
Agent Learning using Action-Dependent Learning Rates in Computer
Role-Playing Games

Maria Cutumisu, Duane Szafron, Michael Bowling, Richard S. Sutton

Department of Computing Science, University of Alberta
Edmonton, Canada

{meric, duane, bowling, sutton}@cs.ualberta.ca

Abstract
We introduce the ALeRT (Action-dependent Learning Rates
with Trends) algorithm that makes two modifications to the
learning rate and one change to the exploration rate of
traditional reinforcement learning techniques. Our learning
rates are action-dependent and increase or decrease based on
trends in reward sequences. Our exploration rate decreases
when the agent is learning successfully and increases
otherwise. These improvements result in faster learning. We
implemented this algorithm in NWScript, a scripting
language used by BioWare Corp.’s Neverwinter Nights
game, with the goal of improving the behaviours of game
agents so that they react more intelligently to game events.
Our goal is to provide an agent with the ability to (1)
discover favourable policies in a multi-agent computer role-
playing game situation and (2) adapt to sudden changes in
the environment.

Introduction
An enticing game story relies on non-player characters
(NPCs or agents) acting in a believable manner and
adapting to ever-increasing demands of players. The best
interactive stories have many agents with different
purposes, therefore, creating an engaging complex story is
challenging. Most games have NPCs with manually
scripted actions that lead to repetitive and predictable
behaviours. We extend our previous model (Cutumisu et
al. 2006) that generates NPC behaviours in computer role-
playing games (CRPGs) without manual scripting. The
model selects an NPC behaviour based on motivations and
perceptions. The model’s implementation generates
scripting code for BioWare Corp.'s Neverwinter Nights
(NWN 2008) using a set of behaviour patterns built using
ScriptEase (ScriptEase 2008), a publicly available tool that
generates NWScript code. The generated code is attached
to NPCs to define their behaviours. Although ScriptEase
supports motivations to select behaviours, a more versatile
mechanism is needed to generate adaptive behaviours.

A user describes a behaviour motivation in ScriptEase
by enumerating attributes and providing them with initial
values. Behaviours are selected probabilistically, based on
a linear combination of the attribute values and the

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attributes are updated to express behaviour consequences.
For example, the motivation of a guard relies on the duty,
tiredness, and threat attributes that control the selection of
the patrol, rest, and check behaviours. When patrol is
selected, duty is decreased and tiredness and threat are
increased. An agent that selects behaviours based only on
motivations is not able to quickly discover a successful
strategy in a rapidly changing environment. Motivations
provide limited memory of past actions and lack
information about action order or outcomes.

In this paper, we introduce reinforcement learning (RL)
to augment ScriptEase motivations. An agent learns how to
map observations to actions in order to maximize a
numerical reward signal (Sutton and Barto 1998). Our
extension of the ScriptEase behaviour model provides
agents with a mechanism to adapt to unforeseen changes in
the environment by learning. The learning task is
complicated by the fact that the agent’s optimal policy at
any time depends on the policies of the other agents,
creating “a situation of learning a moving target” (Bowling
and Veloso 2002). More specifically, the learning task is
challenging because (1) the game environment changes
while the agent is learning (other agents may also change
the environment), (2) the other story agents and the player
character (PC) may also learn, (3) the other agents may not
use or seek optimal strategies, (4) the agent must learn in
real-time, making decisions rapidly, especially to recover
from adverse situations, because the system targets a real-
time CRPG, and (5) the agent must learn and act
efficiently, because in most games there are hundreds or
thousands of agents. RL is not used in commercial games
due to fears that agents can learn unexpected (or wrong)
behaviours and because of experience with algorithms that
converge too slowly to be useful (Rabin 2003).

We introduce a variation of a single-agent on-line RL
algorithm, Sarsa(λ) (Sutton and Barto 1998), as an
additional layer to behaviour patterns. To evaluate this
approach, we constructed some experiments to evaluate
learning rates and adaptability to new situations in a
changing game world. Although our goal is to learn
general behaviours (such as the guard described earlier),
combat provides an objective arena for testing, because it
is easy to construct an objective evaluation mechanism. In
addition, Spronck (NWN Arena 2008) has provided a pre-
built arena combat module for NWN that is publicly
available and has created learning agents that can be used

to evaluate the quality of new learning agents. We evaluate
our learning algorithm using this module.

Our experiments show that traditional RL techniques
with static or decaying RL parameters do not perform well
in this dynamic environment. We identified three key
problems using traditional RL techniques in the computer
game domain. First, fixed learning rates, or learning rates
that decay monotonically, learn too slowly when the
environment changes. Second, with action-independent
learning rates, the actions that are rarely selected early may
be discounted and not “re-discovered” when the
environment changes to be more favorable for those
actions. Third, a fixed exploration rate is not suitable for
dynamic environments.

We modify traditional RL techniques in three ways.
First, we identify “safe” opportunities to learn fast. Second,
we support action-dependent learning rates. Third, we
adjust the exploration rate based on the learning success of
the agent. Our agent learns about the effect of actions at
different rates as the agent is exposed to situations in which
these actions occur. This mirrors nature, where organisms
learn the utility of actions when stimuli/experiences
produce these actions as opposed to learning the utility of
all actions at a global rate that is either fixed, decaying at a
fixed rate, or established by the most frequently performed
actions. This paper makes the following contributions: (1)
provides a mechanism for increasing the learning rate (i.e.,
the step-size) in RL when prompted by significant changes
in the environment; (2) introduces action-dependent
learning rates in RL; (3) introduces a mechanism for
decreasing the exploration rate when the agent learns
successfully and increasing it otherwise; (4) evaluates an
implementation of an RL algorithm with these
enhancements in the demanding environment of
commercial computer games (NWN) where it outperforms
Spronck’s dynamic rule-based approach (Spronck et al.
2004) for adaptation speed; and (5) integrates this RL
algorithm into the ScriptEase behaviour code generation.

Related Work
There have been several efforts directed at improving the
behaviours of NPCs that have appeared in the literature.
Games that use AI methods such as decision trees, neural
nets, genetic algorithms and probabilistic methods (e.g.,
Creatures and Black & White) use these methods only
when they are needed and in combination with
deterministic techniques (Bourg and Seemann 2004). RL
techniques applied in commercial games are quite rare,
because in general it is not trivial to decide on a game state
vector and the agents adapt too slowly for online games
(Spronck et al. 2003). In massively multiplayer online role-
playing games (MMORPGs), a motivated reinforcement
learning (MRL) algorithm generates NPCs that can evolve
and adapt (Merrick and Maher 2006). The algorithm uses a
context-free grammar instead of a state vector to represent
the environment. Dynamic scripting (Spronck et al. 2004)
is a learning technique that combines rule-based scripting
with RL. In this case, the policy is updated by extracting

rules from a rule-base and the value function is updated
when the effect of an entire sequence of actions can be
measured, not after each action. Also, states are encoded in
the conditions of the rules in the rule-base. For a fighter
NPC, the size of a script is set to five rules selected from a
rule-base of 21 rules. If no rule can be activated, a call to
the default game AI is added. However, the rules in the
rule-base have to be ordered (Timuri et al. 2007), the agent
cannot discover other rules that were not included in the
rule-base (Spronck et al. 2006), and, as in the MRL case,
the agent has only been evaluated against a static opponent.

The ALeRT Algorithm
We introduce a step-size updating mechanism that speeds
up learning, a variable action-dependent learning rate, and
a mechanism that adjusts the exploration rate into RL. We
demonstrate this idea using the Sarsa(λ) algorithm in which
the agent learns a policy that indicates what action it
should take for every state. The value function, Q(s,a),
defines the value of action a in state s as the total reward
an agent will accumulate in the future starting from that
state-action. This value function, Q(s,a), must be learned
so that a strategy that picks the best action can be found. At
each step the agent maintains an estimate of Q. At the
beginning of the learning process, the estimate of Q(s,a) is
arbitrarily initialized. At the start of each episode step, the
agent determines the state s and selects some action a to be
taken using a selection policy. For example, an ε-greedy
policy selects the action with the largest estimated Q(s,a)
with probability 1 – ε and it selects randomly from all
actions with probability ε.
 At a step of an episode in state s, the selected action a is
performed and the consequences are observed: the
immediate reward, r, and the next state s′. The algorithm
selects its next action, a′, and updates its estimate of Q(s,a)
for all s and a using the ALeRT algorithm shown in Figure
1, where for simplicity we have used Q(s,a) to denote the
estimator of Q. This algorithm is a modified form of the
standard Sarsa(λ) algorithm presented in (Sutton and Barto
1998) where changed lines are marked by **.

The error δ can be used to evaluate the action selected in
the current state. If δ is positive, it indicates that the action
value for this state-action pair should be strengthened for
the future. Otherwise it should be weakened. Note that δ is
reduced by taking a step of size α toward the target. The
step-size parameter, α, reflects the learning rate: a larger α
value has a bigger effect on the state-action value. The
algorithm is called Sarsa because the update is based on: s,
a, r, s′, a′. Each episode ends when a terminal state is
reached and, on the terminal step, Q(s,a) is zero because
the value of the reward from the final state to the end must
be zero.

To speed up the estimation of Q, Sarsa(λ) uses eligibility
traces. Each update depends on the current error combined
with traces of past events. Eligibility traces provide a
mechanism that assigns positive or negative rewards to
past eligible states and actions when future rewards are
assigned. For each state, Sarsa(λ) maintains a memory

variable, called an eligibility trace. The eligibility trace for
state-action pair (s,a) at any step is a real number denoted
e(s,a). When an episode starts, e(s,a) is set to 0 for all s and
a. At each step, the eligibility trace for the state-action pair
that actually occurs is incremented by 1 divided by the
number of active features for that state. The eligibility
traces for all states decay by γ*λ, where γ is the discount
rate and λ is the trace decay parameter. The value of γ is 1
for episodes that are guaranteed to end in a finite number
of steps (this is true in our game).

Figure 1. The ALeRT algorithm.

For example, assume γ =1, λ = 0.5, and the melee action
is taken in state s at some step. Assume that the state has
three active binary features, then e(s,melee) = 1/3 and the
eligibility traces for the rest of the actions in state s are
zero. In the next step, if (s,melee) does not occur again, its
eligibility trace decays to λ = 0.5 and in the next step it
further decays to λ2 = 0.25.

Traditionally, α has either been a fixed value or decayed
at a rate that guarantees convergence in an application that
tries to learn an optimal static strategy. As stated in the
introduction, one of the two main issues with using RL in
computer games is the slow learning rate in a dynamic
environment. In a game environment, the learning
algorithm should not converge to an optimal static strategy
because the changing environment can make this static
strategy obsolete (not optimal any longer).

The first change we make to traditional RL algorithms is
to speed up the learning rate when there is a recognizable
trend in the environment and slow it down when the
environment is stable. This supports fast learning when
necessary, but reduces variance due to chance in stable
situations. The problem is to determine a good time to
increase or decrease the step-size α. When the environment
changes enough to perturb the best policy, the estimator of
Q for the new best action in a given state will change its
value. The RL algorithm will adapt by generating a
sequence of positive δ values, as the estimator of Q
continually underestimates the reward for the new best
action until the estimate of Q has been modified enough to
identify the new best action. However, due to non-
determinism, the δ values will not be monotonic. For
example, if a new powerful range weapon has been
obtained, then the best new action in a combat situation
may be a range attack instead of a melee attack. However,
the damage done/taken each round varies due to non-
determinism. The trend for the new best action will be
positive, but there may be some negative values.

Conversely, when the environment is stable and the
policy has already determined the best action, there is no
new best action, so the sequence of δ values will have
random signs. In this case, no trend exists. When a trend is
detected, we increase α to revise our estimate of Q faster.
When there is no trend, we decrease α to reduce the
variance in a stable environment. We recognize the trend
using a technique based on the Delta-Bar-Delta measure
(Sutton 1992). We compute delta-bar, the average value of
δ over a window of previous steps that used that action,
and then compute the product of the current δ with delta-
bar. When the product is positive, there is a positive
correlation between the current δ and the trend, so we
increase α to learn the new policy faster. When the product
is negative, we reduce α to lower variance. However, we
modified this approach to ensure that variance remains low
and to accommodate situations where the best policy may
not be able to attain a tie (non-fair situations for our agent).

We define a significant trend when delta-bar differs
from the average delta-bar (µ (a)) by more than a factor f
times the standard deviation of delta-bar (ƒ*σ (a)). The

€

Initialize

θ arbitrarily

* * Initializeα(a)←αmax for alla
Repeat (for eachepisode)
 e =

0

s, a ← initial state and action of episode
Fa ←set of features present in s, a
Repeat (for eachstepof episode)

For all i ∈ Fa :

* * e(i)←e(i) + 1
Fa

 (accummulating traces)

Takeactiona,observe reward, r, and next state, s
δ ← r - θ(i)

i∈Fa

∑

With probability 1-ε:
∀a∈A (s):

Fa ← set of features present in s, a
Qa← θ(i)

i∈Fa

∑

a←argmaxaQa

or with probability ε:
a←a random action∈A (s)
Fa←set of features present in s, a
Qa← θ(i)

i∈Fa

∑

δ←δ+γQa

θ ←

θ +α a()δ

 e
 e =γλ e

* * Δα=
αmax −αmin

αsteps

* * if δ a()δ>0 ∧δ a()−µ
δ a()

> fσ
δ a()

* * α a()←α a()+Δ

* * else if δ a()δ≤0
* * α a()←α a()−Δ

end of step
until s is terminal

* * Δε=
εmax −εmin
εsteps

* * if rstep =1
step
∑

* * ε=ε−Δε

else
* * ε=ε+Δε

end of episode

average and standard deviation of delta-bar for that action
are computed over the entire set of episodes. Initially, α =
αmax, because we want a high step-size when the best policy
is unknown. In the stable case (no trend), α decreases to
reduce variance so that the estimate of Q does not change
significantly. However, α does not get smaller than αmin,
because we want to be able to respond to future changes in
the environment that may alter the best policy. If we
identify a trend that is not significant, we do not change α.
If there is a significant trend, we increase α to learn faster.
We change α using fixed size steps (αsteps = 20) between
αmin and αmax, although step-sizes proportional to delta-bar
would also be reasonable.

The second change we make to traditional RL
techniques is to introduce a separate step-size α(a) for each
action a. This allows the learning algorithm to establish
separate trends for each action to accommodate situations
in which a new best action for a particular state replaces an
old best action for that state, while a different action for a
different state remains unaffected. For example, when an
agent in NWN acquires a better range weapon, the agent
may learn quickly to take a range action in the second step
of the combat instead of taking a melee action because the
α(range) value is increased due to trend detection. The
agent may still correctly take a speed potion in the first
step of a combat episode because the α(speed) parameter is
unaffected by the trend affecting α(range). We expect α(a)
to converge to a small value when the agent has settled on
a best policy. Otherwise, α(a) will be elevated, so that the
agent follows the trend and learns fast.

An elevated α value often indicates a rare action whose
infrequent use has not yet decayed its step-size from its
high value at the start of training. The agent’s memory has
faded with regards to the effect of this action. When this
rare action is used, its high α value serves to recall that
little is known about this action and its current utility is
judged on its immediate merit. This situation is reminiscent
of the start of training when no bias has been introduced
for any action. In fact, as shown in Figure 1, we combine
action dependent alphas with trend-based alphas in that
there is a separate delta-bar for each action.

Our trend approach to the step-size parameter (α) is
consistent with the WoLF principle of “learn quickly while
losing, slowly while winning” (Bowling and Veloso 2001).
We also use this principle in our third change to traditional
RL techniques. We vary the exploration parameter (ε) in
fixed steps (εsteps = 15) between εmin and εmax. Initially, ε =
εmax for substantial exploration at the start. Then, ε
increases after a loss to explore more, searching for a
successful policy, and decreases after a win, when the
agent does not need to explore as much. Exploration is
necessary to discover the optimal strategy in dynamic
environments, therefore, we set a lower bound for ε.

NWN Implementation
We define each NPC to be an agent in the environment
(NWN game), controlled by the computer, whereas the PC
(player character) is controlled by the player. The NPCs

respond to a set of game events (e.g., OnCombatRoundEnd
or OnDeath). If an event is triggered and the NPC has a
script for that event, then that script is executed.

NWN combat is a zero-sum game (one agent’s losses are
the opponent’s wins). We define an episode as a fight
between two NPCs that starts when the NPCs are spawned
and ends as soon as one or both or the opponents are dead.
We define a step as a combat round (i.e., a game unit of
time that lasts six seconds) during which the NPC must
decide what action to select and then execute the action.

We define a policy as the agent's behaviour at a given
time. A policy is a rule that tells the agent what action to
take for every state of the game. In our case, the policy is
selected by estimating our Qa using a

€


θ that has one

feature for each state-action pair. The state space consists
of five Boolean features: 1) the agent’s HP are lower than
half of the initial HP and the agent has a potion of heal
available; 2) the agent has an enhancement potion
available; 3) the agent has an enhancement potion active;
4) the distance between the NPCs is within the melee
range, and 5) a constant. The action space consists of four
actions: melee, ranged, heal, and speed. Therefore, there
are 20 features in

€


θ , one for each state-action pair. For

example, if features 1, 3 and 5 are active and a melee
action is taken, three components of

€

 e will be updated in
the step: 1-melee, 3-melee and 5-melee. These updates will
influence the same components of

€


θ and will affect the

estimator of Qmelee in future steps.
When the agent is in a particular game state, the action is

chosen based on the estimated values of Qa using an ε-
greedy policy. When we exploit (choose the action with the
maximum estimated Qa for the current state) and there is a
tie for the maximum value, we randomly select among
these actions. We explore using a uniformly random
approach (irrespective of the estimated Qa values).

We define the score of a single episode as 1 if the agent
wins the episode and -1 if it loses. The agent’s goal is to
win a fight consisting of many consecutive episodes. We
define the immediate reward, r, at the end of each step of
each episode as: r = 2*[HPs' /(HPs' + HPo') – HPs/(HPs
+ HPo)], where the subscript s represents the agent (self),
the subscript o represents the opponent, a prime (') denotes
a value after the action and a non-prime represents a value
before the action. Note that the sum of all the immediate
rewards during an episode amounts to 1 when our agent
wins and -1 when our agent loses. Moreover, the sum of all
the rewards throughout the game amounts to the difference
in episode wins and losses during the game.

Experiments and Evaluation
We used Spronck’s NWN combat module to run
experiments between two competing agents. Each agent
was scripted with one strategy from a set of seven
strategies. NWN is the default NWN agent, a rule-based
probabilistic strategy that suffers from several flaws. For
example, if an agent starts with a sword equipped, it only
selects between melee and heal, never from ranged or
speed. RL0, RL3, and RL5 are traditional Sarsa(λ) dynamic

learning agents with α = 0.1, ε = 0.01, γ = 1, λ = 0, λ = 0.3,
and λ = 0.5 respectively. ALeRT is the agent that uses our
new strategy with action-dependent step-sizes that vary
based on trends, with the parameters initially set to α = 0.2,
ε = 0.02, λ = 0 (fixed), and γ = 1. M1 is Spronck’s dynamic
scripting agent (learning method 1), a rule-based strategy
inspired by RL, called dynamic scripting, that uses NWN
version 1.61. OPT is a hand coded optimal strategy, based
on the available equipment, which we created.

 Each experiment consisted of 50 trials and each trial
consisted of either one or two phases of 500 episodes. At
the start of each phase, the agent was equipped with a
specific configuration of equipment. We created the phases
by changing each agent’s equipment configuration at the
phase boundary. In the first phase, we evaluated how
quickly and how well an agent was able to learn a winning
strategy from a starting point of zero knowledge. In the
second phase, we evaluated how quickly and how well an
agent could adapt to sudden changes in the environment
and discover a new strategy. In essence, the agent must
overcome a bias towards one policy to learn the new
policy. Each equipment configuration (Melee, Ranged,
Heal) has an optimal action sequence. For example, the
melee weapon in the Melee configuration does much more
damage than the ranged weapon so the optimal strategy
uses the melee weapon rather than the ranged one. The
optimal strategy for the Melee configuration is speed,
followed by repeated melee actions until the episode is
finished. Similarly, the Heal configuration has a potion that
heals a greater amount of HP than the healing potions in
the other two configurations so that the optimal strategy is
speed, repeated melee actions until the agent’s HP are less
than half of the initial value, heal, and repeated melee
actions. We recorded the average number of wins for each
opponent for each group of 50 episodes. The two
competing agents had exactly the same equipment
configuration and game statistics. However, the agents had
different scripts that controlled their behaviours. In the
experiments illustrated in Figure 2 and Figure 3, we ran
only a single-phase experiment.

Each data point in a graph represents an agent’s winning
percentage against its opponent after each group of fifty
episodes. The x-axis indicates the episode and the y-axis
indicates the average winning percentage for that episode.
For example, the data point at x=200 is the average
winning percentage of all of the episodes between episode
151 and episode 200 over all trials for that experiment.

Motivation for ALeRT
Originally, we thought that traditional RL could be used
for agents in NWN. In fact, RL0 defeated NWN as shown
in Figure 2. RL agents with other RL parameter values also
defeated NWN. However, although we tried many
different parameter values, we could not get RL to
converge to the optimal strategy against OPT. For
example, Figure 2 shows that RL0 and RL3 could attain
only 34% and 38% wins respectively against OPT with the

Melee configuration after 500 episodes, and 41% and 40%
wins respectively for Ranged. Experiments with various
other parameter values did not yield better results. For
example, RL5 did better than RL0 and RL3 for Melee, but
did worse for Ranged. It was clear that we had to change
the Sarsa(λ) algorithm in a more fundamental manner.

Figure 2. Motivation for ALeRT: RL0 and RL3 vs. NWN (upper

traces) and OPT (lower traces).

It is important for a learning agent to be able to approach
the skill level of any agent, even an optimal one. If the
learning agent is the opponent of a PC that has a near
optimal strategy, the learning agent should provide a
challenge. If the learning agent is a companion of the PC
and their opponents are using excellent strategies, the
player will be disappointed if the companion agent causes
the PC’s team to fail. Therefore, we developed the action-
dependent step-sizes in the ALeRT algorithm to overcome
this limitation. ALeRT and RL defeated NWN, although
after 500 episodes ALeRT won 70% for Melee and 78%
for Ranged (Figure 3), while RL0 won 92% and 90%
(Figure 2). However, ALeRT’s behaviour is more suitable
for a computer game, where it is not necessary (and usually
not desirable) for a learning agent to crush either a PC or
another NPC agent by a large margin. The important point
is that ALeRT converged to the optimal strategies for
Melee and Ranged configurations against OPT, while RL0
and RL3 did not converge. The action-dependent step-sizes
in ALeRT are responsible for this convergence.

Figure 3 shows traces of M1 (Spronck’s learning method
1) versus NWN and M1 versus OPT. M1 defeated NWN
by a large margin, 94% for Melee and 90% for Ranged.
These winning rates were more than 20% higher than
ALeRT’s winning rates, but as stated before, winning by a
large margin is not usually desirable. M1 converged to the
optimal strategy against OPT for the Melee configuration.
However, as shown in Figure 3, M1 converged much more
slowly than ALeRT. The latter achieved a win rate of 48%
after the first 100 episodes and did not drop below 46%
after that. M1 won only 30% at episode 100, 40% at
episode 200 and did not reach 46% until episode 450.

Figure 3. ALeRT and M1 against static opponents – NWN (upper

traces) and OPT (lower traces).

M1 did not converge to the optimal strategy against OPT
in the Ranged configuration. After 500 episodes it only
attained 40% wins. The Melee configuration was taken
directly from Spronck’s module (NWN Arena 2008), but
the Ranged configuration was created for our experiments
to test adaptability. It is possible that M1 was tuned for the
Melee configuration and re-tuning may correct this
problem. Nevertheless, ALeRT converged quickly to the
Ranged configuration, attaining a 44% win rate by episode
150 and 46% by episode 450.

Adaptation in a dynamic environment
To test the adaptability of agents in combat, we changed
the equipment configuration at episode 501, and observed
500 more episodes. Each agent was required to overcome
the bias developed over the first phase and learn a different
strategy for the second phase. NWN is not adaptive,
therefore, we compared ALeRT and RL0 to M1. We used
the following combined configurations: Melee-Heal,
Melee-Ranged, Ranged-Melee, Ranged-Heal, Heal-Melee,
Heal-Ranged, where the configuration before the dash was
used in the first phase and the configuration after the dash
was used in the second phase. The learning algorithms
were not re-initialized between phases, so agents were
biased towards their first-phase policy. In the first phase,
we evaluated how quickly an agent was able to learn a
winning strategy without prior knowledge. In the second
phase, we evaluated how quickly an agent could discover a
new winning strategy after an equipment change.

We ran 50 trials for each of the Melee-Ranged, Melee-
Heal, Ranged-Melee, Ranged-Heal, Heal-Melee, and Heal-
Ranged configurations. Figure 4, Figure 5 and Figure 6
illustrate the major advantage of ALeRT over M1. ALeRT
adapts faster to changes in environment (equipment
configuration) that affect a policy’s success. ALeRT
increased its average win rate by 56% (the average over all
six experiments), 50 episodes after the phase change. By
episode 1000, ALeRT defeated M1 at an average rate of
80%.

The features of ALeRT that contribute to this rapid
learning are the trend-based step-sizes and win-based
exploration rate modifications to Sarsa(λ). In fact, RL0
defeated M1 at a slightly higher rate (84%) than ALeRT
after the phase change, but RL0 won only 42% in the first
phase (Cutumisu and Szafron 2008). As stated in the
previous section, RL0 won only 34% and 41% against
optimal strategies with Melee and Ranged configurations
respectively, which is not an acceptable strategy.
Therefore, for added clarity of the graphs, we do not show
RL0 traces in the graphs.

Rather than showing six separate graphs, we combined
the common first phase configurations so that the
experiments can be shown in three graphs: Melee-
Ranged&Heal, Ranged-Melee&Heal, and Heal-
Melee&Ranged. The data points from two separate
experiments were combined into one trace in the first
phase of each graph, therefore each data point represents
the average winning percentage over 100 trials. Each
second phase data point represents the average winning
percentage over 50 trials.

Figure 4 shows the Melee-Ranged&Heal results. ALeRT
did almost as well as M1 in the first phase with a 3%
deficit at episode 450, recovering to a 49.3% win rate at
episode 500. M1 did very well in the initial Melee
configuration, perhaps due to manual tuning. Nevertheless,
ALeRT’s winning rate was very close to 50% throughout
the first phase and it dominated M1 during the second
phase.

Figure 4. ALeRT vs. M1 – Melee-Ranged and Melee-Heal.

In the Ranged-Melee and Ranged-Heal configurations
(Figure 5), the agents tied in the first phase, while ALeRT
clearly outperformed M1 in the second phase. One of the
reasons for the poor performance of M1 is that when it
cannot decide what action to choose, it selects an attack
with the currently equipped weapon.
 In the first phase of the Heal-Melee and Heal-Ranged
configurations (Figure 6), ALeRT and M1 tied again, but
ALeRT outperformed M1 during the second phase. In each
configuration, the major advantage of ALeRT over M1 is
that ALeRT adapts faster to a change in environment, even
though it does not always find the optimal strategy.

Figure 5. ALeRT vs. M1 – Ranged-Melee and Ranged-Heal.

Figure 6. ALeRT vs. M1 – Heal-Melee and Heal-Ranged.

Observations
ALeRT is based on Sarsa(λ) and the only domain
knowledge it requires is a value function, a set of actions
and a state vector. Unmodified Sarsa(λ) does not perform
well against either an optimal strategy (OPT in Figure 2) or
against the dynamic reordering rule-based system, M1, in
the first phase (Cutumisu and Szafron 2008). ALeRT
overcomes this limitation, using three fundamental
modifications to traditional RL techniques. ALeRT uses 1)
action-dependent step-size variation, 2) larger step-size
increases during trends, and 3) adjustable exploration rates
based on episode outcomes. While conducting our
experiments, we made several observations that may
explain why ALeRT adapts better to change than M1.

ALeRT achieves a good score even when the opponent
is not performing optimally and it does not attempt to
mimic the opponent. Although ALeRT may not find the
optimal solution, it still finds a good policy that defeats the
opponent. In the games domain, this is a feature, not a bug,
as we do not aim to build agents that crush the PC.

ALeRT works effectively in a variety of situations: short
episodes (Melee configuration), long episodes (Ranged
configuration), and time-critical action selection situations,
such as taking a speed action at the start of an episode and
a heal action when the agent’s HP are low.

The ALeRT game state vector is simple (5 binary
features), so each observation is amortized over a small
number of states to support fast learning. Although the

game designer must specify a state vector, “obvious”
properties such as health, distance, and potion availability
are familiar to designers. M1 relies on a set of 21 rules;
discovering and specifying rules could be challenging.

Although ALeRT may select any valid action during an
episode, M1 only chooses one type of attack action (ranged
or melee) per episode in conjunction with speed/heal, but
never two different attack actions. This restriction proved
important in the Melee-Heal experiments, where although
M1 discovered heal in the second phase, it was sometimes
selecting only ranged attacks and could not switch to melee
during the same episode. In some trials, this allowed
ALeRT to win even though it did not discover heal in the
second phase in that particular trial. Moreover, when M1
cannot decide what action to choose, it selects an attack
with the currently equipped weapon (calling the default
NWN if there is no action available). This is a problem if
the currently equipped weapon is not the optimal one.
Conversely, ALeRT always selects an action based on the
value function. If there is a tie, it randomly selects one of
the actions with equal value. There is no bias to the
currently equipped weapon.

ALeRT uses an ε-greedy action selection policy which
increases ε to generate more exploration when the agent is
losing and decreases ε when the agent is winning. We
experimented with several other ε-greedy strategies,
including fixed and decaying ε strategies, but they did not
adapt as quickly when the configuration changed. We also
tried softmax, but it generated differences between
estimated values of Q that were too large. The result was
that the agent could not recover as fast once it selected a
detrimental action. M1 uses softmax from the Boltzmann
(Gibbs) distribution. Most importantly, ALeRT’s action-
dependent step-sizes provide a mechanism to recover from
contiguous blocks of losses. ALeRT’s trend-based step-
size modification is natural, flexible and robust. In addition
to allowing ALeRT to identify winning trends and
converge fast on a new policy, it smoothly changes policies
during a losing trend. M1 appears to use a window of 10
losses to force a radical change in policy. This approach is
rigid, especially when the problem domain changes and the
agent should alter its strategy rapidly.

Conclusions
We introduced a new algorithm, ALeRT, which makes
three fundamental modifications to traditional RL
techniques. Our algorithm uses action-dependent step-sizes
based on the idea that if an agent has not had ample
opportunities to try an action, the agent should use a step-
size for that action that is different than the step-sizes for
the actions that have been used frequently. Also, each
action-dependent step-size should vary throughout the
game (following trends), because the agent may encounter
situations in which it has to learn a new strategy.
Moreover, at the end of an episode, the exploration rate is
increased or decreased according to a loss or a win. We
demonstrated our changes using the Sarsa(λ) algorithm.
We showed that variable action-dependent step-sizes are

successful in learning combat actions in a commercial
computer game, NWN. ALeRT achieved the same
performance as M1’s dynamic ordering rule-based
algorithm when learning from an initial untrained policy.
Our empirical evaluation also showed that ALeRT adapts
better than M1 when the environment suddenly changes.
ALeRT substantially outperformed M1 when learning
started from a trained policy that did not match the current
equipment configuration. The ALeRT agent adjusts its
behaviour dynamically during the game. We used combat
to evaluate ALeRT because it is easy to assign scores to
combat as an objective criterion for evaluation. However,
RL can be applied to learning any action set, based on a
state vector and a value function, so we intend to deploy
ALeRT for a variety of NWN behaviours. ALeRT will be
used to improve the quality of individual episodic NPCs
and of NPCs that are continuously present in the story.
Before a story is released, the author will pre-train NPCs
using the general environment for that story. For example,
if the PC is intended to start the story at a particular power
level, the author uses this power level to train the NPCs.
During the game, when an NPC learns a strategy or adapts
a strategy, all other NPCs of the same type (e.g., game
class, game faction) inherit this strategy and can continue
learning. Each of these vicarious learners jump-starts their
learning process using the

€


θ vector generated by the

experienced NPC. Ultimately, these improved adaptive
behaviours can enhance the appeal of interactive stories,
maintaining an elevated player interest.

Future Work
Next we intend to consider a team of cooperating agents,
instead of individual agents. For example, we will pit a
fighter and a sorcerer against another fighter and a
sorcerer. Spronck’s pre-built arena module will support
experiments on such cooperating agents and ScriptEase
supports cooperative behaviours, so generating the scripts
is possible. We are also interested in discovering the game
state vector dynamically, instead of requiring the game
designer to specify it. We could run some scenarios and
suggest game state options to the designer, based on game
state changes during the actions being considered.
 We are currently developing simple mechanisms for the
game designer to modify RL parameter values. We also
intend to provide the designer with a difficulty level
adjustment that indicates a maximum amount that an agent
is allowed to exploit another agent (usually the PC) and to
throttle our ALeRT algorithm so that the agent’s value
function does not exceed this threshold. This can be done
by increasing exploration or by picking an action other
than the best action during exploitation.

We have experimented with a variable lambda that
automatically adjusts to the modifications in configuration,
but more experiments are necessary. We expect to learn
faster in some situation if lambda is a function of the
number of steps in an episode (e.g., directly proportional).
For example, on average, in the Melee phase of a Melee-
Ranged experiment there are 3.5 steps per episode and in

the Ranged phase there are 5.5 steps. Lambda is
responsible for propagating future rewards quickly to
earlier actions, therefore, it needs a higher value to
propagate to the start action in a longer episode. Finally,
we are developing evaluation mechanisms for measuring
success in non-combat behaviours. This is a hard problem,
but without metrics, we will not know if the learning is
effective or not.

References
Bourg, D.M., and Seemann, G. 2004. AI for Game Developers.
O'Reilly Media, Inc.
Bowling, M., and Veloso, M. 2001. Rational and Convergent
Learning in Stochastic Games. In Proceedings of the 7th
International Joint Conference on AI, 1021-1026.

Bowling, M., and Veloso, M. 2002. Multiagent Learning Using a
Variable Learning Rate. Artificial Intelligence 136(2): 215-250.
Cutumisu, M., Szafron, D. 2008. A Demonstration of Agent
Learning with Action-Dependent Learning Rates in Computer
Role-Playing Games. AIIDE 2008.

Cutumisu, M., Szafron, D., Schaeffer, J., McNaughton, M., Roy,
T., Onuczko, C., and Carbonaro, M. 2006. Generating Ambient
Behaviors in Computer Role-Playing Games. IEEE Journal of
Intelligent Systems 21(5): 19-27.

Merrick, K., and Maher, M-L. 2006. Motivated Reinforcement
Learning for Non-Player Characters in Persistent Computer Game
Worlds. In ACM SIGCHI International Conference on Advances
in Computer Entertainment Technology, Los Angeles, USA.

NWN. 2008. http://nwn.bioware.com.
NWN Arena. 2008. http://www.cs.unimaas.nl/p.spronck/GameAI
OnlineAdaptation3.zip.
Rabin, S. 2003. Promising Game AI Techniques. AI Game
Programming Wisdom 2. Charles River Media.
ScriptEase. 2008. http://www.cs.ualberta.ca/~script/.
Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma, E.
2006. Adaptive Game AI with Dynamic Scripting. Machine
Learning 63(3): 217-248.
Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E. 2003.
Online Adaptation of Computer Game Opponent AI. Proceedings
of the 15th Belgium-Netherlands Conference on AI. 291-298.

Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E. 2004.
Online Adaptation of Game Opponent AI with Dynamic
Scripting. International Journal of Intelligent Games and
Simulation 3(1): 45–53.

Sutton, R.S. 1992. Adapting Bias by Gradient Descent: An
Incremental Version of Delta-Bar-Delta. In Proceedings of the
10th National Conference on AI, 171-176.
Sutton, R.S., and Barto, A.G. eds. 1998. Reinforcement Learning:
An Introduction. Cambridge, Mass.: MIT Press.

Timuri, T., Spronck, P., and van den Herik, J. 2007. Automatic
Rule Ordering for Dynamic Scripting. In Proceedings of the 3rd
AIIDE Conference, 49-54, Palo Alto, Calif.: AAAI Press.

