
Strings

Zachary Friggstad

Programming Club Meeting

Outline

• Suffix Arrays

• Knuth-Morris-Pratt Pattern Matching

Suffix Arrays (no code, see Comp. Prog. text)

Sort all of the suffixes of a string lexicographically.

bananaban

• aban

• an

• anaban

• ananaban

• ban

• bananaban

• n

• naban

• nanaban

Obvious how to do it: O(n2 log n) - create all suffixes and sort them.

Can actually get O(n) time!

This is often overkill in the contest setting and a bit technical, let’s
see an O(n log2 n) algorithm.

But writing all suffixes takes Θ(n2) space, we need a compact
representation.

Suffix Array
An array of indices of the start positions of the suffixes in sorted order.

Example
For string bananaban

int sarray[] = {5, 7, 3, 1, 6, 0, 8, 4, 2};

Obvious how to do it: O(n2 log n) - create all suffixes and sort them.

Can actually get O(n) time!

This is often overkill in the contest setting and a bit technical, let’s
see an O(n log2 n) algorithm.

But writing all suffixes takes Θ(n2) space, we need a compact
representation.

Suffix Array
An array of indices of the start positions of the suffixes in sorted order.

Example
For string bananaban

int sarray[] = {5, 7, 3, 1, 6, 0, 8, 4, 2};

Obvious how to do it: O(n2 log n) - create all suffixes and sort them.

Can actually get O(n) time!

This is often overkill in the contest setting and a bit technical, let’s
see an O(n log2 n) algorithm.

But writing all suffixes takes Θ(n2) space, we need a compact
representation.

Suffix Array
An array of indices of the start positions of the suffixes in sorted order.

Example
For string bananaban

int sarray[] = {5, 7, 3, 1, 6, 0, 8, 4, 2};

Obvious how to do it: O(n2 log n) - create all suffixes and sort them.

Can actually get O(n) time!

This is often overkill in the contest setting and a bit technical, let’s
see an O(n log2 n) algorithm.

But writing all suffixes takes Θ(n2) space, we need a compact
representation.

Suffix Array
An array of indices of the start positions of the suffixes in sorted order.

Example
For string bananaban

int sarray[] = {5, 7, 3, 1, 6, 0, 8, 4, 2};

Idea: For i = 0, . . . , log2 n, sort the suffixes just by their first 2i

characters.

i = 0

• ananaban

• anaban

• aban

• an

• bananaban

• ban

• nanaban

• naban

• n

Can do in O(n log n) time (recall we are actually just sorting the
indices, not the whole suffixes).

Next, sort the suffixes by their length 2 prefixes.

• aban

• ananaban

• anaban

• an——————–
• bananaban

• ban——————–
• n

• nanaban

• naban

Next, sort the suffixes by their length 4 prefixes.

• aban——————–
• an

• anaban

• ananaban——————–
• ban

• bananaban——————–
• n——————–
• naban

• nanaban

To check if nanaban < naban, just look up the 2nd half of the red
parts to see how they were ordered last step.

Generally, to sort the suffixes by their length 2i+1 prefixes we check <
using the ordering based on length 2i prefixes.

Check how the first 2i characters of two suffixes a, b compare using
the previous ordering. If they are different then just return that result.

If they are the same, check how the second 2i characters of a, b
compare again using the previous ordering.

Example
nanaban vs. naban. Length-2 prefixes are the same (na), but next 2
characters (na vs. ba) show the answer is >.

Sorting based on length 2i prefixes then takes only O(n log n) time.
Since i ranges up to log2 n, then overall time is O(n log2 n).

Generally, to sort the suffixes by their length 2i+1 prefixes we check <
using the ordering based on length 2i prefixes.

Check how the first 2i characters of two suffixes a, b compare using
the previous ordering. If they are different then just return that result.

If they are the same, check how the second 2i characters of a, b
compare again using the previous ordering.

Example
nanaban vs. naban. Length-2 prefixes are the same (na), but next 2
characters (na vs. ba) show the answer is >.

Sorting based on length 2i prefixes then takes only O(n log n) time.
Since i ranges up to log2 n, then overall time is O(n log2 n).

Generally, to sort the suffixes by their length 2i+1 prefixes we check <
using the ordering based on length 2i prefixes.

Check how the first 2i characters of two suffixes a, b compare using
the previous ordering. If they are different then just return that result.

If they are the same, check how the second 2i characters of a, b
compare again using the previous ordering.

Example
nanaban vs. naban. Length-2 prefixes are the same (na), but next 2
characters (na vs. ba) show the answer is >.

Sorting based on length 2i prefixes then takes only O(n log n) time.
Since i ranges up to log2 n, then overall time is O(n log2 n).

Can also quickly compute the longest common prefix between
adjacent suffixes in the array.

Example
naban and nanaban are adjacent suffixes in the suffix array.

Their common prefix length is 2. This information can easily be
construct along with the construction of the suffix array itself.

Faster Algorithm
Getting down to O(n) running time is a bit of a pain, but O(n log n)
isn’t so bad.

We can “bucket sort” each step in O(n) time if we have an
appropriate mapping of the length 2i−1 substrings to integers
{0, . . . , n − 1}.

Can also quickly compute the longest common prefix between
adjacent suffixes in the array.

Example
naban and nanaban are adjacent suffixes in the suffix array.

Their common prefix length is 2. This information can easily be
construct along with the construction of the suffix array itself.

Faster Algorithm
Getting down to O(n) running time is a bit of a pain, but O(n log n)
isn’t so bad.

We can “bucket sort” each step in O(n) time if we have an
appropriate mapping of the length 2i−1 substrings to integers
{0, . . . , n − 1}.

Can also quickly compute the longest common prefix between
adjacent suffixes in the array.

Example
naban and nanaban are adjacent suffixes in the suffix array.

Their common prefix length is 2. This information can easily be
construct along with the construction of the suffix array itself.

Faster Algorithm
Getting down to O(n) running time is a bit of a pain, but O(n log n)
isn’t so bad.

We can “bucket sort” each step in O(n) time if we have an
appropriate mapping of the length 2i−1 substrings to integers
{0, . . . , n − 1}.

Knuth-Morris-Pratt

Given a source string s and a pattern string p, does p appear as a
substring of a?

More generally, record all positions i such that p appears as a
substring of a starting at position i .

Example
s = findmatchingmatches

p = match

Then p appears as a substring of s at indices 4 and 12 (highlighted).

Knuth-Morris-Pratt

Given a source string s and a pattern string p, does p appear as a
substring of a?

More generally, record all positions i such that p appears as a
substring of a starting at position i .

Example
s = findmatchingmatches

p = match

Then p appears as a substring of s at indices 4 and 12 (highlighted).

An obvious algorithm is to try all locations of s and linearly scan to
see if p matches there.

Can take Ω(|s| · |p|) time. The Knuth-Morris-Pratt (KMP) algorithm
only takes O(|s|+ |p|) time!

Main Idea: For each index i into p, let π[i] denote the length of the
longest proper suffix of p0p1 . . . pi that is also a prefix of p.

Confusing? Example!
p = acabaca

The longest proper suffix of acabac that is also a prefix is ac.

pi[] = {0, 0, 1, 0, 1, 2, 3};

An obvious algorithm is to try all locations of s and linearly scan to
see if p matches there.

Can take Ω(|s| · |p|) time. The Knuth-Morris-Pratt (KMP) algorithm
only takes O(|s|+ |p|) time!

Main Idea: For each index i into p, let π[i] denote the length of the
longest proper suffix of p0p1 . . . pi that is also a prefix of p.

Confusing? Example!
p = acabaca

The longest proper suffix of acabac that is also a prefix is ac.

pi[] = {0, 0, 1, 0, 1, 2, 3};

An obvious algorithm is to try all locations of s and linearly scan to
see if p matches there.

Can take Ω(|s| · |p|) time. The Knuth-Morris-Pratt (KMP) algorithm
only takes O(|s|+ |p|) time!

Main Idea: For each index i into p, let π[i] denote the length of the
longest proper suffix of p0p1 . . . pi that is also a prefix of p.

Confusing? Example!
p = acabaca

The longest proper suffix of acabac that is also a prefix is ac.

pi[] = {0, 0, 1, 0, 1, 2, 3};

Slide the pattern p “over” s.

acabaca

acacabacabaca

Match as many symbols as possible

acabaca

acacabacabaca

When stuck, slide the pattern to the next partial match.

acabaca

acacabacabaca

Distance to slide encoded by prefix table π.

Slide the pattern p “over” s.

acabaca

acacabacabaca

Match as many symbols as possible

acabaca

acacabacabaca

When stuck, slide the pattern to the next partial match.

acabaca

acacabacabaca

Distance to slide encoded by prefix table π.

Slide the pattern p “over” s.

acabaca

acacabacabaca

Match as many symbols as possible

acabaca

acacabacabaca

When stuck, slide the pattern to the next partial match.

acabaca

acacabacabaca

Distance to slide encoded by prefix table π.

Continue matching

acabaca

acacabacabaca

Found a match, record it! Slide pattern over to the next partial
match.

acabaca

acacabacabaca

Continue matching

acabaca

acacabacabaca

Another match, record it!

Continue matching

acabaca

acacabacabaca

Found a match, record it! Slide pattern over to the next partial
match.

acabaca

acacabacabaca

Continue matching

acabaca

acacabacabaca

Another match, record it!

Continue matching

acabaca

acacabacabaca

Found a match, record it! Slide pattern over to the next partial
match.

acabaca

acacabacabaca

Continue matching

acabaca

acacabacabaca

Another match, record it!

Slide pattern over to next partial match.

acabaca

acacabacabaca

Quit, the pattern is past the end of the string.

Runs in O(|s|+ |p|) time because each step increases the “matched”
pointer or slides the pattern over. Each slide takes O(1) time using
the π values.

Slide pattern over to next partial match.

acabaca

acacabacabaca

Quit, the pattern is past the end of the string.

Runs in O(|s|+ |p|) time because each step increases the “matched”
pointer or slides the pattern over. Each slide takes O(1) time using
the π values.

Slide pattern over to next partial match.

acabaca

acacabacabaca

Quit, the pattern is past the end of the string.

Runs in O(|s|+ |p|) time because each step increases the “matched”
pointer or slides the pattern over. Each slide takes O(1) time using
the π values.

void kmp(const s t r i n g& s , const s t r i n g& p) {
vec to r<int> p i ;
c ompu t e p r e f i x (p , p i) ; //next two slides :)

// invariant: at the start of each iteration hit is the

// length of the longest *proper* prefix of p[] that

// matches the suffix of s[0...(i-1)]

for (int i = 0 , h i t = 0 ; i < s . l e n g t h () ; ++i) {
// slide the window until a hit (or slid past)

while (h i t > −1 && p [h i t] != s [i]) h i t = p i [h i] ;

// or do whatever to process the match , just

// make sure hit is incremented for sure and is

// shifted back to p[hit] if there is a match

if (++h i t == p . l e n g t h ()) {
cout << "Match:" << i << end l ;
h i t = p i [h i t] ;

}
}

}

How to compute π? Basically the same idea!

p = bananaban

Note, a suffix of π[i] that is also a prefix of p comes from a suffix of
π[i − 1] that is a prefix of p.

bananaban: Note ba is a suffix of bananaba that is also a prefix of p.

So,

• π[i] is just π[i − 1] if s[i] == s[π[i − 1]].

• Otherwise, check s[i] == s[π[π[i − 1]]] and so on.

Overall idea: slide the pattern over itself!
acabaca

acabaca

How to compute π? Basically the same idea!

p = bananaban

Note, a suffix of π[i] that is also a prefix of p comes from a suffix of
π[i − 1] that is a prefix of p.

bananaban: Note ba is a suffix of bananaba that is also a prefix of p.

So,

• π[i] is just π[i − 1] if s[i] == s[π[i − 1]].

• Otherwise, check s[i] == s[π[π[i − 1]]] and so on.

Overall idea: slide the pattern over itself!
acabaca

acabaca

How to compute π? Basically the same idea!

p = bananaban

Note, a suffix of π[i] that is also a prefix of p comes from a suffix of
π[i − 1] that is a prefix of p.

bananaban: Note ba is a suffix of bananaba that is also a prefix of p.

So,

• π[i] is just π[i − 1] if s[i] == s[π[i − 1]].

• Otherwise, check s[i] == s[π[π[i − 1]]] and so on.

Overall idea: slide the pattern over itself!
acabaca

acabaca

How to compute π? Basically the same idea!

p = bananaban

Note, a suffix of π[i] that is also a prefix of p comes from a suffix of
π[i − 1] that is a prefix of p.

bananaban: Note ba is a suffix of bananaba that is also a prefix of p.

So,

• π[i] is just π[i − 1] if s[i] == s[π[i − 1]].

• Otherwise, check s[i] == s[π[π[i − 1]]] and so on.

Overall idea: slide the pattern over itself!
acabaca

acabaca

void c ompu t e p r e f i x (const s t r i n g& p , vec to r<int>& p i) {
p i . r e s i z e (p . l e n g t h ()+1) ;
p i [0] = −1;

for (int i = 0 ; i < p . l e n g t h () ; ++i) {
// start with the shift from the previous character

p i [i +1] = p i [i] ;

// slide the window until the next character matches

while (p i [i +1] > −1 && p [p i [i +1]] != p [i])
p i [i +1] = p i [p i [i +1]] ;

// we matched a character or slid back to index -1

// in either case , increment

++p i [i +1] ;
}

}

Missing Topics

• Tries (presented later as a CMPUT 403 project topic)

• Suffix Trees

• Manachar’s Algorithm: find all maximal palindromes in linear time.

Next Week
Bipartite graphs: recognition, matching, and edge colouring.

Open Kattis - lifeforms

Starting Question: How can you find the longest substring in
common with 2 strings s, t?

Concatenate s · t and form a suffix array. Find the largest LCP[i]
value where i , i + 1 come from different strings s, t.

continued next slide

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

Starting Question: How can you find the longest substring in
common with 2 strings s, t?

Concatenate s · t and form a suffix array. Find the largest LCP[i]
value where i , i + 1 come from different strings s, t.

continued next slide

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

Starting Question: How can you find the longest substring in
common with 2 strings s, t?

Concatenate s · t and form a suffix array. Find the largest LCP[i]
value where i , i + 1 come from different strings s, t.

continued next slide

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

For more than two strings s1, s2, . . . , sk , form the suffix array for
s1 · s2 · . . . · sk . What can we do?

For indices i , j into the suffix array, we can compute the number of
distinct strings s i represented by these indices.

For every i ≤ representing > k/2 lifeforms, compute mini≤`<k LCP[`].

Examine “minimal” pairs i , j (no “smaller” pair for > k/2 lifeforms).

Use a sliding window: Increment j each “outer” iteration. For each
j , while (i + 1, j) represents > k/2, then increment i .

Use a heap to hold the LCP[`] values for i ≤ ` < j . Pop the min if it
is irrelevant (i.e. ` < i).

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

For more than two strings s1, s2, . . . , sk , form the suffix array for
s1 · s2 · . . . · sk . What can we do?

For indices i , j into the suffix array, we can compute the number of
distinct strings s i represented by these indices.

For every i ≤ representing > k/2 lifeforms, compute mini≤`<k LCP[`].

Examine “minimal” pairs i , j (no “smaller” pair for > k/2 lifeforms).

Use a sliding window: Increment j each “outer” iteration. For each
j , while (i + 1, j) represents > k/2, then increment i .

Use a heap to hold the LCP[`] values for i ≤ ` < j . Pop the min if it
is irrelevant (i.e. ` < i).

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

For more than two strings s1, s2, . . . , sk , form the suffix array for
s1 · s2 · . . . · sk . What can we do?

For indices i , j into the suffix array, we can compute the number of
distinct strings s i represented by these indices.

For every i ≤ representing > k/2 lifeforms, compute mini≤`<k LCP[`].

Examine “minimal” pairs i , j (no “smaller” pair for > k/2 lifeforms).

Use a sliding window: Increment j each “outer” iteration. For each
j , while (i + 1, j) represents > k/2, then increment i .

Use a heap to hold the LCP[`] values for i ≤ ` < j . Pop the min if it
is irrelevant (i.e. ` < i).

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

For more than two strings s1, s2, . . . , sk , form the suffix array for
s1 · s2 · . . . · sk . What can we do?

For indices i , j into the suffix array, we can compute the number of
distinct strings s i represented by these indices.

For every i ≤ representing > k/2 lifeforms, compute mini≤`<k LCP[`].

Examine “minimal” pairs i , j (no “smaller” pair for > k/2 lifeforms).

Use a sliding window: Increment j each “outer” iteration. For each
j , while (i + 1, j) represents > k/2, then increment i .

Use a heap to hold the LCP[`] values for i ≤ ` < j . Pop the min if it
is irrelevant (i.e. ` < i).

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

For more than two strings s1, s2, . . . , sk , form the suffix array for
s1 · s2 · . . . · sk . What can we do?

For indices i , j into the suffix array, we can compute the number of
distinct strings s i represented by these indices.

For every i ≤ representing > k/2 lifeforms, compute mini≤`<k LCP[`].

Examine “minimal” pairs i , j (no “smaller” pair for > k/2 lifeforms).

Use a sliding window: Increment j each “outer” iteration. For each
j , while (i + 1, j) represents > k/2, then increment i .

Use a heap to hold the LCP[`] values for i ≤ ` < j . Pop the min if it
is irrelevant (i.e. ` < i).

https://open.kattis.com/problems/lifeforms

Open Kattis - lifeforms

For more than two strings s1, s2, . . . , sk , form the suffix array for
s1 · s2 · . . . · sk . What can we do?

For indices i , j into the suffix array, we can compute the number of
distinct strings s i represented by these indices.

For every i ≤ representing > k/2 lifeforms, compute mini≤`<k LCP[`].

Examine “minimal” pairs i , j (no “smaller” pair for > k/2 lifeforms).

Use a sliding window: Increment j each “outer” iteration. For each
j , while (i + 1, j) represents > k/2, then increment i .

Use a heap to hold the LCP[`] values for i ≤ ` < j . Pop the min if it
is irrelevant (i.e. ` < i).

https://open.kattis.com/problems/lifeforms

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - bugs

Can identify all occurrences of the bug in a line s in O(|s|) (after
building the prefix table for the bug).

But what about when a bug is removed? It may introduce a new bug!

Can we somehow “resume” the KMP process after removing a bug?

One a bug is removed, rematch the longest possible prefix from the
previous unremoved character to resume KMP.

Can do in O(1) time if we just remember the longest match at each
character.

Should also keep track of the next and previous unremoved character
for each letter to “jump” the gaps in O(1) time while scanning.

https://open.kattis.com/problems/bugs

Open Kattis - chasingsubs

Idea: use KMP but “construct” the permutation on the fly.

Still build π for the pattern, but also prev[] mapping an index i to
the previous occurrence of the same letter in the pattern.

In the KMP matching stage (i.e. sliding the pattern over the text),
also keep track of the permutation of the letter so far.

When we trying to match p[i] to s[j] when sliding the pattern, if
prev [i] is defined then matched ensure p[prev [i]] = s[j]. Otherwise,
define the encryption permutation to send p[i] to s[j].

When sliding the pattern because of “no match”, remove rules from
the encryption permutation as you slide past characters. There are
some details to consider here, but it can be done in linear time.

https://open.kattis.com/problems/chasingsubs

Open Kattis - chasingsubs

Idea: use KMP but “construct” the permutation on the fly.

Still build π for the pattern, but also prev[] mapping an index i to
the previous occurrence of the same letter in the pattern.

In the KMP matching stage (i.e. sliding the pattern over the text),
also keep track of the permutation of the letter so far.

When we trying to match p[i] to s[j] when sliding the pattern, if
prev [i] is defined then matched ensure p[prev [i]] = s[j]. Otherwise,
define the encryption permutation to send p[i] to s[j].

When sliding the pattern because of “no match”, remove rules from
the encryption permutation as you slide past characters. There are
some details to consider here, but it can be done in linear time.

https://open.kattis.com/problems/chasingsubs

Open Kattis - chasingsubs

Idea: use KMP but “construct” the permutation on the fly.

Still build π for the pattern, but also prev[] mapping an index i to
the previous occurrence of the same letter in the pattern.

In the KMP matching stage (i.e. sliding the pattern over the text),
also keep track of the permutation of the letter so far.

When we trying to match p[i] to s[j] when sliding the pattern, if
prev [i] is defined then matched ensure p[prev [i]] = s[j]. Otherwise,
define the encryption permutation to send p[i] to s[j].

When sliding the pattern because of “no match”, remove rules from
the encryption permutation as you slide past characters. There are
some details to consider here, but it can be done in linear time.

https://open.kattis.com/problems/chasingsubs

Open Kattis - chasingsubs

Idea: use KMP but “construct” the permutation on the fly.

Still build π for the pattern, but also prev[] mapping an index i to
the previous occurrence of the same letter in the pattern.

In the KMP matching stage (i.e. sliding the pattern over the text),
also keep track of the permutation of the letter so far.

When we trying to match p[i] to s[j] when sliding the pattern, if
prev [i] is defined then matched ensure p[prev [i]] = s[j]. Otherwise,
define the encryption permutation to send p[i] to s[j].

When sliding the pattern because of “no match”, remove rules from
the encryption permutation as you slide past characters. There are
some details to consider here, but it can be done in linear time.

https://open.kattis.com/problems/chasingsubs

Open Kattis - chasingsubs

Idea: use KMP but “construct” the permutation on the fly.

Still build π for the pattern, but also prev[] mapping an index i to
the previous occurrence of the same letter in the pattern.

In the KMP matching stage (i.e. sliding the pattern over the text),
also keep track of the permutation of the letter so far.

When we trying to match p[i] to s[j] when sliding the pattern, if
prev [i] is defined then matched ensure p[prev [i]] = s[j]. Otherwise,
define the encryption permutation to send p[i] to s[j].

When sliding the pattern because of “no match”, remove rules from
the encryption permutation as you slide past characters. There are
some details to consider here, but it can be done in linear time.

https://open.kattis.com/problems/chasingsubs

Open Kattis - chasingsubs

Idea: use KMP but “construct” the permutation on the fly.

Still build π for the pattern, but also prev[] mapping an index i to
the previous occurrence of the same letter in the pattern.

In the KMP matching stage (i.e. sliding the pattern over the text),
also keep track of the permutation of the letter so far.

When we trying to match p[i] to s[j] when sliding the pattern, if
prev [i] is defined then matched ensure p[prev [i]] = s[j]. Otherwise,
define the encryption permutation to send p[i] to s[j].

When sliding the pattern because of “no match”, remove rules from
the encryption permutation as you slide past characters. There are
some details to consider here, but it can be done in linear time.

https://open.kattis.com/problems/chasingsubs

