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Graph Traversal

Lecture 32

Graph traversal algorithms provide a systematic way of
exploring a given graph.

Can be used as a framework for designing efficient graph
algorithms

Tree Traversal Algorithms

Systematically visit all nodes in directed tree rooted at
v:

function TreeSearch(T, v)

do something with v

for each child u of v in T do

TreeSearch(T, u)

end
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Example 1: Printing all nodes of a tree in order in which
they are discovered by the search

function PrintTree(T, v)

print v

for each child u of v in T do

PrintTree(T, u)

end

PrintTree(T, a) output: a b d e h c f i j g

What is the runtime of this algorithm?
Space requirements?
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PrintTree is called exactly |E|+1 times: once to invoke
it, and then once for each edge in the tree.

What is the maximum call-stack level l that can be
reached?

l ≤ |E|, because |E| is the length of the longest pos-
sible path in T — because we only have |E| edges to
work with and there are no cycles.

So, in the worst case, we need additional space in the
size of T

In general, however, l equals the height of v, which may
be much smaller than |E|.
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Example 2: Compute node heights

Recall: the height h(v) of a node v in a tree is the
maximum length of a path from v to a leaf (i.e., a
node without child).

We can express this recursively:

h(v) = 0, if v is a leaf

h(v) = 1 + max{h(u) | u is a child of v},
if v is not a leaf
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Recursive code, straight from the recurrence relation:

h(v) = 0, if v is a leaf

h(v) = 1 + max{h(u) | u is a child of v},
if v is not a leaf

function height(T, v)

h <- -1 // first height always greater,

// 1 added at the end => also

// works for leaves v

for each child u of v do

g <- height(T, u)

h <- max(h, g)

end

return h+1
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Example 3: Evaluate expression trees

Arithmetic expressions can be viewed as binary trees:

Leaves correspond to values and interior nodes corre-
spond to functions applied to arguments that are the
results of subexpressions

How can we determine the value of the root in a given
expression tree?
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// assume each node v carries the

// following information

// v.left : left child of v

// v.right : right child of v

// v.op : operation in interior node

// v.value : value at leaf

function eval(T, v)

if v is leaf then

return v.value

end

vL <- eval(T, v.left)

if v has one child then

return v.op(vL)

end

vR <- eval(T, v.right)

return v.op(vL, vR)
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Application:



CMPUT 204, F2010, M. Buro Depth-First Search 10

Depth-First Search

What happens when we apply TreeSearch to arbitrary
graphs?

a) We don’t reach all nodes in the graph if it is discon-
nected, and

a) we run into an infinite loop when a cycle can be
reached from the start node!

How can we fix this?

• Use each node as start node in turn

•Memorize visited nodes and don’t visit them again

This method is called Depth-First Search (DFS), be-
cause it continues with the first child node of every
node it visits and thus is going deeper and deeper until
it hits a node that either has no child or whose children
have been visited before. Then the search backtracks,
returning to the most recent node it hasn’t finished ex-
ploring.

Pseudo Code:
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// traverses graph in depth-first fashion

// uses discovery time array d:

// d[v] = k <=>

// node v is the k-th visited node

// d[v] != 0 <=> v has been visited

// also creates arrays: p (parent) and e (tree)

function DFS(G=(V,E))

for all v in V do

d[v] <- 0 // not visited yet

p[v] <- NIL // no parent

end

t <- 0 // discovery time

for each v in V do

if d[v] = 0 then // not yet visited?

visit(G, d, p, e, t, v) // visit node

end

end

function visit(G, d, p, e, ref t, v)

t <- t + 1 // discovered new node

d[v] <- t // set discovery time

for each u adjacent from v do

if d[u] = 0 then

p[u] <- v // parent of u is v in DFS tree

visit(G, d, p, e, t, u) // visit neighbour

end

end
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Example
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Lecture 33

Theorem: Let G = (V,E), v ∈ V and C(v) the
set of vertices in the connected ncomponent of v. If
d[u] = 0 for all u ∈ C(v), then visit(G,d,p,v,t)
discovers all nodes in C(v).

Proof:
Induction on order n of G

n = 1 : The only node v is discovered by the call.

≤ n→ n + 1 : Consider graph G of order n + 1 and
remove v together with all its edges to its neighbours
v1, . . . , vm.
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What remains is graph G′ with n nodes. The induc-
tion hypothesis applies to call visit(G1,d,p,v1,t),
i.e. this call discovers all nodes in the connected com-
ponent G′1 of v1.

Note that in the original graph G, the discovered nodes
would be the same, because v is marked visited and
backedges to v don’t interfere, because the search orig-
inating from v1 will just skip them. This argument also
applies to all following child visit calls, noting that
there can’t be any edges pointing into previously visited
connected components.

So, after calling visit on all children, all nodes in the
connected components G′1 . . . G

′
k of v1, . . . , vm in G′

have been discovered.

But the graph induced by all G′i plus v and its edges
forms the connected component of v in G. This proves
the claim for G. �

Applying this theorem to all nodes visit is called with
in DFS proves that all nodes in G will be discovered.
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Analogously, it can be shown that in directed graphs
G, visit(G,d,p,v,t) discovers all nodes that are
reachable from v in G by a directed path, provided
that their d value was 0.

Theorem: Given a graph G = (V,E) DFS runs in
time Θ(|V | + |E|).

Proof:

The time spent in DFS is Θ(|V |) (two loops over V ).

The total time spent in visit is Θ(|E|) because in the
for loop each edge is visited exactly once. �
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A DFS call creates a directed DFS forest which is made
of visited nodes and so-called tree edges. Each tree is
generated by a visit call from function DFS.

A tree edge (u, v) is formed whenever node v is first
visited from u.

For undirected graphs, we call edge (u, v) a back edge
if v is an ancestor (but not the parent) of u in the
current DFS tree. Loops create back edges.

When DFS search is applied to directed graphs, there
are two more edge types and a slightly changed defini-
tion of back edges:

Forward edges are those non-tree edges (u, v) that
connect u to a descendant v in a DFS tree.

Directed edges pointing back to the parent node are
considered back edges.

Cross edges are all other edges. They can go between
vertices in the same DFS tree, as long as one vertex is
not an ancestor of the other, or they can go between
vertices in differnt DFS trees.
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DFS on undirected connected graph:

[

DFS on directed graph:
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When DFS is applied to undirected graphs G = (V,E)
only tree and back edges occur.

To see this consider any edge {u, v} in E, for which u
is discovered before v.

Then either v is discovered by searching another neigh-
bour of u first — which means that (v, u) is a back
edge — or not, in which case (u, v) is a tree edge.

How to detect back edges in DFS applied to undirected
graphs?

Before calling visit on neighbour u of v, check whether
u has been visited before and u is not the parent of v.
If yes, the edge is a back edge. Otherwise, it isn’t.
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How to detect back edges in DFS applied to directed
graphs?

This is more tricky. Node u being visited before does
not mean it is an ancestor of v in the current DFS tree.
To test this, we need to know whether exploration from
u isn’t finished yet.

For this purpose we maintain a colour array c that tells
us about the search status of nodes:

c[v] = WHITE means v not visited yet

c[v] = GREY means v is being visited

c[v] = BLACK means visiting v is finished

With this (v, u) is a
back edge iff c[v] =
GREY, and (v, u) is a
forward or cross edge iff
c[v] = BLACK.
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// colour version of DFS

// for detecting back edges in digraphs

function DFS(G=(V,E))

for all v in V do

d[v] <- 0 // not visited yet

p[v] <- NIL // no parent

c[v] <- WHITE

end

t <- 0 // discovery time

for each v in V do

if d[v] = 0 then // not yet visited?

visit(G, d, p, e, c, t, v) // visit node

end

end

function visit(G, d, p, e, c, ref t, v)

t <- t + 1 // discovered new node

d[v] <- t // set discovery time

c[v] <- GREY // v being visited

for each u adjacent from v do

if d[u] = 0 then

p[u] <- v // parent of u is v in DFS tree

visit(G, d, p, e, c, t, u) // visit neighbour

end

end

c[v] <- BLACK // done visiting v



CMPUT 204, F2010, M. Buro DFS Application 1: Connected Components 21

DFS Application 1: Connected Components

Given a graph G = ({1..n}, E), how to compute array
values c[v] which indicate in which connected compo-
nent node v resides?
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Adapt DFS:

function Components(G=(V,E))

c[v] <- 0 for all v in V // not visited yet

k <- 0 // current component

for each v in V do

if c[v] = 0 then

k <- k + 1 end // next component

co-visit(G, c, k, v) // visit nodes

end

end

return c

function co-visit(G, c, k, v)

c[v] <- k // v sits in component k

for each u adjacent from v do

if c[v] = 0 then

co-visit(G, c, k, u) // visit neighbour

end

end

Runtime: Θ(|V | + |E|)
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DFS Application 2: Cycle Test

Does graph G = (V,E) have a cycle?

Graph Theory Result:

If G = (V,E) is connected, then

G has cycle⇔ |E| ≥ |V |

So we could first compute the connected components,
count nodes and edges in them, and the report a cycle
if above inequality is true for at least one component.

We can also use DFS directly:
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Theorem: G has cycle ⇔ DFS applied to G encoun-
ters a back edge.

“⇒”: Pick node v on a cycle with earliest discovery
time. Then the DFS-subtree below v contains all nodes
on the cycle, because all nodes on the cycle are reach-
able from v.

In particular the last node u in the cycle is reachable
from v. Therefore, back edge (u, v) exists.

“⇐”: The existence of back edge (u, v) by the defini-
tion means that there is a path from v to u in G and
{u, v} ∈ E. So, G has a cycle. �

Lecture 34

The Theorem also holds for directed graphs.
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// returns true iff undirected G has a cycle

function HasCycle(G=(V,E))

for each v in V do

d[v] <- 0 ; p[v] <- NIL // needed for back edge test

end

t <- 0 // discovery time

for each v in V do // visit node

if d[v] = 0 then

if cyc-visit(G, d, p, t, v) then return true end

end

end

return false // no cycle detected

function cyc-visit(G, d, p, ref t, v)

t <- t + 1 // discovered new node

d[v] <- t // set discovery time

for each u adjacent from v do

if d[u] > 0 then

if u != p[v] then return true end // back edge

else

if cyc-visit(G, d, t, u) then return true end

end

end

return false

Worst-case runtime: Θ(|V | + |E|)

For directed graphs, one needs to maintain the colour
array and replace the u != p[v] test by c[v] = GREY.
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DFS Application 3: Strong Connectedness

Is a directed graph G = (V,E) strongly connected?

I.e., for all u, v ∈ V with u 6= v does there exist a
directed path from u to v in G?

We can make use of the fact that visit(G,d,p,t,v)
discovers all nodes that are reachable from v in G by
directed paths.

In a first attempt, in DFS we simply reset d before each
call to visit(G,d,p,t,v) and count how many nodes
are visited in each call. If for at least one node this num-
ber is < |V |, we know that G is not strongly connected.
Otherwise, it is.
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// return true iff G is strongly connected

function IsStronglyConnected(G=(V,E))

for each v in V do

d[u] <- 0 for all u in V

t <- 0

visit(G, d, t, v) // no parent array needed

if t < |V| then // at least one node

return false // not reachable

end

end

return true

The worst-case runtime is Θ(|V |2 + |V ||E|), which is
rather slow.

It turns out that we don’t need to run visit |V | times.

Two times suffices.

Theorem: Directed graph G = (V,E) is strongly con-
nected iff for an arbitrary vertex v ∈ V all other nodes
are reachable from v and v is reachable from all other
nodes by directed paths in G.
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Proof: Let v ∈ V . If there is a node u 6= v that can’t
be reached from v, or v can’t be reached from u, then
by definition G is not strongly connected.

Conversely, if all other nodes can be reached from v
and v can be reached from all other nodes, then we
can construct a path between any two different nodes
u,w by first reaching v from u and then reaching w
from v. Thus, G is strongly connected. �

A small obstacle remains: how do we compute the num-
ber of nodes from which v can be reached?



CMPUT 204, F2010, M. Buro DFS Application 3: Strong Connectedness 29

By reversing edges and running visit on the resulting
graph!

Observation:
v can be reached from u by a path in G

⇔
u can be reached from v by a path in G′

Computing G′ = (V,E′) from G can be accomplished
in time Θ(|V |+ |E|), by creating the adjacency lists of
G′ incrementally: add (v, u) to E′ if (u, v) ∈ E.

With this we can now present the faster strong con-
nectedness test:
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function IsStronglyConnected2(G=(V,E))

pick v in V

d[u] <- 0 for all u in V

t <- 0

visit(G, d, t, v) // no parent array needed

if t < |V| then // at least one node

return false // node not reachable

end

G’ <- G with all edges reversed

d[u] <- 0 for all u in V

t <- 0

visit(G’, d, t, v)

return t >= |V|

Worst-case runtime: Θ(|V | + |E|)
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DFS Application 4: Topological Sorting

Consider the following scheduling problem: you are given
a number of tasks Ti where each depends on other tasks
to be finished before they can be executed.

In what order can the tasks be scheduled, such that
when it comes to executing task Ti all of the tasks it
depends on are already finished?

This problem can be modeled using directed acyclic
graphs (DAGs). It is known as the Topological Sort-
ing Problem:

Given a finite DAG G, compute a node ordering such
that for each edge (u, v) in G, u is listed before v.

Cleary, if G had directed cycles, the problem has no
solution. That’s why we can limit the graphs to DAGs.
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Is there a solution to the problem for all finite DAGs?

Yes.

This can be shown inductively (see A5.5).

Brute force approach: generate all |V |! node orderings
and check for violations. Infeasible for large graph or-
ders.

Can we use DFS for solving this problem?

Intuition: after discovering all nodes reachable from a
node u during which we created a topological ordering
l′ for them, we can prepend u to list l′ to create a valid
ordering l for this part of the DAG.

Adapted DFS function:
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// assumes G is a DAG

function TopoSort(G=(V,E))

d[v] <- 0 for all v in V // not visited yet

t <- 0 // discovery time

empty node list l

for each v in V do

if d[v] = 0 then

topo-visit(G, d, t, l, v) // visit node

end

end

return l

function topo-visit(G, d, ref t, ref l, v)

t <- t + 1 // discovered new node

d[v] <- t // set discovery time

for each u adjacent from v do

if d[u] = 0 then

topo-visit(G, d, t, l, u)

end

end

// node v finished:

// prepend v to topological ordering

prepend(v, l)

Runtime: Θ(|V | + |E|)
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Example:

Theorem: TopoSort applied to DAG G = (V,E)
computes a node list l so that for all (u, v) ∈ E, u is
listed before v in l.
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Proof: Suppose (u, v) ∈ E

Case 1: d[u] < d[v]

Then v is a descendant of u in the DFS tree rooted at
u, because v is reachable from u.

Therefore, v is finished earlier than u, which means u
preceeds v in l.

Case 2: d[u] > d[v]

I.e., u is discovered later than v.

Then, u can’t be a descendant of v in the DFS tree
rooted at v.

Otherwise, we would have a cycle v  u→ v.

This means, that v is finished before u is discovered,
and therefore u preceeds v in l. �
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Breadth-First Search Lecture 35

An alternative method for exploring nodes in a graph is
level-by-level, i.e. visiting nodes by increased distance
to a specific start node.
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This node exploration method is called breadth-first
search (BFS).

Instead of a recursive algorithm like DFS, we maintain
the set of nodes yet to be searched in a first-in-first-out
queue Q (see S1 problem 5 for an implementation).

Newly discovered nodes are added at the end of the
queue, while nodes at the front are removed to look for
adjacent nodes we have not discovered yet.

The process stops when the queue becomes empty. At
this point we have visited all nodes that are reachable
from the start node.

At any given time during the search the queue contains
nodes of distance l from the start node at the front
followed by 0 or more nodes at distance l + 1.
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// traverses graph in breadth-first fashion

// starting from node s

// computes distance array d:

// d[v] = minimal distance from s to v in G

// also creates arrays:

// p (parent), e (tree), and c (colour)

function BFS(G=(V,E), s)

for all v in V do

p[v] <- NIL // no parent

c[v] <- WHITE ; d[v] <- infinity

end

c[s] <- GREY ; d[s] <- 0

QueueInit(Q) // first-in-first-out data structure

QueueAdd(s, Q) // add s at the end of Q

while Q not empty do

v <- QueueRemove(Q) // remove first element of Q

for each u adjacent from v do

if c[u] = WHITE then

QueueAdd(u, Q)

c[u] <- GREY // u in Q

d[u] <- d[v]+1// one step further away from s

p[u] <- v // parent of u is v in BFS tree

end

end

c[v] <- BLACK // done with v

end
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Theorem:
The runtime of BFS is Θ(|V |+|E|), and BFS is correct,
i.e. call BFS(G = (V,E), s) terminates on all inputs,
and upon termination it has discovered all nodes v ∈ V
reachable from s in G.

Further, d[v] = δ(s, v) (i.e. minimal path length from
s to v, all edges have weight 1) and for all v 6= s a
shortest path from s to v can be obtained in reverse by
iterating v ← p[v] until s or NIL is reached.

Proof Sketch:

The initialization runtime is Θ(|V |). Moreover, every
edge of G will be visited at most once in the inner
loop because the originating nodes v will be marked
GREY and BLACK and thus never discovered again.
Thus, the total worst-case runtime when all nodes are
being discovered (which indeed can happen, see below)
is Θ(|V | + |E|).

Use induction on number of pushFront operations to
prove the mininum distance claim, which also implies
the reachabilty claim and the correctness of the path
reconstruction loop. See CLRS for details. �


