
Scalable Action Respecting Embedding
Michael Biggs and Ali Ghodsi

Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, ON, Canada

Dana Wilkinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

Michael Bowling
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

Abstract

ARE is a non-linear dimensionality reduction technique for
embedding observation trajectories, which captures state dy-
namics that traditional methods do not. The core of ARE
is a semidefinite optimization with constraints requiring ac-
tions to be distance-preserving in the resulting embedding.
Unfortunately, these constraints are quadratic in number and
non-local (making recent scaling tricks inapplicable). Con-
sequently, the original formulation was limited to relatively
small datasets. This paper describes two techniques to mit-
igate these issues. We first introduce an action-guided vari-
ant of Isomap. Although it alone does not produce action-
respecting manifolds, it can be used to seed conjugate gradi-
ent to implicitly solve the primal variable formulation of the
ARE optimization. The optimization is not convex, but the
Action-Guided Isomap provides an excellent seed often very
close to the global minimum. The resulting Scalable ARE
procedure gives similar results to original ARE, but can be
applied to datasets an order of magnitude larger.

1 Introduction
Mapping is an important problem in a variety of areas in
artificial intelligence (e.g., robotics, reinforcement learning,
multi-agent games). A general description of the problem
of mapping is to learn a useful representation of an environ-
ment from a stream of interactive experience—usually a col-
lection of high-dimensional observation vectors interleaved
with the actions that result in them.

One approach to this problem is to focus on the features of
a representation that make it good or useful. One desirable
feature is that it should be low-dimensional while still being
sufficient for describing the observations. A second is that
the actions associated with the environment should corre-
spond to simple transformations in the representation. The
first property corresponds to the well-known dimensional-
ity reduction problem—indicating that good representations
may be learned by modified dimensionality reduction algo-
rithms. One such algorithm, Action Respecting Embedding
(ARE), was derived from the Maximum Variance Unfolding
algorithm and has been shown to learn very promising rep-
resentations on relatively small streams of actions and ob-
servations. As the ARE algorithm is based on a semidefinite

Copyright c© 2007, authors listed above. All rights reserved.

optimization, however, there are problems scaling it up to
handle larger streams of experience.

In this paper, alternative procedures are developed for Ac-
tion Respecting Embedding which are better suited to han-
dling large datasets. The scaling issue is addressed through
two new ideas. First, modifications are made to the well-
known Isomap algorithm to make use of knowledge of ac-
tions. Although the actions can’t impose hard constraints
as they do with ARE, they do act as a guiding force. The
new algorithm, Action-Guided Isomap, is only marginally
successful at learning representations by itself, but it turns
out to be more useful in combination with the second idea.
A primal formulation of ARE is derived which attempts to
directly learn the low-dimensional coordinates of the data
points in the representation. This primal optimization no
longer has a semidefinite constraint admitting the use of
much speedier conjugate gradient solvers. Unfortunately,
this new optimization is non-convex and so conjugate gra-
dient solvers will also be subject to local minima. The pri-
mal optimization, though, can still be effective if it has a
good starting seed. Hence, this optimization is coupled with
Action-Guided Isomap for seeding. In practice this combi-
nation produces results on par with the original ARE algo-
rithm. However, the new algorithm can handle data sets an
order of magnitude larger.

After a review of Isomap, MVU and ARE in Section 2,
Action-Guided Isomap is developed in Section 3. The pri-
mal version of ARE based on Procrustes operators is pre-
sented in Section 4. Section 5 shows comparisons of the
new and old versions of ARE on smaller datasets as well as
results of the new algorithm on much larger datasets while
Section 6 concludes.

2 Background
This section reviews the Isomap and Maximum Variance
Unfolding (MVU) techniques for dimensionality reduction
as well as the recent Action Respecting Embedding algo-
rithm for learning subjective representations. A classical
technique for dimensionality reduction is Principal Com-
ponents Analysis (PCA). It finds a linear subspace of a
high-dimensional input space that preserves the most vari-
ance in the data points. This can be extended via the well
known “kernel trick” to find non-linear subspaces by ef-
fectively performing the dual of PCA in an inner product

space defined by some kernel K. The construction of K
can be specified in advance (e.g., polynomial or RBF ker-
nels) or an attempt can be made to learn K from the ini-
tial data points. This second approach is the one taken
in our approach and the dimensionality reduction meth-
ods summarized here. For more details on PCA and ker-
nel PCA see, for example, (Scholkopf & Smola 2002;
Shawe-Taylor & Cristianini 2004).

2.1 Isomap
Isomap (Tenenbaum, de Silva, & Langford 2000) is a non-
linear dimensionality reduction technique which derives a
kernel matrix designed to preserve certain local distances
while using estimates of geodesic distance for the remain-
ing distances. Isomap is similar to MDS, a common linear
dimensionality reduction method which finds an embedding
that best preserves distances between the high-dimensional
points—usually provided in the form of a matrix D (Cox &
Cox 2000). Isomap also takes a matrix D and first identifies
a graph of local distances by running k-nearest-neighbors.
The distances between neighbors are kept the same but non-
neighbors have their distances replaced with the length of
the shortest path between those two points in the neighbor-
hood graph. This graph distance is intended to be an ap-
proximation of the true geodesic (“on the manifold”) dis-
tance between points. In fact, as the density of the points
increases the difference between the actual geodesic and the
graph distance provably converges. Once D has been up-
dated, it is converted into a kernel matrix K which can be
used with kernel PCA to obtain an embedding.

2.2 Maximum Variance Unfolding
Maximum variance unfolding (MVU) (Weinberger, Sha, &
Saul 2004) learns a kernel from data by solving a semidef-
inite program. As long as the learned matrix satisfies the
positive semidefinite constraint then it is a valid kernel
for kernel PCA which can be applied to extract the low-
dimensional embedding. In addition to the semidefinite con-
straint, neighborhood constraints are used to preserve certain
local distances, which, as with Isomap, are the neighbors in
a k-nearest-neighbor graph. The objective function maxi-
mizes the trace of the kernel matrix which ensures maximal
variance in the resulting embedding. This has the effect of
pushing points as far apart as possible (subject to the dis-
tance constraints).

2.3 Action Respecting Embedding
Action Respecting Embedding (ARE) (Bowling, Ghodsi, &
Wilkinson 2005; Bowling, Wilkinson, & Ghodsi 2006) is
based on the observation that maps involve compression
of information while ensuring actions have a consistent ef-
fect. Consequently, ARE is posed as a variation on stan-
dard dimensionality reduction. Instead of just a set of high-
dimensional input vectors the algorithm receives a sequence
of high-dimensional vectors, or observations, interleaved
with discrete action labels that affected the environment’s
dynamics between each observation. The task is to learn an
embedding that serves as a useful representation of the en-
vironment, both in terms of observations and actions. Not

Algorithm 1 ARE
Require: n high-dimensional data points zi ∈ Rd

U a set of distinct action labels
n− 1 action labels ui ∈ U where ui is the action

between zi and zi+1

distance metric d(x, y) ≈ Rd × Rd → R
Create non-uniform neighborhood graph, η.
Maximize Tr(K) subject to:

K � 0,∑
ij

Kij = 0,

∀ij ηij > 0 ∨ [ηT η]ij > 0

⇒ Kii − 2Kij + Kjj ≤ ||zi − zj ||2,
∀ij ui = uj

⇒ K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1)

= Kii − 2Kij + Kjj

Run kernel PCA with the resulting kernel K.

only must this embedding involve dimensionality reduction
to capture sufficient statistics for predicting observations, it
must also be one in which there exist consistent transforma-
tions that correspond to the action labels.

As the MVU algorithm from subsection 2.2 is posed as an
optimization, it can be readily modified for this purpose by
changing existing constraints and adding new constraints. In
particular, the extra action label information is used in two
ways. First, since the observations are assumed to be in a
complete trajectory, a non-uniform neighborhood graph can
be constructed by connecting every point to those that are
joined to it by an action (as well as any closer points).

Secondly, and more importantly, constraints are imposed
which ensure that the actions are consistent in the result-
ing embedding. In particular, ARE enforces that the actions
in the embedding are distance preserving, in other words
are composed of translation and rotation, but not scaling.
This set of transformations is called “distance preserving”
because a transformation f : X → X is in the set if and
only if,

∀x1, x2 ∈ X ||x1 − x2|| = ||f(x1)− f(x2)||. (1)

Since the low-dimensional embedding only involves sam-
ples of the action operator being applied we only need to
verify Equation 1 for these points:

ai = aj ⇒ ||xi − xj || = ||xi+1 − xj+1||

Such constraints on the effect of actions surprisingly can be
written as direct constraints on the kernel matrix K. The
details of these constraints and the rest of the algorithm is in
Algorithm 1.

2.3.1 The Good Figure 1 shows a typical example of a
representation learned by ARE contrasted by the embedding
learned by MVU. The domain used is IMAGEBOT, where a
robot is moving an observable image patch around a larger

1st dimension of manifold

2n
d

di
m

en
sio

n
of

 m
an

ifo
ld

SDE
ARE

Figure 1: Results of Action Respecting Embedding (ARE)
and Maximum Variance Unfolding (MVU) on extracting a
representation from a single “A” shaped trajectory.

image. The actions correspond to North, South, East, and
West, although the algorithm only sees semantic-less sym-
bols. The robot’s trajectory in objective coordinates corre-
sponds to an “A” shape, which is largely mirrored in the
ARE representation. In addition, ARE’s representation is
also able to capture that pairs of actions (North-South, East-
West) are inverses and that the pairs are orthogonal, moving
along independent dimensions. With dimensionality reduc-
tion alone, although a topologically correct representation
is extracted, it is clear that finding a model of the effect
of actions in this space would be nigh impossible. ARE’s
ability to capture the system’s underlying state representa-
tion has led it be used as a basis for both subjective plan-
ning (Wilkinson, Bowling, & Ghodsi 2005) and subjective
localization (Bowling et al. 2005).

2.3.2 The Bad The single most dramatic drawback of
ARE is that at its core lies a semidefinite program with
a large number (O(n2)) of “action respecting” constraints.
There are a number of general-purpose solvers, however
they are all fairly expensive computationally. So, although
the current results yielded by ARE are impressive, they are
already unfortunately close to the limit on input size. A
number of recent techniques have been proposed for scal-
ing MVU to a larger number of points. Most of these
techniques depend on the identification and embedding of
a small number of landmarks using the computationally ex-
pensive semidefinite optimization. Because ARE’s action
respecting constraints are non-local, no small number of
points can be embedded in a way that ensures that the ac-
tions constraints would be satisfied.

3 Action Guided Isomap
As described in Section 2.3, ARE extended the MVU algo-
rithm to handle the case where additional action label infor-
mation was available. Similarly, it is possible to modify the
Isomap algorithm from Section 2.1. Recall that the core of
Isomap was to build a distance matrix D, filling in neighbor
entries with distances from the high-dimensional space and
others with estimates of the geodesic distances. It is possible
during this step to attempt to enforce the action-respecting
constraints as they are constraints on distances. This is done
through an iterative process. After computing D in the usual

Algorithm 2 Action Guided Isomap
Require: n high-dimensional data points zi ∈ Rd

U a set of distinct action labels
n− 1 action labels ui ∈ U where ui is the action

between zi and zi+1

distance metric d(x, y) ≈ Rd × Rd → R
Create non-uniform-neighborhood graph, η.
Create action-respecting distance matrix D:
if i and j are neighbors in η then

Di,j = d(zi, zj)
else

Di,j = ∞
end if
for k = 1 . . . n do
∀i, j Di,j = min{Di,j , Di,k + Dj,k}

end for
while constraints violated do
∀i, j
if ui = uj and Di,j 6= Di+1,j+1 then

set Di,j = Di+1,j+1

recompute D
end if

end while
Convert D to kernel matrix K = −HSH/2

where Si,j = D2
i,j and H is the centering matrix.

Run kernel PCA with the resulting kernel K.

way, we investigate all entries Dij where ai = aj . The con-
straints require Dij = D(i+1)(j+1). If the two entries are not
equal an edge is added to the original neighborhood graph to
make those distances equal. Suppose Dij > D(i+1)(j+1),
then an edge is added to the neighborhood graph (or the
length of an existing edge is reduced) between i and j with
distance D(i+1)(j+1). This change could affect many other
distances in D, so after adding an edge for each violated ac-
tion constraint the entire matrix is recomputed. This whole
procedure is then repeated, possibly many times, until ei-
ther no distance constraint is violated or a set number of
maximum iterations is reached. The complete details of the
algorithm are in Algorithm 2.

Theorem 1 proves that the action constraint corrections
will converge, and so the final D matrix will satisfy all the
action constraints. However, a configuration of points satis-
fying these distances may not be embeddable in a Euclidean
space; and in particular, for the desired target dimension-
ality. The next section describes how the Action-Guided
Isomap can be used as a seed to obtain a low-dimensional
distance-preserving embedding.

Theorem 1 AG-Isomap terminates in a finite number of ac-
tion constraint iterations.

Proof. Consider the distance matrix D whose entries are
being updated on each iteration of checking the action con-
straints (the while loop in Algorithm 2). We first demon-
strate the invariant that ever entry in the matrix is a sum
of edge distances from the generating neighborhood graph.
The initial computation computes path lengths between

points and so clearly satisfies the invariant. Iterations of the
while loop replace entries with smaller entries (maintain-
ing the invariant) and then recomputes path lengths (again,
maintaining the invariant), thus proving the invaraint. Now,
consider the longest path in the generating neighborhood
graph. There is a finite number of possible edge sums less
than this longest path length. Therefore, by the invariant,
there is a finite number of possible values each entry in
the distance matrix can ever assume, and as a consequence,
there is a finite number of distance matrices that can ever be
formed. On every iteration the distance matrix changes (or
the algorithm terminates), and the matrix can never return
to the same value (since the entries are monotonically de-
creasing), so the matrix must remain unchanged after a finite
number of iterations (because there’s only a finite number of
possible distance matrices). Hence, AG-Isomap terminates.

4 Procrustes Gradient Correction
In Section 2.3 the ARE algorithm was posed as an optimiza-
tion to learn an appropriate kernel. This is really the dual
of the actual problem of interest which is to find the posi-
tions of the low dimensional points on a manifold. Alter-
natively, the primal problem could be solved directly; that
is, by optimizing the positions of a collection of points sub-
ject to constraints on distances and the constraint that actions
are distance-preserving. This would eliminate the constraint
that a matrix be positive semidefinite, and so a semidefinite
solver is no longer necessary. Instead, a standard conjugate
gradient descent algorithm could be used.

A naive approach would be to minimize the loss function
that directly corresponds to the ARE optimality condition.
i.e.

Li,j = ‖xi − xj‖22 − ‖xi+1 − xj+1‖22 and (2)

Mi,j = ‖xi − xj‖22 −D2
i,j . (3)

Where L represents loss based on action-respecting con-
straints and M represents loss based on the preservation of
local distances from some neighborhood graph. Then the
total loss function to be minimized is:

Φ =
∑
a∈A

∑
i,j∈Sa

L2
i,j + M2

i,j (4)

where A is the set of distinct action labels and Sa is the set
of pairs of points joined by action label a.

Unfortunately, the portion of the loss function from
Equation 2 contains terms for all possible O(n2) action-
respecting constraints. This means that the function and its
derivative need to be computed for every iteration of the
conjugate gradient, which is computationally very expen-
sive. We present an alternative approach however which is
O(n + k) where k is the number of edges in the neighbor-
hood graph. This approach will be computationally much
more efficient than solving the primal form directly.

4.1 An alternative primal formulation
Recall that ARE learns a representation with explicit con-
straints that the actions correspond to distance-preserving

transformations in that representation. For each unique ac-
tion u there is a collection of data point pairs (xi, xi+1)
which are connected by that action. Another way of thinking
of this is that there is a function fu where fu(xi) = xi+1,
and such a function needs to be learned for each action. Be-
cause of the distance-preserving constraints, fu can be rep-
resented as: fu(xi) = Auxi + bu = xi+1. Transforma-
tions of the above form encode translation in the bu vector,
and rotation and scaling in the Au matrix. Au and bu could
be learned using simple linear regression but scaling is not
distance preserving so there is the additional constraint that
Au does not scale, i.e., AT

u Au = I . It turns out that this
is similar to the extended orthonormal Procrustes problem
(Schoenemann & Carroll 1970), but without allowing for
a global scaling constant and can be solved in closed form
(Wilkinson, Bowling, & Ghodsi 2005).

This suggests a loss function that measures the difference
between the position of a point and its prediction as esti-
mated by the application of the appropriate transformation
to the previous point.

Li = ‖xi+1 −Aui
xi − bui

‖22
where now there are only O(n) terms (M is the same as
before). Note that each point will appear twice, once as xi

and again as xi+1 and therefore 5 and 6 can be combined for
the full gradient of the function.

δLi

δxi
= −2AT

i xi+1 + 2AT
i Aixi + 2AT

i bui (5)

δLi

δxi+1
= 2xi+1 − 2Aixi − 2bi (6)

5 Results
We now examine the ability of the proposed algorithm at
learning low-dimensional action-respecting representations.
Results are in the IMAGEBOT domain introduced in Sec-
tion 2.3. We demonstrate the effectiveness of Action-Guided
Isomap on a simple dataset, where its usefulness as a seed
for a primal optimization is contrasted with regular Isomap.
Both of the conjugate gradient methods discussed in Sec-
tion 4 are compared on a few datasets of varying orders of
magnitude. Finally, the new procedures are compared to the
original ARE algorithm, and their empirical running-times
are presented.

For these results, ARE refers to the original ARE algo-
rithm, and Isomap refers to the original Isomap algorithm.
AG-Isomap refers to the Action Guided Isomap described in
Section 3.

PG-ARE is a two step algorithm. First AG-Isomap is used
to generate a starting point which is then used with the Pro-
crustes conjugate gradient optimization described in Section
4. CG-ARE is a naive conjugate gradient algorithm which
uses AG-Isomap to generate a starting point but then solves
a conjugate gradient to explicitly optimize the primal form
of the problem.

For these experiments, IMAGEBOT is always viewing a
200 by 200 patch of a 1914 by 1960 image. Six distinct ac-
tions are used: four translation actions, and two rotation ac-
tions. The translations are ‘north’, ‘south’, ‘east’ and ‘west’,

each by 10 pixels. The rotation actions are ‘turn clockwise’
and ‘turn counter-clockwise’, each by 22 1

2

◦. As an exam-
ple, Figure 2 shows an ‘A’-shaped trajectory that IMAGE-
BOT followed, superimposed on a portion of the image that
is IMAGEBOT’s environment.

Figure 2: A sample IMAGEBOT trajectory.

5.1 Manifold Learning
The first row of Figure 3 shows the results of Isomap and
AG-Isomap applied to data from the trajectory in Figure 2.
Isomap fails to generate a manifold in which actions have a
simple interpretation. AG-Isomap captures the true topology
of the trajectory, but fails to produce an action respecting
embedding on its own.

!"#$%& '(!!"#$%&

)(

*(

Figure 3: Results of Isomap (left) and Action-Guided
Isomap (right) on the A trajectory

The second and third rows show the result of using these

embeddings as a seed for each of the conjugate gradient
methods described in Section 4. The second row demon-
strates the naive conjugate gradient approach, where the
ARE loss function is optimized directly, and the third row
shows the more efficient Procrustes method from Section
4.1. In both cases, the Isomap seed is insufficient to produce
a meaningful result, whereas the AG-Isomap seed allowed
the primal search methods to uncover the “letter A” trajec-
tory.

Figure 4 continues to compare the two conjugate gra-
dient methods on a few different datasets. In each case,
AG-Isomap is used to seed the optimization. The first row
presents the “letter A” dataset as used previously. The
second is an IMAGEBOT trajectory that spells the letters
“ISAIM“, and the third row shows a simple pattern con-
structed from very large rectangular paths. Note that PG-
ARE enforces that actions apply consistent transformations
in the learned embedding, whereas this condition is not
maintained so strictly with CG-ARE.

CG!ARE PG!ARE

Figure 4: Results of CG-ARE (left) and PG-ARE (right) on
three datasets.

The original ARE algorithm is compared to the new CG-
ARE and PG-ARE methods in Figure 5. Results are very
similar, which shows that CG-ARE and PG-ARE are appro-
priate alternatives to the original ARE algorithm. The sec-
ond “circle” data is an IMAGEBOT trajectory of 16 counter-

ARE CG!ARE PG!ARE

Figure 5: Results of ARE (left), CG-ARE (middle), and PG-
ARE (right) on two small trajectories.

clockwise steps of rotation and translation.
CPU running times for the various algorithms is provided

in Table 1. For the smaller data sets, ARE, CG-ARE, and
PG-ARE have similar running times. It is worth mentioning
that PG-ARE is somehow slower than CG-ARE on small
data sets due to its overhead for computing Procrustes oper-
ators. On the larger data sets, however, PG-ARE is notice-
ably faster than CG-ARE as expected. Note that the times
for PG-ARE and CG-ARE both include the computation of
AG-Isomap. Furthermore, ARE is infeasible for the larger
datasets and so its running time cannot be compared.

Dataset Letter A Circle ISAIM Rectangles
points 46 33 517 761
AG-Isomap 0.13 s 0.11 s 214 s 1265 s
CG-ARE 3.29 s 1.48 s 675 s 1826 s
PG-ARE 5.97 s 1.69 s 287 s 1352 s
ARE 4.35 s 1.95 s n/a n/a

Table 1: Algorithm run-times. Times shown for CG-ARE
and PG-ARE include the AG-Isomap computation.

6 Conclusion
ARE is a promising way of learning representations from
a raw stream of experience. Due to the semidefinite opti-
mization at its core, there are scaling problems. The com-
bination of solving the primal problem of directly learn-
ing the representation with a non-convex conjugate gradi-
ent method seeded with representations learned by action-
guided Isomap proves successful. Not only are results quite
similar to those of ARE obtained on smaller data sets, but
good representations are learned for problems whose input
sizes are an order of magnitude larger.

References
Bowling, M.; Wilkinson, D.; Ghodsi, A.; and Milstein, A.
2005. Subjective localization with action respecting em-

bedding. In ISRR 2005. The International Symposium of
Robotics Research.
Bowling, M.; Ghodsi, A.; and Wilkinson, D. 2005. Action
respecting embedding. In Raedt, L. D., and Wrobel, S.,
eds., ICML 2005, 65–72. The 22nd International Confer-
ence on Machine Learning.
Bowling, M.; Wilkinson, D.; and Ghodsi, A. 2006. Subjec-
tive mapping. In New Scientific and Technical Advances in
Research (NECTAR) at AAAI 2006, 1569–1572. The 21st
National Conference on Artificial Intelligence.
Cox, T. F., and Cox, M. A. A. 2000. Multidimensional
Scaling, Second Edition. Chapman & Hall/CRC.
Schoenemann, P. H., and Carroll, R. 1970. Fitting one
matrix to another choice of a central dilation and a rigid
motion. Psychometrika 2(35).
Scholkopf, B., and Smola, A. 2002. Learning with Kernels.
MIT Press.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press.
Tenenbaum, J. B.; de Silva, V.; and Langford, J. C. 2000. A
global geometric framework for nonlinear dimensionality
reduction. Science 290(5500):2319–2323.
Weinberger, K. Q.; Sha, F.; and Saul, L. K. 2004. Learning
a kernel matrix for nonlinear dimensionality reduction. In
Proceedings of the Twenty First International Conference
on Machine Learning (ICML-04), 839–846.
Wilkinson, D.; Bowling, M.; and Ghodsi, A. 2005. Learn-
ing subjective representations for planning. In IJCAI 2005.
The 19th International Joint Conference on Artificial Intel-
ligence.

