
No-Regret Learning in Extensive-Form Games with Imperfect Recall

Marc Lanctot1 LANCTOT@UALBERTA.CA
Richard Gibson1 RGGIBSON@CS.UALBERTA.CA
Neil Burch1 NBURCH@UALBERTA.CA
Martin Zinkevich2 MAZ@YAHOO-INC.COM
Michael Bowling1 BOWLING@CS.UALBERTA.CA
1University of Alberta, Edmonton, Alberta, Canada T6G 2E8
2Yahoo! Inc., Sunnyvale, CA, USA, 94089

Abstract
Counterfactual Regret Minimization (CFR) is
an efficient no-regret learning algorithm for de-
cision problems modeled as extensive games.
CFR’s regret bounds depend on the requirement
of perfect recall: players always remember infor-
mation that was revealed to them and the order in
which it was revealed. In games without perfect
recall, however, CFR’s guarantees do not apply.
In this paper, we present the first regret bound for
CFR when applied to a general class of games
with imperfect recall. We also show that CFR
applied to any abstraction belonging to our class
results in a regret bound not just for the abstract
game, but for the full game as well. We verify
our theory and show how imperfect recall can be
used to trade a small increase in regret for a sig-
nificant reduction in memory in three domains:
die-roll poker, phantom tic-tac-toe, and Bluff.

1. Introduction
Many real-world problems can be modeled as a repeated
decision-making task. For problems involving multiple
agents, one can model the repeated task as a normal-form
game. When the task incorporates sequential decisions in-
volving imperfect information or stochastic events, an ex-
tensive game is a useful alternative. In such decision prob-
lems, a typical goal is to minimize regret: the amount of
utility lost by playing a past sequence of strategies, versus
playing the best, stationary strategy in hindsight.

In this paper, we consider the problem of minimizing regret
in an extensive game. A common approach to achieving
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low regret in extensive games is the Counterfactual Regret
Minimization (CFR) (Zinkevich et al., 2008) algorithm.
CFR uses a regret minimizer at every decision point with
an alternative notion of regret, which provably minimizes
regret in the entire extensive game. However, convergence
is limited to games exhibiting perfect recall: players never
forget information that was revealed to them, nor the or-
der in the which the information was revealed. For games
with imperfect recall, CFR’s original analysis provides no
general guarantees.

Imperfect recall brings about a number of complications. In
games with perfect recall, every mixed strategy (probabil-
ity distribution over pure strategies) has a utility-equivalent
behavioral strategy (probability distribution over actions at
each decision point) (Kuhn, 1953). While certain loss-
less imperfect recall games share this property (Kaneko &
Kline, 1995), it is not true for imperfect recall games in
general (Piccione & Rubinstein, 1996). In addition, the de-
cision problem of determining if a player can assure them-
self a certain payoff in an imperfect recall game is NP-
complete (Koller & Megiddo, 1992). Two-player zero-sum
games can be solved by constructing an appropriate linear
program (Koller et al., 1994) or minimizing regret (Zinke-
vich et al., 2008), provided the game has perfect recall.
Without perfect recall, however, the problem becomes ex-
ponential in the worst case (Koller et al., 1994).

On the other hand, imperfect recall extensive games are
more versatile than perfect recall games for modelling large
real-world problems. While perfect recall requires all past
information to be remembered, imperfect recall allows ir-
relevant information to be forgotten so that the size of the
game is smaller. As CFR’s memory requirements are lin-
ear in the size of the game, more games become feasible
through imperfect recall. Despite the complications above,
CFR has empirically been shown to work well when ap-
plied to imperfect recall abstractions of Texas Hold’em
poker (Waugh et al., 2009b), but there is currently no theory
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to suggest why this is so.

This paper presents theoretical groundings for applying
CFR to games exhibiting imperfect recall. We define a gen-
eral class of imperfect recall games and provide a bound on
CFR’s regret in such games. For a subset of this class, CFR
minimizes average regret in the extensive game. Moreover,
our results also provide regret guarantees when applying
CFR to an abstract game, provided the abstract game be-
longs to our general class. We test our theory in three differ-
ent domains: die-roll poker, phantom tic-tac-toe, and Bluff.
To the best of our knowledge, this work demonstrates the
first theoretically-grounded, practical use of imperfect re-
call in extensive games.

2. Background
An extensive-form game Γ with imperfect information (Os-
borne & Rubinstein, 1994) is a tuple 〈N,A,H,Z, P, σc,
u, I〉, where N is a finite set of players. A is a finite set
of actions. H is a finite set of histories: a subset of the
set of sequences of elements in A. A prefix of a history
h′ ∈ H is a history h ∈ H where h′ begins with the se-
quence h; we denote prefix histories by h v h′. For ev-
ery h ∈ H , define A(h) = {a : a ∈ A, ha ∈ H}, the
set of valid actions at history h; P (h) ∈ N ∪ {c} is the
player to act at the history h, or chance if P (h) = c; and
Hi = {h | h ∈ H,P (h) = i}. Z ⊆ H is the set of termi-
nal histories. A terminal history z ∈ Z is a history where
there does not exist any history h ∈ H , h 6= z such that
z v h. The utility function ui : Z → R gives the utility to
player i ∈ N at each terminal history. If |N | = 2 and for
all z ∈ Z,

∑
i∈N ui(z) = 0, we say the game is zero-sum.

For each player i ∈ N , Ii is a partition of Hi with the
property that A(h) = A(h′) whenever h and h′ are in the
same member of the partition. We call Ii the information
partition of player i, and a set I ∈ Ii is an information
set for player i. A player, when taking actions, cannot dis-
tinguish between two histories in the same information set.
For I ∈ Ii, we denote A(I) as the set A(h) for any h ∈ I .
Define I(h) to be the information set containing h. In this
paper, we restrict ourselves to games where players can-
not reach the same information set twice in a single game.
Thus, we assume that for all i ∈ N and h, h′ ∈ Hi,

h v h′, h 6= h′ ⇒ I(h) 6= I(h′). (1)

Furthermore, σc is the fixed “strategy” of the special player
chance. σc(h, a) gives the probability that chance event a
occurs at h. For all h ∈ Hc,

∑
a∈A(h) σc(h, a) = 1 and the

decisions at any h are independent of the decision at any
other h′ 6= h.

Given a history h, defineXi(h) to be the sequence of infor-
mation set, action pairs such that (I, a) ∈ Xi(h) if I ∈ Ii

and there exists h′ v h such that h′ ∈ I and h′a v h. The
order of the pairs in Xi(h) is the order in which they occur
in h. Define X(h) to be the sequence of information set,
action pairs belonging to all players in the order in which
they occur in h, and X−i(h) similarly, by removing player
i’s information set, action pairs from X(h). Also, define
X(h, h′) to be the sequence of information set, action pairs
belonging to all players that start at h and end at h′ when
h v h′; if h 6v h′, X(h, h′) is defined to be the empty
sequence. Xi(h, h

′) and X−i(h, h′) are similarly defined.

Definition 1 An extensive game has perfect recall if for
every player i ∈ N , for every information set I ∈ Ii, for
any h, h′ ∈ I : Xi(h) = Xi(h

′). Otherwise, the game has
imperfect recall.

Intuitively, with perfect recall every player has an infallible
memory: they cannot “forget” anything during a play of the
game that they once knew. Hence, what a player knows at
I is a composition of what the player has discovered in the
past up to this point and the precise order in which infor-
mation was discovered. Note that every perfect recall game
satisfies equation (1), but not every imperfect recall game
does.

A (behavioral) strategy σi for player i is a function such
that for each history h ∈ Hi, σi(h) is a probability distri-
bution over A(h). Furthermore, it is required that σi(h) =
σi(h

′) for all h, h′ ∈ I , and we denote that as σi(I). The
set of all such strategies for player i is denoted by Σi. A
strategy profile σ ∈ Σ is a collection of strategies, one
for each player, i.e. in a two-player game σ = (σ1, σ2).
By notational convention, σ−i refers to the set of strategies
including every strategy in σ except player i’s strategy.

For any σ ∈ Σ, i ∈ N ∪ {c}, and h ∈ H , define
πσi (h) =

∏
h′avh,P (h′)=i σi(h

′, a) to be the probability
that player i plays to reach history h under σ. We can then
define πσ(h) =

∏
i∈N∪{c} π

σ
i (h) to be the probability that

history h is reached under σ. Let πσ−i(h) be the product of
all players’ contribution (including chance) except that of
player i. Furthermore, let πσi (h, h′) be the probability of
player i playing to reach history h′ after h, given h has oc-
curred. Let πσ(h, h′) and πσ−i(h, h

′) be defined similarly.
Finally, the expected utility of a strategy profile σ for player
i is

ui(σ) = Ez∈Z [ui(z)] =
∑
z∈Z

ui(z)π
σ(z).

We will say that a game Γ′ = 〈N,A′, H, Z, P, σc, u, I ′〉
is an abstraction, or an abstract game, of Γ =
〈N,A,H,Z, P, σc, u, I〉 if for all i ∈ N and h, k ∈ Hi,
A′(h) ⊆ A(h), and I(h) = I(k) implies I ′(h) = I ′(k). In
this paper, we only consider abstractions where A = A′. A
typical use of abstraction is to reduce the size of the game
by ensuring that |I ′| < |I|.
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3. Example: Die-Roll Poker
We now introduce a game that we will use as a running
example throughout the paper.

Die-roll poker (DRP) is a simplified two-player poker
game that uses dice rather than cards. To begin, each player
antes one chip to the pot. There are two betting rounds,
where at the beginning of each round, players roll a pri-
vate six-sided die. The game has imperfect information
due to the players not seeing the result of the opponent’s
die rolls. During a betting round, a player may fold (forfeit
the game), call (match the current bet), or raise (increase
the current bet) by a fixed number of chips, with a maxi-
mum of two raises per round. In the first round, raises are
worth two chips, whereas in the second round, raises are
worth four chips. If both players have not folded by the
end of the second round, a showdown occurs where the
player with the largest sum of their two dice wins all of the
chips in the pot.

DRP is naturally a game with perfect recall; players re-
member the exact sequence of bets made and the exact out-
come of each die roll from both rounds. However, consider
an imperfect recall version of DRP, DRP-IR, where at the
beginning of the second round, both players forget their
first die roll and only know the sum of their two dice. DRP-
IR is an abstraction of DRP where any two histories are in
the same abstract information set if and only if the sum of
the player’s private dice is the same and the sequence of
betting is the same. DRP-IR has imperfect recall since his-
tories that were distinguishable in the first round (for exam-
ple, a roll of 1 and a roll of 4) are no longer distinguishable
in the second round (for example, a roll of 1 followed by a
roll of 5, and a roll of 4 followed by a roll of 2).

4. Counterfactual Regret Minimization
Given a sequence of strategy profiles σ1, σ2, ..., σT , the
(external) regret for player i,

RTi = max
σ′∈Σi

T∑
t=1

(
ui(σ

′, σt−i)− ui(σti , σt−i)
)
,

is the amount of utility player i could have gained had she
played the best single strategy in hindsight for all time steps
t ∈ {1, 2, ..., T}. An algorithm minimizes regret, or is a
no-regret algorithm, for player i if the average positive
regret approaches zero; i.e., limT→∞RT,+i /T = 0, where
x+ = max{x, 0}. Having no regret is a desirable property.
For example, it is well known that in a zero-sum game, if
both players’ average regret is bounded above by ε, then
the average of the strategy profiles generated is a 2ε-Nash
equilibrium.

Counterfactual Regret Minimization (CFR) is an itera-

tive no-regret learning algorithm for extensive-form games
having perfect recall. On each iteration t, CFR recursively
traverses the entire game tree, computing the expected util-
ity for player i at each information set I ∈ Ii under the
current profile σt, assuming player i plays to reach I . This
expectation is the counterfactual value for player i,

vi(σ, I) =
∑
z∈ZI

ui(z)π
σ
−i(z[I])πσ(z[I], z),

where ZI is the set of terminal histories passing through
I and z[I] is the prefix of z contained in I (z[I] is unique
by equation (1)). For each action a ∈ A(I), these val-
ues determine the counterfactual regret at iteration t,
rti(I, a) = vi(σ

t
I→a, I) − vi(σ

t, I), where σI→a is the
profile σ except at I , action a is always taken. The regret
rti(I, a) measures how much player i would rather play ac-
tion a at I than play σt. Finally, σt is updated by applying
regret matching (Hart & Mas-Colell, 2000) to the imme-
diate counterfactual regrets, RTi (I, a) =

∑T
t=1 r

t
i(I, a),

according to

σT+1(I, a) =
RT,+i (I, a)∑

b∈A(I)R
T,+
i (I, b)

,

with actions chosen uniformly at random when the denom-
inator is zero. Regret matching is a no-regret learner that
minimizes the per-information set immediate counterfac-
tual regret (Zinkevich et al., 2008),

max
a∈A(I)

RTi (I, a)

T
≤

∆i

√
|A(I)|√
T

, (2)

where ∆i = maxz,z′∈Z ui(z) − ui(z′). In games having
perfect recall, minimizing the immediate counterfactual re-
grets at every information set in turn minimizes average
regret, RTi /T . This is because perfect recall implies that
the regret is bounded by the sum of the positive parts of the
immediate counterfactual regrets (Zinkevich et al., 2008),

RTi ≤
∑
I∈Ii

max
a∈A(I)

RT,+i (I, a), (3)

and thus
RTi
T
≤

∆i|Ii|
√
|Ai|√

T
, (4)

where |Ai| = maxI∈Ii |A(I)|. CFR must store the imme-
diate counterfactual regret for each information set, action
pair, and thus CFR’s memory requirements areO(|Ii||Ai|).

While equation (2) still holds in imperfect recall games,
equation (3) and consequently equation (4) are not guar-
anteed to hold. An example game where CFR would ex-
hibit high regret is provided in Section 7. Consequently,
the regret for playing according to the CFR algorithm is
unknown in general for imperfect recall games. However,
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the advantage of applying CFR to DRP-IR, for example, is
that this imperfect recall game contains fewer information
sets than the full game, and thus less memory is required.
Although DRP is a toy example and is small enough to run
CFR on the full game, DRP is useful for understanding the
concepts in the rest of this paper.

5. CFR with Imperfect Recall
In this section, we investigate the application of CFR to
games with imperfect recall. We begin by showing that
CFR minimizes regret for a class of games that we call
“well-formed games.” We then present a bound on the av-
erage regret for a more general class of imperfect recall
games that we call “skew well-formed games.”

5.1. Well-formed Games

For games Γ = 〈N,A,H,Z, P, σc, u, I〉 and Γ̆ =
〈N,A,H,Z, P, σc, u, Ĭ〉, we say that Γ̆ is a perfect recall
refinement of Γ if Γ̆ has perfect recall and Γ is an abstrac-
tion of Γ̆. The information available to players in Γ̆ is never
forgotten, and is at least as informative as the information
available to them in Γ. For example, DRP is a perfect recall
refinement of DRP-IR. Every game has at least one perfect
recall refinement by simply making Γ̆ a perfect information
game (Ĭ = {h} for all Ĭ ∈ Ĭi). Furthermore, a perfect re-
call game is a perfect recall refinement of itself. For I ∈ Ii,
we define

P̆(I) = {Ĭ | Ĭ ∈ Ĭi, Ĭ ⊆ I}

to be the set of all information sets in Ĭi that are subsets of
I . Note that our notion of refinement is similar to the one
described by Kaneko & Kline (1995). Our definition dif-
fers in that we consider any possible refinement, whereas
Kaneko & Kline consider only the coarsest such refine-
ment.

Definition 2 For a game Γ and a perfect recall refinement
Γ̆, we say that Γ is a well-formed game with respect to Γ̆ if
for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), there exists a bijection
φ : ZĬ → ZĬ′ and constants kĬ,Ĭ′ , `Ĭ,Ĭ′ ∈ [0,∞) such that
for all z ∈ ZĬ :

(i) ui(z) = kĬ,Ĭ′ui(φ(z)),

(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),

(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) In Γ, Xi(z[Ĭ], z) = Xi(φ(z)[Ĭ ′], φ(z)).

We say that Γ is a well-formed game if it is well-formed
with respect to some perfect recall refinement.

Recall that ZI is the set of terminal histories containing a
prefix in the information set I , and that z[I] is that prefix.
Intuitively, a game is well-formed if for each information
set I ∈ Ii, the structures around each Ĭ , Ĭ ′ ∈ P̆(I) of some
perfect recall refinement are isomorphic across four condi-
tions. Conditions (i) and (ii) state that the corresponding
utilities and chance frequencies at each terminal history are
proportional. Condition (iii) asserts that the opponents can
never distinguish the corresponding histories at any point in
Γ. Finally, condition (iv) states that player i cannot distin-
guish between corresponding histories from Ĭ and Ĭ ′ until
the end of the game.

Consider again DRP as a perfect recall refinement of DRP-
IR. In DRP, the available actions are independent of dice
outcomes, and the final utilities are only dependent on the
final sum of the players’ dice. Therefore, in DRP the utili-
ties are equivalent between, for example, the terminal his-
tories where player i rolled a 1 followed by a 5, and the
terminal histories where player i rolled a 4 followed by a
2 (condition (i)). In addition, the chance probabilities of
reaching each terminal history are equal (condition (ii)).
Furthermore, the opponents can never distinguish between
two isomorphic histories since player i’s rolls are private
(condition (iii)). Finally, in DRP-IR, player i never remem-
bers the outcome of the first roll from the second round on
(condition (iv)). Thus, DRP-IR is well-formed with respect
to DRP, with constants kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1.

Any perfect recall game is well-formed with respect to it-
self since P̆(I) = {I}, φ equal to the identity bijection, and
kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1 satisfies Definition 2. However, many
imperfect recall games are also well-formed, with DRP-IR
being one example. An additional example is presented in
Section 6.

We now show that CFR can be applied to any well-formed
game to minimize average regret. A sketch of the proof is
described below, while a full proof is provided in an ex-
tended version of this paper (Lanctot et al., 2012).

Theorem 1 If Γ is well-formed with respect to Γ̆, then the
average regret in Γ̆ for player i of choosing strategies ac-
cording to CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|Ai|√

T
,

where K =
∑
I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ .

Proof sketch. One can show that conditions (i) to (iv) of
Definition 2 imply that the positive regrets are proportional
between any two information sets in Γ̆ that are merged in
the well-formed game, Γ. In other words, for all I ∈ Ii,
Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I),

RT,+i (Ĭ , a) = kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a).
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Since regrets between Γ and Γ̆ are additive, i.e.,

RTi (I, a) =
∑

Ĭ∈P̆(I)

RTi (Ĭ , a) for all I ∈ Ii,

the proportionality implies that minimizing regret at each
I ∈ Ii minimizes regret at each Ĭ ∈ Ĭi. Because Γ̆ has
perfect recall, applying equation (3) gives the result. �

Since the strategy space is more expressive in Γ̆ than in Γ
(Σ ⊆ Σ̆), RTi ≤ R̆Ti and thus it immediately follows that
the average regret in Γ is minimized. In the case when Γ
has perfect recall, because Γ is well-formed with respect
to itself, Theorem 1 with K = |Ii| is a direct generaliza-
tion of the original CFR bound in equation (4). Theorem
1 not only guarantees regret minimization for perfect recall
games, but also for well-formed imperfect recall games.

5.2. Skew Well-formed Games

We now present a generalization of well-formed games to
which a regret bound can still be derived.

Definition 3 For a game Γ and a perfect recall refinement
Γ̆, we say that Γ is a skew well-formed game with respect
to Γ̆ if for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), there exists a
bijection φ : ZĬ → ZĬ′ and constants kĬ,Ĭ′ , δĬ,Ĭ′ , `Ĭ,Ĭ′ ∈
[0,∞) such that for all z ∈ ZĬ :

(i)
∣∣∣ui(z)− kĬ,Ĭ′ui(φ(z))

∣∣∣ ≤ δĬ,Ĭ′ ,
(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),

(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) In Γ, Xi(z[Ĭ], z) = Xi(φ(z)[Ĭ ′], φ(z)).

We say that Γ is a skew well-formed game if it is skew well-
formed with respect to some perfect recall refinement.

The only difference between Definitions 2 and 3 is in con-
dition (i). While utilities must be exactly proportional in
a well-formed game, in a skew well-formed game they
must only be proportional up to a constant δĬ,Ĭ′ . Note
that any well-formed game is skew well-formed by setting
δĬ,Ĭ′ = 0.

For example, consider a new version of DRP called Skew-
DRP(δ) with slightly modified payouts at the end of the
game. Whenever the game reaches a showdown, player 1
receives a bonus δ times the number of chips in the pot from
player 2 if player 1’s second die roll was even; otherwise,
no bonus is awarded. The pot is then awarded to the player
with the highest dice sum as usual. Analogously, define
Skew-DRP-IR(δ) to be the imperfect recall abstraction of
Skew-DRP(δ) where in the second round, players only re-
member the sum of their two dice. Now, Skew-DRP-IR(δ)

is not well-formed with respect to Skew-DRP(δ). To see
this, note that the utilities resulting from the rolls 1,5 and
the rolls 4,2 and the same sequence of betting are not ex-
actly proportional because the second roll 5 is odd but 2
is even (utilities are off by δ times the pot size). How-
ever, Skew-DRP-IR(δ) is skew well-formed with respect to
Skew-DRP(δ) with δĬ,Ĭ′ = δ times the maximum pot size
attainable from I .

Unfortunately, there is no guarantee that regret will be min-
imized by CFR in a skew well-formed game. However, we
can still bound regret in a predictable manner according to
the degree in which the utilities are skewed:

Theorem 2 If Γ is skew well-formed with respect to Γ̆, then
the average regret in Γ̆ for player i of choosing strategies
according to CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|Ai|√

T
+
∑
I∈Ii

|P̆(I)|δI ,

where K =
∑
I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ and δI =

maxĬ,Ĭ′∈P̆(I) δĬ,Ĭ′`Ĭ,Ĭ′ .

The proof is similar to that of Theorem 1. Theorem 2 shows
that as T approaches infinity, the bound on our regret ap-
proaches

∑
I∈Ii |P̆(I)|δI . Our experiments in Section 6

demonstrate that as the skew δ grows, so does our regret in
Skew-DRP(δ) after a fixed number of iterations.

Remarks. Theorems 1 and 2 are, to our knowledge, the
first to provide such theoretical guarantees in imperfect re-
call settings. However, these results are also relevant with
regards to regret in the full game when CFR is applied to
an abstraction. Recall that if Γ has perfect recall, then Γ is
a perfect recall refinement of any (skew) well-formed ab-
stract game. Thus, if we choose an abstraction that yields
a (skew) well-formed game, then applying CFR to the ab-
stract game achieves a bound on the average regret in the
full game, Γ. This is true regardless of whether the abstrac-
tion exhibits perfect recall or imperfect recall. Previous
counterexamples show that abstraction in general provides
no guarantees in the full game (Waugh et al., 2009a). In
contrast, our results show that applying CFR to an abstract
game leads to bounded regret in the full game, provided
we restrict ourselves to (skew) well-formed abstractions. If
such an abstract game is much smaller than the full game, a
significant amount of memory is saved when running CFR.

6. Empirical Evaluation
To complement our theoretical results, we apply CFR to
both players simultaneously in several zero-sum imperfect
recall (abstract) games, and measure the sum of the average
regrets for both players in a perfect recall refinement (the
full game). Along with the small DRP domain and its vari-
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ants, we also consider the challenging domains of phantom
tic-tac-toe and Bluff, which we now describe.

Phantom tic-tac-toe. As in regular tic-tac-toe, phantom
tic-tac-toe (PTTT) is played on a 3-by-3 board, initially
empty, where the goal is to claim three squares along the
same row, column, or diagonal. However, in PTTT, play-
ers’ actions are private. Each turn, a player attempts to take
a square of their choice. If they fail due to the opponent
having taken that square on a previous turn, the same player
keeps trying to take an alternative square until they suc-
ceed. Players are not informed about how many attempts
the opponent made before succeeding. The game ends im-
mediately if there is ever a connecting line of squares be-
longing to the same player. The winner receives a payoff
of +1, while the losing player receives −1. In PTTT, the
total number of histories |H| ≈ 1010.

Bluff. Bluff, also known as Liar’s Dice, Dudo, and Perudo,
is a dice-bidding game. In our version, Bluff(D1,D2),
each die has six sides with faces 1 to 6. Each player i rolls
Di of these dice and looks at them without showing them to
the opponent. Each round, players alternate by bidding on
the outcome of all dice in play until one player claims that
the other is bluffing (i.e., claims that the bid does not hold).
A bid consists of a quantity of dice and a face value. A
face of 6 is considered “wild” and counts as matching any
other face. For example, the bid 2x5 represents the claim
that there are at least two dice with a face of 5 (or 6) among
both players’ dice. To place a new bid, the player must in-
crease either the quantity or face value of the current bid;
in addition, lowering the face is allowed if the quantity is
increased. The player calling bluff wins the round if the
opponent’s last bid is incorrect, and loses otherwise. The
losing player removes one of their dice from the game and
a new round begins, starting with the player who won the
previous round. When a player has no more dice left, they
have lost the game. A utility of +1 is given for a win and
−1 for a loss. In this paper, we restrict ourselves to the
case where D1 = D2 = 2. Note that since Bluff(2,2) is
a multi-round game, the expected values of Bluff(1,1) are
precomputed for payoffs at the leaves of Bluff(2,1), which
is then solved for leaf payoffs in the full Bluff(2,2) game.
In Bluff(2,2), the total number of histories |H| ≈ 1010.

We consider several different imperfect recall abstractions
for DRP, Skew-DRP(δ), PTTT, and Bluff. For the DRP
games, we apply DRP-IR and Skew-DRP-IR(δ) respec-
tively as described in Section 5. Our PTTT and Bluff exper-
iments, however, also investigate the effects of imperfect
recall beyond skew well-formed games. In the full, perfect
recall version of PTTT, each player remembers the order of
every failed and every successful move she makes through-
out the entire game. In our first abstract game, FOSF, play-
ers forget the order of successive failures within the same

Table 1. DRP, PTTT, and Bluff game sizes and properties. Here,
|σ| represents the total number of information set, action pairs for
both players.

Game Abstr. Well-for. |σ| Savings
DRP None Yes 2610 —
DRP DRP-IR Yes 860 67.05%

PTTT None Yes 11695314 —
PTTT FOSF Yes 9347010 20.08%
PTTT FOI No 1147530 90.19%
PTTT FOS No 1484168 87.31%
PTTT FOE No 47818 99.59%
Bluff None Yes 704643030 —
Bluff r = 10 No 295534218 58.06%
Bluff r = 8 No 108323418 84.63%
Bluff r = 6 No 22518468 96.80%
Bluff r = 4 No 2329068 99.67%
Bluff r = 3 No 543900 99.92%
Bluff r = 2 No 97608 99.97%
Bluff r = 1 No 12600 99.99%

turn. Clearly, there is an isomorphism between any two
merged information sets Ĭ , Ĭ ′ ∈ P̆(I) since the order of
the actions does not affect the available future moves or
utilities. Players still remember which turn each success
and each failure occurred, and so the opponent’s sequences
of actions must be equal across the isomorphism. Thus,
FOSF is well-formed. Our remaining PTTT abstractions,
however, are not even skew well-formed. In FOI, play-
ers independently remember the sequence of failures and
the sequence of successful actions, but not how the actions
interleave. In FOS, players remember the order of failed
actions, but not the order of successes. Finally, in FOE,
players only know what actions they have taken and re-
member nothing about the order in which they were taken.
FOI, FOS, and FOE are not skew well-formed because no
isomorphism can preserve the order of the opponent’s pre-
vious information set, action pairs (breaking condition (iii)
of Definitions 2 and 3). In Bluff, we use abstractions de-
scribed by Neller and Hnath (2011) that force players to
forget everything except the last r bids. Similarly, these
abstract games are not skew well-formed because the play-
ers forget information that the opponent could previously
distinguish. The size of each DRP, PTTT, and Bluff game
is given in Table 1, where we define |σ| = |{(I, a) : i ∈
N, I ∈ Ii, a ∈ A(I)}| to be the total number of infor-
mation set, action pairs for all players. Note that Skew-
DRP(δ) is the same size as DRP regardless of the skew,
and recall that CFR requires space linear in |σ|.

For each game, we ran CFR on both players, meaning that
each player’s opponent was an identical copy of the same
no-regret learner. Similar to Zinkevich et al. (2008), we
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Figure 1. Sum of average positive regrets for both players as iterations increase for DRP-IR and Skew-DRP-IR(δ) (left), abstract games
in PTTT (middle), and abstract games in Bluff (right). Each graph uses a log scale on both axes. The vertical axes represent the sum of
average positive regrets for both players in the corresponding full unabstracted game: (RT,+

1 +RT,+
2 )/T . The horizontal axes represent

iterations T . In these graphs, P.R. is an abbreviation for perfect recall, and both FSOF and DRP-IR are well-formed.

used the chance sampling variant of CFR. The sum of the
average positive regrets for each player over number of it-
erations is shown in Figure 1. The Skew-DRP-IR(δ) ex-
periments show that as δ increases, so does the regret as
predicted by Theorem 2, though

∑
I∈Ii

∣∣∣P̆(I)
∣∣∣ δI appears

to be a very loose bound on the final regret. In PTTT,
regret diverges from zero for FOI, FOS, and FOE, where
FOS appears to provide slightly better strategies than FOI
and FOE. While our theory cannot explain why FOS per-
forms better, this does match our intuition that remember-
ing information about the opponent’s moves is important.
For a small increase in average regret, FOS reduces the
space required by 87% compared to FOSF’s 20% reduc-
tion. Note that for both DRP and PTTT, running CFR on
the full, perfect recall game achieves the same regret as in
the well-formed abstractions (Skew-DRP-IR(0) and FSOF)
and is thus not shown. In Bluff, we see that regret con-
sistently worsens as fewer previous bids are remembered.
This suggests that a result similar to Theorem 2 for skew-
well-formed games may hold if condition (iii) of Defini-
tion 2 is less constrained, though the proper formulation
for such a relaxation remains unclear. Nonetheless, choos-
ing r = 8 saves 85% of the memory with only a very small
increase in average regret after millions of iterations.

7. Discussion
Well-formed games are described by four conditions pro-
vided in Definition 2. Recall that Koller & Megiddo (1992)
prove that determining a player’s guaranteed payoff in an
imperfect recall game is NP-complete. However, Koller
& Megiddo’s NP-hardness reduction creates an imperfect
recall game that breaks conditions (i), (iii), and (iv) of Def-
inition 2. In this section, we discuss the following question:
For minimizing regret, how important is it to satisfy each
individual condition of Definition 2?

Skew well-formed games and Theorem 2 show that one can
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Figure 2. A zero-sum game with imperfect recall where CFR does
not minimize average regret. The utilities for player 1 are given
at the terminal histories, where ξ ∈ (0, 1). Nodes connected by
a bold, dashed curve are in the same information set for player 1
(player 2 has perfect information).

relax condition (i) of Definition 2 and still derive a bound
on the average regret. In addition, most of our PTTT and
Bluff abstractions from the previous section do not satisfy
condition (iii), but CFR still produces reliable results. This
suggests that it may be possible to relax condition (iii) in a
similar manner to the relaxation of condition (i) introduced
by skew well-formed games. While we leave this question
open, we now demonstrate that breaking condition (iii) can
lead CFR to a dead-lock situation where one player has
constant average regret.

Let us walk through the process of applying CFR to the
game in Figure 2. Note that this game satisfies all of the
conditions of Definition 2, except for condition (iii). To
begin, the current strategy profile σ1 is set to be uniform
random at every information set. Under this profile, when
player 1 is at I3, each of the four histories are equally likely.
Thus, vi(σ1

(I3→l), I3) = vi(σ
1
(I3→r), I3) = vi(σ

1, I3) = 0,
and so r1

1(I3, l) = r1
1(I3, r) = 0. Similarly for actions p
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and c at I1 and I2. Player 2, however, has positive immedi-
ate counterfactual regret for passing (p) at histories ac and
ec (to always receive ξ utility) and for continuing (c) at bc
and de (to always avoid receiving −ξ utility), and has neg-
ative immediate counterfactual regret for continuing at ac
and ec and for passing at bc and de. Therefore, the next
profile σ2 still has player 1 playing uniformly random ev-
erywhere, but player 2 now always passes at ac and ec,
and always continues at bc and dc. On the second iteration
of CFR, the positive regrets for player 1 at I3 remain the
same because the histories bcc and dcc are equally likely.
Also, player 2’s positive regrets remain the same at all four
histories in H2. However, player 1’s expected utility for
continuing at I1 or I2 is now negative since player 2 now
passes at ac and ec, and player 1 gains positive regret for
passing at both I1 and I2. This leads us to the next pro-
file σ3 = {(I1, p) = 1, (I2, p) = 1, (ac, p) = 1, (bc, p) =
0, (dc, p) = 0, (ec, p) = 1, (I3, l) = 0.5}. One can check
that running CFR for more iterations yields σt = σ3 for
all t ≥ 3. The average regret for playing this way will
be constant and hence does not approach zero because
player 1 would rather play σ′1 = {(I1, p) = 1, (I2, p) =
0, (I3, l) = 0} and get u1(σ′1, σ

3
2) = (1 − ξ)/4 > u1(σ3)

for ξ ∈ (0, 1). A similar example can be constructed where
condition (iii) holds, but chance’s probabilities are not pro-
portional (breaking condition (ii)).

Despite the problem of breaking condition (iii), condition
(iv) of Definition 2 can be relaxed. Rather than enforcing
player i’s future information to be the same across the bi-
jection φ, we only require that the corresponding subtrees
be isomorphic, allowing player i to re-remember informa-
tion that was previously forgotten. The details for this re-
laxation are in the extended version of this paper (Lanctot
et al., 2012). It is not clear that this relaxation is possible in
skew well-formed games, nor does it seem to provide any
practical advantage.

8. Conclusion
We have provided the first set of theoretical guarantees for
CFR in imperfect recall games. We defined well-formed
and skew well-formed games and provided bounds on the
average regret that results from applying CFR to such
games. In addition, our theory shows that we can achieve
low average regret in a full, perfect recall game when em-
ploying CFR on an abstract version of the game, provided
the abstract game is skew well-formed (with or without im-
perfect recall). Our DRP experiments confirm these theo-
retical results, while our PTTT and Bluff experiments hint
that it may be possible to still bound regret in other types
of imperfect recall games. Future work will look to expand
on the set of imperfect recall games to which CFR can be
reliably applied. In particular, it may be possible to derive

regret bounds for a new class of games where conditions
(ii) and (iii) of Definition 2 are relaxed.
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