s, an initial state, and g, a goal state—and returns a
shortest list of moves {m1, m2, ...mk } that takes the initial state s to the goal g. Each
move mi must be one of characters l, r, u, or d. Specifically you must implement an iterative

deepening search to do this. (You can assume a solution exists.)

Thus,

int[] s = {1,8,7,3,0,2,4,5,6};

int[] g = {1,8,7,2,0,6,3,4,5};

char[] r = Ids.ids(s, g);

should return

r = { ’d’, ’r’, ’u’, ’u’, ’l’, ’d’ };

2



Part 3 (Iterative deepening A∗ search—4%)

Write a Java function “idas” with the signature

public static char[] idas(int[] s, int[] g)

The precondition and postcondition for this procedure are the same as for ids. However,
for this part you must implement the problem solver by using an iterative deepening A∗

search. Recall that IDA∗ requires a heuristic function ĥ(s) for estimating the number of
steps remaining from a state s to a goal g. Use the following heuristic

ĥ(s) =
∑

pieces
distance from piece’s location in s to its target location in g

where the distance is calculated by determining the shortest (u,d,l,r) path from a piece’s
location in s to its goal location in g.

Part 4 (Faster IDA∗ search—2%)

Write a Java function “idasfast” with the signature

public static char[] idasfast(int[] s, int[] g)

Implement an efficient method for pruning additional states that results in a significantly
faster search than idas. Come up with an idea for doing this on your own, and clearly
document the method you use.

3



Bonus! (2%)

Write randep and ids for the Rubik’s cube problem. The functions must be defined in the
file Rubik.java, in the class Rubik, with the same signatures as before.
Rubik’s cube is a large cube that has been subdivided into 27 smaller cubies (3× 3× 3).

The cubies can be moved in sub-groups by twisting the faces of the cube in the manner
shown in the figure. (You can also take a look at the Java applet in the course website
http://www.student.math.uwaterloo.ca/~cs486/rubik )

U

EW

S

16 2223

21W17

18 19 20

8 1415

13N9

10 11 12

6 45

3U7

0 1 2

36 3435

33S37

38 39 32

40 4647

45E41

42 43 44

26 2425

31D27

28 29 30

D

U

S

D

W

E

N
N

The sides can be marked as U (for up), N (for north), W (for west), S (for south), E for
(east), and D (for down). The center cubies are fixed, and all other visible cubies are movable.
The figure illustrates how the visible cubie faces are identified. A state is represented as an
integer array of length 48, and an action is a permutation of this array. There are 18 actions:
U1 (rotate the upper side 90◦ clockwise), U2 (rotate the upper side 180◦ clockwise) and U3
(rotate the upper side 270◦ clockwise); similarly N1, N2, N3, W1, W2, W3, D1, D2, D3, S1,
S2, S3, E1, E2 and E3 (where rotation is always done clockwise). Each of the actions can be
represented as a permutation of numbers {0, 1, . . . , 47}. In the goal state, each visible cubie
face is in its correct position. That is, the goal permutation is 0, 1, 2, . . . , 47.
The random problem generator randep should generate an initial state by starting at the

goal and, given input d≥ 0, taking d random moves and returning the state that results.
Given an initial state, the function ids should return a sequence of moves (i.e., a string

of symbols from U1,U2,...,E3) that transforms the intial state into the goal state.

4


