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Abstract

Equilibrium or near-equilibrium solutions to very
large extensive form games are often computed by
using abstractions to reduce the game size. A com-
mon abstraction technique for games with a large
number of available actions is to restrict the num-
ber of legal actions in every state. This method has
been used to discover equilibrium solutions for the
game of no-limit heads-up Texas Hold’em. When
using a solution to an abstracted game to play one
side in the un-abstracted (real) game, the real op-
ponent actions may not correspond to actions in
the abstracted game. The most popular method for
handling this situation is to translate opponent ac-
tions in the real game to the closest legal actions in
the abstracted game. We show that this approach
can result in a very exploitable player and propose
an alternative solution. We use probabilistic map-
ping to translate a real action into a probability
distribution over actions, whose weights are deter-
mined by a similarity metric. We show that this ap-
proach significantly reduces the exploitability when
using an abstract solution in the real game.

1 Introduction

Many complex problems involving multiple agents can be
solved using an extensive form game tree formulation. How-
ever, some problems are too complicated to solve, since the
resulting extensive game tree is too large. One method for
solving problems whose extensive game trees are too large is
to create an abstraction of the game that results in a smaller
game tree and solve this abstract game instead of the real
game. The abstraction approach creates two problems. First,
there is information lost during the abstraction process. An
equilibrium solution to the abstract game is not an equilib-
rium solution to the real game. When the real game is much
larger than the abstract game, the respective equilibrium so-
lutions may be dissimilar enough that the abstract solution
is actually a poor strategy in the real game. Second, to use
the solution of the abstract game to play the real game one
must create a mapping between the states of the real game
and the states of the abstract game. This mapping can be-

come very complex as the difference in size of the abstract
and real games increases.

Extensive games have been used to try to create agents for
several variants of poker. Poker has been thoroughly studied
for some time [Billings et al., 2002] and has grown in popu-
larity in recent years. In addition, three annual AAAI Com-
puter Poker Competitions [Zinkevich and Littman, 2006]
have helped spur poker research and have resulted in new al-
gorithms for solving extensive games. Two such algorithms
are regret minimization [Zinkevich et al., 2008] and gradient-
based algorithms [Gilpin et al., 2007].

Most of the literature on poker agents describes the prob-
lem of two-player (heads-up) limit Texas Hold’em, whose
size is approximately 1018. Recent algorithms have only been
able to solve games whose size is about 1012 [Zinkevich et al.,
2008; Gilpin et al., 2007], and abstractions have been used
to bridge this size gap. In contrast, the size of the no-limit
version of two player Texas Hold’em is approximately 1071

[Gilpin et al., 2008]. The reason this game is so much larger
is that there are many more possible actions in every state. In
the limit version, each player has at most only three actions:
fold, call or raise a fixed number of chips. In the no-limit
version, each player can have hundreds of actions, since a
player can raise any amount from the size of the last bet to
the player’s entire stack. Even though the no-limit game is
much larger, the abstractions being used are of the same size
as the ones being used in the limit game. The effect of trying
to use an abstract solution to play a real game that is more
than 1050 times larger has not been studied very carefully.

In this paper, we investigate the effect of using solutions
obtained by abstracting extensive form games with large ac-
tion sets. We formalize the concept of state translation, the
process of translating a state in the real game to a state in
the abstract game, and show how translation can be separated
from the abstraction process to provide the agent with more
flexibility. Additionally, we formalize the current methods of
translation in poker and suggest a new method that is gen-
eralizable to any extensive game. Finally, we show that the
current translation methods used in poker create an extremely
exploitable agent and that our new translation method reduces
this exploitability.
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2 Background

2.1 Extensive Games

An extensive game involves combinations of actions taken by
players and chance. For example, in poker, the actions would
be the player actions (fold, call or raise) together with the
cards dealt (chance). Each list of actions is called a history
and hidden information can be modeled by partitioning the
histories into sets, called information sets, whose elements
cannot be distinguished from one another by an individual
player. For example, in poker, two histories that differ only by
the opponent’s cards would be indistinguishable by a player
and be in the same information set.

Formally, we can define an extensive game as follows.

Definition 1 (Extensive Game) [Osborne and Rubenstein,
1994, p. 200] A finite extensive game with imperfect infor-
mation is denoted Γ and has the following components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of ac-
tions, such that the empty sequence is in H and every
prefix of a sequence in H is also in H . Z ⊆ H are the
terminal histories. No sequence in Z is a strict prefix of
any sequence in H . A(h) = {a : (h, a) ∈ H} are the
actions available after a non-terminal history h ∈ H\Z.

• A player function P that assigns to each non-terminal
history a member of N∪{c}, where c represents chance.
P (h) is the player who takes an action after the his-
tory h. If P (h) = c, then chance determines the action
taken after history h. Let Hi be the set of histories where
player i chooses the next action.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on A(h).
fc(a|h) is the probability that a occurs given h, where
each such probability measure is independent of every
other such measure.

• For each player i ∈ N , a partition Ii of Hi with the
property that A(h) = A(h′) whenever h and h′ are in
the same member of the partition. Ii is the information
partition of player i; a set Ii ∈ Ii is an information set
of player i.

• For each player i ∈ N , a utility function ui that assigns
each terminal history a real value. ui(z) is rewarded to
player i for reaching terminal history z. If N = {1, 2}
and for all z, u1(z) = −u2(z), an extensive form game
is said to be zero-sum.

A strategy σ for a game is a weighted set of legal actions for
every history. A best response for player i to strategy σ is the
strategy that maximizes its utility assuming all other players
play according to σ.

2.2 Game Abstraction

Large games can be abstracted by increasing the size of in-
formation sets to reduce their total number. Since an infor-
mation set contains histories and a history is a sequence of
player and chance actions, there are two techniques for in-
creasing the size of an information set. The first technique

combines chance actions together into buckets. For example,
in poker, multiple player hands could be combined together
into a single bucket. The second technique artificially reduces
the number of allowable player actions in the abstraction. For
example, in no-limit poker, a raise could artificially be con-
strained to be the amount currently in the pot (pot) or the
current player’s full stack (all-in).

More formally, game abstraction is defined as follows.

Definition 2 (Abstraction) [Waugh et al., 2009] An abstrac-
tion for player i is a pair αi =

〈
αI

i , α
A
i

〉
, where,

• αI
i is a partitioning of Hi, defining a set of abstract in-

formation sets that must be coarser1 than Ii, and

• αA
i is a function on histories where αA

i (h) ⊆ A(h) and
αA

i (h) = αA
i (h′) for all histories h and h′ in the same

abstract information set. We will call this the abstract
action set.

The null abstraction for player i, is φi = 〈Ii, A〉. An ab-
straction α is a set of abstractions αi, one for each player.
Finally, for any abstraction α, the abstract game, Γα, is the
extensive game obtained from Γ by replacing Ii with αI

i and
A(h) with αA

i (h) when P (h) = i, for all i.

Waugh [Waugh et al., 2009] did an analysis of the effect of
abstracting games. In particular, they found that monotonic-
ity in abstraction refinement does not hold. Assume we have
two abstractions αa and αb of Γ such that αa is a strict refine-
ment of αb, in that every information set in αb is the union of
some information sets in αa. This means that αa holds strictly
more information about the real world than αb. Waugh found
that an equilibrium solution to Γαa could be more exploitable
in Γ than an equilibrium solution to Γαb . In essence, larger
abstractions do not necessarily produce better strategies. Our
work deals with how to use these abstract solutions to play
in the full game and requires a slightly different notion of ab-
straction.

One problem with using this definition of abstraction is
that it requires us to explicitly define how the histories in the
real game are partitioned. Sometimes we want to define an
abstract game in which we do not explicitly know the parti-
tioning, but rather only that a partitioning with some specific
properties exists. Therefore, we define a more general kind
of abstraction, called a loose abstraction, for which we defer
the definition of the partitioning method.

Definition 3 (Loose Abstraction) An extensive game Γ′ is
an abstraction of Γ if H ′ ⊆ H and ∃ an abstraction α such
that ∀i

• ∃ a bijection between I′i and αI
i and any two histories

h′
1, h

′
2 ∈ H ′ in the same information set in I′i are in the

same information set in αI
i

• A′(h′) = αA
i (h′) ∀ h′ ∈ H ′

This definition allows us to define an abstract game based
solely on restricting a specific set of actions from the real

1Recall that partition A is coarser than partition B, if and only if
every set in B is a subset of some set in A, or equivalently x and y
are in the same set in A if x and y are in the same set in B.
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game rather than defining a specific partitioning. The abstract
game is defined to contain all histories from the real game ex-
cept any history containing a restricted action. To use an ab-
stract game strategy to play in the real game we must be able
to handle histories in the real game that contain actions that
are no longer legal in the abstract game. That is the purpose
of translation, which is described in section 3.

2.3 Heads-up No-limit Texas Hold’em

Texas Hold’em poker can be represented as an extensive
game and abstraction can be used to reduce the size of the
game. Texas Hold’em is a game played with a standard 52
card deck consisting of 4 suits and 13 ranks. The goal of each
player is to obtain the best 5-card poker hand according to
the standard poker ranking. The game begins by posting the
blinds: the player to the left of the dealer puts a small blind
(e.g. $1) into the pot and the player two seats to the left of
the dealer puts the big blind into the pot (e.g. $2). Every
player is then dealt two cards, followed by a betting round
(described later). Three community cards that any player can
use are then turned face up in the middle of the table, called
the flop, followed by another betting round. Two more com-
munity cards are dealt face up, called the turn and river, with
betting rounds following each card. Finally, all remaining
players reveal their cards and the best five card poker hand
wins the pot.

How the betting round works differs slightly depending on
the variant being played. In all variants, the pre-flop bet-
ting round begins with the person left of the big blind, and
all other betting rounds begin with the small blind. In limit
hold’em, every player can choose to either fold (forfeit their
hand), check/call (match the largest current bet), or bet/raise
(add additional chips to the pot that others must match). The
amount raised is determined by the round and not by the play-
ers. No-limit differs in that players can bet/raise any number
of chips between the minimum bet and all of their chips.

Hold’em poker can be represented by an extensive game,
since every card dealt is represented by a chance action and
every fold, check/call or bet/raise is represented by a player
action. The information set partitions are defined by the fact
that each player cannot see the other players’ cards, and the
utility of each hand is equal to the number of chips won/lost.

In this paper we use a specific variant of two player (heads-
up) no-limit Texas Hold’em. This variant has a small blind
of $1, a big blind of $2 and stack sizes of $1000. This is
the variant used in the no-limit event of the annual computer
poker competitions [Zinkevich and Littman, 2006]. Since this
variant is quite large, we use abstraction to create a game of
manageable size and then solve this abstract game. In the ab-
straction process we consider both card abstraction as well as
action abstraction. Once we have created the abstract game,
we compute an equilibrium using regret minimization [Zinke-
vich et al., 2008].

The card abstraction is based on bucketing similar hands
together. Our bucketing method is expected hand strength
squared [Johanson, 2007, pg 25-28]. For any given hand,
we can roll out all of the remaining cards to find all possible
future hands it could become (and the probabilities of those
hands occurring). We can then compute the expectation of

the square of the final hand strength over all these possible
hands, where hand strength refers to the probability that the
hand will win the game. We then distribute all of the hands
into the n available buckets according to this metric, with the
top 1/n% hands going into the first bucket and so on. The
specific abstraction we used has 169 buckets on the preflop,
64 on the flop, and 8 on the turn and river. Since there are ex-
actly 169 possible hands one could have on the preflop, taking
into account suit isomorphisms, our bucketing on the preflop
simply assigns one hand to each bucket. The flop buckets are
then created using the expected hand strength squared met-
ric independent of the preflop buckets. Our abstraction ef-
fectively forgets it preflop bucket once the flop comes. This
differs from the turn and river, in which the buckets are calcu-
lated dependent upon previous strength buckets. For instance,
the 8 turn buckets depend upon the flop buckets, so that a
turn bucket actually consists of the pair [flop bucket, raw turn
bucket]. We use this card abstraction because it can be used
to find a good solution strategy in 24 hours. In fact a strategy
that uses this abstraction defeats all of the competitors in the
2007 no-limit competition, if the competition is re-run with it
as a participant.

The action abstraction we use works by restricting the
number of actions a player can take. The method used by
many researchers and first defined by Gilpin [Gilpin et al.,
2008] limits every player to 4 actions. Every player can fold
(f), check/call (c), raise pot (p), or go all-in (a). Raising pot
refers to making a bet of the size of the number of chips in
the pot, and going all-in refers to betting all of the chips in
one’s stack. This is an abstraction of the full game in which
the actions are restricted to fcpa. However, when playing a
real game, we must still handle the situation in which our op-
ponent makes, for instance, a bet of 1.5 times the pot. This
requires us to translate real states into states in the abstract
game.

2.4 Leduc Hold’em

Leduc Hold’em is a game similar to Texas Hold’em but much
smaller. The Leduc game only has 6 cards, 2 suits with 3
ranks. Each player is dealt one private card, and the flop
consists of only one public card. There are only two bet-
ting rounds, one after the private cards are dealt and one af-
ter the flop is dealt. The variant we use has stack sizes of
12 chips and has each player ante 1 chip at the start of each
hand. Since this game is so small, we can directly calculate
the best response to any strategy in this game. This means
that given any strategy, we can compute a value that tells us
how exploitable that strategy is.

For our experiments using the Leduc game, we use the null
card abstraction and allow more betting options in the betting
abstraction. In addition to the normal fcpa options, we allow
a half-pot option (h) and a double-pot option (d). This makes
the largest abstraction fchpda.

3 Translation Methods

State translation refers to the process of translating a state in
the real game to a state in an abstracted game. In practice an
abstraction on chance nodes uses an explicit partition so that
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translation is just a table look-up. For example, in poker, it is
common to use a hand strength function to partition the two
card starting hands into a fixed number of buckets, where the
hands AA, KK and the other strongest hands are usually in
the same bucket. However, the player action space is usually
just restricted without explicitly partitioning the real space.
In this case, one must convert a real action history into a legal
history in the abstract game in order to use the abstract solu-
tion. This is most easily done by stepping through the history
sequentially and converting every real action into a legal ac-
tion in the abstract game.

3.1 Hard Translation

The current translation method [Gilpin et al., 2008], which
we will refer to as hard translation, defines a single transla-
tion function that maps a history in the real game to a history
in the abstract game.
Definition 4 A hard translation function is a function on
histories T (h) ∈ H ′ where h ∈ H .

A hard translation in-step function is a function on his-
tories and actions tin(h, a) ∈ A′(T (h)) where h ∈ H, a ∈
A(h).

A hard translation out-step function is a function on his-
tories and actions tout(h, a′) ∈ A(h) where h ∈ H, a′ ∈
A′(T (h))

Hard translation provides a partitioning of real-game histo-
ries that is sufficient to convert a loose abstraction into an ex-
plicit abstraction. A translation function can be used to define
the partitioning αI

i where h, h′ are in the same information set
iff T (h) = T (h′). By explicitly defining T separately from
the abstraction, we can vary how a solution to the abstract
game plays in the real game without changing the abstraction
and thus recomputing the solution. This way, we can evalu-
ate many different translation functions using the same loose
abstraction.

A simple way to create a translation function is to step
through the action history converting every action to a legal
action in the abstract game. This allows us to recursively de-
fine the translation function as follows:

T ((h, a)) = (T (h), tin(h, a)). (1)

The step function can be implemented using a similarity met-
ric to define how close an action in the real game is to various
actions in the abstract game. If we let S(h, a, a′) be a sim-
ilarity metric where a ∈ A(h) and a′ ∈ A′(T (h)), then we
can define the value of the translation step function to be the
a′ with the highest S value:

tin(h, a) = argmaxa′(S(h, a, a′)) (2)

This results in converting every real action in a history to the
closest legal action in the abstract game and thus creates a
legal abstract history.

After we obtain a history in the abstract game we can sam-
ple the solution we have for an action to perform. The pur-
pose of the out-step function is to translate the action in the
abstract game into an action in the real game. Although the
action the abstract solution provides is usually a legal action
in the full game, we may want to perform a slightly different

action. This enables our player to take actions in the full game
that are not legal actions in the abstract game. However, when
doing so we wish to ensure that we maintain internal consis-
tency in our translation. This means that when we translate
an earlier action we took in the full game, we always trans-
late it to the abstract action the abstract solution told us to
perform. This is guaranteed by forcing the out-function to be
the inverse of the in-function:

tin(h, tout(h, a′)) = a′ (3)

If we incorrectly translate our previous actions, then it is pos-
sible that we could get to game states in which our solution
does not know what to do (because it believes it could never
get there). Maintaining internal consistency ensures that this
will never happen.

The problem with hard translation is that if you know the
similarity metric used by your opponent then you can eas-
ily exploit their abstraction. For instance, if you know that
tin(h, a) = tin(h, b), then you can choose whichever action
a or b that benefits you the most, knowing that your opponent
will interpret them as the same action. An example of this
in poker revolves around translating actions to a pot bet. If
I know that my opponent will interpret bets of 1.5*pot and
0.5*pot as pot bets, then I can choose either at will. For in-
stance, when I have a good hand I have a higher probability
of winning the pot, and therefore I would want more chips in
the pot and would choose 1.5*pot. Similarly, when I have a
bad hand I would choose 0.5*pot to risk fewer chips.

The reason why hard translation is so dangerous is that a
player does not even need to know the strategy of the oppo-
nent to exploit that opponent. The knowledge that the op-
ponent will interpret actions a and b the same is enough.
This differs greatly from knowing how the opponent abstracts
chance nodes (i.e. cards) since one cannot control the chance
nodes. Although one would know that the opponent views
two sets of chance nodes as the same, it is difficult to exploit
this knowledge without knowing how the opponent plays in
that situation.

It is possible that no opponent would understand our trans-
lation function enough in order to exploit it. However, it is
possible to learn how an agent performs its translation. As-
suming an agent is using hard translation, we need only learn
which actions it responds to similarly and which it treats dif-
ferently. We developed a method that can, with high accuracy
and within 100 hands, estimate how an agent is performing
hard translation. Even if exploiting translation was a more
difficult task, the exploitability of a strategy is considered to
be one of the best metrics for measuring the strength of a
strategy.

3.2 Soft Translation

We propose a new method, which we will refer to as soft
translation, that takes a history in the real game and returns
a weighted set of histories in the abstract game.
Definition 5 A soft translation function is a function on his-
tories T p(h) ⊆ 	× H ′ where h ∈ H .

A soft translation in-step function is a function on histo-
ries and actions tpin(h, a) ⊆ 	×A′(Tp(h)) where h ∈ H, a ∈
A(H).
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Again we can step through the action history, except now
we convert every real action into a weighted set of abstract
actions. By weighting these actions by their (normalized)
similarity values, we obtain a more accurate analog of what
actually happened in the real game. Since each action in a
history is translated to a weighted set of actions, the num-
ber of weighted histories grows exponentially as we translate
all the real actions in history. This exponential growth can
be avoided by sampling the returned action set according to
their weights instead of maintaining all of them. In this man-
ner we can view soft translation as a nondeterministic version
of hard translation. This non-exponential method is the one
we implemented.

We need not define another out-step function, as we can use
the previous one after choosing one of the histories returned
by soft translation. However, it is slightly more difficult to
maintain internal consistency here. First, as the in-function
now returns many histories, we modify equation 3 to return
a′ with weight 1 and all other actions with weight 0. Second,
the action we take may only make sense assuming knowledge
of the abstract history used by the out-function. This means
that in order to avoid confusing ourselves later, we must ob-
tain the same abstract history during translation later in the
game. Fortunately, there is a simple solution to this problem.
By assigning an ID to every game we play, we can seed our
sampling process with a hash of the ID to ensure that, within
one game, we will always return the same history given the
same input.

The concept of maintaining several histories perhaps
makes more sense in situations where the opponent’s action
is hidden. In attempting to model such a situation, simply
assuming the most likely event occurred would result in the
player being unprepared when this assumption is incorrect.
Instead, one can model the situation by weighting different
events according to the probability that they occurred. Our
situation differs in that we know what our opponent did, but
we do not understand what that action means. Just as we
would describe a motorcycle as a mixture of a bicycle and a
car, describing an unknown situation as a mixture of known
situations can more accurately describe the real situation.

Unfortunately, maintaining multiple histories gives us no
guarantee that our agent will perform the correct action. It
is possible that none of the solutions to the returned histo-
ries contain the correct response since they simply cannot
model the situation accurately enough. Additionally, mixing
together the solutions from several histories can be danger-
ous. The way equilibrium solutions mix their actions is very
precise and specific to the game that was solved, and mod-
ifying these distributions can result in unpredictable perfor-
mance. However, when dealing with actions that do not exist
in the abstract game to begin with, all guarantees of optimal-
ity are lost and we are stuck using methods with unbounded
worst case scenarios.

4 Application to Poker

With the translation methods, real game and abstract game
defined, all that is needed to implement these methods is a
similarity metric and an out-step function. Recalling earlier,

the abstraction used in the no-limit game allows each player
to fold, call, bet pot, or go all-in (fcpa). This means that every
bet must be translated to one of these four actions. The metric
used by several of the competitors in the AAAI no-limit poker
competitions was described by Gilpin and colleagues [2008]
and is formalized here.
Definition 6 The geometric similarity of a real action a and
a legal action a′ in the abstract game is as follows, where b, b′
are the respective bet sizes associated with a, a′.

S(h, a, a′) = { b/b′ if b < b′
b′/b otherwise (4)

This is the metric we use in our translation function.
To define the out-step function, we need to map the legal

abstract actions to real bet amounts. We define the pot bet
option to be a bet of the size of the current real pot, and the
all-in action to be a bet the size of the player’s remaining chips
in the real game. This distinction needs to be made, because
in situations where the real pot size does not match the pot
size in the abstract state, a pot bet in the abstract state may be
a different size than the real pot size. By using this bet size
correlation in the out-step function as well as the similarity
metric, we ensure internal consistency.

Knowing the similarity metric we can immediately see how
a player using hard translation would interpret certain bets.
For instance, if p is the number of chips associated with a
pot bet and a is the number of chips associated with an all-
in bet, then we know that any bet larger than

√
p ∗ a will be

interpreted as all-in, and any bet smaller than that will be in-
terpreted as a pot bet. Similarly, if we consider a check to be
a bet of 1, then

√
p is the border that determines whether a

bet is considered a pot bet or a check/call2. This means that
any amount from

√
p to

√
p ∗ a will be interpreted as a pot

bet, and we can choose to use whichever one will benefit us
the most knowing such a player cannot tell the difference.

A slightly different metric is used for soft translation.
Looking at the previous metric, we see that every action will
always have a non-zero similarity value. However, since the
weights of all actions are important in soft translation, we de-
sire that when the similarity value of one action is 1 that the
values of all other actions are 0. Because the different bet
sizes lay on the number line, we only need to consider the
closest legal bets larger and smaller than the actual bet (all
other actions are given weight 0). If b1 < b < b2 where b is
the real bet associated with a and b1 and b2 are the bets of the
two closest legal abstract actions a1, a2, then the metrics are
as follows.

S(h, a, a1) =
b1/b − b1/b2

1 − b1/b2
(5)

S(h, a, a2) =
b/b2 − b1/b2

1 − b1/b2
(6)

Thus, we have that the metric S(h, a, a1) = 1 when a = a1

and S(h, a, a1) = 0 when a = a2, as desired. An impor-
tant aspect of this property is that if the original history being
translated is a legal history in the abstract game, then soft
translation will return this history with weight 1.

2Since calling affects the game tree differently than a bet, we can
only translate real bets into check/calls in certain situations.
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5 Results

For our experiments we created two no-limit agents for each
variant we used. Within each variant, the two agents use the
same solution to the abstracted game, but one uses hard trans-
lation and one uses soft translation. In the $1000 stack Texas
Hold’em variant, we used the fcpa betting abstraction. In the
$12 stack Leduc Hold’em game, we used several different
betting abstractions. For the different abstractions, we varied
whether each pot bet (hpd) was allowed or not. This led to
8 abstractions, all of which were used to create players using
both soft and hard translation.

Since the Texas Hold’em game is too large to compute a
proper best response to our agents, we instead played these
agents against a variety of different opponents. Some of the
opponents were designed to exploit the normal translation and
others simply play using a solution to a different betting ab-
straction. Note that in this section, a large pot bet or a small
pot bet refers to making the largest or smallest possible bet
that our opponent will interpret as a pot bet. This notation
will also be used when referencing bet amounts other than a
pot bet.

5.1 Opponents

The first set of opponents that were created were designed
to exploit the normal translation method. This exploitation is
done by controlling the size of the pot in a way that is invisible
to a player using the normal translation method. Knowing,
for instance, the range of bets that the player interprets as a
pot bet allows us to make larger or smaller pot bets and thus
control the size of the pot. Controlling the pot size allows
us to exploit the player in two ways. First, we can place the
player in situations where they will play very poorly. The first
opponent, naı̈vePA, works by using this method. Second, we
can artificially increase the value of our wins and decrease the
cost of our losses by increasing the size of the pot when we
are likely to win and decreasing the size of the pot when we
are likely to lose. The +- variants use this concept.

The first opponent, naı̈vePA, performs a pure exploitation
on the pot and all-in actions without considering the cards it
is dealt. This agent check/calls to the flop, after which it will
fold to any bet. If its opponent does not bet, it will make
a large pot bet. On the turn it will then make a small all-
in bet. This methods works because it places the exploited
player in a situation it does not understand well and then co-
erces the player to make a poor decision. By making a large
pot bet, naı̈vePA has the ability to make the pot size drasti-
cally larger than the exploited player thinks it is. The player
believes that there are far fewer chips in the pot than there ac-
tually are, and when faced with an all-in bet it will fold more
often than it should. Additionally, naı̈vePA loses fewer chips
than it should, its entire stack, when the player actually calls
the all-in bet, making this exploitative strategy even safer.

The next opponent, +-, uses a much more stable exploita-
tion technique. This player uses the same solution as the op-
ponent it faces, except it varies the size of its bets based upon
its cards. Specifically, when making a bet it will make a large
bet if its hand is in the top 25% of hands and will make a small
bet otherwise. This strategy results in the pot being larger
when +- has good hands and the pot being smaller when it

has poor hands. Similarly, -+ works the same way except it
reverses the type of bet it makes based upon its hand. We
expect that reversing the +- strategy will have the opposite
effect on the amount of money won against the player. Two
other opponents, +1-1 and -1+1, are variations on these tech-
niques. When making a bet, these players will instead bet 1
chip more or less depending on the strength of their hand.

Lastly we have two opponents that do not use exploitative
techniques. These opponents are simply equilibrium solu-
tions to different betting abstractions. This means that they
will take actions that need to be translated by the player, but
these actions are not designed to take advantage of how the
player’s translation method works. fc75pa and fc125pa bet
75% and 125% of the pot instead of 100% of the pot, respec-
tively. These players do not use the same solution as their op-
ponent, but rather the solution to their own abstracted games.

In summary, naı̈vePA, +- and +1-1 are all designed to ex-
ploit the normal translation method to different degrees. The
inverse players, -+ and -1+1, are weak agents that manage
to hurt themselves by exploiting the translation in the wrong
direction. Lastly, fc75pa and fc125pa are designed to see
how well the methods handle bets that are non-exploitative
but also not part of the abstraction.

5.2 Data

The results of our experiment in the $1000 stack game are
shown in table 1 and the results of the Leduc game are shown
in table 2. The $1000 stack players played 10 duplicate3

matches of 500,000 hands each for a total of 10,000,000
hands. The standard deviation of these matches is shown in
the table. The values in the Leduc results are exact computa-
tions. It is important to note that in last year’s AAAI no-limit
competition first place beat second place by 0.22 $/h, and the
agent that finished first used hard translation.

Hard Soft

naı̈vePA 27.01 ± 0.07 -5.66 ± 0.14
+- 5.42 ± 0.08 1.50 ± 0.05
-+ -5.16 ± 0.09 -0.95 ± 0.08
+1-1 0.15 ± 0.03 0.11 ± 0.02
-1+1 -0.14 ± 0.03 -0.09 ± 0.01
fc75pa 0.01 ± 0.03 0.07 ± 0.04
fc125pa -0.01 ± 0.04 -0.02 ± 0.02

Table 1: Performance results between various $1000 stack
players in dollars/hand ($/h)

Looking at the table 1, the $1000 stack players, we see
that naı̈vePA beats the player using hard translation by 27
$/h. This is amazing considering that naı̈vePA does not look
at the cards it is dealt. We also see that naı̈vePA loses to
a player using soft translation by over 5 $/h, a significant
amount. Similarly, the +- player beats the hard method by
5.4 $/h. This amount is greatly reduced when played against

3A duplicate match refers to playing two matches with the same
set of cards, except the players sit in opposite positions in each match
(ensuring that they each experience the same situations).
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the soft method, down to 1.5 $/h. This shows that soft trans-
lation is very effective at defending against these particular
exploitative opponents.

Conversely, we see that soft translation does not beat the
inverse players by as much as a player using hard translation.
This makes sense, since the goal of the new method is to re-
duce the effect of this type of exploitation. Thus, if it defends
against an exploitative method then it likely exploits the in-
verse method less.

Against the fc75pa player soft translation performed
worse, and against the fc125pa player it performed slightly
better. However, it appears that this new method does not
have the same effect on these players as it does on the ex-
ploitative ones. It is likely that since these opponents are play-
ing an equilibrium in their own abstractions, that we cannot
completely understand their actions using our abstraction.

Hard-P1 Soft-P1 Hard-P2 Soft-P2

fchpda 0.41 0.23 0.50 0.41
fcpda 1.18 0.84 1.23 1.12
fchpa 0.76 0.38 0.52 0.43
fchda 0.61 0.25 0.57 0.46
fcha 0.86 0.36 1.06 0.61
fcpa 1.44 0.92 1.04 0.93
fcda 0.84 0.51 1.39 1.13
fca 1.19 0.59 1.61 0.88

Table 2: Exploitability of various $12 stack Leduc Hold’em
players in dollars/hand ($/h)

Looking at table 2 we see the best response results for var-
ious betting abstractions in Leduc. The abstraction name de-
scribes what bets are legal. For instance, fchda means that
the legal actions are fold, call, half pot, double pot, and all-
in. The columns show the exploitability of the agent for each
position using both hard and soft translation. Hard-P1 refers
to how much a knowledgeable opponent sitting in position
1 could win per hand against a player using the hard trans-
lation and the described abstraction. The exploitability for
each position is listed to show that soft translation appears to
be a strict improvement over hard translation. This is seen by
the fact that every value in the Soft-P1 column is smaller than
the corresponding value in the Hard-P1 column (and similarly
for the P2 columns). This is not to say that there may exist
a situation in which it is not a strict improvement, but for the
experiments we ran we see that the exploitability of a player
using soft translation was always less than the exploitability
of a player using hard translation.

6 Conclusion

In this paper we formally described the methods of abstrac-
tion and translation used to handle extensive games with large
action sets. Additionally, we looked at the current method of
translation, described why it could result in an exploitable
agent and showed an example of how this can be done in
poker. We also described a new probabilistic translation
method that helps counter these exploitative techniques. This
new method greatly reduced how exploitable the agent was to

these techniques. Additionally, this new method was found to
produce players that were strictly less exploitable than players
produced using the previous method in a small poker game
where exploitability can be measured. However, our data also
showed that the agent can suffer a performance loss when
playing non-exploitative opponents that play using a differ-
ent action abstraction. It is possible that further development
of this technique can reduce or reverse this performance loss.
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