
Partition Tree Weighting

Joel Veness Martha White Michael Bowling András György
University of Alberta, Edmonton, Canada

Abstract

This paper introduces the Partition Tree Weighting technique, an efficient meta-algorithm
for piecewise stationary sources. The technique works by performing Bayesian model aver-
aging over a large class of possible partitions of the data into locally stationary segments. It
uses a prior, closely related to the Context Tree Weighting technique of Willems, that is well
suited to data compression applications. Our technique can be applied to any coding distribu-
tion at an additional time and space cost only logarithmic in the sequence length. We provide a
competitive analysis of the redundancy of our method, and explore its application in a variety
of settings. The order of the redundancy and the complexity of our algorithm matches those
of the best competitors available in the literature, and the new algorithm exhibits a superior
complexity-performance trade-off in our experiments.

1 Introduction
Coping with data generated from non-stationary sources is a fundamental problem in data com-

pression. Many real-world data sources drift or change suddenly, often violating the stationarity
assumptions implicit in many models. Rather than modifying such models so that they robustly
handle non-stationary data, one promising approach has been to instead design meta-algorithms
that automatically generalize existing stationary models to various kinds of non-stationary settings.

A particularly well-studied kind of non-stationary source is the class of piecewise stationary
sources. Algorithms designed for this setting assume that the data generating source can be well
modeled by a sequence of stationary sources. This assumption is quite reasonable, as piecewise
stationary sources have been shown [1] to adequately handle various types of non-stationarity.
Piecewise stationary sources have received considerable attention from researchers in information
theory [20, 19, 15], online learning [10, 18, 11, 6, 9, 8], time series [1, 5], and graphical models
[7, 14, 2].

An influential approach for piecewise stationary sources is the universal transition diagram
technique of Willems [20] for the statistical data compression setting. This technique performs
Bayesian model averaging over all possible partitions of a sequence of data. Though powerful for
modeling piecewise stationary sources, its quadratic time complexity makes it too computationally
intensive for many applications. Since then, more efficient algorithms have been introduced that
weight over restricted subclasses of partitions [19, 15, 9, 8]. For example, Live and Die Coding
[19] considers only log t partitions at any particular time t by terminating selected partitions as
time progresses, resulting in an O(n log n) algorithm for binary, piecewise stationary, memoryless

1

sources with provable redundancy guarantees.1 György et al. [8] recently extended and generalized
these approaches into a parametrized online learning framework that can interpolate between many
of the aforementioned weighting schemes for various loss functions. We also note that linear com-
plexity algorithms exist for prediction in changing environments [10, 11, 22], but these algorithms
work with a restricted class of predictors and are not applicable directly to the data compression
problem considered here.

In this paper we introduce the Partition Tree Weighting (PTW) technique, a computationally
efficient meta-algorithm that also works by weighting over a large subset of possible partitions of
the data into stationary segments. Compared with previous work, the distinguishing feature of our
approach is to use a prior, closely related to Context Tree Weighting [21], that contains a strong
bias towards partitions containing long runs of stationary data. As we shall see later, this bias is
particularly suited for data compression applications, while still allowing us to provide theoretical
guarantees competitive with previous low complexity weighting approaches.

2 Background
We begin with some terminology for sequential, probabilistic data generating sources. An alpha-

bet is a finite, non-empty set of symbols, which we will denote by X . A string x1x2 . . . xn ∈ X n

of length n is denoted by x1:n. The prefix x1:j of x1:n, j ≤ n, is denoted by x≤j or x<j+1. The
empty string is denoted by ε. Our notation also generalises to out of bounds indices; that is, given
a string x1:n and an integer m > n, we define x1:m := x1:n and xm:n := ε. The concatenation of
two strings s and r is denoted by sr.

Probabilistic Data Generating Sources. A probabilistic data generating source ρ is defined by a
sequence of probability mass functions ρn : X n → [0, 1], for all n ∈ N, satisfying the compatibility
constraint that ρn(x1:n) =

∑
y∈X ρn+1(x1:ny) for all x1:n ∈ X n, with base case ρ0(ε) = 1. From

here onwards, whenever the meaning is clear from the argument to ρ, the subscripts on ρ will be
dropped. Under this definition, the conditional probability of a symbol xn given previous data x<n
is defined as ρ(xn|x<n) := ρ(x1:n)/ρ(x<n) provided ρ(x<n) > 0, with the familiar chain rules
ρ(x1:n) =

∏n
i=1 ρ(xi|x<i) and ρ(xi:j|x<i) =

∏j
k=i ρ(xk|x<k) now following.

Temporal Partitions. Now we introduce some notation to describe temporal partitions. A seg-
ment is a tuple (a, b) ∈ N×N with a ≤ b. A segment (a, b) is said to overlap with another segment
(c, d) if there exists an i ∈ N such that a ≤ i ≤ b and c ≤ i ≤ d. A temporal partition P of a set
of time indices S = {1, 2, . . . n}, for some n ∈ N, is a set of non-overlapping segments such that
for all x ∈ S , there exists a segment (a, b) ∈ P such that a ≤ x ≤ b. We also use the overloaded
notation P(a, b) := {(c, d) ∈ P : a ≤ c ≤ d ≤ b}. Finally, Tn will be used to denote the set of
all possible temporal partitions of {1, 2, . . . , n}.

Piecewise Stationary Sources. We can now define a piecewise stationary data generating source
µ in terms of a partition P = {(a1, b1), (a2, b2), . . . } and a set of probabilistic data generating
sources {µ1, µ2, . . . }, such that for all n ∈ N, for all x1:n ∈ X n,

µ(x1:n) :=
∏

(a,b)∈Pn

µf(a)(xa:b),

1All logarithms in this paper are of base 2.

2

(1, 4)

(1, 2)

•

�� ��
(3, 4) (1, 1)

•

�� ��

•

�� ��

(2, 2)

(3, 4) (1, 2)

•

�� ��

(3, 3)

•

�� ��
(4, 4) (1, 1)

•

�� ��

•

�� ��

(2, 2) (3, 3)

•

�� ��
(4, 4)

Figure 1: The set C2 represented as a collection of partition trees.

where Pn := {(ai, bi) ∈ P : ai ≤ n} and f(i) returns the index of the time segment containing i,
that is, it gives a value k ∈ N such that both (ak, bk) ∈ P and ak ≤ i ≤ bk.

Redundancy. The ideal code length given by a probabilistic model (or probability assignment)
ρ on a data sequence x1:n ∈ X n is given by − log ρ(x1:n), and the redundancy of ρ, with respect
to a probabilistic data generating source µ, is defined as log µ(x1:n) − log ρ(x1:n). This quantity
corresponds to the amount of extra bits we would need to transmit x1:n using an optimal code
designed for ρ (assuming the ideal code length) compared to using an optimal code designed for
the data generating source µ.

3 Partition Tree Weighting
Almost all existing prediction algorithms designed for changing source statistics are based on

the transition diagram technique of Willems [20]. This technique performs exact Bayesian model
averaging over the set of temporal partitions, or more precisely, the method averages over all cod-
ing distributions formed by employing a particular base model ρ on all segments of every possible
partition. Averaging over all temporal partitions (also known as transition paths) results in an algo-
rithm of O(n2) complexity. Several reduced complexity methods were proposed in the literature
that average over a significantly smaller set of temporal partitions [19, 9, 8]: the reduced number
of partitions allows for the computational complexity to be pushed down to O(n log n), while still
being sufficiently rich to guarantee almost optimal redundancy behavior (typically O(log n) times
larger than the optimum, for lossless data compression). In this paper we propose another member
of this family of methods. Our reduced set of temporal partitions, as well as the corresponding mix-
ture weights, are obtained from the Context Tree Weighting (CTW) algorithm [21], which results
in similar theoretical guarantees as the other methods, but shows superior performance in all of
our experiments. The method, called Partition Tree Weighting, heavily utilizes the computational
advantages offered by the CTW algorithm.

We now derive the Partition Tree Weighting (PTW) technique. As PTW is a meta-algorithm, it
takes as input a base model which we denote by ρ from here onwards. This base model determines
what kind of data generating sources can be processed.

3.1 Model Class
We begin by defining the class of binary temporal partitions. Although more restrictive than

the class of all possible temporal partitions, binary temporal partitions possess important compu-
tational advantages that we will later exploit.

Definition 1. Given a depth parameter d ∈ N and a time t ∈ N, the set Cd(t) of all binary temporal
partitions from t is recursively defined by

Cd(t) :=
{
{(t, t+ 2d − 1)}

}
∪
{
S1 ∪ S2 : S1 ∈ Cd−1 (t) ,S2 ∈ Cd−1

(
t+ 2d−1

)}
,

3

(1, 1)

(1,2)
0

��
1

��

(1,4)
0

��
1

��

(2,2) (3, 3)

(3, 4)
0

��
1

��
(4, 4) (1, 1)

(1, 2)
0

��
1

��

(1,4)
0

��
1

��

(2, 2) (3,3)

(3,4)
0

��
1

��
(4, 4)

Figure 2: Partitions updated at t = 2 (left) and t = 3 (right) in a depth-2 partition tree.

with C0(t) :=
{
{(t, t)}

}
. Furthermore, we define Cd := Cd(1).

For example, C2 =
{
{(1, 4)}, {(1, 2), (3, 4)}, {(1, 1), (2, 2), (3, 4)}, {(1, 2), (3, 3), (4, 4)},

{(1, 1), (2, 2), (3, 3), (4, 4)}
}

. Each partition can be naturally mapped onto a tree structure which
we will call a partition tree. Figure 1 shows the collection of partition trees represented by C2.
Notice that the number of binary temporal partitions |Cd| grows roughly double exponentially in d.
For example, |C0| = 1, |C1| = 2, |C2| = 5, |C3| = 26, |C4| = 677, |C5| = 458330, which means that
some ingenuity will be required to weight over all Cd efficiently.

3.2 Coding Distribution
We now consider a particular weighting over Cd that has both a bias towards simple partitions

and efficient computational properties. Given a data sequence x1:n, we define

PTWd(x1:n) :=
∑
P∈Cd

2−Γd(P)
∏

(a,b)∈P

ρ(xa:b), (1)

where Γd(P) gives the number of nodes in the partition tree associated withP that have a depth less
than d. This prior weighting is identical to how the Context Tree Weighting method [21] weights
over tree structures, and is an application of the general technique used by the class of Tree Experts
described in Section 5.3 of [4]. It is a valid prior, as one can show

∑
P∈Cd 2−Γd(P) = 1 for all d ∈ N.

Note that Algorithm 1 is a special case, using a prior 2−Γd(P) for P ∈ Cd and 0 otherwise, of the
class of general algorithms discussed in [8]. As such, the main contribution of this paper is the in-
troduction of this specific prior. A direct computation of Equation 1 is clearly intractable. Instead,
an efficient approach can be obtained by noting that Equation 1 can be recursively decomposed.

Lemma 1. For any depth d ∈ N, given a sequence of data x1:n ∈ X n satisfying n ≤ 2d,

PTWd(x1:n) =
1

2
ρ(x1:n) +

1

2
PTWd−1 (x1:k) PTWd−1 (xk+1:n) , (2)

where k = 2d−1.

Proof. A straightforward adaptation of [21, Lemma 2].

3.3 Algorithm
Lemma 1 allows us to compute PTWd(x1:n) in a bottom up fashion. This leads to an algorithm

that runs in O(nd) time and space by maintaining a context tree data structure in memory. One of
our main contributions is to further reduce the space overhead of PTW to O(d) by exploiting the
regular access pattern to this data structure. To give some intuition, Figure 2 shows in bold the
nodes in a context tree data structure that would need to be updated at times t = 2 and t = 3. The

4

Algorithm 1 PARTITION TREE WEIGHTING - PTWd(x1:n)

Require: A depth parameter d ∈ N
Require: A data sequence x1:n ∈ X n satisfying n ≤ 2d

Require: A base probabilistic model ρ

1: bj ← 1, wj ← 1, rj ← 1, for 0 ≤ j ≤ d

2: for t = 1 to n do
3: i← MSCBd(t)
4: bi ← wi+1

5: for j = i+ 1 to d do
6: rj ← t
7: end for
8: wd ← ρ(xrd:t)
9: for i = d− 1 to 0 do

10: wi ← 1
2
ρ(xri:t) + 1

2
wi+1bi

11: end for
12: end for

13: return w0

key observation is that because our access patterns are performing a kind of depth first traversal of
the context tree, the needed statistics can be summarized in a stack of size d. This has important
practical significance, as the performance of many interesting base models will depend on how
much memory is available.

Algorithm 1 describes our O(nd) time and O(d) space technique for computing PTWd(x1:n). It
uses a routine, MSCBd(t), that returns the most significant changed context bit; that is, for t > 1,
this is the number of bits to the left of the most significant location at which the d-bit binary
representations of t − 1 and t − 2 differ, with MSCBd(1) := 0 for all d ∈ N. For example,
for d = 5, we have MSCB5(4) = 4 and MSCB5(7) = 3. Since d = dlog ne, the algorithm
effectively runs in O(n log n) time and O(log n) space. Furthermore, Algorithm 1 can be modified
to run incrementally, as PTWd(x1:n) can be computed from PTWd(x<n) in O(d) time provided the
intermediate buffers bi, wi, ri for 0 ≤ i ≤ d are kept in memory.

3.4 Theoretical Properties
We now provide a theoretical analysis of the Partition Tree Weighting method. Due to space

limitations, minor results are stated without proof; the omitted arguments can be found in [16].
First, notice that using PTW with a base model ρ is almost as good as using ρ with any partition

in the class Cd. Indeed, for all n ∈ N, where d = dlog ne, for all x1:n ∈ X n, we have

− log PTWd(x1:n) = − log

∑
P∈Cd

2−Γd(P)
∏

(a,b)∈P

ρ(xa:b)

 ≤ Γd(P)− log
∏

(a,b)∈P

ρ(xa:b),

where P is an arbitrary partition in Cd.
The next result shows that there always exists a binary temporal partition (i.e., a partition in Cd)

which is in some sense close to any particular temporal partition. To make this more precise, we

5

introduce some more terminology. First we define C(P) := {a}(a,b)∈P \ {1}, which is the set of
time indices where an existing segment ends and a new segment begins in partition P . Now, if
C(P) ⊆ C(P ′), we say P ′ is a refinement of partition P . In other words, P ′ is a refinement of P
if P ′ always starts a new segment whenever P does. With a slight abuse of notation, we will also
use C(P) to denote the partition P .

Lemma 2. For all n ∈ N, for any temporal partition P ∈ Tn, with d = dlog ne, there exists a
binary temporal partition P ′ ∈ Cd such that P ′ is a refinement of P and |P ′| ≤ |P|(dlog ne+ 1).

Proof. We prove this via construction. Consider a binary tree Ti with 1 ≤ i ≤ n formed from the
following recursive procedure: 1. Set a = 1, b = 2d, add the node (a, b) to the tree. 2. If a = i then
stop; otherwise, add (a,

⌊
b−a

2

⌋
), (a+

⌊
b−a

2

⌋
+ 1, b) as children to node (a, b), and then set (a, b) to

the newly added child containing i and goto step 2.
Next define L(Ti) and I(Ti) to be the set of leaf and internal nodes of Ti respectively. Notice

that |L(Ti)| ≤ d+ 1 and that L(Ti) ∈ Cd. Now, consider the set

P ′ :=

(a, b) ∈
⋃

i∈C(P)

L(Ti) : (a, b) /∈
⋃

i∈C(P)

I(Ti)

 .

It is easy to verify that P ′ ∈ Cd and that C(P) ⊆ C(P ′). The proof is concluded by noticing that

|P ′| ≤
∣∣∣∣ ⋃
i∈C(P)

L(Ti)

∣∣∣∣ ≤ ∑
i∈C(P)

|L(Ti)| ≤ |C(P)|(d+ 1) ≤ |P| (dlog ne+ 1) .

Next we show that if we have a redundancy bound for the base model ρ that holds for any finite
sequence of data generated by some class of bounded memory data generating sources, we can
automatically derive a redundancy bound when using PTW on the piecewise stationary extension
of that same class.

Theorem 1. For all n ∈ N, using PTW with d = dlog ne and a base model ρ whose redundancy is
upper bounded by a non-negative, monotonically non-decreasing, concave function g : N → R
with g(0) = 0 on some class G of bounded memory data generating sources, the redundancy

log µ(x1:n)− log PTWd(x1:n) ≤ Γd(P ′) + |P| g
(⌈

n

|P|(dlog ne+ 1)

⌉)
(dlog ne+ 1),

where µ is a piecewise stationary data generating source, and the data in each of the stationary
regions P ∈ Tn is distributed according to some source in G. Furthermore, Γd(P ′) can be upper
bounded independently of d by 2|P| (dlog ne+ 1).

Proof. Combine Lemma 1 in [8] with our Lemma 2 and the properties of g, as per the proof of
Theorem 2 in [8]. See [16] for more details, including the proof of the upper bound on Γd(P ′).

Removing the dependence on n and d. Our previous results required choosing a depth d in ad-
vance such that d = dlog ne. This restriction can be lifted by using the modified coding distribution
given by PTW(x1:n) :=

∏n
i=1 PTWdlog ie(xi|x<i). The next result justifies this choice.

Theorem 2. For all n ∈ N, for all x1:n ∈ X n, we have that
− log PTW(x1:n) ≤ − log PTWd(x1:n) + dlog ne(log 3− 1),

where d = dlog ne.

6

Thus, the overhead due to not knowing n in advance is O(log n). The proof of this result, given
in [16], is based on the fact that for any t, k ∈ N satisfying 1 ≤ t ≤ 2k, we have

2
3

PTWk+1(x1:t) ≤ PTWk(x1:t), (3)

which implies that each time the depth of the tree is increased, the algorithm suffers at most an
extra log(3/2) penalty.

Algorithm 1 can be straightforwardly modified to compute PTW(x1:n) using the same amount
of resources as needed for PTWd(x1:n). The main idea is to increase the size of the stack by one
and copy over the relevant statistics whenever a power of two boundary is crossed. Alternatively,
one could simply pick a sufficiently large value of d in advance. This is also justified, as, based on
Equation 3, the penalty for using an unnecessarily large k > d can be bounded by

− log PTWk(x1:n) ≤ − log PTWd(x1:n) + (k − d) log 3
2
.

4 Applications
We now explore the performance of Partition Tree Weighting in a variety of settings.

Binary, Memoryless, Piecewise Stationary Sources. First we investigate using the well known
KT estimator [12] as a base model for PTW. We begin with a brief overview of the KT estimator.
Consider a sequence x1:n ∈ {0, 1}n generated by successive Bernoulli trials. If a and b denote the
number of zeroes and ones in x1:n respectively, and θ ∈ [0, 1] denotes the probability of observing
a 1 on any given trial, then Pr(x1:n | θ) = θb(1 − θ)a. One way to construct a distribution over
x1:n, in the case where θ is unknown, is to weight over the possible values of θ. The KT-estimator
uses the weighting w(θ) := Beta(1

2
,1
2
) = π−1θ−1/2(1− θ)−1/2, which gives the coding distribution

KT(x1:n) :=
∫ 1

0
θb(1−θ)aw(θ) dθ . This quantity can be efficiently computed online by maintaining

the a and b counts incrementally and using the chain rule, that is, Pr(xn+1 = 1|x1:n) = 1 −
Pr(xn+1 = 0|x1:n) = (b+ 1/2)/(n+ 1). Furthermore, the parameter redundancy can be bounded
uniformly; restating a result from [21], one can show that for all n ∈ N, for all x1:n ∈ X n, for all
θ ∈ [0, 1],

log θb(1− θ)a − log KT(x1:n) ≤ 1
2

log(n) + 1. (4)

We now analyze the performance of the KT estimator when used in combination with PTW. Our
next result follows immediately from Theorem 1 and Equation 4.

Corollary 1. For all n ∈ N, for all x1:n ∈ {0, 1}n, if µ is a piecewise stationary source seg-
mented according to any partition P ∈ Tn, with the data in segment i being generated by i.i.d.
Bernoulli(θi) trials with θi ∈ [0, 1] for 1 ≤ i ≤ |P|, the redundancy of the PTW-KT algorithm,
obtained by setting d = dlog ne and using the KT estimator as a base model, is upper bounded by

Γd(P ′) +
|P|
2

log

⌈
n

|P|(dlog ne+ 1)

⌉
(dlog ne+ 1) + |P|(dlog ne+ 1).

Corollary 1 shows that the redundancy behavior of PTW-KT is O (|P|(log n)2). Thus we expect
this technique to perform well if the number of stationary segments is small relative to the length
of the data. This bound also has the same asymptotic order as previous [19, 9, 8] low complexity
techniques.

Next we present some experiments with PTW-KT on synthetic, piecewise stationary data. We
compare against techniques from information theory and online learning, including (i) Live and Die

7

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

R
ed

u
n

d
an

cy
 (

b
it

s)

Number of Change Points

KT
DecKT

LAD
VCW(5)

PTW-KT

(a) n = 8192 over splits {0, 1, 2, . . . , 20}

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

R
ed

u
n
d
an

cy
 (

b
it

s)

Number of Change Points

KT
DecKT

LAD
VCW(5)

PTW-KT

(b) n = 65536 over splits {0, 1, 2, . . . , 40}

Figure 3: Average redundancy of various estimators on binary data for increasing number of change points.

Coding (LAD) [19], (ii) the variable complexity, exponential weighted averaging (VCW) method
of [8], and (iii) the DEC-KT estimator [13, 17], a heuristic variant of the KT estimator that expo-
nentially decays the a,b counts to better handle non-stationary sources. Figure 3 illustrates the
redundancy of each method as the number of change points increases. To mitigate the effects of
any particular choice of change points or θi, we report results averaged over 50 runs, with each
run using a uniformly random set of change points locations and θi. 95% confidence intervals are
shown on the graphs. PTW performs noticeably better than all methods when the number of seg-
ments is small. When the number of segments gets high, both PTW and VCW outperform all other
techniques, with VCW being slightly better once the number of change points is sufficiently large.
The VCW(g) technique interpolates between a weighting scheme very close to the linear method
in [20] and LAD; however, the complexity of this algorithm when applied to the KT estimator is
O(gn log n), so with g = 5, the runtime is already 5 times larger than PTW.

CTS + bib book1 book2 geo news obj1 obj2 paper1 paper2 paper3 paper4 paper5 paper6 pic progc progl progp trans

DEC-KT 1.78 2.18 1.88 4.30 2.31 3.67 2.31 2.25 2.20 2.45 2.75 2.87 2.33 0.78 2.28 1.60 1.62 1.36
KT 1.79 2.17 1.89 4.38 2.32 3.73 2.39 2.25 2.20 2.45 2.76 2.89 2.34 0.79 2.30 1.61 1.64 1.37

LAD 2.70 2.60 2.46 4.37 3.14 4.52 3.07 3.33 3.03 3.41 3.87 4.04 3.45 0.80 3.42 2.49 2.65 2.66
VCW(5) 2.32 2.41 2.19 4.27 2.80 4.13 2.72 2.90 2.69 3.02 3.43 3.56 3.00 0.78 2.95 2.11 2.22 2.16
PTW-KT 1.77 2.17 1.87 4.20 2.31 3.64 2.25 2.25 2.20 2.45 2.75 2.88 2.33 0.77 2.29 1.59 1.61 1.35

Table 1: Performance (average bits per byte) on the Calgary Corpus

Additionally, we evaluated the same set of techniques as a replacement to the KT estimator
for the memoryless model used within Context Tree Switching (CTS) [17], a recently introduced
universal data compression algorithm for binary, stationary Markov sources of bounded memory.
Performance was measured on the well known Calgary Corpus [3]. Each result was generated
using CTS with a context depth of 48 bits. The results (in average bits per byte) are shown in
Table 1. Here we see that PTW-KT consistently matches or outperforms the other methods. The
largest relative improvements are seen on the non-text files, GEO, OBJ1, OBJ2 and PIC. While the
performance of VCW could be improved by using a g > 5, it was already considerably slower than
the other methods.

8

Tracking. PTW can also be used to derive an alternate algorithm for tracking [10] using the
code-length loss. Consider a base model ρ that is a convex combination of a finite set
M := {ν1, ν2, . . . , ν|M|} of k-bounded memory models, that is,

ρ(x1:n |x1−k:0) :=
∑
νi∈M

wνiνi(x1:n |x1−k:0), (5)

where x1−k:0 ∈ X k denotes the initial (possibly empty) context, each νi is a k-bounded memory
probabilistic data generating source (that is, νi(xt|x<t) = νi(xt|xt−k:t−1) for any t), wν ∈ R and
wν > 0 for all ν ∈ M, and

∑
ν∈Mwν = 1. We now show that applying PTW to ρ gives rise to a

model that will perform well with respect to an interesting subset of the class of switching models.
A switching model is composed of two parts, a set of modelsM and an index set. An index set
i1:n with respect to M is an element of {1, 2, . . . , |M|}n. Furthermore, an index set i1:n can be
naturally mapped to a temporal partition in Tn by processing the index set sequentially, adding a
new segment whenever it 6= it+1 for 1 ≤ t < n. For example, if |M| ≥ 2, the string 1111122221
maps to the temporal partition {(1, 5), (6, 9), (10, 10)}. The partition induced by this mapping will
be denoted by S(i1:n). A switching model can then be defined as

ξi1:n(x1:n) :=
∏

(a,b)∈S(i1:n)

νia(xa:b |xa−k:a−1),

where we have adopted the convention that the previous symbols at each segment boundary define
the initializing context for the next bounded memory source.2 The set of all possible switching
models for a sequence of length n with respect to the model classM will be denoted by In(M).
If we now let τ(x1:n) denote PTWdlogne(x1:n) using a base model as defined by Equation 5, we
can use Theorem 1 to state the following upper bound on the redundancy of τ with respect to an
arbitrary switching model.

Corollary 2. For all n ∈ N, for any x1:n ∈ X n and for any switching model ξi1:n ∈ In(M), we
have

− log τ(x1:n) + log ξi1:n(x1:n) ≤ (2 + κ) |S(i1:n)| (dlog ne+ 1), (6)

where κ := maxν∈M− log(wν).

Inspecting Corollary 2, we see that there is a linear dependence on the number of change points
and a logarithmic dependence on the sequence length. Thus we can expect our tracking technique
to perform well provided the data generating source can be well modeled by some switching model
that changes infrequently. The main difference between our method and [10] is that our prior
depends on additional structure within the index sequence. While both methods have a strong
prior bias towards favoring a smaller number of change points, the PTW prior arguably does a
better job of ensuring that the change points are not clustered too tightly together. This benefit
does however require logarithmically more time and space.

5 Conclusion
This paper has introduced Partition Tree Weighting, an efficient meta-algorithm that automati-

cally generalizes existing coding distributions to their piecewise stationary extensions. Our main
2This is a choice of convenience. One could always relax this assumption and naively encode the first k symbols of

any segment using a uniform probability model, incurring a startup cost of k log |X | bits before applying the relevant
bounded memory model. This would increase the upper bound in Equation 6 by |S(i1:n)| (dlog ne+ 1)k log |X |.

9

contribution is to introduce a prior, closely related to the Context Tree Weighting method, to effi-
ciently weight over a large subset of possible temporal partitions. The order of the redundancy and
the complexity of our algorithm matches those of the best competitors available in the literature,
with the new algorithm exhibiting a superior complexity-performance trade-off in our experiments.

Acknowledgments. The authors would like to thank Marcus Hutter for some helpful comments.
This research was supported by NSERC and Alberta Innovates Technology Futures.

References
[1] S. Adak. Time-dependent spectral analysis of nonstationary time series. Journal of the American Statistical

Association, pages 1488–1501, 1998.
[2] D. Angelosante and G.B. Giannakis. Sparse graphical modeling of piecewise-stationary time series. In Acoustics,

Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 1960–1963. IEEE,
2011.

[3] Ross Arnold and Tim Bell. A corpus for the evaluation of lossless compression algorithms, 1997.
[4] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University Press, New

York, NY, USA, 2006. ISBN 0521841089.
[5] R.A. Davis, T.C.M. Lee, and G.A. Rodriguez-Yam. Structural break estimation for nonstationary time series

models. Journal of the American Statistical Association, 101(473):223–239, 2006.
[6] Steven de Rooij and Tim van Erven. Learning the switching rate by discretising Bernoulli sources online. In

Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009),
volume 5 of JMLR Workshop and Conference Proceedings, pages 432–439, Clearwater Beach, Florida USA,
April 2009.

[7] Paul Fearnhead. Exact and efficient bayesian inference for multiple changepoint problems. Statistics and Com-
puting, 16(2):203–213, 2006.

[8] A. György, T. Linder, and G. Lugosi. Efficient tracking of large classes of experts. IEEE Transactions on
Information Theory, 58(11):6709–6725, 2011.

[9] E. Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 393–400. ACM, 2009.

[10] Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Machine Learning, 32:151–178, August
1998.

[11] Wouter Koolen and Steven de Rooij. Combining expert advice efficiently. In Proceedings of the 21st Annual
Conference on Learning Theory, COLT 2008, pages 275–286, Helsinki, Finland, July 2008.

[12] R. Krichevsky and V. Trofimov. The performance of universal encoding. Information Theory, IEEE Transactions
on, 27(2):199–207, 1981.

[13] Alexander O’Neill, Marcus Hutter, Wen Shao, and Peter Sunehag. Adaptive context tree weighting. In DCC,
pages 317–326, 2012.

[14] R. Prescott Adams and D. J. C. MacKay. Bayesian Online Changepoint Detection. ArXiv e-prints, 2007.
[15] Gil I. Shamir and Neri Merhav. Low Complexity Sequential Lossless Coding for Piecewise Stationary Memo-

ryless Sources. IEEE Transactions on Information Theory, 45:1498–1519, 1999.
[16] J. Veness, M. White, M. Bowling, and A. György. Partition Tree Weighting. ArXiv e-prints, November 2012.
[17] Joel Veness, Kee Siong Ng, Marcus Hutter, and Michael H. Bowling. Context tree switching. Data Compression

Conference, 2012.
[18] V. Vovk. Derandomizing stochastic prediction strategies. Machine Learning, 35(3):247–282, Jun. 1999.
[19] F. Willems and M. Krom. Live-and-die coding for binary piecewise i.i.d. sources. In Information Theory. 1997.

Proceedings., 1997 IEEE International Symposium on, page 68, jun-4 jul 1997. doi: 10.1109/ISIT.1997.612983.
[20] Frans M. J. Willems. Coding for a binary independent piecewise-identically-distributed source. IEEE Transac-

tions on Information Theory, 42:2210–2217, 1996.
[21] Frans M.J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The Context Tree Weighting Method: Basic

Properties. IEEE Transactions on Information Theory, 41:653–664, 1995.
[22] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the

Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC, USA, 2003.

10

	Introduction
	Background
	Partition Tree Weighting
	Model Class
	Coding Distribution
	Algorithm
	Theoretical Properties

	Applications
	Conclusion

