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Unweighted Graphs

Note
Many code snippets here use C++ 11 features. Compile with the flag
-std=c++11 if using g++.

Throughout, n = # vertices, m = # edges.

Adjacency List Representation of a Graph

//without c++11 you may need to add a space between >>

typedef vec to r<vec to r<int>> graph ;
. . .
graph g ( n ) ; //create a graph with n vertices

g [ u ] . push back ( v ) ; //add v as a neighbour of u

For undirected graphs, just add both directions of an edge (u, v).
Requires Θ(n + m) space.
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Depth-First Search

Find all vertices reachable from vertex v .

//the vertices that are reached in the search

vec to r<bool> r eached (n , false ) ;
graph g ;

void d f s ( int u ) {
if ( ! r eached [ u ] ) {

r eached [ u ] = true ;
for ( auto w : g [ u ] ) d f s (w) ;

}
}
. . .
d f s ( v ) ;

If we record the vertex that discovered u, we can reconstruct paths.

Runs in O(n + m) time.
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Depth-First Search
22.3 Depth-first search 605
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Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u
has been assigned a discovery time u:d and a finishing time u: f .

In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments
the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex ! adjacent to u
and recursively visit ! if it is white. As each vertex ! 2 AdjŒu" is considered in
line 4, we say that edge .u; !/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not

Example from CLRS (page 542, Figure 22.4)



Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

v1 v2 v3 v4 v5 v6 v7 v8

Impossible to do if there is a cycle. Otherwise, the following works.

• Begin a DFS. Just before returning from a recursive call (i.e. just
after the for loop) push back the vertex u to the end of a vector.

• Repeat, starting with an unvisited vertex each time, until all
vertices are visited.
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vec to r<int> o r d e r ; //initially empty

void t o p o s o r t ( int u ) {
if ( ! r eached [ u ] ) {

r eached [ u ] = true ;
for ( auto w : g [ u ] ) t o p o s o r t (w) ;
o r d e r . push back ( u ) ;

}
}

. . .

for ( int u = 0 ; u < n ; u++)
if ( ! r eached [ u ] )

t o p o s o r t ( u ) ;
r e v e r s e ( o r d e r . beg in ( ) , o r d e r . end ( ) ) ; //#include <algorithm >



If u is ordered after w for some edge (u,w), it must be that the
recursive call with w was on the call stack when u was being
processed. (Why?)

w

u

top of call stack

done searching

If w is on the call stack when u is being processed, there is a path
from w to u. Completing this path with the edge (u,w) yields a cycle.

Thus
If the graph has no cycles, this will topologically sort all vertices.
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Articulation Points & Bridges

An articulation point in an undirected, connected graph is a vertex
whose removal leaves a disconnected graph.

A bridge is an edge whose removal leaves a disconnected graph.

Can find all bridges and articulation points in O(n +m) time via DFS.
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A bridge will always be a tree edge in a DFS (actually, in any
spanning tree).

u

start

bridge

Picture: no edge of a descendent of u in the search reached a
non-descendent. So the parent edge of u is a bridge.



Run a DFS, record the order the vertices were discovered.

Return the earliest discovery time of any vertex adjacent to a
descendant of u. This indicates if some descendant is adjacent to a
non-descendant.

vec to r<int> found (n , −1); // discovery time

int cnt = 0 ;

int b r i d g e s ( int u , int p ) {
if ( found [ u ] != −1) return found [ u ] ;
int mn = found [ u ] = cnt++; //record u’s discovery time

for ( auto w : g [ u ] )
mn = min (mn, b r i d g e s (w, u ) ) ;

if (mn == found [ u ] && p != −2)
// (p, u) is a bridge , process it how you want

return mn;
}
. . .
b r i d g e s (0 , −2); //start the search from any vertex



Other DFS Applications

• Find all articulation points in a graph (good exercise).

• Find the strongly connected components of a directed graph.

• Compute pre/post order traversals of a tree.

• Simple code for augmenting a bipartite matching (later lecture).

All of these can be implemented to run in O(n + m) time.



Breadth-First Search

A breadth-first search will explore the vertices in increasing order of
their shortest path distance from the start vertex.
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• Load up the start vertex in a queue q.

• While q is not empty, extract the front vertex and add all of its
unvisited neighbours to the back of q.



queue<int> q ; //#include <queue >

vec to r<int> prev (n , −1);

q . push ( v ) ; //v is the start vertex in the search

prev [ v ] = −2; //signals "root of search"

while ( ! q . empty ( ) ) {
int c u r r = q . f r o n t ( ) ;
q . pop ( ) ;
for ( auto succ : g [ c u r r ] )

if ( p r ev [ succ ] == −1) {
prev [ succ ] = cu r r ;
q . push ( succ ) ;

}
}

Now prev [u] for u 6= v is the vertex prior to u on a shortest v − u
path.

Also runs in O(n + m) time.
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A thick arrow from u to w indicates prev [w ] = u.

The unique path using thick arrows from the start vertex (dark) to
any vertex is a shortest path in the graph.

Though we illustrated with an undirected graph, the same algorithm
also finds shortest paths in directed graphs.
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To Come...

Next week
Algorithms for weighted graphs.

• Dijkstra’s algorithm for shortest paths.

• Floyd-Warshall for all-pairs shortest paths.

• Bellmand-Ford: handling negative weight cycles.

• Minimum Spanning Trees: Kruskal’s Algorithm

Later in the course

• Bipartite matching: unweighted and weighted.

• Network flow: max-flow/min-cut.


