
Graph Theory Crash Course II

2015



Graph Representation Review

• Edge List

• Adjacency Matrix

• Adjacency List



Edge list

• Simply make a list 
(or vector) of 
pairwise relations.



Adjacency Matrix

• Make a table. Rows correspond to the source 
node, columns to the destination node.

• A 1 in row R and column C means that the 
edge R->C exists.



Adjacency Matrix

• Undirected graph: if a->b 
exists, so does b->a

– Therefore, matrix 
symmetric.

• Weighted graph

– May replace 1 with the 
edge weight.



Adjacency Matrix



Adjacency Lists

• Each node stores the edges that extend from 
that node.

• Example:
– Node 1 stores:

• Edge to 5

• Edge to 1

• Edge to 2

• For undirected graphs, we need to be careful 
to add the reverse edges too.



Adjacency Lists



Which to Use?

• Depends on the algorithm

– Some algorithms are more naturally implemented 
on a particular representation.

– Some queries are inefficient on edge lists, e.g. is 
there an edge between two given nodes?

• Depends on the graph

– Adjacency matrix inefficient for sparse graphs, 
always takes O(V^2) space.



Graph Algorithms

• Depth-first search (DFS)
• Breadth-first search (BFS)
• DFS & BFS Variants
• Minimum spanning tree (MST)

– Kruskal’s algorithm & Prim’s algorithm

• Single-source shortest path (SSSP)
– BFS, Djikstra’s algorithm, Bellman-ford

• All-pairs shortest path (APSP)
– Floyd-Warshall

• Bipartite Graph
– Bipartite graph check (BFS), Maximum matching

• Flow algorithms



Graph Algorithms: DFS & BFS

• Graph Search

• Single-source shortest path, unweighted (BFS)

• Strongly-connected components

– Undirected: DFS / BFS

– Directed: Tarjan’s algorithm

• Topological sort (DFS)

• Finding articulation points and bridges



Depth-First Search

• DFS on vertex U:

– Mark U as visited.

– For each neighbour V of U that has not been 
visited:

• DFS on vertex V



Depth-First search



Breadth-First Search

• Use Queue to decide which node to visit next.

• BFS:
Loop:

– If Q empty, done!

– Get and remove vertex U at front of Q

– For each neighbour V of U:
• If V has not been visited:

– Set V to visited

– Enqueue V

– Goto: Loop



Breadth-First Search



SSSP with BFS

• Works for unweighted graph, or where edges 
all have weight 1.

• Keep around a vector of “parents”

• Whenever you visit a node, record the node 
you came from as the parent

• Follow the parents to find the shortest path



SSSP with BFS



Strongly-Connected Components

• SCC is a subset of nodes where there exists a 
path between any pair of nodes in the subset.

• For an undirected graph, can use DFS or BFS to 
find them.

• For a directed graph, use Tarjan’s algorithm 
(variant of DFS)



SCC with DFS

• All nodes we reach during a single run of DFS 
are in the same SCC

• Simply run DFS on an unvisited node. All 
nodes the DFS visits are members of the 
newly found SCC



SCC with DFS

• For each node u:

– If u has not been visited:

• Report new SCC

• DFS(u)



SCC with Tarjan’s Algorithm

• Finds SCCs in directed graphs

• Variant of DFS, we’ll get back to this one later.



Articulation points & Bridges

• Articulation point: Node that, if removed, 
disconnects the graph.

• Bridge: Edge that, if removed, disconnects the 
graph.

• Of strategic importance (cut off enemy supply 
lines, etc.)

• How to find these?



Articulation Points & Bridges

• Simple Method:

– First, run DFS to verify graph connected.

– For each node:

• Remove the node.

• Run DFS to see if the graph has been disconnected.

• O(V(V+E))



Articulation Points & Bridges

• More efficient method: Modified DFS

• Introduce two node labels: DFS_num and 
DFS_low

• DFS_num: Iteration on which we first saw this 
node.

• DFS_low: Smallest DFS_num we can reach in 
the DFS subtree below this node.


