Graph Theory Crash Course |l



Graph Representation Review

* Edge List
* Adjacency Matrix

w—

- _a®
o2

@ _
}j/\

* Adjacency List




Edge list

1 ostruct Edge {
* Simply make a list ’ T int a, b;
(or vector) of .’
pairwise relations. 5 vector<Edge> EdgelList;
7 // Edge from 0 to 1
8 Edge el;
9 el.a = 0; el.b = 1;
10

11 // Edge from 1 to 2
12 Edge e2;
13 e2.a = 1; e2.b = 2;

15 EdgeList.push back(el) ;
16 EdgeList.push back(e2) ;



Adjacency Matrix

 Make a table. Rows correspond to the source
node, columns to the destination node.

e Alinrow R and column C means that the
edge R->C exists.

e /1100 1 0

o 101010
o 010100
’ 001011
o 110100
.o \0 00 10 0

o. Coordinates are 1-5.



Adjacency Matrix

* Undirected graph: if a->b
exists, so does b->a

— Therefore, matrix
symmetric.

* Weighted graph

— May replace 1 with the
edge weight.

\

/1

1

— () bk (D ek
— L =
—— D = O O
s T e T S o R SR S

0
0
1
0

Coordinates are 1-6.

0
0
0
1
0
0



Adjacency Matrix

= o o =

1nt Graph[

Graph[/][1]
Graph[-] [“]

110

.
r

.
r

1;

// 10 nodes, 0-9

// Create edge 2->1
// Create edge 3->2



Adjacency Lists

* Each node stores the edges that extend from
that node.

* Example: () (&
— Node 1 stores: ’o
(25

* Edgeto 5 a
* Edgeto 1l o.
* Edge to 2

* For undirected graphs, we need to be careful
to add the reverse edges too.



o 0 -1 & U &= W N =

|_'I.
f::j

Adjacency Lists

ostruct Node {
// Store endpoint of edges from this node
vector<int> Edges;

-}
vector<Node> Graph(10); // 10 nodes, 0-9
// Insert an undirected edge between nodes 0 and 1

Graph[0] .Edges.push back (1) ; // Edge from 0 to 1
Graph[1] .Edges.push back(0) ; // Edge from 1 to O



Which to Use?

* Depends on the algorithm

— Some algorithms are more naturally implemented
on a particular representation.

— Some queries are inefficient on edge lists, e.g. is
there an edge between two given nodes?

* Depends on the graph

— Adjacency matrix inefficient for sparse graphs,
always takes O(V/2) space.



Graph Algorithms

Depth-first search (DFS)
Breadth-first search (BFS)

DFS & BFS Variants

Minimum spanning tree (MST)

— Kruskal’s algorithm & Prim’s algorithm
Single-source shortest path (SSSP)

— BFS, Djikstra’s algorithm, Bellman-ford
All-pairs shortest path (APSP)

— Floyd-Warshall

Bipartite Graph

— Bipartite graph check (BFS), Maximum matching
Flow algorithms




Graph Algorithms: DFS & BFS

Graph Search
Single-source shortest path, unweighted (BFS)

Strongly-connected components
— Undirected: DFS / BFS
— Directed: Tarjan’s algorithm

Topological sort (DFS)
Finding articulation points and bridges



Depth-First Search

* DFS on vertex U:
— Mark U as visited.

— For each neighbour V of U that has not been
visited:

e DFS on vertex V e

5 © G
ololo




Depth-First search

o 0 1 Oy U =W N

=
N~ O

= =
= Lo

// Adjacency list representation.
// Graph[u] [i] is the i'th neighbour of vertex g
vector<vector<int> > Graph;

vector<bool> visited;

volid DES(int u)
= {

visited[u] = true;
5 for (int i = 0; i < Graph[u].size(); ++1i) {
int v = Graph[ul[i];

if ('visited[v]) DES (V) ;




Breadth-First Search

e Use Queue to decide which node to visit next.

* BFS:

Loop:
— If Q empty, done!
— Get and remove vertex U at front of Q
— For each neighbour V of U:

e |If V has not been visited:
— Set V to visited
— Enqueue V

— Goto: Loop



WO 0 1 Oy 0 = W N =

=
)N = O

i
= Ll

[

=
- o

I

Breadth-First Search

// Adjacency list representation.

// Graphlul[i]l is the ji'fth neighbour of vertex 1

vector<vector<int> > Graph;
vector<bool> visited;
queue<Lint> Q;

vold BFS ()

{
while (!'Q.empty()) {
int u = Q.front(); Q.pop();

for (int i = 0; i < Graph[u]l.size(); ++1i) {

int v = Graph[ul[i];
if (visited[v]) continue;
visited[v] = true; Q.push(v):;



SSSP with BFS

Works for unweighted graph, or where edges
all have weight 1.

Keep around a vector of “parents”

Whenever you visit a hode, record the node
you came from as the parent

Follow the parents to find the shortest path



WO o ] Oy U &= w N

ol
)N = O

= =
=L

n

= = = =
WO 0 <] o

Z

SSSP with BFS

// Adjacency list representation.

// Graph[u][i] is the 1'th neighbour of vertex y
vector<vector<int> > Graph;

vector<bool> visited;

vector<int> parent;

queue<Lint> Q;

volid BFS ()
{
while ('Q.empty()) {
int u = Q.front(); Q.pop();
for (int 1 = 0; 1 < Graphl[u].size(),; ++1) {
int v = Graph[u] [1i];
if (visited[v]) continue;
parent[v] = u;
visited[v] = true; Q.push(v) ;




Strongly-Connected Components

 SCCis a subset of nodes where there exists a
path between any pair of nodes in the subset.

* For an undirected graph, can use DFS or BFS to
find them.

* For a directed graph, use Tarjan’s algorithm
(variant of DFS)



SCC with DFS

* All nodes we reach during a single run of DFS
are in the same SCC

* Simply run DFS on an unvisited node. All
nodes the DFS visits are members of the
newly found SCC



SCC with DFS

* For each node u:

— If u has not been visited:

* Report new SCC
e DFS(u)




SCC with Tarjan’s Algorithm

* Finds SCCs in directed graphs
e Variant of DFS, we’ll get back to this one later.




Articulation points & Bridges

Articulation point: Node that, if removed,
disconnects the graph.

Bridge: Edge that, if removed, disconnects the
graph.

Of strategic importance (cut off enemy supply
lines, etc.)

How to find these?



Articulation Points & Bridges

* Simple Method:
— First, run DFS to verify graph connected.

— For each node:
 Remove the node.
* Run DFS to see if the graph has been disconnected.

 O(V(V+E))



Articulation Points & Bridges

More efficient method: Modified DFS

ntroduce two node labels: DFS _num and
DFS_low

DFS_num: Iteration on which we first saw this
node.

DFS low: Smallest DFS_num we can reach in
the DFS subtree below this node.



