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Abstract

Decomposition, i.e., independently analyzing possible sub-
games, has proven to be an essential principle for effective
decision-making in perfect information games. However, in
imperfect information games, decomposition has proven to
be problematic. To date, all proposed techniques for decom-
position in imperfect information games have abandoned the-
oretical guarantees. This work presents the first technique
for decomposing an imperfect information game into sub-
games that can be solved independently, while retaining op-
timality guarantees on the full-game solution. We can use
this technique to construct theoretically justified algorithms
that make better use of information available at run-time,
overcome memory or disk limitations at run-time, or make
a time/space trade-off to overcome memory or disk limita-
tions while solving a game. In particular, we present an algo-
rithm for subgame solving which guarantees performance in
the whole game, in contrast to existing methods which may
have unbounded error. In addition, we present an offline game
solving algorithm, CFR-D, which can produce a Nash equi-
librium for a game that is larger than available storage.

Introduction
A game solving algorithm takes the description of a game
and computes or approximates an optimal strategy (i.e., a
Nash equilibrium) for playing the game. Perfect informa-
tion games, such as checkers, where game states are entirely
public, have historically been more tractable to solve than
imperfect information games, such as poker, where some in-
formation about the game state is hidden from one or more
players. The main reason is that perfect information games
can easily be partitioned into subgames that can be solved in-
dependently, producing strategy fragments that can be com-
bined to form an optimal strategy for the entire game.

Reasoning about subgames independently has two highly
desirable properties. First, decomposition can allow large
savings in the memory required to solve a game. If we split a
game with S states into subgames half-way to the end of the
game, we end up withO(S) subgames each of sizeO(

√
S):

a single “trunk” spanning from the start of the game to the
split depth, plus a number of subgames. If we only need
to reason about a single subgame at a time, then we use an
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amount of storage on the order of O(
√
S) instead of O(S).

The subgame pieces can also be recursively decomposed,
so that in perfect information games that are no more than
D actions long, a game solving algorithm like depth-first
iterative-deepening (Korf 1985) uses only O(D) memory.
Second, we do not need to store the complete strategy, which
may be too large to store, but rather can recompute the sub-
game strategies as needed. As a result such perfect infor-
mation decomposition algorithms are effectively not limited
by space, and with sufficient time can solve extremely large
games. For example, checkers with 5× 1020 states has been
solved (Schaeffer et al. 2007) both in terms of the game’s
value and an optimal Nash equilibrium strategy.

In imperfect information games, there are currently no
methods for solving, or re-solving, subgames with a guaran-
tee that the subgame strategies can be combined into an equi-
librium for the whole game. State-of-the-art algorithms are
all limited to comparatively small problems where the com-
plete strategy fits in available space. As a result, 2-Player
Limit Texas Hold’em Poker, with 9 × 1017 game states, is
smaller than checkers but has not been solved despite con-
siderable recent interest in the game. Computing an optimal
strategy for this game would require hundreds of terabytes
of memory using a state-of-the-art game solving algorithm.

In this paper we present, for the first time, two meth-
ods which safely use decomposition in imperfect informa-
tion games. We give a new definition of subgames which is
useful for imperfect information games, and a method for re-
solving these subgames which is guaranteed to not increase
the exploitability (i.e., suboptimality) of a strategy for the
whole game. We also give a general method called CFR-
D for computing an error-bounded approximation of a Nash
equilibrium through decomposing and independently ana-
lyzing subgames of an imperfect information game. Finally,
we give experimental results comparing our new methods to
existing techniques, showing that the prior lack of theoreti-
cal bounds can lead to significant error in practice.

Notation and Background
An extensive-form game is a model of sequential interaction
of one or more agents or players. Let P be the set of play-
ers. Let H be the set of all possible game states, represented
as the history of actions taken from the initial game state ∅.
The state h · a ∈ H is a child of the state h, h is the parent



of h · a, and h′ is a descendant of h or h @ h′ if h is any
strict prefix of h′. Let Z be the set of all terminal states.
For each non-terminal state h, A(h) gives the set of legal
actions, and P (h) ∈ P ∪ {c} gives the player to act, where
c denotes the “chance player”, which represents stochastic
events outside of the players’ control. σc(h, a) is the prob-
ability that chance will take action a ∈ A(h) from state h,
and is common knowledge. Hp is the set of all states h such
that P (h) = p. For every z ∈ Z, up(z) ∈ < gives the pay-
off for player p if the game ends in state z. If p = {1, 2}
and u1(z) + u2(z) = 0 for all z ∈ Z, we say the game is
two-player, zero-sum.

The information structure of the game is described by in-
formation sets for each player p, which form a partition Ip
of Hp. For any information set I ∈ Ip, any two states
h, j ∈ I are indistinguishable to player p. Let I(h) be the
information set in Ip which contains h. A behaviour strat-
egy σp ∈ Σp is a function σp(I, a) ∈ < which defines a
probability distribution over valid actions for every informa-
tion set I ∈ Ip. We will say σp(h, a) = σp(I(h), a), since a
player cannot act differently depending on information they
did not observe. Let Z(I) = {z ∈ Z s.t. z A h ∈ I}
be the set of all terminal states z reachable from some
state in information set I . We can also consider the termi-
nal states reachable from I after some action a, stated as
Z(I, a) = {z ∈ Z s.t. z A h · a, h ∈ I}.

In games with perfect recall, any two states h and j in an
information set I ∈ Ip have the same sequence of player
p information sets and actions. Informally, perfect recall
means that a player does not forget their own actions or any
information observed before making those actions. As a re-
sult, for any z ∈ Z(I) there is a unique state h ∈ I such that
h @ z, which we write z[I]. This paper focuses exclusively
on two player, zero-sum, perfect recall games.

A strategy profile σ ∈ Σ is a tuple of strategies, one for
each player. Given σ, it is useful to refer to certain products
of probabilities. Let πσ(h) =

∏
j·avh σP (j)(j, a), which

gives the joint probability of reaching h if all players follow
σ. We use πσp (h) to refer to the product of only the terms
where P (h) = p, and πσ−p(h) to refer to the product of terms
where P (h) 6= p. Note that in games with perfect recall, for
all states h, h′ in I ∈ Ip, πp(h) = πp(h

′), so we can also
speak of πp(I). We use πσ(j, h) to refer to the product of
terms from j to h, rather than from ∅ to h. If we replace
the whole strategy for player p by a new strategy σ′p, we will
call the resulting profile 〈σ−p, σ′p〉. Finally, σ[S←σ′] is the
strategy that is equal to σ everywhere except at information
sets in S, where it is equal to σ′.

Given a strategy profile σ, the expected utility uσp to player
p if all players follow σ is

∑
Z π

σ(z)up(z). The expected
utility uσp (I, a) of taking an action at an information set is∑
z∈Z(I,a) π

σ(z)up(z). In this paper, we will frequently use
a variant of this expected value called counterfactual value:
vσp (I, a) =

∑
z∈Z(I,a) π

σ
−p(z)π

σ
p (z[I] · a, z)up(z). Infor-

mally, the counterfactual value of I for player p is the ex-
pected value of reaching I if p plays to reach I .

A best response BRp(σ) = argmaxσ′p∈Σp u
〈σ−p,σ′p〉
p is a

strategy for p which maximises p’s value if all other player
strategies remain fixed. A Nash equilibrium is a strategy
profile where all strategies are simultaneously best responses
to each other, and an ε-Nash equilibrium is a profile where
the expected value for each player is within ε of the value of
a best response strategy. In two-player, zero-sum games, the
expected utility of any Nash equilibrium is a game-specific
constant, called the game value. In a two-player zero-sum
game, we use the term exploitability to refer to a profile’s
average loss to a best response across its component strate-
gies. A Nash equilibrium has an exploitability of zero.

A counterfactual best response CBRp(σ) is a strategy
where σp(I, a) > 0 if and only if vp(I, a) ≥ maxb vp(I, b),
so it maximizes counterfactual value at every information
set. CBRp is necessarily a best response, but BRp may
not be a counterfactual best response as it may choose non-
maximizing actions where πp(I) = 0. The well known re-
cursive bottom-up technique of constructing a best response
generates a counterfactual best response.

Decomposition into Subgames
In this paper we introduce a new refinement on the concept
of a subgame. A subgame, in a perfect information game, is
a tree rooted at some arbitrary state: a set of states closed
under the descendant relation. The state-rooted subgame
definition is not as useful in an imperfect information game
because the tree cuts across information set boundaries: for
any state s in the tree, there is generally at least one state
t ∈ I(s) which is not in the tree.

To state our refined notion of subgame it is convenient
to extend the concept of an information set. I(h) is de-
fined in terms of the states which player p = P (h) can-
not distinguish. We would also like to partition states where
player p acts into those which player p′ 6= p cannot dis-
tinguish. We use the ancestor information sets to construct
Ip′(h), the augmented information set for player p′ contain-
ing h. Let Hp′(h) be the sequence of player p′ informa-
tion sets reached by player p′ on the path to h, and the
actions taken by player p′. Then for two states h and j,
Ip′(h) = Ip′(j) ⇐⇒ Hp′(h) = Hp′(j).

We can now state the following definition of a subgame:

Definition 1 An imperfect information subgame is a forest
of trees, closed under both the descendant relation and mem-
bership within augmented information sets for any player.

The imperfect information subgame is a forest rooted at a
set of augmented information sets. If state s is in the sub-
game, and s v t or s, t ∈ Ip for any information set Ip,
then state t is also in the subgame. Note that the root of
the subgame will not generally be a single information set,
because different players will group states into different in-
formation sets. We use augmented information sets in this
definition because we wish to preserve the information par-
titioning at the root of the subgame. For example, say player
one can distinguish states s and t where player one is act-
ing, and player two can distinguish their descendants, but
not their ancestors. If we did not use augmented informa-
tion sets, a subgame could include s and not include t. We
use augmented information sets to rule out this case. In a
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Figure 1: Left: rock-paper-scissors. Right: rock-paper-
scissors split into trunk and one subgame.

perfect information game, our definition is equivalent to the
usual definition of a subgame, as information sets all contain
a single state.

We will use the game of rock-paper-scissors as a running
example in this paper. In rock-paper-scissors, two players
simultaneously choose rock, paper, or scissors. They then
reveal their choice, with rock beating scissors, scissors beat-
ing paper, and paper beating rock. The simultaneous moves
in rock-paper-scissors can be modeled using an extensive
form game where one player goes first, without revealing
their action, then the second player acts. The extensive form
game is shown on the left side of Figure 1. The dashed box
indicates the information set I2 = {R,P, S} which tells us
player two does not know player one’s action.

On the right side of Figure 1, we have decomposed the
game into two parts: a trunk containing state ∅ and a sin-
gle subgame containing three states R, P , and S. In the
subgame, there is one player two information set I2 =
{R,P, S} and three augmented player one information sets
IR1 = {R}, IP1 = {P}, and IS1 = {S}.

Subgame Strategy Re-Solving
In this section we present a method of re-solving a subgame,
using some compact summary information retained from a
previous strategy in this subgame. The novel property of
this method is a bound on the exploitability of the combined
trunk and new subgame strategy in the whole game. This
sort of re-solving problem might be useful in a number of
situations. For example, we might wish to move a strategy
from some large machine to one with very limited memory.
If we can re-solve subgame strategies as needed, then we
can discard the original subgame strategies to save space.
Another application occurs if the existing strategy is subop-
timal, and we wish to find a better subgame strategy with a
guarantee that the new combined trunk and subgame strat-
egy does at least as well as the existing strategy in the worst
case. An additional application of space reduction while
solving a game is presented later in this paper.

First, we note that it is not sufficient to simply re-solve the
subgame with the assumption that the trunk policy is fixed.
When combined with the trunk strategy, multiple subgame
solutions may achieve the same expected value if the oppo-
nent can only change their strategy in the subgame, but only
a subset of these subgame strategies will fare so well against
a best response where the opponent can also change their
strategy in the trunk.

Consider the rock-paper-scissors example. Let’s say we
started with an equilibrium, and then discarded the strategy
in the subgame. In the trunk, player one picks uniformly
between R, P , and S. In the subgame, player one has only
one possible (vacuous) policy: they take no actions. To find

Sa Sb Sb

Leaf utility: u(z)

...

Initial Chance Event

R information sets
~

Leaf utility: u(z) = u(z)*k~

TF TF TF
kv2 (I(r))R

!"-2(h)#
!h    I(r)

T Leaf utility:

u(z)=~

Figure 2: Construction of the Re-Solving Game

an equilibrium in the subgame, player two must pick a strat-
egy which is a best response to the empty player one policy,
given the probability of 1

3 for R, P , and S induced by the
trunk strategy. All actions have an expected utility of 0, so
player two can pick an arbitrary policy. For example, player
two might choose to always play rock. Always playing rock
achieves the game value of 0 against the combined trunk
and subgame strategy for player one, but gets a value of −1
if player one switched to playing paper in the trunk.

Our new method of re-solving subgames relies on sum-
marising a subgame strategy with the opponent’s counter-
factual values vopp(I) for all information sets I at the root
of the subgame. vopp(I) gives the “what-if” value of our
opponent reaching the subgame through information set I ,
if they changed their strategy so that πopp(I) = 1. In rock-
paper-scissors, the player one counterfactual values for R,
P , and S are all 0 in the equilibrium profile. When player
two always played rock in the example above, the player
one counterfactual values for R, P , and S were 0, 1, and−1
respectively. Because the counterfactual value for P was
higher than the original equilibrium value of 0, player one
had an incentive to switch to playing P . That is, they could
change their trunk policy to convert a larger “what-if” coun-
terfactual value into a higher expected utility by playing P .

If we generate a subgame strategy where the opponent’s
best response counterfactual values are no higher than the
opponent’s best response counterfactual values for the orig-
inal strategy, then the exploitability of the combined trunk
and subgame strategy is no higher than the original strategy.
From here on, we will assume, without loss of generality,
that we are re-solving a strategy for player 1.

Theorem 1 Given a strategy σ1, a subgame S, and a
re-solved subgame strategy σS1 , let σ′1 = σ1,[S←σS1 ] be

the combination of σ1 and σS1 . If v〈σ
′
1,CBR(σ′1)〉

2 (I) ≤
v
〈σ1,CBR(σ1)〉
2 (I) for all information sets I at the root of sub-

game S, then u〈σ
′
1,CBR(σ′1)〉

2 ≤ u〈σ1,CBR(σ1)〉
2 .

A proof of Theorem 1 is given in the appendix.
To re-solve for a strategy in a subgame, we will construct

the modified subgame shown in Figure 2. We will distin-
guish the re-solving game from the original game by using
a tilde (˜) to distinguish states, utilities, or strategies for the
re-solving game. The basic construction is that each state r
at the root of the original subgame turns into three states: a
p2 choice node r̃, a terminal state r̃ · T , and a state r̃ · F
which is identical to r. All other states in the original sub-
game are directly copied into the re-solving game. We must
also be given vR2 (I) ≡ v

〈σ1,CBR(σ1)〉
2 (I) and πσ−2(I) for all

p2 information sets I ∈ IR2 at the root of the subgame.
The re-solving game beings with an initial chance node

which leads to states r̃ ∈ R̃, corresponding to the probability



of reaching state r ∈ R in the original game. Each state
r̃ ∈ R̃ occurs with probability πσ−2(r)/k, where the constant
k =

∑
r∈R π

σ
−2(r) is used to ensure that the probabilities

sum to 1. R̃ is partitioned into information sets IR̃2 that are
identical to the information sets IR2 .

At each r̃ ∈ R̃, p2 has a binary choice of F or T . Af-
ter T , the game ends. After F , the game is the same as
the original subgame. All leaf utilities are multiplied by k
to undo the effects of normalising the initial chance event.
So, if z̃ corresponds to a leaf z in the original subgame,
ũ2(z̃) = ku2(z). If z̃ is a terminal state after a T action,
ũ2(z̃) = ũ2(r̃ · T ) = kvR2 (I(r))/

∑
h∈I(r) π

σ
−2(h). This

means that for any I ∈ IR̃2 , ũ2(I · T ) = vR2 (I), the original
counterfactual best response value of I .

No further construction is needed. If we solve the pro-
posed game to get a new strategy profile σ̃∗, we can di-
rectly use σ̃∗1 in the original subgame of the full game. To
see that σ∗1 achieves the goal of not increasing the coun-
terfactual values for p2, consider ũ2(I) for I ∈ IR̃2 in an
equilibrium profile for the re-solving game. p2 can always
pick T at the initial choice to get the original counterfac-
tual values, so ũ2(I) ≥ vR2 (I). Because vR2 comes from
〈σ1,CBR(σ1)〉, ũ2(I) ≤ vR2 (I) in an equilibrium. So, in
a solution σ̃∗ to the re-solving game, ũ2(I) = vR2 (I), and
ũ
〈σ̃∗1,CBR(σ̃∗1)〉
2 (I · F ) ≤ vR2 (I). By construction of the re-

solving game, this implies that v〈σ
∗
1 ,CBR(σ∗1 )〉

2 (I) ≤ vR2 (I).
If we re-solve the strategy for both players at a subgame,

the exploitability of the combined strategy is increased by no
more than (|IRS | − 1)εS + εR, where εR is the exploitabil-
ity of the subgame strategy in the re-solving subgame, εS is
the exploitability of the original subgame strategy in the full
game, and |IRS | is the number of information sets for both
players at the root of a subgame. This is proved in Theo-
rem 3 of the appendix.

Generating a Trunk Strategy using CFR-D
CFR-D is part of the family of counterfactual regret min-
imisation (CFR) algorithms, which are all efficient methods
for finding an approximation of a Nash equilibrium in very
large games. CFR is an iterated self play algorithm, where
the average policy across all iterations approaches a Nash
equilibrium (Zinkevich et al. 2008). It has independent re-
gret minimisation problems being simultaneously updated
at every information set, at each iteration. Each minimisa-
tion problem at an information set I ∈ Ip uses immedi-
ate counterfactual regret, which is just external regret over
counterfactual values: RT (I) = max

a∈A(I)

∑
t

vσ
t

P (I)(I, a) −∑
a′

σt(I, a′)vσ
t

P (I)(I, a
′). The immediate counterfactual re-

grets place an upper bound on the regret across all strate-
gies, and an ε-regret strategy profile is a 2ε-Nash equilib-
rium (Zinkevich et al. 2008).

Using separate regret minimisation problems at each in-
formation set makes CFR a very flexible framework. First,
any single regret minimisation problem at an information set

I only uses the counterfactual values of the actions. The ac-
tion probabilities of the strategy profile outside I are other-
wise irrelevant. Second, while the strategy profile outside
I is generated by the other minimisation problems in CFR,
the source does not matter. Any sequence of strategy profiles
will do, as long as they have low regret.

The CFR-BR algorithm (Johanson et al. 2012a) uses these
properties, and provided the inspiration for the CFR-D algo-
rithm. The game is split into a trunk and a number of sub-
games. At each iteration, CFR-BR uses the standard coun-
terfactual regret minimisation update for both players in the
trunk, and for one player in the subgames. For the other
player, CFR-BR constructs and uses a best response to the
current CFR player strategy in each subgame.

In our proposed algorithm, CFR-D, we use a counterfac-
tual best response in each subgame for both players. That
is, at each iteration, one subgame at a time, we solve the
subgame given the current trunk strategy, update the trunk
using the counterfactual values at the root of the subgame,
update the average counterfactual values at the root of the
subgame, and then discard the solution to the subgame. We
then update the trunk using the current trunk strategy. The
average strategy is an approximation of a Nash equilibrium,
where we don’t know any action probabilities in the sub-
games. Note that we must keep the average counterfactual
values at the root of the subgames if we wish to use subgame
re-solving to find a policy in the subgame after solving.

Theorem 2 Let ITR be the information sets in the trunk,
A = maxI∈I |A(I)| be an upper bound on the number of
actions, and ∆ = maxs,t∈Z |u(s)−u(t)| be the variance in
leaf utility. Let σt be the current CFR-D strategy profile at
time t, and NS be the number of information sets at the root
of any subgame. If for all times t, players p, and information
sets I at the root of a subgame ISG, the quantityRTfull(I) =

max
σ′

v
σt
[ISG←σ′]
p (I) − vσ

t

p (I) is bounded by εS , then player

p regret RTp ≤ ∆|ITR|
√
AT + TNSεS .

Proof The proof follows from Zinkevich et al.’s argument
in Appendix A.1 (Zinkevich et al. 2008). Lemma 5 shows
that for any player p information set I , RTfull(I) ≤ RT (I)+∑
I′∈Childp(I)R

T
full(I

′) where Childp(I) is the set of all
player information sets which can be reached from I without
passing through another player p information set.

We now use an argument by induction. For any trunk
information set I with no descendants in ITR, we have
RTfull(I) ≤ RT (I) ≤ RT (I) + TNSεS .

Assume that for any player p information set I with
no more than i ≥ 0 descendants in ITR, RTfull(I) ≤∑
I′∈Trunk(I)R

T (I ′) + TNSεS , where Trunk(I) is the
set of player p information sets in ITR reachable from I ,
including I . Now consider a player p information set with
i + 1 descendants. By Lemma 5 of Zinkevich et al., we get
RTfull ≤ RT (I)+

∑
I′∈Childp(I)R

T
full(I

′). Because I ′ must
have no more than i descendants for all I ′ ∈ Child(I), we
get RTfull(I) ≤

∑
I′∈Trunk(I)R

T (I ′) + TNSεS .



By induction this holds for all i, and must hold at the root
of the game, so RTp ≤

∑
I∈ITR R

T (I ′) + TNSεS . We do
regret matching in the trunk, soRT (I ′) ≤ ∆

√
AT for all I ′.

�

The benefit of CFR-D is the reduced memory require-
ments. CFR-D only stores values for information sets in
the trunk and at the root of each subgame, giving it memory
requirements which are sub-linear in the number of informa-
tion sets. Treating the subgames independently can lead to
a substantial reduction in space: O(

√
S) instead of O(S),

as described in the introduction. There are two costs to the
reduced space. The first is that the subgame strategies must
be re-solved at run-time. The second cost is increased CPU
time to solve the game. At each iteration, CFR-D must find
a Nash equilibrium for a number of subgames. CFR variants
require O(1/ε2) iterations to have an error less than ε, and
this bound applies to the number of trunk iterations required
for CFR-D. If we use CFR to solve the subgames, each of
the subgames will also require O(1/ε2) iterations at each
trunk iteration, so CFR-D ends up doing O(1/ε4) work.

In CFR-D, the subgame strategies must be mutual coun-
terfactual best responses, not just mutual best responses.
The only difference is that a counterfactual best response
will maximise counterfactual value at an information set I
where πP (I)(I) = 0. A best response may choose an ar-
bitrary policy at I . While CFR naturally produces a mu-
tual counterfactual best response, a subgame equilibrium
generated by some other method like a sequence form lin-
ear program may not be a counterfactual best response. In
this case, the resulting strategy profile is easily fixed with a
post-processing step which computes the best response us-
ing counterfactual values whenever πσp (I) is 0.

Experimental Results
We have three main claims to demonstrate. First, if we have
a strategy, we can reduce space usage by keeping only sum-
mary information about the subgames, and then re-solve any
subgame with arbitrarily small error. Second, we can de-
compose a game, only use space for the trunk and a sin-
gle subgame, and generate an arbitrarily good approxima-
tion of a Nash equilibrium using CFR-D. Finally, we can use
the subgame re-solving technique to reduce the exploitabil-
ity of an existing strategy. All results were generated on a
2.67GHz Intel Xeon X5650 based machine running Linux.

Re-Solving Strategies in Subgames
To show that re-solving subgames introduces at most an
arbitrarily small exploitability, we use the game of Leduc
Hold’em poker, a popular research testbed for imperfect in-
formation games (Waugh et al. 2009; Ganzfried, Sandholm,
and Waugh 2011). The game uses a 6-card deck and has two
betting rounds, with 936 information sets total. It retains in-
teresting strategic elements while being small enough that a
range of experiments can be easily run and evaluated. In this
experiment, the trunk used was the first round of betting, and
there were five subgames corresponding to the five different
betting sequences where no player folds. When re-solving
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Figure 3: exploitability after subgame re-solving

for subgame strategies, we used the Public Chance Sampling
(PCS) variant of CFR (Johanson et al. 2012b).

To demonstrate the practicality of re-solving subgame
strategies, we started with an almost exact Nash equilibrium
(exploitable by less than 2.5 ∗ 10−11 chips per hand), com-
puted the counterfactual values of every hand in each sub-
game for both players, and discarded the strategy in all sub-
games. These steps correspond to a real scenario where we
pre-compute and store a Nash equilibrium in an offline fash-
ion. At run-time, we then re-solved each subgame using the
subgame re-solving game constructed from the counterfac-
tual values and trunk strategy, and measured the exploitabil-
ity of the combined trunk and re-solved subgame strategies.

Figure 3 shows the exploitability when using a different
number of CFR iterations to solve the re-solving games. The
O(1/

√
T ) error bound for CFR in the re-solving games very

clearly translates into the expected O(1/
√
T ) error in the

overall exploitability of the re-constructed strategy.
For comparison, the “unsafe re-solving technique” line in

Figure 3 shows the performance of a system for approximat-
ing undominated subgame solutions (Ganzfried and Sand-
holm 2013). Not only is there no theoretical bound on ex-
ploitability, the real world behaviour is not ideal. Instead of
approaching a Nash equilibrium (0 exploitability), the ex-
ploitability of the re-solved strategy approaches a value of
around 0.080 chips/hand. Re-solving time ranged from 1ms
for 100 iterations, up to 25s for 6.4 million iterations, and
the safe re-solving method was around one tenth of a per-
cent slower than unsafe re-solving.

Solving Games with Decomposition
To demonstrate CFR-D, we split Leduc Hold’em in the same
fashion as the strategy re-solving experiments. Our imple-
mentation of CFR-D used CFR for both solving subgames
while learning the trunk strategy and the subgame re-solving
games. All the reported results use 200,000 iterations for
each of the re-solving subgames (0.8 seconds per subgame.)
Each line of Figure 4 plots the exploitability for different
numbers of subgame iterations performed during CFR-D,
ranging from 100 to 12,800 iterations. There are results for
500, 2,000, 8,000, and 32,000 trunk iterations.

Looking from left to right, each of the lines show the de-
crease in exploitability as the quality of subgame solutions
increases. The different lines compare exploitability across
an increasing number of CFR-D iterations in the trunk.

Given that the error bound for CFR variants is O(
√
T ),
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Figure 5: plots of re-solved abstract strategy in Leduc
Hold’em showing performance against the original strategy
(top) and exploitability (bottom)

one might expect exploitability results to be a straight line
on a log-log plot. In these experiments, CFR-D is using
CFR for the trunk, subgames, and the re-solving games, so
the exploitability is a sum of trunk, subgame, and subgame
re-solving errors. For each line on the graph, trunk and sub-
game re-solving error are constant values. Only subgame er-
ror decreases as the number of subgame iteration increases,
so each line is approaching the non-zero trunk and re-solving
error, which shows up as a plateau on a log-log plot.

Re-Solving to Improve Subgame Strategies
Generating a new subgame strategy at run-time can also be
used to improve the exploitability of a strategy. In large
games, lossy abstraction techniques are often used to re-
duce a game to a tractable size (Johanson et al. 2013).
When describing their recent subgame solving technique,
Ganzfried et al. reported positive results in experiments
where subgames are re-solved using a much finer-grained
abstract game than the original solution (Ganzfried and
Sandholm 2013). Our new subgame re-solving method adds
a theoretical guarantee to the ongoing research in this area.

In Figure 5, we demonstrate re-solving subgames with a
Leduc Hold’em strategy generated using an abstraction. In
the original strategy, the players can not tell the difference
between a Queen or a King on the board if they hold a Jack,
or between a Jack or a Queen on the board if they hold a
King. This abstraction gives a player perfect knowledge of
the strength of their hand against a uniform random hand,
but loses strategically important “textural” information and
the resulting strategy is exploitable for 0.382 chips/hand in
the full game. To generate the counterfactual values needed
for our method, we simply do a best response computation
within the subgame: the standard recursive best response
algorithm naturally produces counterfactual values.

The top plot shows the expected value of an abstract trunk
strategy with re-solved unabstracted subgames, when played
in the full game against the original abstract strategy. With
little effort, both re-solving techniques see some improve-
ment against the original strategy. With more effort, the un-
safe re-solving technique has a small edge of around 0.004
chips/hand over our re-solving technique.

The bottom plot measures the exploitability of the re-
solved strategies. Within 200 iterations, our new re-solving
method decreases the exploitability to 0.33 chips/hand. Af-
ter 2,000 iterations, the exploitability ranges between 0.23
and 0.29 chips/hand. The unsafe method, after 6,250 it-
erations, stays at 0.39 chips/hand. Note that the unsafe
method’s apparent convergence to the original exploitabil-
ity is a coincidence: in other situations the unsafe strategy
can be less exploitable, or significantly more exploitable.

If we have reliable information about the opponent’s trunk
strategy, we might want to use the unsafe re-solving method
for its slight advantage in one-on-one performance. Other-
wise, the large difference in exploitability between the re-
solving methods supports our safe re-solving method. This
produces a robust strategy with a guarantee that the re-solved
strategy does no worse than the original strategy.

Conclusions
In perfect information games, decomposing the problem
into independent subgames is a simple and effective method
which is used to greatly reduce the space and time require-
ments of algorithms. It has previously not been known how
to decompose imperfect information domains without a loss
of theoretical guarantees on solution quality. We present
a method of using summary information about a subgame
strategy to generate a new strategy which is no more ex-
ploitable than the original strategy. Previous methods have
no guarantees, and we demonstrate that they produce strate-
gies which can be significantly exploitable in practice.

We also present CFR-D, an algorithm which uses decom-
position to solve games. For the first time, we can use de-
composition to achieve sub-linear space costs, at a cost of
increased computation time. Using CFR-D, we can solve 2-
Player Limit Texas Hold’em Poker in less than 16GB, even
though storing a complete strategy would take over 200TB
of space. While the time cost of solving Limit Hold’em is
currently too large, this work overcomes one of the key bar-
riers to such a computation being feasible.
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Appendix: Proofs
First, we show that if we re-solve a subgame for player one,
and do not increase player two’s best response counterfac-
tual values, the exploitability of the combined player one

trunk and subgame strategy is no higher than the exploitabil-
ity of the original player one strategy.

Theorem 1 Given a strategy σ1, a subgame S, and a
re-solved subgame strategy σS1 , let σ′p = σp,[S←σSp ] be

the combination of σ1 and σS1 . If v〈σ
′
1,CBR(σ′1)〉

2 (I) ≤
v
〈σ1,CBR(σ1)〉
2 (I) for all information sets I at the root of sub-

game S, then u〈σ
′
1,CBR(σ′1)〉

2 ≤ u〈σ1,CBR(σ1)〉
2 .

Proof By definition, the strategy CBR(σ′1) maximises
counterfactual value v

〈σ′,CBR(σ′1)〉
2 (I) at all player two

information sets. Because v2(I) does not depend
on the player two strategy before I , we can con-
struct CBR(σ′1) recursively, so that CBR(σ′1)(I) =

argmaxa∈A(I) v
〈σ′1,CBR(σ′1)〉
2 (I · a).

By assumption, we have v
〈σ′1,CBR(σ′1)〉
2 (I) ≤

v
〈σ1,CBR(σ1)〉
2 (I) for any information set I at the root

of the subgame S. Because σ′1(I ′, a) = σ1(I ′, a) for any
information set I ′ outside S, for any information set I
which can not reach S, v<σ

′
1,CBR(σ′1)>

2 (I) does not depend
on the policy at any information set where σ′1 differs from
σ1, and v〈σ

′
1,CBR(σ′1)〉

2 (I) = v
〈σ1,CBR(σ1)〉
2 (I).

Let us say depth(I) = 0 if I is at the root of
subgame S or I can not reach S, and depth(I) =
maxI′∈child(I) depth(I ′) + 1 otherwise. Assume that

v
〈σ′1,CBR(σ′1)〉
2 (I) ≤ v

〈σ1,CBR(σ1)〉
2 (I) for any information

set I with depth(I) ≤ i for some i ≥ 0. From above, we
know this is true for i = 0.

Now consider an information set I with depth i + 1. By
the recursive definition of CBR()(I), v〈σ

′
1,CBR(σ′1)〉

2 (I) =

maxa∈A(I)v
〈σ′1,CBR(σ′1)〉
2 (I · a) and v

〈σ1,CBR(σ1)〉
2 (I) =

maxa∈A(I)v
〈σ1,CBR(σ1)〉
2 (I · a).

depth(I · a) < depth(I), so depth(I · a) ≤ i, and by
assumption v〈σ

′
1,CBR(σ′1)〉

2 (I · a) ≤ v〈σ1,CBR(σ1)〉
2 (I · a) for

all a. The inequality must then hold for the maximum, and
we have v〈σ

′
1,CBR(σ′1)〉

2 (I) ≤ v〈σ1,CBR(σ1)〉
2 (I).

By induction, this must hold for all i, and so
v
〈σ′1,CBR(σ′1)〉
2 (I) ≤ v

〈σ1,CBR(σ1)〉
2 (I) for an information

set I at the root of the game. If no player two actions
have yet been taken in the game at I , v2(I) = u2(I), and
u
〈σ′1,CBR(σ′1)〉
2 ≤ u〈σ1,CBR(σ1)〉

2 . �

Next, Theorem 3 gives a proof of the upper bound on ex-
ploitability of a recovered strategy. The context for this sec-
tion is as follows. Strategy profile σ is an approximation of a
Nash equilibrium for the whole game. The induced recovery
game strategy profile σF̃ is the strategy where for all infor-
mation sets in the subtrees under the F action, σF̃ takes the
same action as σ, and at the p2 information sets where F or
T is chosen, p2 always picks F . We will be considering the
process from the point of view of recovering a strategy for
p1.



Lemma 1 For any p2 strategy ρ in the original game and p1
strategy ρ̃ in the recovery game, if we let σ̂ = 〈σ1[SG←ρ̃], ρ〉,

then for any I ∈ IR̃2 , uσ̂2 (I) = πρ2(I)ũ
〈ρ̃,ρF̃ 〉
2 (I).

Proof
uσ̂2 (I)

=
∑

z∈Z(I)

πρ2(z[I])πσ−2(z[I])πρ2(z[I], z)πρ̃−2(z[I], z)u2(z)

= πρ2(I)
∑
z

πσ−2(z[I])/k ∗ πρ2(z[I], z)πρ̃−2(z[I], z)u2(z)k

= πρ2(I)ũ
〈ρ̃,ρF̃ 〉
2 (I)

�

Lemma 2 If σ̃ is an εR-Nash equilibrium in the recovery
game, 0 ≤ cI ≤ 1, and u〈σ1,BR(σ1)〉

2 (I) ≤ εS + uσ2 (I) for
all I , then ∑

I∈IR̃2

cI ũ
〈σ̃1,BR(σ̃1)〉
2 (I)

≤ (|IR̃2 | − 1)εS + εR +
∑
I

cI ũ
〈σF̃1 ,BR(σF̃1 )〉
2 (I)

Proof σ and σ̃ have the following properties.

ũ
〈σ̃1,BR(σ̃1)〉
2 ≤ εR + ũσ̃

∗

2 ≤ εR + ũ
〈σF̃1 ,BR(σF̃1 )〉
2

vσ2 (I) ≤ ũ〈σ̃1,BR(σ̃1)〉
2 (I)

vσ2 (I) ≤ ũ〈σ
F̃
1 ,BR(σF̃1 )〉

2 (I) ≤ εS + ũσ
F̃

2 (I) = εS + vσ2 (I)

Given this, the maximum difference between c · ũ〈σ̃1,BR(σ̃1)〉
2

and c · ũ〈σ
F̃1 ,BR(σF̃1 )〉

2 occurs when the difference of these
sums is concentrated at a single I . That is, for some I

ũ
〈σ̃1,BR(σ̃1)〉
2 (I) = (|IR̃2 | − 1)εS + ũ

〈σF̃1 ,BR(σF̃1 )〉
2 (I)

cI = 1

and for all I ′ 6= I

ũ
〈σ̃1,BR(σ̃1)〉
2 (I ′) = ũσ

F̃

2 (I ′)

ũ
〈σF̃1 ,BR(σF̃1 )〉
2 (I ′) = εS + ũσ

F̃

2 (I ′)

cI′ = 0

In this case, the difference is (|IR̃2 | − 1)εS + εR. �

Theorem 3 Let σ be a equilibrium profile approximation,
where εS is an upper bound on the p2 counterfactual regret
so that R2(I) ≤ εS over all I in IR̃2 . Let σ̃ be the recov-
ered strategy, with a bound εR on the exploitability in the
recovery game. Then the exploitability of σ is increased by
no more than (|IR̃2 |− 1)εS + εR if we use σ̃ in the subgame:

u
〈σ1[SG←σ̃],BR(σ1[SG←σ̃])〉
2

≤ (|IR̃2 | − 1)εS + εR + u
〈σ1,BR(σ1)〉
2

Proof Let σ̂ = 〈σ1[SG←σ̃1], BR(σ1[SG←σ̃1])〉. In this
case,

uσ̂2

=
∑
z/∈SG

πσ̂(z)u2(z) +
∑
z∈SG

πσ̂(z)u2(z)

=
∑
z/∈SG

π〈σ1,BR(σ1)〉(z)u2(z) +
∑
z∈SG

πσ̂(z)u2(z) (1)

Considering only the second sum, rearranging the terms and
using Lemma 1∑
z∈SG

πσ̂(z)u2(z) =
∑
I∈IR2

uσ̂2 (I) =
∑
I∈IR̃2

πσ̂2 (I)ũ
〈σ̃1,σ̂2

F̃ 〉
2 (I)

A best response must have no less utility than σ̂F̃2 , and we
can then apply Lemma 2

≤
∑
I

πσ̂2 (I)ũ
〈σ̃1,BR(σ̃1)〉
2 (I)

≤ (|IR̃2 | − 1)εS + εR +
∑
I

πσ̂2 (I)ũ
〈σF̃1 ,BR(σF̃1 )〉
2 (I)

Because ũσ
F̃

2 (I) = vσ2 (I) and ũ2(I · T ) = vσ2 (I) for all
I , BR(σF̃1 ) can always pick action F , and we can directly
use BR(σF̃1 ) in the real game, with the same counterfactual
value.

= (|IR2 | − 1)εS + εR +
∑
I

πσ̂2 (I)v
〈σ1,BR(σ1)〉
2 (I)

Putting this back into line 1, and noting that a best response
can only increase the utility, we get

uσ̂2 = (|IR2 | − 1)εS + εR + u
〈σ1,σ̂[SG←BR(σ)〉
2

≤ (|IR̃2 | − 1)εS + εR + u
〈σ1,BR(σ1)〉
2

�


