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Abstract

Hashing is a common method to reduce large, potentially infinite feature vectors
to a fixed-size table. In reinforcement learning, hashing is often used in conjunc-
tion with tile coding to represent states in continuous spaces. Hashing is also
a promising approach to value function approximation in large discrete domains
such as Go and Hearts, where feature vectors can be constructed by exhaustively
combining a set of atomic features. Unfortunately, the typical use of hashing in
value function approximation results in biased value estimates due to the possibil-
ity of collisions. Recent work in data stream summaries has led to the development
of the tug-of-war sketch, an unbiased estimator for approximating inner products.
Our work investigates the application of this new data structure to linear value
function approximation. Although in the reinforcement learning setting the use of
the tug-of-war sketch leads to biased value estimates, we show that this bias can
be orders of magnitude less than that of standard hashing. We provide empirical
results on two RL benchmark domains and fifty-five Atari 2600 games to highlight
the superior learning performance obtained when using tug-of-war hashing.

1 Introduction

Recent value-based reinforcement learning applications have shown the benefit of exhaustively gen-
erating features, both in discrete and continuous state domains. In discrete domains, exhaustive
feature generation combines atomic features into logical predicates. In the game of Go, Silver et al.
[19] showed that good features could be generated by enumerating all stone patterns up to a certain
size. Sturtevant and White [21] similarly obtained promising reinforcement learning results using a
feature generation method that enumerated all 2, 3 and 4-wise combinations of a set of 60 atomic
features. In continuous-state RL domains, tile coding [23] is a canonical example of exhaustive
feature generation; tile coding has been successfully applied to benchmark domains [22], to learn to
play keepaway soccer [20], in multiagent robot learning [4], to train bipedal robots to walk [18, 24]
and to learn mixed strategies in the game of Goofspiel [3].

Exhaustive feature generation, however, can result in feature vectors that are too large to be repre-
sented in memory, especially when applied to continuous spaces. Although such feature vectors are
too large to be represented explicitly, in many domains of interest they are also sparse. For example,
most stone patterns are absent from any particular Go position. Given a fixed memory budget, the
standard approach is to hash features into a fixed-size table, with collisions implicitly handled by
the learning algorithm; all but one of the applications discussed above use some form of hashing.

With respect to its typical use for linear value function approximation, hashing lacks theoretical
guarantees. In order to improve on the basic hashing idea, we turn to sketches: state-of-the-art
methods for approximately storing large vectors [6]. Our goal is to show that one such sketch,
the tug-of-war sketch [7], is particularly well-suited for linear value function approximation. Our
work is related to recent developments on the use of random projections in reinforcement learning
[11] and least-squares regression [16, 10]. Hashing, however, possesses a computational advantage
over traditional random projections: each feature is hashed exactly once. In comparison, even sparse

1



random projection methods [1, 14] carry a per-feature cost that increases with the size of the reduced
space. Tug-of-war hashing seeks to reconcile the computational efficiency that makes hashing a
practical method for linear value function approximation on large feature spaces, while preserving
the theoretical appeal of random projection methods.

A natural concern when using hashing in RL is that hash collisions irremediably degrade learning. In
this paper we argue that tug-of-war hashing addresses this concern by providing us with a low-error
approximation of large feature vectors at a fraction of the memory cost. To quote Sutton and Barto
[23], “Hashing frees us from the curse of dimensionality in the sense that memory requirements
need not be exponential in the number of dimensions, but need merely match the real demands of
the task.”

2 Background

We consider the reinforcement learning framework of Sutton and Barto [23]. An MDP M is a
tuple 〈S,A, P,R, γ〉, where S is the set of states, A is the set of actions, P : S × A × S → [0, 1]
is the transition probability function, R : S × A → R is the reward function and γ ∈ [0, 1] is
the discount factor. At time step t the agent observes state st ∈ S , selects an action at ∈ A
and receives a reward rt := R(st, at). The agent then observes the new state st+1 distributed
according to P (·|st, at). From state st, the agent’s goal is to maximize the expected discounted
sum of future rewards E

[∑∞
i=0 γ

iR(st+i, at+i)
]
. A typical approach is to learn state-action values

Qπ(s, a), where the stationary policy π : S ×A → [0, 1] represents the agent’s behaviour. Qπ(s, a)
is recursively defined as:

Qπ(s, a) := R(s, a) + γEs′∼P (·|s,a)

[∑
a′∈A

π(a′|s′)Qπ(s′, a′)

]
(1)

A special case of this equation is the optimal value function Q∗(s, a) := R(s, a) +
γEs′ [maxa′ Q

∗(s′, a′)]. The optimal value function corresponds to the value under an optimal
policy π∗. For a fixed π, The SARSA(λ) algorithm [23] learns Qπ from sample transitions
(st, at, rt, st+1, at+1). In domains where S is large (or infinite), learning Qπ exactly is imprac-
tical and one must rely on value function approximation. A common value function approxi-
mation scheme in reinforcement learning is linear approximation. Given φ : S × A → Rn
mapping state-action pairs to feature vectors, we represent Qπ with the linear approximation
Qt(s, a) := θt · φ(s, a), where θt ∈ Rn is a weight vector. The gradient descent SARSA(λ)
update is defined as:

δt ← rt + γθt · φ(st+1, at+1)− θt · φ(st, at)

et ← γλet−1 + φ(st, at)

θt+1 ← θt + αδtet , (2)

where α ∈ [0, 1] is a step-size parameter and λ ∈ [0, 1] controls the degree to which changes in
the value function are propagated back in time. Throughout the rest of this paper Qπ(s, a) refers to
the exact value function computed from Equation 1 and we use Qt(s, a) to refer to the linear ap-
proximation θt · φ(s, a); “gradient descent SARSA(λ) with linear approximation” is always implied
when referring to SARSA(λ). We call φ(s, a) the full feature vector and Qt(s, a) the full-vector
value function.

Asymptotically, SARSA(λ) is guaranteed to find the best solution within the span of φ(s, a), up to
a multiplicative constant that depends on λ [25]. If we let Φ ∈ R|S||A|×n denote the matrix of full
feature vectors φ(s, a), and let µ : S × A → [0, 1] denote the steady state distribution over state-
action pairs induced by π and P then, under mild assumptions, we can guarantee the existence and
uniqueness of µ. We denote by 〈·, ·〉µ the inner product induced by µ, i.e. 〈x, y〉µ := xTDy, where
x, y ∈ R|S||A| and D ∈ R|S||A|×|S||A| is a diagonal matrix with entries µ(s, a). The norm ‖·‖µ is
defined as

√
〈·, ·〉µ. We assume the following: 1) S and A are finite, 2) the Markov chain induced

by π and P is irreducible and aperiodic, and 3) Φ has full rank. The following theorem bounds the
error of SARSA(λ):
Theorem 1 (Restated from Tsitsiklis and Van Roy [25]). LetM = 〈S,A, P,R, γ〉 be an MDP and
π : S × A → [0, 1] be a policy. Denote by Φ ∈ R|S||A|×n the matrix of full feature vectors and
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by µ the stationary distribution on (S,A) induced by π and P . Under assumptions 1-3), SARSA(λ)
converges to a unique θπ ∈ Rn with probability one and

‖Φθπ −Qπ‖µ ≤
1− λγ
1− γ

‖ΠQπ −Qπ‖µ ,

where Qπ ∈ R|S||A| is a vector representing the exact solution to Equation 1 and
Π := Φ(ΦTDΦ)−1ΦTD is the projection operator.

Because Π is the projector operator for Φ, for any θ we have ‖Φθ −Qπ‖µ ≥ ‖ΠQπ −Qπ‖µ;
Theorem 1 thus implies that SARSA(1) converges to θπ = arg minθ ‖Φθ −Qπ‖µ.

2.1 Hashing in Reinforcement Learning

As discussed previously, it is often impractical to store the full weight vector θt in memory. A
typical example of this is tile coding on continuous-state domains [22], which generates a number
of features exponential in the dimensionality of the state space. In such cases, hashing can effec-
tively be used to approximate Qπ(s, a) using a fixed memory budget. Let h be a hash function
h : {1, . . . , n} → {1, . . . ,m}, mapping full feature vector indices into hash table indices, where
m� n is the hash table size. We define standard hashing features as the feature map φ̂(s, a) whose
ith component is defined as:

φ̂i(s, a) :=

n∑
j=1

I[h(j)=i]φj(s, a) , (3)

where φj(s, a) denotes the jth component of φ(s, a) and I[x] denotes the indicator function. We
assume that our hash function h is drawn from a universal family: for any i, j ∈ {1, . . . , n}, i 6= j,
Pr(h(i) = h(j)) ≤ 1

m .1 We define the standard hashing value function Q̂t(s, a) := θ̂t · φ̂(s, a),
where θ̂t ∈ Rm is a weight vector, and φ̂(s, a) is the hashed vector. Because of hashing collisions,
the standard hashing value function is a biased estimator of Qt(s, a), i.e., in general Eh[Q̂t(s, a)] 6=
Qt(s, a). For example, consider the extreme case where m = 1: all features share the same weight.
We return to the issue of the bias introduced by standard hashing in Section 4.1.

2.2 Tug-of-War Hashing

The tug-of-war sketch, also known as the Fast-AGMS, was recently introduced as a powerful method
for approximating inner products of large vectors [7]. The name “sketch” refers to the data struc-
ture’s function as a summary of a stream of data. In the canonical sketch setting, we summarize a
count vector θ ∈ Rn using a sketch vector θ̃ ∈ Rm. At each time step a vector φt ∈ Rn is received.
The purpose of the sketch vector is to approximate the count vector θt :=

∑t−1
i=0 φi. Given two hash

functions, h and ξ : {1, . . . , n} → {−1, 1}, φt is mapped to a vector φ̃t whose ith component is

φ̃t,i :=

n∑
j=1

I[h(j)=i]φt,jξ(j) (4)

The tug-of-war sketch vector is then updated as θ̃t+1 ← θ̃t + φ̃t. In addition to h being drawn
from a universal family of hash functions, ξ is drawn from a four-wise independent family of hash
functions: for all sets of four unique indices {i1, i2, i3, i4}, Prξ(ξ(i1) = k1, ξ(i2) = k2, ξ(i3) =
k3, ξ(i4) = k4) = 1

16 with k1 . . . k4 ∈ {−1, 1}. For an arbitrary φ ∈ Rn and its corresponding
tug-of-war vector φ̃ ∈ Rm, Eh,ξ[θ̃t · φ̃] = θt · φ: the tug-of-war sketch produces unbiased estimates
of inner products [7]. This unbiasedness property can be derived as follows. First let θ̃t =

∑t−1
i=0 φ̃i.

1While it may seem odd to randomly select your hash function, this can equivalently be thought as sampling
an indexing assignment for the MDP’s features. While a particular hash function may be well- (or poorly-)
suited for a particular MDP, it is hard to imagine how this could be known a priori. By considering a randomly
selected hash function (or random permutation of the features), we are simulating the uncertainty of using a
particular hash function on a never before encountered MDP.
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Then θ̃t · φ̃t′ =
∑t−1
i=0 φ̃i · φ̃t′ and

Eh,ξ[φ̃i · φ̃t′ ] = Eh,ξ

 n∑
j1=1

n∑
j2=1

I[h(j1)=h(j2)]φi,j1φt′,j2ξ(j1)ξ(j2)


Eξ[ξ(j1)ξ(j2)] =

{
1 if j1 = j2
0 otherwise (by four-wise independence)

The result follows by noting that I[h(j1)=h(j2)] is independent from ξ(j1)ξ(j2) given j1, j2.

3 Tug-of-War with Linear Value Function Approximation

We now extend the tug-of-war sketch to the reinforcement learning setting by defining the tug-of-war
hashing features as φ̃ : S ×A → Rm with φ̃i(s, a) :=

∑n
j=1 I[h(j)=i]φj(s, a)ξ(j). The SARSA(λ)

update becomes:

δ̃t ← rt + γθ̃t · φ̃(st+1, at+1)− θ̃t · φ̃(st, at)

ẽt ← γλẽt−1 + φ̃(st, at)

θ̃t+1 ← θ̃t + αδ̃tẽt. (5)

We also define the tug-of-war value function Q̃t(s, a) := θ̃t · φ̃(s, a) with θ̃t ∈ Rm and refer to
φ̃(s, a) as the tug-of-war vector.

3.1 Value Function Approximation with Tug-of-War Hashing

Intuitively, one might hope that the unbiasedness of the tug-of-war sketch for approximating inner
products carries over to the case of linear value function approximation. Unfortunately, this is not
the case. However, it is still possible to bound the error of the tug-of-war value function learned with
SARSA(1) in terms of the full-vector value function. Our bound relies on interpreting tug-of-war
hashing as a special kind of Johnson-Lindenstrauss transform [8].

We define a ∞-universal family of hash functions H such that for any set of indices i1, i2, . . . , il
Pr(h(i1) = k1, . . . , h(il) = kl) ≤ 1

|C |l , where C ⊂ N and h ∈ H : {1, . . . , n} → C .

Lemma 1 (Dasgupta et al. [8], Theorem 2). Let h : {1, . . . , n} → {1, . . . ,m} and ξ : {1, . . . , n} →
{−1, 1} be two independent hash functions chosen uniformly at random from∞-universal families
and let H ∈ {0,±1}m×n be a matrix with entries Hij = I[h(j)=i]ξ(j). Let ε < 1, δ < 1

10 ,
m = 12

ε2 log
(
1
δ

)
and c = 16

ε log
(
1
δ

)
log2

(
m
δ

)
. For any given vector x ∈ Rn such that ‖x‖∞ ≤

1√
c
,

with probability 1− 3δ, H satisfies the following property:

(1− ε) ‖x‖22 ≤ ‖Hx‖
2
2 ≤ (1 + ε) ‖x‖22 .

Lemma 1 states that, under certain conditions on the input vector x, tug-of-war hashing approxi-
mately preserves the norm of x. When δ and ε are constant, the requirement on ‖x‖∞ can be waived
by applying Theorem 1 to the normalized vector u = x

‖x‖2
√
c
. A clear discussion on hashing as

a Johnson-Lindenstrauss transform can be found in the work of Kane and Nelson [13], who also
improve Lemma 1 and extend it to the case where the family of hash functions is k-universal rather
than∞-universal.

Lemma 2 (Based on Maillard and Munos [16], Proposition 1). Let x1 . . . xK and y be vectors in
Rn. Let H ∈ {0,±1}m×n, ε, δ and m be defined as in Lemma 1. With probability at least 1− 6Kδ,
for all k ∈ {1, . . . ,K},

xk · y − ε ‖xk‖2 ‖y‖2 ≤ Hxk ·Hy ≤ xk · y + ε ‖xk‖2 ‖y‖2 .

Proof (Sketch). The proof follows the steps of Maillard and Munos [16]. Given two unit vectors
u, v ∈ Rn, we can relate (Hu) · (Hv) to ‖Hu+Hv‖22 and ‖Hu−Hv‖22 using the parallelogram
law. We then apply Lemma 1 to bound both sides of each squared norm and substitute xk for u and
y for w to bound Hxk ·Hy. Applying the union bound yields the desired statement.
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We are now in a position to bound the asymptotic error of SARSA(1) with tug-of-war hashing.
Given hash functions h and ξ defined as per Lemma 1, we denote by H ∈ Rm×n the matrix whose
entries are Hij := I[h(j)=i]ξ(j), such that φ̃(s, a) = Hφ(s, a). We also denote by Φ̃ := ΦHT the
matrix of tug-of-war vectors. We again assume that 1) S and A are finite, that 2) π and P induce an
irreducible, aperiodic Markov chain and that 3) Φ has full rank. For simplicity of argument, we also
assume that 4) Φ̃ := ΦHT has full rank; when Φ̃ is rank-deficient, SARSA(1) converges to a set of
solutions Θ̃π satisfying the bound of Theorem 2, rather than to a unique θ̃π .

Theorem 2. Let M = 〈S,A, P,R, γ〉 be an MDP and π : S × A → [0, 1] be a policy. Let
Φ ∈ R|S||A|×n be the matrix of full feature vectors and Φ̃ ∈ R|S||A|×m be the matrix of tug-of-
war vectors. Denote by µ the stationary distribution on (S,A) induced by π and P . Let ε < 1,
δ < 1, δ′ = δ

6|S||A| and m ≥ 12
ε2 log 1

δ′ . Under assumptions 1-4), gradient-descent SARSA(1) with

tug-of-war hashing converges to a unique θ̃π ∈ Rm and with probability at least 1− δ∥∥Φ̃θ̃π −Qπ
∥∥
µ
≤ ‖Φθπ −Qπ‖µ + ε ‖θπ‖2 sup

s∈S,a∈A
‖φ(s, a)‖2 ,

where Qπ is the exact solution to Equation 1 and θπ = arg minθ ‖Φθ −Qπ‖µ.

Proof. First note that Theorem 1 implies the convergence of SARSA(1) with tug-of-war hashing to
a unique solution, which we denote θ̃π . We first apply Lemma 2 to the set {φ(s, a) : (s, a) ∈ S×A}
and θπ; note that we can safely assume |S||A| > 1, and therefore δ′ < 1/10. By our choice of m,
for all (s, a) ∈ S×A, |Hφ(s, a) ·Hθπ−φ(s, a) ·θπ| ≤ ε ‖φ(s, a)‖2 ‖θπ‖2 with probability at least
1− 6|S||A|δ′ = 1− δ. As previously noted, SARSA(1) converges to θ̃π = arg minθ ‖Φ̃θ−Qπ‖µ;
compared to Φ̃θ̃π , the solution θπH := Φ̃Hθπ is thus an equal or worse approximation to Qπ . It
follows that∥∥Φ̃θ̃π −Qπ

∥∥
µ
≤

∥∥Φ̃θπH −Qπ
∥∥
µ
≤
∥∥Φ̃θπH − Φθπ

∥∥
µ

+
∥∥Φθπ −Qπ

∥∥
µ

=

√ ∑
s∈S,a∈A

µ(s, a)
[
Hφ(s, a) ·Hθπ − φ(s, a) · θπ

]2
+ ‖Φθπ −Qπ‖µ

≤
√ ∑
s∈S,a∈A

µ(s, a)
[
ε ‖φ(s, a)‖2 ‖θπ‖2

]2
+ ‖Φθπ −Qπ‖µ (Lemma 2)

≤ ε ‖θπ‖2 sup
s∈S,a∈A

‖φ(s, a)‖2 + ‖Φθπ −Qπ‖µ ,

as desired.

Our proof of Theorem 2 critically requires the use of λ = 1. A natural next step would be to attempt
to drop this restriction on λ. It also seems likely that the finite-sample analysis of LSTD with random
projections [11] can be extended to cover the case of tug-of-war hashing. Theorem 2 suggests that,
under the right conditions, the tug-of-war value function is a good approximation to the full-vector
value function. A natural question now arises: does tug-of-war hashing lead to improved linear
value function approximation compared with standard hashing? More importantly, does tug-of-war
hashing result in better learned policies? These are the questions we investigate empirically in the
next section.

4 Experimental Study

In the sketch setting, the appeal of tug-of-war hashing over standard hashing lies in its unbiasedness.
We therefore begin with an empirical study of the magnitude of the bias when applying different
hashing methods in a value function approximation setting.

4.1 Value Function Bias

We used standard hashing, tug-of-war hashing, and no hashing to learn a value function over a
short trajectory in the Mountain Car domain [22]. Our evaluation uses a standard implementation
available online [15].
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Figure 1: Bias and Mean Squared Error of value estimates using standard and tug-of-war hashing in
1,000 learning steps of Mountain Car. Note the log scale of the y axis.

We generated a 1,000-step trajectory using an ε-greedy policy [23]. For this fixed trajectory we
updated a full feature weight vector θt using SARSA(0) with γ = 1.0 and α = 0.01. We focus on
SARSA(0) as it is commonly used in practice for its ease of implementation and its faster update
speed in sparse settings. Parallel to the full-vector update we also updated both a tug-of-war weight
vector θ̃t and a standard hashing weight vector θ̂t, with the same values of γ and α. Both methods
use a hash table size of m = 100 and the same randomly selected hash function. This hash function
is defined as (ax + b) mod p mod m, where p is a large prime and a, b < p are random integers
[5]. At every step we compute the difference in value between the hashed value functions Q̃t(st, at)
and Q̂t(st, at), and the full-vector value function Qt(st, at). We repeated this experiment using 1
million hash functions selected uniformly at random. Figure 1 shows for each time step, estimates
of the magnitude of the biases E[Q̃t(st, at)] −Qt(st, at) and E[Q̂t(st, at)] −Qt(st, at) as well as
estimates of the mean squared errors E[(Q̃t(st, at)−Qt(st, at))2] and E[(Q̂t(st, at)−Qt(st, at))2]
using the different hash functions. To provide a sense of scale, the estimate of the value of the final
state when using no hashing is approximately −4; note that the y-axis uses a logarithmic scale.

The tug-of-war value function has a small, almost negligible bias. In comparison, the bias of stan-
dard hashing is orders of magnitude larger – almost as large as the value it is trying to estimate.
The mean square error estimates show a similar trend. Furthermore, the same experiment on the
Acrobot domain [22] yielded qualitatively similar results. Our results confirm the insights provided
in Section 2: the tug-of-war value function can be significantly less biased than the standard hashing
value function.

4.2 Reinforcement Learning Performance

Having smaller bias and mean square error in the Q-value estimates does not necessarily imply
improved agent performance. In reinforcement learning, actions are selected based on relative Q-
values, so a consistent bias may be harmless. In this section we evaluate the performance (cumulative
reward per episode) of learning agents using both tug-of-war and standard hashing.

4.2.1 Tile Coding

We first studied the performance of agents using each of the two hashing methods in conjunction
with tile coding. Our study is based on Mountain Car and Acrobot, two standard RL benchmark
domains. For both domains we used the standard environment dynamics [22]; we used the fixed
starting-state version of Mountain Car to reduce the variance in our results. We compared the two
hashing methods using ε-greedy policies and the SARSA(λ) algorithm.

For each domain and each hashing method we performed a parameter sweep over the learning rate
α and selected the best value which did not cause the value estimates to divergence. The Acrobot
state was represented using 48 6 × 6 × 6 × 6 tilings and the Mountain Car state, 10 9 × 9 tilings.
Other parameters were set to γ = 1.0, λ = 0.9, ε = 0.0; the learning rate was further divided by the
number of tilings.
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Figure 2: Performance of standard hashing and tug-of-war hashing in two benchmark domains. The
performance of the random agent is provided as reference.

We experimented with hash table sizes m ∈ [20, 1000] for Mountain Car and m ∈ [100, 2000] for
Acrobot. Each experiment consisted of 100 trials, sampling a new hash function for each trial. Each
trial consisted of 10,000 episodes, and episodes were restricted to 5,000 steps. At the end of each
trial, we disabled learning by setting α = 0 and evaluated the agent on an additional 500 episodes.

Figure 2 shows the performance of standard hashing and tug-of-war hashing as a function of the
hash table size. The conclusion is clear: when the hashed vector is small relative to the full vector,
tug-of-war hashing performs better than standard hashing. This is especially true in Acrobot, where
the number of features (over 62,000) necessarily results in harmful collisions.

4.2.2 Atari

We next evaluated tug-of-war hashing and standard hashing on a suite of Atari 2600 games. The
Atari domain was proposed as a game-independent platform for AI research by Naddaf [17]. Atari
games pose a variety of challenges for learning agents. The learning agent’s observation space is the
game screen: 160x210 pixels, each taking on one of 128 colors. In the game-independent setting,
agents are tuned using a small number of training games and subsequently evaluated over a large
number of games for which no game-specific tuning takes place. The game-independent setting
forces us to use features that are common to all games, for example, by encoding the presence
of color patterns in game screens; such an encoding is a form of exhaustive feature generation.
Different learning methods have been evaluated on the Atari 2600 platform [9, 26, 12]. We based
our evaluation on prior work on a suite of Atari 2600 games [2], to which we refer the reader for full
details on handling Atari 2600 games as RL domains. We performed parameter sweeps over five
training games, and tested our algorithms on fifty testing games.

We used models of contingency awareness to locate the player avatar [2]. From a given game,
we generate feature sets by exhaustively enumerating all single-color patterns of size 1x1 (single
pixels), 2x2, and 3x3. The presence of each different pattern within a 4x5 tile is encoded as a binary
feature. We also encode the relative presence of patterns with respect to the player avatar location.
This procedures gives rise to 569,856,000 different features, of which 5,000 to 15,000 are active at
a given time step.

We trained ε-greedy SARSA(0) agents using both standard hashing and tug-of-war hashing with
hash tables of size m=1,000, 5,000 and 20,000. We chose the step-size α using a parameter sweep
over the training games: we selected the best-performing α which never resulted in divergence in
the value function. For standard hashing, α = 0.01, 0.05, 0.2 for m = 1,000, 5,000 and 20,000,
respectively. For tug-of-war hashing, α = 0.5 across table sizes. We set γ = 0.999 and ε = 0.05.
Each experiment was repeated over ten trials lasting 10,000 episodes each; we limited episodes to
18,000 frames to avoid issues with non-terminating policies.
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Figure 3: Inter-algorithm score distributions over fifty-five Atari games. Higher curves reflect higher
normalized scores.

Accurately comparing methods across fifty-five games poses a challenge, as each game exhibits a
different reward function and game dynamics. We compared methods using inter-algorithm score
distributions [2]. For each game, we extracted the average score achieved by our agents over the
last 500 episodes of training, yielding six different scores (three per hashing method) per game.
Denoting these scores by sg,i, i = 1 . . . 6, we defined the inter-algorithm normalized score zg,i :=
(sg,i − rg,min)/(rg,max − rg,min) with rg,min := mini {sg,i} and rg,max := maxi {sg,i}. Thus
zg,i = 1.0 indicates that the ith score was the highest for game g, and zg,i = 0.0 similarly indicates
the lowest score. For each combination of hashing method and memory size, its inter-algorithm
score distribution shows the fraction of games for which the corresponding agent achieves a certain
normalized score or better.

Figure 3 compares the score distributions of agents using either standard hashing or tug-of-war
hashing for m = 1,000, 5,000 and 20,000. Tug-of-war hashing consistently outperforms standard
hashing across hash table sizes. For each m and each game, we also performed a two-tailed Welch’s
t-test with 99% confidence intervals to determine the statistical significance of the average score
difference between the two methods. For m = 1,000, tug-of-war hashing performed statistically
better in 38 games and worse in 5; for m = 5,000, it performed better in 41 games and worse in 7;
and for m = 20,000 it performed better in 35 games and worse in 5. Our results on Atari games
confirm what we observed on Mountain Car and Acrobot: in practice, tug-of-war hashing performs
much better than standard hashing. Furthermore, computing the ξ function took less than 0.3% of
the total experiment time, a negligible cost in comparison to the benefits of using tug-of-war hashing.

5 Conclusion

In this paper, we cast the tug-of-war sketch into the reinforcement learning framework. We showed
that, although the tug-of-war sketch is unbiased in the setting for which it was developed [7], the
self-referential component of reinforcement learning induces a small bias. We showed that this bias
can be much smaller than the bias that results from standard hashing and provided empirical results
confirming the superiority of tug-of-war hashing for value function approximation.

As increasingly more complex reinforcement learning problems arise and strain against the bound-
aries of practicality, so the need for fast and reliable approximation methods grows. If standard
hashing frees us from the curse of dimensionality, then tug-of-war hashing goes a step further by
ensuring, when the demands of the task exceed available resources, a robust and principled shift
from the exact solution to its approximation.

Acknowledgements
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Szepesvári for the help they provided with the theoretical aspects of this paper, as well as Adam
White and Rich Sutton for insightful discussions on hashing and tile coding. This research was
supported by the Alberta Innovates Technology Futures and the Alberta Innovates Centre for Ma-
chine Learning at the University of Alberta. Invaluable computational resources were provided by
Compute/Calcul Canada.

8



References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
Journal of Computer and System Sciences, 66(4):671–687, 2003.

[2] Marc G. Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness using Atari
2600 games. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[3] Michael Bowling and Manuela Veloso. Scalable learning in stochastic games. In AAAI Workshop on
Game Theoretic and Decision Theoretic Agents, 2002.

[4] Michael Bowling and Manuela Veloso. Simultaneous adversarial multi-robot learning. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence, pages 699–704, 2003.

[5] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences, 18(2):143–154, 1979.

[6] Graham Cormode. Sketch techniques for massive data. In Graham Cormode, Minos Garofalakis, Pe-
ter Haas, and Chris Jermaine, editors, Synopses for Massive Data: Samples, Histograms, Wavelets and
Sketches, Foundations and Trends in Databases. NOW publishers, 2011.

[7] Graham Cormode and Minos Garofalakis. Sketching streams through the net: Distributed approximate
query tracking. In Proceedings of the 31st International Conference on Very Large Data Bases, pages
13–24, 2005.

[8] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss transform. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, pages 341–350, 2010.

[9] Carlos Diuk, A. Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient re-
inforcement learning. In Proceedings of the Twenty-Fifth International Conference on Machine Learning,
pages 240–247, 2008.

[10] Mahdi Milani Fard, Yuri Grinberg, Joelle Pineau, and Doina Precup. Compressed least-squares regression
on sparse spaces. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI,
2012.

[11] Mohammad Ghavamzadeh, Alessandro Lazaric, Oldaric-Ambrym Maillard, and Rémi Munos. LSTD
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