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ABSTRACT
Agent evaluation in stochastic domains can be difficult. The
commonplace approach of Monte Carlo evaluation can in-
volve a prohibitive number of simulations when the variance
of the outcome is high. In such domains, variance reduc-
tion techniques are necessary, but these techniques require
careful encoding of domain knowledge. This paper intro-
duces baseline as a simple approach to creating low vari-
ance estimators for zero-sum multi-agent domains with high
outcome variance. The baseline method leverages the self
play of any available agent to produce a control variate for
variance reduction, subverting any extra complexity inher-
ent with traditional approaches. The baseline method is
also applicable in situations where existing techniques either
require extensive implementation overhead or simply can-
not be applied. Experimental variance reduction results are
shown for both cases using the baseline method. Baseline is
shown to surpass state-of-the-art techniques in three-player
computer poker and is competitive in two-player computer
poker games. Baseline also shows variance reduction in hu-
man poker and in a mock Ad Auction tournament from the
Trading Agent Competition, domains where variance reduc-
tion methods are not typically employed.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Experimental Design; I.2.1 [Artificial Intelligence]:
Applications and Expert Systems—Games

General Terms
Measurement, Performance, Experimentation

Keywords
Control Variates; Agent Evaluation

1. INTRODUCTION
In games, as well as many other domains where there are

both aspects of chance and skill, one common problem that
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arises in evaluation is the ability to estimate how much of
the utility each player earns is due to luck, and how much
is due to skill. A simple approach is to collect a large num-
ber of independent samples of the outcome and measure
the mean and standard error of the mean. This however is
not ideal for many reasons, the most obvious perhaps being
that it may take an impractical number of simulations to
separate evenly matched opponents with any sort of statis-
tical significance. More sophisticated approaches tackle this
problem by first trying to reduce the variance in the out-
come before performing any such evaluation, and are quite
necessary in domains with high outcome variance. Existing
variance reduction techniques often require hand crafting
and substantial domain knowledge in order to be of any use.
In this paper, we present a practical method for reducing
the variance in multi-agent evaluation.

2. MOTIVATION
When evaluating agents in domains with high outcome

variance, variance reduction techniques are crucial in situa-
tions where simply gathering more data is highly infeasible
or may even impossible. The game of poker provides a prime
example of this type of situation. In poker, gathering the
necessary sample size to simply use the raw outcome would
be a near impossible feat for human players. For instance, if
two players are of similar skill, it may require tens, or even
hundreds, of thousands of hands of play in order to naively
evaluate who is the better player. Even insanely fast human
players, making thousands of decisions an hour playing for
ten hours a day would take hundreds of days to generate this
amount of data. Additionally, over such long timeframes,
the assumption that the samples are independent and iden-
tically distributed probably becomes questionable.

Analogous to this is the case where one would like to eval-
uate a computer agent’s skill against that of a professional
human player. Much as in the case of human versus human
evaluation, the need to reduce the number of samples re-
quired for human versus computer evaluation is crucial since
the cost of gathering data remains extremely high. We are
either required to disregard significance (which is not un-
common), or be more clever.

One variance reduction technique employed in computer
poker is a method known as duplicate. Duplicate requires
each player to play every hand multiple times, once for each
possible configuration of players at the table. This method
is practical and effective for computer programs since they
have the ability to easily forget what happened in the past



and is in fact used in the Annual Computer Poker Compe-
tition (ACPC) [1]. One drawback of the duplicate method
is the question of effectiveness as the number of agents in
a domain increases since the number of samples needed for
one data point is factorial in the number of agents. The
duplicate method is also problematic in matches involving
humans. Human players cannot be expected to forget per-
vious hands they may have played, especially in the small
time frames required to effectively hold a competition.

Nevertheless, duplicate has been used to evaluate teams
of human poker players by averaging the winnings of each
hand for all the players on a team. Duplicate was used in
the previous man versus machine poker competitions [10] as
well as a six player limit Texas hold ’em human competition
hosted by the International Federation of Poker (IFP) [4].
As a simplification, the IFP human duplicate competition
only used six players per team instead of the 720 required
to do a full duplicate match. The IFP competition further
increased the complexity of running the competition by us-
ing physical cards and tables. This choice necessitated the
pre-shuffling of 432 decks of cards for just 72 hands of play
at each of the six final tables. The fragility of a duplicate
match on this scale was reinforced when one of the cards was
overturned prematurely during a hand on one of the tables.
This resulted in that hand being stricken from the results
on all six tables as it can no longer be used in the duplicate
analysis.

It is these types of situations that motivated the devel-
opment of the baseline approach to variance reduction, a
simple method for creating practical low variance estima-
tors without the need for special domain knowledge.

3. BACKGROUND
This section gives a brief overview of existing traditional

approaches to variance reduction. Also provided in this sec-
tion are some examples of systems that implement variations
of these techniques.

3.1 General Methods for Variance Reduction
Several general methods have been developed in the statis-

tics literature for reducing the variance inherent in estimat-
ing random variables [7]. In what follows, assume that
the random variable of interest is X and that there are
n independent and identically distributed samples of X,
(X1, X2, . . . , Xn). The goal is to estimate E[X], provided
it exists, from these n samples, and to do so with as little
variance as possible. We denote by X̄ = 1

n
(X1 + · · · + Xn)

the sample mean. Assuming that E[X] exists, X̄ is an unbi-
ased estimator of E[X]. The goal of each of the techniques
presented is to give another estimator of E[X] with hopefully
lower variance than X̄

3.1.1 Control Variates
Control variates are one effective way to reduce the er-

ror of Monte Carlo simulations [3]. Assume that we are
given some additional statistic Y that is correlated with X,
and also that µY = E[Y ] is a known and existing quantity.
We can then construct an improved estimate of E[X] by
considering a new random variable Z := X + c(Y − E[Y ]).

Computing the sample mean of Z, Z̄, is then equal to

Z̄ = X̄ + c(Ȳ − E[Y ])

=
1

n

n∑
i=1

(Xi + c(Yi − E[Y ])) (1)

It is then the case that Z̄ is an unbiased estimator of E[X]
for any c ∈ R since

E[Z] = E[X + c(Y − E[Y ])]

= E[X] + E[c(Y − E[Y ])]

= E[X] + c(E[Y ]− E[Y ]])

= E[X] (2)

In such a setting, Y is referred to as the control variate. The
variance of Z can then be computed as

Var[Z] = Var[X + c(Y − E[Y ])]

= Var[X] + c2Var[Y ] + 2cCov[X,Y ] (3)

and this variance is minimized by choosing the optimal co-
efficient c∗ by

c∗ = −Cov[X,Y ]

Var[X]
(4)

Resulting in a final variance of

Var[Z] = Var[X]− Cov[X,Y ]2

Var[Y ]

= (1− ρ2X,Y )Var[X] (5)

where ρX,Y is the correlation between X and Y . This shows
that the amount of reduction in the variance of an estimate
when using this technique is highly dependent on the control
variate Y being strongly correlated with the original random
variable X.

3.1.2 Multiple Control Variates
The natural extension of the aforementioned formulas to

the case of multiple control variates is to have Y instead be
a vector of statistics correlated with X, denoted as ~Y . We
can define a new random variable M as

M = X − ~c>(~Y − E[~Y ]) (6)

and the optimal coefficient vector ~c∗ can be computed, sim-
ilarly to before, as

~c ∗ = Σ−1
~Y ~Y

ΣX~Y (7)

were ΣX~Y is the vector of covariances between X and ~Y and

Σ~Y ~Y is the covariance matrix of ~Y .

3.1.3 Antithetic Variates
Antithetic variates are yet another technique for reduc-

ing the variance when estimating E[X]. Assume we have
two identically distributed random variables, X and Y , and
consider their average W as an estimate for E[X] as

W =
X + Y

2

The variance of W is equal to

Var(W ) =
1

4
(Var[X] + Var[Y ]) +

1

2
Cov[X,Y ]

=
Var[X]

2
+

1

2
Cov[X,Y ] (8)



This expression can be exploited to reduce the variance of
W by having X and Y be negatively correlated with each
other. The antithetic variates method works on the premise
that for any given sample Xi ∼ X, an antithesis Yi can be
generated in such a way that there is strong negative correla-
tion between the two values. Y must be carefully selected to
avoid adding bias to the estimate of E[X]. In many domains
constructing Y may prove to be difficult, while in others it
is straightforward.

This method can be extended to the case of multiple an-
titheses (Y 1, . . . , Y m) by averaging of the simulation and all
of the m estimates as

Wm =
X + Y 1 + · · ·+ Y m

m+ 1
(9)

3.1.4 Advantage Sum Estimators
In sequential decision-making settings, Zinkevich et al.

[16] formulated a general approach to constructing a control
variate called an advantage sum estimator. Advantage sum
estimators utilize a value function defined over positions in
the game to estimate the value of each decision made by the
agents, as well as each decision made by chance. Advantage
sum estimators split out the effects of luck (LV ), skill (SV )
and the positional advantage (PV ) when evaluating the de-
cisions of agents. The luck, skill and positional advantage
terms are described mathematically [13] as

SVj (z) =
∑
havz
P (h)6=c

Vj(ha)− Vj(h)

LVj (z) =
∑
havz
P (h)=c

Vj(ha)− Vj(h)

PVj = Vj(∅)

where ha refers to history h followed by action a. Vj repre-
sents the value function for player j which maps histories to
real numbers. The function P (h) determines which player
is to act after history h. If P (h) = c, chance determines the
action after history h. Then, for a given terminal history z
and player j, the advantage sum estimator given by

µ̂Vj (z) = SVj (z) + PVj (10)

is an unbiased estimate of

µj(z) = SVj (z) + LVj (z) + PVj (11)

These estimators are provably unbiased when E[LVj (z)|σ] is
zero, or in other words, when the value function, V , satisfies
the zero-luck constraint.

3.2 Implemented Approaches
A number of variance reduction techniques have been suc-

cessfully implemented for agent evaluation. We provide a
brief summary of several of these implementations and their
potential drawbacks, further motivating the need for simple
and effective approaches to variance reduction.

3.2.1 Duplicate
In bridge [15] and computer poker [1] the notion of dupli-

cate has seen success as an implemented antithetic variate
method of reducing variance. The basic idea in these ap-
proaches is to generate a single deal of the cards, and then
use each rotation of the player through the different sets of

private cards as antithetic samples. Duplicate has been used
by the Annual Computer Poker Competition to reduce the
number of games that is necessary to run to determine a sta-
tistically significant winner. As previously stated in Section
2, two main drawbacks of using duplicate are its inability
to measure individual skill in human play and the complex-
ity of running duplicate matches as the number of agents
increases.

3.2.2 Blackjack
In blackjack, Wolfe used the advantage sum estimator ap-

proach in a single-agent domain by utilizing a pre-computed
strategy to compare the difference in the expected winnings
of a player employing a fixed strategy to the expected win-
nings of a pre-computed near optimal strategy. [14]. At each
decision point in the game, if the player’s strategy differs
from the pre-computed strategy, the player is credited the
difference of the expected winnings. This adjustment is done
under the assumption that the player will play the same as
the pre-computed strategy from the point of deviation un-
til the end of the game. Although this approach gives much
lower per-hand variance, it is necessary to know beforehand,
or be able to quickly compute, the expected value of each
decision point in the game for the pre-computed strategy.

3.2.3 DIVAT
Within the domain of poker, a class of programs known as

value assessment tools are also examples of advantage sum
estimators. One such instance of these tools is DIVAT [2], a
program that has been shown to reduce the variance in the
two player limit poker variant. Much like the system used
in blackjack, DIVAT compares decisions made in the actual
games to that of a pre-computed strategy. Unlike blackjack
however, the strategy being used is not following an optimal
or near-optimal policy. Arguably the notion of an “opti-
mal” policy, being one that maximizes the expected utility
from each decision point, may be ill-formed in games such
as poker [2]. DIVAT instead implements the advantage sum
estimator idea, using a hand crafted value function for use
in evaluation. The issue with DIVAT is that the creation of
the value function it uses required a large amount of domain
knowledge specific to a single variant of poker, rendering it
ineffectual for use in even other variants of poker.

3.2.4 MIVAT
MIVAT is another value assessment tool that solves one

shortcomings of DIVAT by learning a value function as op-
posed to hand crafting one [13]. Learning a value function
allows for a much more general approach to creating in-
stances of advantage sum estimators by subverting the need
to have extensive amounts domain knowledge when creat-
ing the value function. White and Bowling showed that
the learned value functions can obtain similar magnitudes
of variance reduction as was seen with DIVAT in two player
limit poker. Additionally, MIVAT was able to produce value
functions used to reduce the variance in both six player limit
and two player no-limit poker games. MIVAT does however
suffer from the classic machine learning issues of feature con-
struction and/or selection, which one might argue is still a
form of domain knowledge.



3.2.5 Variance Reduction in Decision Making
Variance reduction techniques have also been employed in

situations that involve decision making as opposed to agent
evaluation. Two examples of this are the methods used in
the Backgammon program TD GAMMON [8] [9] and those
explored by Veness and colleagues for use in Monte-Carlo
Tree Search [12]. In TD GAMMON, Tesauro used offline
Monte-Carlo rollouts based on sample dice rolls to evaluate
the decisions of the agent during the learning process. One
potential pitfall of this approach is the cost associated with
performing each of these rollouts as it may take thousands
of samples in order to get a fairly confident estimate of the
“best” move for a given position.

Veness et al. considered the use of both control variates
and antithetic variates for use with the UCT Monte-Carlo
Tree Search algorithm [5] [12]. The authors showed that
both techniques are effective ways of reducing variance in
the three test domains chosen to evaluate performance. Both
of these techniques however suffered from difficulties related
to implementation details. Building the antithetic estimator
proved difficult in one of the domains, requiring a heuristic
to generate the antithetic paths and failed in another domain
since there were no obvious symmetries to exploit. Although
the control variate estimators performed the best on the
domains, they suffered from the need to have domain specific
knowledge in order to create meaningful value functions.

Problems surrounding implementation, coupled with the
others issues addressed in this section, show that eliminating
the difficulty in creating effective low variance estimators is
crucial in the practical deployment of any variance reduction
technique.

4. BASELINE CONTROL VARIATES
We now introduce the baseline method of constructing

control variates for agent evaluation in zero-sum games. Base-
line allows for the creation of control variates in a simple and
efficient manner, and is especially designed for settings with
a large number of agents or instances of human play, where
duplicate methods are either impossible or impractical. The
baseline method only requires that a computer agent exists
for the domain in question and that the random events ob-
served in the simulation are reproducible.

The basic idea behind baseline is to compare the observed
performance of the agents being evaluated to the perfor-
mance of another computer agent in self-play. In this section
we will describe this idea precisely and proceed to demon-
strate experimentally that baseline can out perform dupli-
cate in terms of reduction of the standard error. We also
demonstrate that baseline is suitable for use in a wider range
of domains such as human-machine competitions and Trad-
ing Agent Competition Ad Auction (TAC-AA) tournaments.

4.1 The baseline approach
Baseline is used to estimate the performance of an agent

in a zero-sum domain where the stochasticity of that domain
is captured in a random variable, denoted as Q. Essentially,
this is any domain where the random seed can be controlled
to produce exact replications of the chance events supplied
by the environment. One example of such a domain would
be the game of poker, where the randomness is based on the
shuffle of the cards. Let X = g(Q) be the random variable
whose expectation E[X] is being estimated, where g : Q 7→ R

is a function specifying the performance the agent on in-
stances of the domain. Let (X1, . . . , Xn) be n samples from
X corresponding to the measured performance of the agent
on n samples from the domain Q: (Q1, . . . , Qn).

To apply the baseline method we assume that we have ac-
cess to a computer agent (the control agent) for the domain
in question, whose performance in self-play we will represent
by another performance function s : Q 7→ R. The first step
in the baseline approach is to create, for each domain sam-
ple Qi, the control variate values Yi = s(Qi). This is done
by playing the control agent against itself on the instance of
the domain described by Qi and observing the utility gained.
The baseline estimator β̄ is then defined to be the control
variate enhanced estimator obtained from using the control
variate Y to estimate E[X], defined as follows.

β̄ =
1

n

n∑
i=1

Xi + c (Yi − E[Y ]) (12)

Note that in general this does not eliminate the necessity
of computing the expected value E[Y ] of the control variate.
One of the key ideas to the baseline approach is that as long
as the game being played is zero-sum and any sample from
Q assigns an equal probability for every possible assignment
of agents to positions in the game, the expected value, E[Y ],
is 0. Combining this fact with the optimal coefficient from
Equation 4 results in the final formula for the baseline esti-
mator to be

β̄ =
1

n

n∑
i=1

Xi −
Ĉov[X,Y σ]

V̂ar[X]
(Yi) (13)

where Ĉov[X,Y σ] and V̂ar[X] are the sample covariance and
variance terms calculated from the observed samples. Using
the sample variance and covariance terms introduces bias,
however the estimator is still consistent [6], and the result-
ing reduction in variance can make it worth the trade off.
For practical reasons, in cases where the control agent is
making decisions in a stochastic manner the values for Yi
can be calculated using the average of multiple samples of
the control agent’s utilities on domain Qi. If n is the number
of samples being average, Yi simply becomes

Yi =
1

n

n∑
j=1

s(Qi) (14)

In games with more than two agents, the baseline ap-
proach eliminates the complexity involved with creating du-
plicate matches. Furthermore, the baseline estimator is use-
ful in domains where variance reduction is typically not con-
sidered due to implementation complexity such as human
play evaluation. The simplicity of baseline provides a way
of generating multiple estimators without having to explic-
itly encode any additional domain knowledge into the analy-
sis. These properties are what make the baseline method an
enticing approach to variance reduction in any appropriate
domain where there exists even a single computer agent for
use as the control.



5. EVALUATION METHODOLOGY
In Section 6 the baseline approach is experimentally eval-

uated on several data sets. In this section we describe the
data sets and how the baseline approach was applied in each
of these domains. Since most of these data sets are from the
domain of Texas hold ’em poker, we begin with a brief ex-
planation of this game.

5.1 Texas Hold ’em
Texas hold ’em is a variant of poker played using the stan-

dard 52 card deck. Although the game can be played with
two or more players, the majority of the poker specific analy-
sis performed has been performed on either the three player
or two player (also known as heads up) versions of the game.

The gameplay of Texas hold ’em consists of four rounds,
each of which involves cards first being dealt and then play-
ers making actions until the round terminates. The actions
a player may choose are to either match the opponents total
amount of money in the pot, raise the amount of money all
other players must commit to the pot, or forfeit any money
they currently have committed to the pot by folding their
current hand.

The deal of the cards for the first round consists of two pri-
vate face down cards for each player. At the start of the the
second round three shared, or public cards, are dealt face up
on the table. The next two rounds each have one more pub-
lic card dealt out. After the four rounds are over the player
with the best five card hand wins all of the money in the
pot. This process is repeated many times, with the overall
goal of a player being to maximizing their total winnings.

Texas hold ’em is played with many different betting struc-
tures, however only the no-limit or the limit betting struc-
tures are used in the analysis. No-limit betting means that
any time a player can bet or raise, they may choose to bet
any amount between a fixed minimum and the total amount
of chip remaining to them. The limit betting structure fixes
the size of each bet, typically being small in the early rounds
and large in the later rounds of each hand.

5.2 Annual Computer Poker Competition
The Annual Computer Poker Competition (ACPC) is a

yearly competition where academics and hobbyists submit
poker playing computer agents to one of three Texas hold
’em competitions: heads up limit, heads up no-limit and
three player limit. Hundreds of millions of duplicate poker
hands are played for each of the competitions in order to
separate out the competitors and determine a winner with
statistical confidence.

The ACPC results from the 2011 three player limit and
heads up no-limit competitions were analyzed using the base-
line approach and compared to duplicate. Several different
computer agents were used as the control agent in order to
investigate the robustness of the baseline method. Each con-
trol agent participated in self-play on the exact same hands
as the competition by using the same random seed and card
dealing program. As the control agent is itself stochastic, to
obtain a lower variance estimate of the control agent’s per-
formance on a given hand we had the agent play each hand
fifty times, and averaged the performance over those fifty
samples to obtain the final control agent performance value.
Although each match of the competition is traditionally exe-
cuted over millions of hands, we only utilized 180,000 hands
from each of these matches in our experiments.

In order to compare the baseline approach to duplicate,
baseline uses the same hands (two for every arrangement
of cards) as the duplicate match, however, each pair of two
hands are treated independently. For example, in the two-
player case, let Qj and Q′j be the duplicates of the j-th
hand, differing only in which player is assigned which private
cards. Duplicate treats this as one hand-pair and computes
the agent’s performance on that hand as the average of the

utility on the two separate hands
g(Qj)+g(Q

′
j)

2
, while baseline

treats them as two separate hands with values g(Qj)−s(Qj)
and g(Q′j)−s(Q′j), computing their respective control values
independently.

In three-player Texas hold ’em, duplicate involves averag-
ing over six different related hands, which correspond to all
six different ways the three players can be assigned to the
different sets private cards for a given hand. Baseline again
treats these six separate hands separately and computes the
control agent value independently for each. The results of
these experiments are provided in Tables 1 and 2 and the
post-play analysis is described in Section 6.1.

5.3 Man versus Machine Poker
The baseline approach was also evaluated on data gath-

ered from two man versus machine (MvM) poker matches.
In each of these matches, a team of two highly skilled pro-
fessional poker players faced off against the same computer
agent but on opposite sides of the cards. This was done to
facilitate the computation of a duplicate score for the team.
For reasons previously discussed, duplicate can only be used
to evaluate a pair (team) of humans, but does nothing to
reduce the variance in the estimation of a single human’s
performance against an opponent. In contrast, baseline al-
lows us to obtain lower variance analysis on the individual
performance of each of the two human players. Once again,
in order to compare baseline to duplicate, the hands for the
two human players were treated as both duplicate and in-
dependent. Due to the high cost of gathering human data
of this nature, only 1000 hands were played in each of the
matches. Identical to the ACPC analysis, the average of fifty
samples of the control policy in self play on each hand was
used when computing the baseline control values. Post-play
analysis of two man versus machine matches is presented in
Section 6.2 and the results are shown in Tables 3 and 4.

5.4 Trading Agent Competition
Lastly, the baseline method was tested on a mock Ad

Auction tournament from the Trading Agent Competition
(TAC-AA) [11]. For this experiment, six ad auction agents
were gathered from the TAC repository and faced off in a
eight player tournament, with two random agents filling the
empty positions. The tournament consisted of 100 matches,
where each match was a simulation of ten days, after which
the payouts were converted such that the resulting game
was zero-sum. For each of the matches the agents are each
assigned a random specialization. The specializations serve
as a way for an agents to capitalize on the simulated mar-
ketplace. We used the specializations as a way to capture
the environmental stochasticity, such that the exact same
assignment of specializations seen on each day in the tour-
nament match those used in the control agent’s self play. A
subset of the competition agents were chosen as the differ-
ent control agents for the various baseline estimators. For
practicality reasons, each self play match was only sampled



one time for this domain. The performance of the different
baseline estimators for this tournament are shown in Table
5 and discussed in Section 6.3

6. RESULTS
In this section the results for the experimental evaluation

of the baseline approach are presented. For each of the poker
related experiments, the utility for each agent is reported in
milli-big blinds per hand (mbb/h), which is a standard unit
of measurement within the domain of poker. For the TAC-
AA results, the utility of the agents is reported in thousands
of dollars.

Each of the rows in a table refers to a specific agent being
evaluated, either in its performance against all other agents
(if no other agent is listed) or in its performance against
one specified opponent. The X̄ column in each of the tables
shows the mean of the raw utility as well as the size of the
95% confidence interval, which was computed as 1.96σ̂√

n−1
where

n is the number of samples and σ̂ is the sample standard
deviation over those n samples. The remaining columns of
each table are labeled with the name of the estimator being
used to estimate the performance of the agents. The “Dup”
label refers to the duplicate estimator and a β̄ label refers
to a baseline estimator.

The values in each of the estimator columns show the
reduction of the sample standard error for the specified es-
timator over that of X̄. The reduction values are displayed
as a percentage and the sample standard error for each of
the estimators was computed as σ√

n
. A value of 0% would

mean that there is no difference between the size of the stan-
dard error between the estimator and simply using the raw
utility. Conversely, a value of 100% would mean that the
estimator was able to reduce the standard error to 0. Sim-
ply put, estimators with large percentage reduction values
perform better than ones with small percentage reduction
values. Finally, a negative percentage reduction value indi-
cates that the standard error actually increased when using
the specified estimator.

6.1 ACPC
We begin with the results of the baseline approach ap-

plied to the data from the 2011 Annual Computer Poker
Competition.

6.1.1 Three Player Limit
The summary of the performance estimate for each of the

competitors in the three player limit competition is shown
in Table 1. This table shows that the baseline estimator out-
performs the duplicate counterpart for all nine agent sum-
maries. Also, the baseline estimator never performs worse
than naively estimating the expected value simply on raw
utility. This is not the case for duplicate, which actually
increased the size of the sample standard error in over half
of the summaries. One possible explanation for this could
be that the full six-way duplicate is not the optimal way to
combine the possible player orderings

In addition to its lower performance, using the full player
ordering to create a three player duplicate match increases
the logistical complexity. While being feasible approach for
computer competitions, having six players on a team to rep-
resent just one person could prove to be very difficult when
used for human evaluation. Baseline provides a much sim-
pler framework, requiring only one such ordering and just

Match X̄ Dup (%) β̄ (%)

Bnold3 -10.56 ± 1.10 8.04 37.20

dcubot3plr 6.16 ± 2.03 39.52 49.68

Entropy -1.64 ± 1.67 -40.41 22.57

Hyperborean-iro 20.64 ± 0.98 -0.61 39.08

Hyperborean-tbr 16.74 ± 1.07 -3.03 33.28

LittleRock 10.25 ± 0.91 -6.32 35.56

OwnBot -0.4 ± 2.68 33.07 41.95

player zeta 3p -51.96 ± 2.50 -25.54 21.78

Sartre3p 23.01 ± 1.38 28.12 46.20

Table 1: ACPC 3P Limit (180K hands)

three players. It is clear from these results that baseline
should be utilized for competitions of this nature.

6.1.2 Heads Up No-Limit
Table 2 shows the results of the estimators when applied

to the data from the heads up no-limit ACPC tournament
data. The columns labeled β̄1, β̄2 and β̄3 refer to the baseline
estimators resulting by using three different control agents
and the final M̄ column refers to the multiple control variate
situation with β1, β2 and β3 being the columns of the ~Y
vector in Equation 6.

One observation that can be made from this data is the
although duplicate provided estimates with the lowest sam-
ple standard error, there were not many matches where the
magnitude of this reduction was significantly larger than any
of the baseline approaches. Also noticeable from this table
is the lack of separation between each of the baseline ap-
proaches. For almost every match, the baseline reduction
percentages are nearly identical to one another, which ex-
plains why the M̄ estimator is unable to gain much in the
way of additional reduction over any individual baseline. For
this competition, baseline shows a competitive method for
variance reduction and should be considered for competi-
tions of this nature when producing duplicate results is not
as straight forward as it is in the game of poker.

6.2 MvM Poker
Tables 3 and 4 summarize the results of the two man ver-

sus machine matches. In both of the matches, the results
show that the baseline estimator is able to reduce the sam-
ple standard error for both the individual and team results.
In the case of the team data, although duplicate slightly out-
performs baseline in the first match, both of the estimators
end up producing statistically significant results. Duplicate
and baseline perform equally well on the team data in the
second match. Baseline in this setting has a huge advantage
over duplicate since it can be used to estimate each of the
players’s individual play rather than just the team data.

The need for splitting out the individual players is rein-
forced in the analysis of the two matches. It is clear that
one of the human players, denoted as Human 1 in the tables,
was the better player in the first match. The second human
player, denoted as Human 2 in the tables, actually lost to



Match X̄ Dup (%) β̄1 (%) β̄2 (%) β̄3 (%) M̄ (%)

0 vs 1 -333.87 ± 294.25 2.03 1.13 1.54 1.45 1.58

0 vs 2 -2841.77 ± 136.99 2.62 0.95 1.18 1.09 1.21

0 vs 3 -1318.08 ± 241.95 3.82 1.22 1.61 1.41 1.64

0 vs 4 17785.11 ± 480.36 32.55 4.62 8.01 6.92 8.12

0 vs 5 -1835.21 ± 123.15 2.16 0.56 0.63 0.60 0.67

0 vs 6 -4954.7 ± 209.86 7.97 1.31 1.66 1.58 1.72

1 vs 2 -592.08 ± 81.31 9.95 6.78 9.26 8.50 9.45

1 vs 3 734.91 ± 65.43 4.45 3.15 4.26 3.71 4.32

1 vs 4 4586.91 ± 79.18 32.29 7.54 12.71 10.93 12.83

1 vs 5 731.65 ± 51.78 8.01 3.46 4.72 3.97 4.78

1 vs 6 -280.03 ± 74.52 9.32 5.97 9.29 8.05 9.34

2 vs 3 561.89 ± 73.40 9.31 6.19 8.51 7.67 8.65

2 vs 4 2195.48 ± 101.12 11.66 3.53 5.58 5.07 5.69

2 vs 5 593.43 ± 63.02 9.96 6.50 8.68 7.84 8.85

2 vs 6 112.17 ± 69.48 20.85 13.97 19.08 18.60 19.94

3 vs 4 9877.91 ± 208.98 7.98 4.10 6.66 5.71 6.70

3 vs 5 -95.78 ± 73.47 13.71 3.46 4.75 3.96 4.80

3 vs 6 -434.35 ± 79.64 11.90 5.88 9.51 7.63 9.51

4 vs 5 -2595.83 ± 58.87 11.13 5.40 8.45 7.23 8.48

4 vs 6 -1838.68 ± 52.04 6.04 3.59 5.14 4.60 5.20

5 vs 6 -330.09 ± 72.26 10.37 6.21 8.77 7.82 8.88

Table 2: ACPC Heads Up No-limit (180K hands)

Match X̄ β̄ (%) Dup (%)

Human 1 39.55 ± 962.60 17.84 —

Human 2 -1597.75 ± 1340.45 18.54 —

Team -779.1 ± 825.71 17.66 25.1

Table 3: MvM Match 1 (1K hands)

the computer agent with statistical significance, even when
using just raw utility as the estimate. Both baseline and
duplicate show that in the first match, the human team also
lost with significance. This shows that the loss observed
by the team in the first match was due to the gap in the
skill between Human 1 and Human 2. By pairing them as
a team in the duplicate setting, Human 1 unfairly loses the
first match, instead of it being a result of his/her own play.
These results demonstrate the advantage of using baseline
as the estimator, since individual play is a much more ap-
pealing competition for human-machine competitions.

Match X̄ β̄ (%) Dup (%)

Human 1 78.78 ± 912.61 18.40 —

Human 2 -146.63 ± 866.92 34.89 —

Team -33.93 ± 629.23 25.40 24.39

Table 4: MvM Match 2 (1K hands)

6.3 TAC-AA
The results of using baseline in a mock Ad Auction TAC

tournament are shown in Table 5. In this experiment, each
of the baseline estimators was able to reduce the size of the
sample standard error for all of the matches and the resulting
reduction percentages range from 0.1% up to 53%. For this
tournament, the baseline estimator β̄3 provided the great-
est reduction in the standard error out of all the baseline
estimators used. Notably, none of the baseline estimators
ever increase the standard error. Given that the tournament
consisted of six competition agents and two random agents,
it is unclear what impact this had on the performance of
the baseline estimator. It is possible that in a tournament
using eight competition agents, the baseline estimator may



Player X̄ β̄1 (%) β̄2 (%) β̄3 (%)

tau 1.9 ± 1.35 7.78 7.64 19.98

crocodile11 6.69 ± 1.69 1.36 1.28 5.82

crocodile 8.39 ± 1.98 18.30 5.65 20.31

epfl 9.42 ± 2.44 2.26 2.80 5.34

metroclick 10.19 ± 2.84 9.72 12.59 53.25

Schlemazl 9.14 ± 1.81 0.12 0.01 0.17

Table 5: Mock TAC-AA Tournament (100 matches)

provide larger gains. Additionally, only a single sample of
the baseline estimator was used when calculating the base-
line scores, which could have potentially added noise into
the estimate. Regardless, this experiment not only demon-
strates that baseline estimators can be easily produced from
a variety of agents, but the resulting estimators can achieve
a significant reduction in the variance of the tournament.
Baseline should be definitely be used in domains that ex-
hibit the properties present in TAC-AA type tournaments.

7. CONCLUSIONS
The baseline approach provides a simple way of creating

control variates and can be used in any zero-sum domain
with readily available agents. Baseline estimators have the
advantage of not requiring prior domain knowledge or even
a known expected value for the control, problems that can
typically lead to forgoing the use of variance reduction tech-
niques due to the overhead involved with implementation.
We showed that these estimators are not only competitive
with state-of-the-art methods in two player computer poker,
but are superior to the best known techniques in the domain
of three player limit computer poker.

Baseline estimators should be used in domains where vari-
ance reduction is not typically applied, such as those involv-
ing human players or in TAC-AA type tournaments. For
instances of human play where the duplicate variance reduc-
tion technique can be applied, baseline estimators proved to
be as good as the duplicate estimator. Furthermore, baseline
estimators allow for individual analysis in human domains,
something that duplicate cannot achieve.

The baseline approach is one that should be used in any
applicable domain due to its simplicity and potential as a
strong variance reduction method. In particular, baseline
should replace duplicate in the ACPC three player limit
matches.
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APPENDIX
A. ACPC NO-LIMIT AGENT NAMES

Identifier Full Name Identifier Full Name

0 player kappa nl 4 POMPEIA

1 hugh 5 Rembrant

2 Hyperborean-iro 6 SartreNL

3 Lucky7

Table 6: ACPC No-Limit Agent Names


