
Multidisciplinary Students And Instructors:
A Second-Year Games Course

Nathan R. Sturtevant1
nathanst@cs.ualberta.ca

H. James Hoover1

hoover@cs.ualberta.ca
Jonathan Schaeffer1

jonathan@cs.ualberta.ca
Sean Gouglas2

sean.gouglas@ualberta.ca
Michael H. Bowling1

bowling@cs.ualberta.ca

ABSTRACT
Computer games are a multi-billion dollar industry and have
become an important part of our private and social lives. It
is only natural, then, that the technology used to create
games should become part of a computing science curricu-
lum. However, game development is more than a massive
programming endeavor. Today’s games are largely about
generating content within multidisciplinary teams. CMPUT
250 is a new computing science course at the University
of Alberta that emphasizes creating games in multidisci-
plinary teams. This paper describes our experiences with
the course, emphasizing the issues of multidisciplinary in-
teractions: teaching, teamwork, and evaluation.

Categories and Subject Descriptors
K.3 [Computers and Education]: Miscellaneous

General Terms: design

Keywords: computer games, multidisciplinary students,
multidisciplinary teaching

1. INTRODUCTION AND MOTIVATION
It is challenging to keep an academic curriculum rele-

vant, especially in the quickly-evolving field of computing
science. The commercial success of the computer games
industry is but one of many recent developments in com-
puting that should be reflected in a state-of-the-art com-
puting science curriculum. For over two decades the De-
partment of Computing Science at the University of Alberta
has had a strong research group working in artificial intelli-
gence applied to classical games. In 1999, the group began
moving their focus towards the artificial intelligence needs
of the commercial games industry, establishing strong ties
with Electronic Arts, the world’s largest games company,
and BioWare Corp., a leader in role-playing games.

1University of Alberta, Computing Science Department
2University of Alberta, Department of History and Classics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

It was within this context that our department began to
plan a senior-level games-programming course for comput-
ing majors. The course would have been centered on the
implementation of a large project on top of an established
code base. However, over the past four years there has been
an alarming decline in computing science (CS) enrollments
at the undergraduate level. Introducing a senior undergrad-
uate course that was limited to CS majors was not appealing
as adding more course breadth to a declining population did
not seem to be a good strategy.

Recommendations from industrial partners convinced us
to look into a different approach, which also had the poten-
tial to strengthen ties with other departments on campus.
Most game-development projects in industry have two no-
table features that have recently become more pronounced:

• Multidisciplinary teams. Early computer games were de-
veloped by teams of computer programmers. Today, the
game-development team is composed of members with a
multitude of skill sets, including programmers, writers, artists,
and musicians. Computing scientists typically comprise about
one-quarter of the employees at large games companies, and
this percentage is likely to decline.
• Game content. Games originally were seen as almost ex-
clusively a programming effort. Now game programming
is largely directed towards the building of tools for the con-
tent developers (e.g., writers, artists, musicians) to integrate
their work into the game. Building the game content can,
in some instances, occupy the majority of work.

Our industry partners made the importance of multidisci-
plinary teams clear. John Buchanan, a former professor at
the University of Alberta and the former director of univer-
sity relations for Electronic Arts, wrote to us that,

“There are many attempts at building game courses across
the academy. The games industry is a unique segment of the
software engineering community; unique in that the teams
that build the games are multidisciplinary. I receive a lot
of requests to review courses in this area. My advice is
always the same: make the course cross traditional bound-
aries; get engineers, artists and designers working together.
. . . If you have the flexibility to make the course multidisci-
plinary, then you must.”

David Hibbeln, Director of Art for BioWare Corp., em-
phasized the same point:

“It is one thing to just train students to have a set of skills,
but it is much more important to train them to use those
skills within the context of an interdisciplinary project. The
ability to harmonize with a group is one of the most impor-

tant employee skills when working for a company such as
ours.”

This was our motivation for creating the multidisciplinary
games course, CMPUT 250: Computers and Games. Sev-
eral courses in a typical CS curriculum involve team projects,
but few curricula involve teamwork with non-CS students.
This skill is becoming increasingly important not only in the
games industry, but in other fields as well, as computers are
pervasive in society. One program that takes a similar ap-
proach to ours is at Carnegie Mellon [5]. Our course debuted
in September 2005, with continued offerings since. Some of
the important features of CMPUT 250 include multidisci-
plinary teaching, industrial partnerships, multidisciplinary
teams for the course project, and a particular approach to
project management.

This paper describes our experiences with CMPUT 250,
including an overview of the course material, the tools used,
and the course project. It assesses the strengths and weak-
nesses of the course, including lessons learned that might
help others in planning and shaping their own program. All
course material discussed in this paper is publicly available,
including the software tools.

2. COURSE GOALS
CMPUT 250 exposes students to a broad array of topics

related to both computer science and the creation of com-
puter games. The pedagogical goals of the course include

• Creating a stimulating, collaborative learning environment
for students to explore the theoretical and technical issues
involved in the study and creation of computer games.
• Providing non-CS students an opportunity to learn from
the intellectual traditions of CS in solving challenging tasks
in general, and particularly in resolving issues in computer
game development.
• Providing CS students an opportunity to work with and
learn from faculty and students in the Arts, specifically with
respect to the cultural, social, and economic issues of com-
puter games and new narrative forms.
• Use the game-development cycle to provide students with
a real-world learning experience that is complemented with
theoretical and historical discussions of the games industry.

These specific pedagogical goals prompted a team-centered,
problem-based learning approach. Our decision to repli-
cate the game-design process not only gives students a per-
spective into how games are created, it also gives them
unique skills in project management by working on open-
ended projects. As such, the structure of the course requires
a focus on the interdisciplinary nature of game design, which
includes a vast list of potential topics and challenges.

3. INTERDISCIPLINARY LECTURES
CMPUT 250 has been taught by teams of five instructors,

including faculty members from computing science, the hu-
manities, and fine arts, covering the theoretical and technical
issues of game design from both a science and a social sci-
ence/humanities perspective. A pedagogical imperative of
the course is to bring non-CS students into contact with the
intellectual traditions of computing science while also ex-
panding the cross-department experiences and interactions
of the CS students.

Early lectures focus on topics immediately needed for the

course project, including team management, game design,
and narrative. At the same time, lab tutorials and exercises
are used to provide students with the skills needed to begin
work on the project (i.e. the tools for building the project).

Members of the CS faculty provide lectures on scripting,
game development cycles, artificial intelligence, advances in
computer game technology (such as sound and video devel-
opment), and project management in a team environment.
Some themes which are emphasized in these lectures include
topics like algorithmic and hardware constraints as well as
the history of specialized versus general-purpose hardware.
Here, gaming provides a non-threatening introduction into
the complexities of computing science.

Faculty from the humanities and social sciences have pro-
vided lectures on narrative in traditional and digital envi-
ronments, the cultural aspects of gaming (including violence,
sexuality, and community), and the design process for art-
work and sound. These lectures often facilitate extended
discussion from students of all backgrounds.

Interspersed with the main lectures are a series of review-
like lectures given by the head instructor. These serve to tie
together ideas being presented by the different instructors.
Game postmortems, taken from Game Developer Magazine,
are used to illustrate real-life examples of the things being
discussed in the course.

One of the biggest challenges posed by a multidisciplinary
class and a multidisciplinary set of instructors is the need
to deliver the material at the right level of detail. Con-
sider a CS lecture on artificial intelligence. If there is too
much technical detail, the non-CS audience will not have
the necessary background to understand the material. If
the information is presented at too general a level, the CS
students will learn nothing new. Thus, it is important that
the instructors continually relate the technical material to
the unique challenges of game development (such as strict
memory and computational limitations). Even if students
have previously studied material covered in the course, the
relationship of the material with game design will provide
a new perspective and understanding. This is an ongoing
challenge for the course instructors.

4. COURSE PROJECT
The central exercise and means of evaluation for the course

is a team project, intended to reflect the game development
process as far as is practical. As Loren Andruko, former
director of programming for BioWare Corp., stated,

“In most courses students work on assignments with well de-
fined goals and deadlines. The problems faced in industry
are never so simple and clear-cut, so it is valuable for stu-
dents to work on projects with more uncertainty including
a need to adapt and refine goals as the project progresses.”

Teams of four or five students are required to generate a
short, self-contained “module” for BioWare’s popular game
Neverwinter NightsTM(NWN). Each team is regarded as a
new development team, building a prototype or proof of con-
cept for a new game. This is consistent with our aim to em-
phasize content generation and multidisciplinary teamwork,
rather than the more technical aspects involved in game en-
gine development.

To foster the kind of environment found in the industry,
teams are also restricted in the backgrounds of their mem-
bers. As far as possible, teams members are required to have
different majors and each team was required to have at least

one CS student so that all teams will be certain to have at
least some technical capability. Teams are also strongly en-
couraged to attend the same lab sections so they will be sure
to have some time when the entire team can be together.

4.1 Project Tools
Because CMPUT 250 is open to students of all back-

grounds, we cannot assume that they will have any com-
puting or programming background. This precludes us from
using many of the available game engines. NWN has been
a popular choice for use in the classroom (eg [1, 4]), as this
game was one of the first to include a complete suite of tools
to allow users to create their own game story within a game.
The BioWare tools, Aurora and NWScript, provide a com-
plete game-authoring package.

To minimize the technical requirements of development,
students are encouraged to use the publicly available Script-
Ease tool which has been developed at the University of
Alberta [3]. ScriptEase presents a graphical interface that
allows the user to select from predefined patterns of be-
havior to describe common scenarios and events in role-
playing games such as NWN. For example, opening a chest
and having a monster appear is a common pattern in role-
playing games that is supported as a ScriptEase menu se-
lection. Based on these patterns, ScriptEase automatically
generates BioWare’s NWScript that implement the behav-
ior. ScriptEase is suitable for students who are not program-
mers, as it has even been used in several Grade 10 English
classes as part of the short story writing curriculum [2].

These tools are primarily taught through tutorials and
other exercises provided in the course lab, which students
attend for two hours a week. The teaching assistants main
role is to facilitate these lab sections, helping students with
the course tools and any issues that arise in their projects.
To ensure that all students learn these tools, there are short
assignments which can be completed during the lab each
week and a lab exam half-way through the course.

Note that a good lab infrastructure is necessary for such a
course. Role-playing games can be built on relatively mod-
est platforms using the NWN and ScriptEase toolkits, but
extensive design and video work requires a high performance
platform. Computers with dual displays are particularly
useful for design and testing. The key infrastructure is a
well-defined, rapid-response reporting system in place for
hardware and software problems, as they can be expected
to occur in any lab setting. Finally, game assets can grow
to multiple gigabytes and students cannot be expected to
backup their own projects, so it is important to have a
repository and backup system in place as part of the lab
environment.

4.2 Project Management
There are a number of important ways we have worked

to help students manage their projects well. Teams are al-
lowed to organize themselves, but must select one member
as a “lead designer” and another as an “associate producer”.
The lead designer ensures that one person has final decision-
making authority as regards features of the game itself. The
associate producer is responsible for the operation of the
team, including the scheduling of the project and ensuring
that all course objectives are met. Beyond these two specific
roles, teams are allowed to allocate people to tasks as they
desire, with consideration to maintaining an equal workload.

A key danger in a project of this kind is that students
will be over-ambitious, planning out a far larger game than
their resources allow. In our first course offering this was
the case, as several of the games developed in the course
reflected effort far in excess of a normal course load. To avoid
this, in subsequent offerings of the course we adopted three
measures to help teams control the scope of their games.

First, games are limited in scope by the addition of a ‘bud-
get’ system that limits the number of game elements teams
can employ. Second, games are required to be playable in
10-15 minutes, assuming that the user knows exactly how
to play the game. This requirement, suggested by BioWare,
provides additional focus for the teams, encouraging stu-
dents to build small, rich modules instead of sprawling un-
focused ones. Finally, a ‘producer’ is assigned to each team
to advise and critique them. Initially this was one of the
lecturing faculty, but for the past year we have hired previ-
ous CMPUT250 students. Students work well, as they have
experience in the course and can be easier to approach than
a professor. We motivate them by rewarding the producer
whose group creates the best game. Together, these limita-
tions improve the quality and scope of the projects.

4.3 Project Overview
The project is split into seven milestones. In our 13-week

semester, this means that there is a deadline every other
week. By using many small deadlines, students gradually
complete the work for the course, instead of leaving every-
thing for the last minute.

Team Formation: To facilitate social interactions between
students with diverse backgrounds, a pizza party is held dur-
ing the second week of the course. This gives course mem-
bers the opportunity to discuss their project ideas and helps
the team formation process. By the end of the week, stu-
dents form teams and submit their team name to the course
instructor for approval.

Concept Document : In this document the teams provide
a short description of the game they are planning, including
details such as the type of narrative that will drive the game
and aspects of the game that will be interesting or unique.
This deadline ensures that the teams are meeting together
to solidify the goals, and is the first opportunity for the head
instructor and producers to give feedback on the scope and
scale of the game being developed.

Design Document : Within the games industry, the de-
sign document is often considered the “bible” of the project,
documenting why and how most of the project will be ac-
complished. For this course, the design document fulfills two
roles. First, it serves to provide the complete environment
of the game, adding information such as the setting, the
main characters, and the obstacles faced during the game.
The second and more important role is to document how
the team plans to complete the course project. Teams are
expected to outline their own milestones and to form budget.

The game development budget concept not only helps con-
trol the scope of team projects, it also encourages teams to
analyze their game requirements in detail and helps to cap-
ture the limited resources and design restrictions found in
real-world development. To give teams a sense of freedom
in development, they are also allowed to construct a “wish
list” of extra items beyond their core budget. Custom music
and artwork can greatly enhance a game, but only when the
story and other plot elements have been completed.

Game Prototype Walkthrough: At this point in the course,
teams are expected to have a skeletal version of their en-
tire game constructed. All play areas should be laid out,
although not necessarily fully decorated and refined. Simi-
larly, all major characters and encounters should be in place,
although all conversational elements and scripting need not
be complete. The aim is to make sure that progress is being
made and that there is enough functionality so that pro-
ducers and the head instructor can see how the game would
progress. This milestone originally only required a story-
board, but during the first offering of the course we found
that it was too easy for students to show a storyboard with-
out completing any technical work.

Design Issue Presentations: To help groups think criti-
cally about the decisions faced in designing their games we
devoted one or two lectures to team presentations that de-
scribe a “design challenge” faced by the team. This presen-
tation is followed by a discussion with the rest of the class.
Aside from the basic pedagogical value in students practic-
ing presentations, this exercise encourages them to think
about game design as a problem to be solved as well as a
means for creative expression. Many teams do not consider
what would happen if a player plays their game in an unex-
pected way, for instance, killing a key character in the plot.
They may view such possibilities as annoyances instead of
opportunities for creative design. Thus, these presentations
provide a unique opportunity to explore design possibilities.

The Pitch: By this point each team’s module is expected
to be finished and ready to demonstrate. Teams give ten-
minute presentations during class in which they attempt
to “sell” their game. In addition to introducing the back-
ground, main character(s), and plot, they are required to
show screenshots or recorded video demonstrations of the
game. Most teams chose to create short game trailers, sim-
ilar to what is done in industry.

Check-off and Peer Evaluation: When two weeks remain
in the course, students must play and evaluate other groups’
modules. Groups then have an opportunity to fix any out-
standing issues in their own modules. After this period, each
team must provide a document that summarizes their game,
pointing out any interesting aspects including sophisticated
scripts, custom artwork, music, or other features that may
not be immediately apparent to the evaluator.

4.4 Project Evaluation
It is very difficult to evaluate open-ended projects. Some

teams have members with time to put extra effort into a
project, while other teams have more constrained schedules.
Thus, we cannot mark projects simply by comparing the re-
sulting games among groups in the class. Additionally, in
our first offering of the course some teams created games
that were too large to play through quickly without addi-
tional guidance.

There are three criteria by which we have been able to
effectively evaluate student projects. The first criterion is
whether they followed the stated guidelines when creating
their games. For instance, is the module playable in 10-15
minutes, given insider knowledge of how to play the module.
We have also asked students to create modules that are non-
linear, so that the outcome of the game is affected by the
choices you make. It is not difficult to evaluate whether
these elements are found within a game.

The second criterion is through evaluations of other teams’

games. Each student is required to play all other games and
turn in an evaluation sheet form. These evaluations do not
directly determine the marks for other groups but, they give
us a wide range of experience with each game.

The last means we have used to evaluate a course project
is to do a walk-through of each module with the team. This
allows the team to point out all the different things that they
did in the game. Some aspects of the game, such as custom
artwork, can be missed, so this ensures that each team can
show the creativity they put into their module.

When all of this information is put together, we can es-
tablish a mark for each team. We then take an additional
step to compensate for the work done by various team mem-
bers. Each team member must fill out a team evaluation
form which asks how the workload was balanced between
team members. We use this to determine a “multiplier” for
each student within a team. Students that put in extra
work receive a bonus, while if other team members consis-
tently indicate that a team member did not contribute their
fair share, this team member does not receive the full mark
awarded the rest of the team. Students are aware of this
marking scheme from the beginning of the semester, but
producers also serve to keep the instructor informed about
any problems that may crop up, so the instructor can step
in, if necessary, to help mitigate any problems. This has
worked well, giving us enough information to ascertain the
balance of work within a team.

5. INDUSTRY PARTNERSHIPS
The one aspect of this course which cannot be easily dupli-

cated by other universities is the contributions from BioWare
Corp. In addition to making software donations for the
course, BioWare employees have given lectures and have
given feedback on student projects.

BioWare has given lectures on level design, on what makes
games fun, and question-and-answer sessions. While this
level of participation can only be gained from having good
relationships with a company like BioWare, many of the
things they discussed in lecture could be gleaned from gam-
ing resources such as the Game Developer Conference, the
Gamasutra web site, or Game Developer magazine.

The advice that BioWare has given on students’ projects
is difficult to replicate, as professionals in the industry have
many unique experiences in game development. But, if
a strong course is being offered, even remote game stu-
dios might be persuaded to help participate in a course.
BioWare has reaped one reward from their relationship with
our course: four of our former students have now been hired
to work at BioWare.

6. COURSE EVALUATION
It is difficult to make a quantifiable evaluation of the effec-

tiveness of a course; asking students their opinion of a course
may not tell you whether you have achieved your pedagog-
ical goals. We can look at course reviews to glean at least
some information about the effectiveness of a course.

The University of Alberta conducts reviews of all courses
at the end of each semester. A summary of the course eval-
uation can be found in Table 1. There are 15 metrics by
which a course is evaluated; we present the average result.
For each metric, we also reported how the course compares
to other courses on campus.

Table 1: Course Evaluation
Average Evaluation In Top 25% of

Year (Out of 5.0) all UofA Courses

Fall 2005 3.87 2 of 73

Winter 2006 4.38 6 of 83

Fall 2006 4.47 11 of 15
Winter 2007 4.87 15 of 15

Although we emphasized to students during the first semester
that they were taking an experimental offering of the course,
they were very upset about several things that did not go
smoothly, particularly a lab exam that was too difficult.
There was also a project team which fell apart near the
end of the course, resulting in a fairly low course evaluation.
We were able to fix most of these issues during following
offerings of the course.

In addition to formal course evaluations, we have also con-
ducted our own evaluations of the lectures. This is where we
have been able to see trends in more detail. Students assess
all lectures according to their level of interest in the mate-
rial, the quality of the delivery, and the amount of knowledge
that they felt they learned. For fairly technical topics like
artificial intelligence students generally indicated that they
learned a lot, but they also had lower comprehension of the
material. Another set of lectures which have a strong CS
bent, a historical overview of the hardware used to produce
games, is one of the highest ranked lectures. The humanities
lectures were also highly ranked as they have content which
is relevant and interesting to all students in the course.

We used this feedback to refine our lectures; usually by in-
creasing or decreasing detail, but also by eliminating some
lecture topics. We do not claim to have solved the lec-
ture content problem, only that a proactive and iterative
approach will allow us to help reduce its impact.

7. DEMOGRAPHICS
The experience of teaching any course is contingent on

the students enrolled in that course. To provide context on
the students enrolled in our course and their backgrounds
we provide some statistics about the students and the work
they did in the course.

The majority of students taking the course are in their
second-year. The course has no prerequisites. Enrollment
is limited through an application process so we can balance
students’ backgrounds. Students have to fill out a short form
detailing why they are interested in taking the course as well
as their major and other background experience.

Table 2 shows the demographics of the students taking
the course. We have generally, but not always, been able to
maintain a good balance of CS to non-CS students. This has
partially been due to advertising. Because CMPUT 250 was
not an official course until fall of 2007, it was difficult to keep
students informed about the course. When we switched the
head instructor after the first year, there was a gap in our
efforts to advertise the course.

One area where we can improve is in boosting the fe-
male enrollment in the course. From informal discussions
with women eligible to take the course, they often perceive
that they would need to be programmers to take the course.
While this misconception may clear as more students take

3There were not enough evaluations for the University to
provide us with statistically significant ranks for all metrics.

Table 2: Course Demographics
Year Male Female CS Science Arts

Fall 2005 15 6 6 0 15
Winter 2006 20 4 7 9 8

Fall 2006 14 0 8 4 2
Winter 2007 16 1 11 3 3

Fall 2007 19 6 13 3 9

the course, we need to modify our advertising to better tar-
get female students.

8. CONCLUSIONS
CMPUT 250 has been a success for the CS department.

First, we received positive feedback from most students in
the course. Although part of the success is due to the stu-
dents’ passion for games, a surprising number of students felt
the best part of the course was the multidisciplinary team-
work. Second, by introducing a multidisciplinary course and
engaging the humanities, it has helped to build important
relationships between different departments. Third, in times
of low computing science enrollments, courses like this act as
attractors to students. Finally, the course has strengthened
our ties with industry.

The team-based focus provides students with a unique
learning opportunity not usually seen at the university. The
cooperative, multidisciplinary learning environment brought
together students with disparate skill sets which resulted in
some remarkably creative efforts.

One challenge which we anticipate over the next few years
is what to do when NWN is no longer an appropriate plat-
form for the course. We have a good deal of expertise in-
vested in this game, and so it will take some time to transi-
tion the course over to a different platform.

While we continue to work to enhance the learning expe-
rience for students taking this course, the course has met
our design objectives. It provides an excellent learning en-
vironment not only for those who will continue on to work
within the games industry, but for all students who will be
involved in interdisciplinary or collaborative projects during
or after they complete their university education.

9. ACKNOWLEDGMENTS
This work is supported by grants from NSERC, iCORE,

and BioWare Corp. We gratefully acknowledge the help
of: Loren Andrucko, Kevin Barrett, and Mark Brockington
(BioWare); our excellent teaching assistants Matt Bouchard
and Hector Perez; and the CS Instructional Support Group.

10. ADDITIONAL AUTHORS
Finnegan Southey, Matthew Bouchard, and Ghassan Za-
baneh.

11. REFERENCES
[1] A. Berger. “Neverwinter Nights” in the classroom. University

of Minnesota News, 2006.

[2] M. Carbonaro and et. al. Interactive story writing in the
classroom: Using computer games. Proceedings of DiGRA,
pages 323–338, 2005.

[3] M. McNaughton and et. al. Scriptease: Generative design
patterns for computer role-playing games. 19th Intl Conf. on
Automated Soft. Eng., pages 88–99, 2004.

[4] J. Robertson and J. Good. Story creation in virtual game
worlds. Commun. ACM, 48(1):61–65, 2005.

[5] J. Schell. Shaping an entertaining future at Carnegie Mellon.
Computer, 36(8):96–98, 2003.

