
CMPUT 403: Geometry

Zachary Friggstad

February 16, 2016

Points

typedef complex<double> po i n t ; //#include <complex >

po i n t p (1 . 0 , 5 . 7) ;
p . r e a l () ; // x component

p . imag () ; // y component

Helpful operations

po i n t p , q ;
p+q ; // exactly what you expect

p ∗= po l a r (1 , t h e t a) ; //rotate p by theta radians

abs (p−q) ; //distance between p and q

arg (p) ; //angle from positive x-axis , measured in (-pi, pi]

One Annoyance: we can’t update the x and y components without
creating a new point.

Dot Product

p ◦ q = px · qx + py · qy = ||p|| · ||q|| · cos θ

double dot (p o i n t p , p o i n t q) { return r e a l (p∗ con j (q)) ; }

p

q

positive side

negative side

• p ◦ q = 0 if p ⊥ q (or one of them is 0)

• p ◦ p = ||p||2
• p ◦ q > c : q lies in the same general direction as p

• p ◦ q < 0: q lies in the opposite general direction as p

Cross Product

p × q = px · qy − py · qx = ||p|| · ||q|| · sin θ

double c r o s s (p o i n t p , p o i n t q) { return imag (p∗ con j (q)) ; }

p
q

positive side
(CCW turn from p)

negative side
(CW turn from p)

• p × q = 0 if p and q are collinear with 0 (or one of them is 0)
• p × q > 0: ∠(p, q) is counterclockwise
• p × q < 0: ∠(p, q) is clockwise

1
2 |(p − r)× (q − r)| is the area of the triangle with corners p, q, r .

p

q

r

Tip: p lies on the line passing through points q and r if and only if
(q − p)× (r − p) = 0.

p

q

r

Additionally: if p lies on this line then it lies between q and r if and
only if (q − p) ◦ (r − p) ≤ 0.

Parametric representation of a line passing through p and q:

r(t) = (1− t) · p + t · q, t ∈ R

p

q

Note r(0) = p and r(1) = q.

The line segment connecting p and q is parameterized this way, with
the restriction 0 ≤ t ≤ 1.

Given two lines passing through p, q and p′, q′ respectively, compute
their intersection point (if any).

Solve (1− t) · p + t · q = (1− t ′)p′ + t ′ · q′ for t, t ′ ∈ R.[
qx − px p′x − q′x
qy − py p′y − q′y

]
·
[

t
t ′

]
=

[
p′x − px
p′y − py

]
Use Cramer’s rule: for A · x = b we have

xi =
detAi

detA

Where Ai is the matrix obtained by replacing column i of A with b.

Tip: det

[
a b
c d

]
= ad − bc.

detA = 0 means the lines are parallel.

Computing the intersection of two line segments.

p

q

p'

q'

• If the infinite lines intersect (i.e. not parallel), get values t, t ′.

• Ensure 0 ≤ t ≤ 1 and 0 ≤ t ′ ≤ 1.

If lines are colinear:

p

q

p'

q'

p'

q'p

q

• If p = p′ and q = q′ or vice versa, they overlap.

• Else if a point is in the interior of the other segment, they overlap.

• Else if the segments share a point, they touch only at that point.

• Else they do not touch.

Closest point on a line.

Given a line passing through p, q and another point c , find the point
r on the line pq nearest to c .

p

q

c

r

Minimize ||(1− t)p + t · q − c ||2 over t ∈ R (avoids the square root).

Expanding, this is just minimizing some quadratic:

a · t2 + b · t + c

Tip: the minimum is at − b
2a . If a = 0, then p = q.

Line-Circle Intersection
A line pq and a circle (r , c) (radius/center point) does the line
puncture the circle?

p

q
c

r

Solve ||(1− t) · p + t · q − c ||2 = r2 for t.

Rearrange: a · t2 + b · t + c = 0. a = 0 means p = q.

Tip: Use the quadratic formula

−b ±
√

∆

2a
where ∆ = b2 − 4ac .

∆ < 0: line misses, ∆ = 0: line tangent, ∆ > 0: line punctures.

Point q in Polygon P : p1, . . . , pn?

Intuition: walk about the polygon with a rope taut with “post” q.

qrope

starting point

If q is inside, the rope wraps around once. If q is outside, the rope
doesn’t wrap around.

double d e l t a = 0 ;
for (int i = 0 , j = n−1; i < n ; j = i++)

d e l t a += arg ((p [i]−q) / (p [j]−q)) ; //change in angle

return f a b s (d e l t a) > 1 ; //|delta| be 0 or 2*pi

Have to add a bit more to check if q lies on the boundary.

Area of a Polygon P : p1, . . . , pn

origin

1
2

3 4

5

origin

1
2

3 4

5

blue triangle: count the area positively (CCW turn about origin)
red triangle: count the area negatively (CW turn about origin)

double a r ea = 0 ;
for (int i = 0 , j = n−1; i < n ; j = i++)

//signed area of triangle [origin , p[i-1], p[i]]

a r ea += c r o s s (p [i] , p [j]) ∗ 0 . 5 ;
return f a b s (a r ea) ;

Points outside are “cancelled”, points inside are counted +1 times
(after cancelling). The net sum is the area of P.

Convex Hull

Given points p1, . . . , pn, what is their convex hull?

Output: The points on the convex hull in CCW order.

Convex Hull

Given points p1, . . . , pn, what is their convex hull?

Output: The points on the convex hull in CCW order.

Convex Hull

The bottom-most point must be on the convex hull. If there are
many, choose the leftmost. Suppose this point is (0, 0) by shifting all
points if needed.

1
2

3

45
6

7
89

10

Sort all other points by their angle with the positive x-axis. To check
if pi < pj according to this order, just check pi × pj > 0.

The origin and the first point after sorting are on the hull for sure.

Build up the hull one point at a time: add the points in the sorted
order.

1
2

3

4
5

6

7
89

10

If one creates a clockwise turn with the previous two on the hull, then
pop the end of the current hull.

The origin and the first point after sorting are on the hull for sure.

Build up the hull one point at a time: add the points in the sorted
order.

1
2

3

4
5

6

7
89

10

CW turn

If one creates a clockwise turn with the previous two on the hull, then
pop the end of the current hull.

The origin and the first point after sorting are on the hull for sure.

Build up the hull one point at a time: add the points in the sorted
order.

1
2

3

4
5

6

7
89

10

CW turn

If one creates a clockwise turn with the previous two on the hull, then
pop the end of the current hull.

The origin and the first point after sorting are on the hull for sure.

Build up the hull one point at a time: add the points in the sorted
order.

1
2

3

4
5

6

7
89

10

CCW turn

If one creates a clockwise turn with the previous two on the hull, then
pop the end of the current hull.

The origin and the first point after sorting are on the hull for sure.

Build up the hull one point at a time: add the points in the sorted
order.

1
2

3

4
5

6

7
89

10

CCW turn

If one creates a clockwise turn with the previous two on the hull, then
pop the end of the current hull.

bool cmp(po i n t a , p o i n t b) { return c r o s s (a , b) > 0 ; }

po i n t p [MAXN] , h u l l [MAXN] ;
//Assume p[n-1] is the lowest point (breaking ties by

//taking leftmost) and no 3 points are collinear

for (int i = 0 ; i < n−1; ++i) p [i] −= p [n−1] ;
s o r t (p , p+n−1, cmp) ; //sort by angle from x-axis

h u l l [0] = po i n t (0 , 0) ;
h u l l [1] = p [0] ;
int hs = 2 ;

for (int i = 1 ; i < n−1; ++i) {
while (c r o s s (h u l l [hs−1]− h u l l [hs −2] , p [i]− h u l l [hs −2]) < 0)
−−hs ;

h u l l [hs++] = p [i] ;
}
for (int i = 0 ; i < hs ; ++i) h u l l [i] += p [n−1] ;

Running time: O(n log n)

Tips

Never use float, not enough precision. Use double.

Sometimes values that should be equal aren’t quite due to floating
point errors.

Use the following for safer comparisons.

#de f i n e EPS 1e−8
double a , b ;
if (f a b s (a−b) < EPS) . . . //check if a == b

if (a + EPS < b) . . . //check if a < b

if (a < b + EPS) . . . //check if a <= b

Can there be 3 collinear points? Can points be equal? How can you
deal with this?

Missing Topics
Voronoi diagrams/Delaunay triangulations, 3D convex

hull, closest pair of points, furthest pair of points,

triangulating a polygon.

Next Time
Number Theory

To Come

• Combinatorics and Arithmetic

• String Processing

• Matchings and Network Flow

Possible Misc. Topics
Probability, counting MSTs, edge colourings, voronoi diagrams,
simplex for linear programming, Nim + extensions, matroids.

