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Abstract 
We introduce the ALeRT (Action-dependent Learning Rates 
with Trends) algorithm that makes two modifications to the 
learning rate and one change to the exploration rate of 
traditional reinforcement learning techniques. Our learning 
rates are action-dependent and increase or decrease based on 
trends in reward sequences. Our exploration rate decreases 
when the agent is learning successfully and increases 
otherwise. These improvements result in faster learning. We 
implemented this algorithm in NWScript, a scripting 
language used by BioWare Corp.’s Neverwinter Nights 
game, with the goal of improving the behaviours of game 
agents so that they react more intelligently to game events. 
Our goal is to provide an agent with the ability to (1) 
discover favourable policies in a multi-agent computer role-
playing game situation and (2) adapt to sudden changes in 
the environment. 

Introduction  
An enticing game story relies on non-player characters 
(NPCs or agents) acting in a believable manner and 
adapting to ever-increasing demands of players. The best 
interactive stories have many agents with different 
purposes, therefore, creating an engaging complex story is 
challenging. Most games have NPCs with manually 
scripted actions that lead to repetitive and predictable 
behaviours. We extend our previous model (Cutumisu et 
al. 2006) that generates NPC behaviours in computer role-
playing games (CRPGs) without manual scripting. The 
model selects an NPC behaviour based on motivations and 
perceptions. The model’s implementation generates 
scripting code for BioWare Corp.'s Neverwinter Nights 
(NWN 2008) using a set of behaviour patterns built using 
ScriptEase (ScriptEase 2008), a publicly available tool that 
generates NWScript code. The generated code is attached 
to NPCs to define their behaviours. Although ScriptEase 
supports motivations to select behaviours, a more versatile 
mechanism is needed to generate adaptive behaviours. 

A user describes a behaviour motivation in ScriptEase 
by enumerating attributes and providing them with initial 
values. Behaviours are selected probabilistically, based on 
a linear combination of the attribute values and the 
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attributes are updated to express behaviour consequences. 
For example, the motivation of a guard relies on the duty, 
tiredness, and threat attributes that control the selection of 
the patrol, rest, and check behaviours. When patrol is 
selected, duty is decreased and tiredness and threat are 
increased. An agent that selects behaviours based only on 
motivations is not able to quickly discover a successful 
strategy in a rapidly changing environment. Motivations 
provide limited memory of past actions and lack 
information about action order or outcomes.  

In this paper, we introduce reinforcement learning (RL) 
to augment ScriptEase motivations. An agent learns how to 
map observations to actions in order to maximize a 
numerical reward signal (Sutton and Barto 1998). Our 
extension of the ScriptEase behaviour model provides 
agents with a mechanism to adapt to unforeseen changes in 
the environment by learning. The learning task is 
complicated by the fact that the agent’s optimal policy at 
any time depends on the policies of the other agents, 
creating “a situation of learning a moving target” (Bowling 
and Veloso 2002). More specifically, the learning task is 
challenging because (1) the game environment changes 
while the agent is learning (other agents may also change 
the environment), (2) the other story agents and the player 
character (PC) may also learn, (3) the other agents may not 
use or seek optimal strategies, (4) the agent must learn in 
real-time, making decisions rapidly, especially to recover 
from adverse situations, because the system targets a real-
time CRPG, and (5) the agent must learn and act 
efficiently, because in most games there are hundreds or 
thousands of agents. RL is not used in commercial games 
due to fears that agents can learn unexpected (or wrong) 
behaviours and because of experience with algorithms that 
converge too slowly to be useful (Rabin 2003). 

We introduce a variation of a single-agent on-line RL 
algorithm, Sarsa(λ) (Sutton and Barto 1998), as an 
additional layer to behaviour patterns. To evaluate this 
approach, we constructed some experiments to evaluate 
learning rates and adaptability to new situations in a 
changing game world. Although our goal is to learn 
general behaviours (such as the guard described earlier), 
combat provides an objective arena for testing, because it 
is easy to construct an objective evaluation mechanism. In 
addition, Spronck (NWN Arena 2008) has provided a pre-
built arena combat module for NWN that is publicly 
available and has created learning agents that can be used 



to evaluate the quality of new learning agents. We evaluate 
our learning algorithm using this module. 

Our experiments show that traditional RL techniques 
with static or decaying RL parameters do not perform well 
in this dynamic environment. We identified three key 
problems using traditional RL techniques in the computer 
game domain. First, fixed learning rates, or learning rates 
that decay monotonically, learn too slowly when the 
environment changes. Second, with action-independent 
learning rates, the actions that are rarely selected early may 
be discounted and not “re-discovered” when the 
environment changes to be more favorable for those 
actions. Third, a fixed exploration rate is not suitable for 
dynamic environments. 

We modify traditional RL techniques in three ways. 
First, we identify “safe” opportunities to learn fast. Second, 
we support action-dependent learning rates. Third, we 
adjust the exploration rate based on the learning success of 
the agent. Our agent learns about the effect of actions at 
different rates as the agent is exposed to situations in which 
these actions occur. This mirrors nature, where organisms 
learn the utility of actions when stimuli/experiences 
produce these actions as opposed to learning the utility of 
all actions at a global rate that is either fixed, decaying at a 
fixed rate, or established by the most frequently performed 
actions. This paper makes the following contributions: (1) 
provides a mechanism for increasing the learning rate (i.e., 
the step-size) in RL when prompted by significant changes 
in the environment; (2) introduces action-dependent 
learning rates in RL; (3) introduces a mechanism for 
decreasing the exploration rate when the agent learns 
successfully and increasing it otherwise; (4) evaluates an 
implementation of an RL algorithm with these 
enhancements in the demanding environment of 
commercial computer games (NWN) where it outperforms 
Spronck’s dynamic rule-based approach (Spronck et al. 
2004) for adaptation speed; and (5) integrates this RL 
algorithm into the ScriptEase behaviour code generation. 

Related Work 
There have been several efforts directed at improving the 
behaviours of NPCs that have appeared in the literature. 
Games that use AI methods such as decision trees, neural 
nets, genetic algorithms and probabilistic methods (e.g., 
Creatures and Black & White) use these methods only 
when they are needed and in combination with 
deterministic techniques (Bourg and Seemann 2004). RL 
techniques applied in commercial games are quite rare, 
because in general it is not trivial to decide on a game state 
vector and the agents adapt too slowly for online games 
(Spronck et al. 2003). In massively multiplayer online role-
playing games (MMORPGs), a motivated reinforcement 
learning (MRL) algorithm generates NPCs that can evolve 
and adapt (Merrick and Maher 2006). The algorithm uses a 
context-free grammar instead of a state vector to represent 
the environment. Dynamic scripting (Spronck et al. 2004) 
is a learning technique that combines rule-based scripting 
with RL. In this case, the policy is updated by extracting 

rules from a rule-base and the value function is updated 
when the effect of an entire sequence of actions can be 
measured, not after each action. Also, states are encoded in 
the conditions of the rules in the rule-base. For a fighter 
NPC, the size of a script is set to five rules selected from a 
rule-base of 21 rules. If no rule can be activated, a call to 
the default game AI is added. However, the rules in the 
rule-base have to be ordered (Timuri et al. 2007), the agent 
cannot discover other rules that were not included in the 
rule-base (Spronck et al. 2006), and, as in the MRL case, 
the agent has only been evaluated against a static opponent. 

The ALeRT Algorithm 
We introduce a step-size updating mechanism that speeds 
up learning, a variable action-dependent learning rate, and 
a mechanism that adjusts the exploration rate into RL. We 
demonstrate this idea using the Sarsa(λ) algorithm in which 
the agent learns a policy that indicates what action it 
should take for every state. The value function, Q(s,a), 
defines the value of action a in state s as the total reward 
an agent will accumulate in the future starting from that 
state-action. This value function, Q(s,a), must be learned 
so that a strategy that picks the best action can be found. At 
each step the agent maintains an estimate of Q. At the 
beginning of the learning process, the estimate of Q(s,a) is 
arbitrarily initialized. At the start of each episode step, the 
agent determines the state s and selects some action a to be 
taken using a selection policy. For example, an ε-greedy 
policy selects the action with the largest estimated Q(s,a) 
with probability 1 – ε and it selects randomly from all 
actions with probability ε. 
 At a step of an episode in state s, the selected action a is 
performed and the consequences are observed: the 
immediate reward, r, and the next state s′. The algorithm 
selects its next action, a′, and updates its estimate of Q(s,a) 
for all s and a using the ALeRT algorithm shown in Figure 
1, where for simplicity we have used Q(s,a) to denote the 
estimator of Q. This algorithm is a modified form of the 
standard Sarsa(λ) algorithm presented in (Sutton and Barto 
1998) where changed lines are marked by **. 

The error δ can be used to evaluate the action selected in 
the current state. If δ is positive, it indicates that the action 
value for this state-action pair should be strengthened for 
the future. Otherwise it should be weakened. Note that δ is 
reduced by taking a step of size α toward the target. The 
step-size parameter, α, reflects the learning rate: a larger α 
value has a bigger effect on the state-action value. The 
algorithm is called Sarsa because the update is based on: s, 
a, r, s′, a′. Each episode ends when a terminal state is 
reached and, on the terminal step, Q(s,a) is zero because 
the value of the reward from the final state to the end must 
be zero. 

To speed up the estimation of Q, Sarsa(λ) uses eligibility 
traces. Each update depends on the current error combined 
with traces of past events. Eligibility traces provide a 
mechanism that assigns positive or negative rewards to 
past eligible states and actions when future rewards are 
assigned. For each state, Sarsa(λ) maintains a memory 



variable, called an eligibility trace. The eligibility trace for 
state-action pair (s,a) at any step is a real number denoted 
e(s,a). When an episode starts, e(s,a) is set to 0 for all s and 
a. At each step, the eligibility trace for the state-action pair 
that actually occurs is incremented by 1 divided by the 
number of active features for that state. The eligibility 
traces for all states decay by γ*λ, where γ is the discount 
rate and λ is the trace decay parameter. The value of γ is 1 
for episodes that are guaranteed to end in a finite number 
of steps (this is true in our game). 

 
Figure 1. The ALeRT algorithm. 

For example, assume γ =1, λ = 0.5, and the melee action 
is taken in state s at some step. Assume that the state has 
three active binary features, then e(s,melee) = 1/3 and the 
eligibility traces for the rest of the actions in state s are 
zero. In the next step, if (s,melee) does not occur again, its 
eligibility trace decays to λ = 0.5 and in the next step it 
further decays to λ2  = 0.25. 

Traditionally, α has either been a fixed value or decayed 
at a rate that guarantees convergence in an application that 
tries to learn an optimal static strategy. As stated in the 
introduction, one of the two main issues with using RL in 
computer games is the slow learning rate in a dynamic 
environment. In a game environment, the learning 
algorithm should not converge to an optimal static strategy 
because the changing environment can make this static 
strategy obsolete (not optimal any longer). 

The first change we make to traditional RL algorithms is 
to speed up the learning rate when there is a recognizable 
trend in the environment and slow it down when the 
environment is stable. This supports fast learning when 
necessary, but reduces variance due to chance in stable 
situations. The problem is to determine a good time to 
increase or decrease the step-size α. When the environment 
changes enough to perturb the best policy, the estimator of 
Q for the new best action in a given state will change its 
value. The RL algorithm will adapt by generating a 
sequence of positive δ values, as the estimator of Q 
continually underestimates the reward for the new best 
action until the estimate of Q has been modified enough to 
identify the new best action. However, due to non-
determinism, the δ values will not be monotonic. For 
example, if a new powerful range weapon has been 
obtained, then the best new action in a combat situation 
may be a range attack instead of a melee attack. However, 
the damage done/taken each round varies due to non-
determinism. The trend for the new best action will be 
positive, but there may be some negative values.  

Conversely, when the environment is stable and the 
policy has already determined the best action, there is no 
new best action, so the sequence of δ values will have 
random signs. In this case, no trend exists. When a trend is 
detected, we increase α to revise our estimate of Q faster. 
When there is no trend, we decrease α to reduce the 
variance in a stable environment. We recognize the trend 
using a technique based on the Delta-Bar-Delta measure 
(Sutton 1992). We compute delta-bar, the average value of 
δ over a window of previous steps that used that action, 
and then compute the product of the current δ with delta-
bar. When the product is positive, there is a positive 
correlation between the current δ and the trend, so we 
increase α to learn the new policy faster. When the product 
is negative, we reduce α to lower variance. However, we 
modified this approach to ensure that variance remains low 
and to accommodate situations where the best policy may 
not be able to attain a tie (non-fair situations for our agent). 

We define a significant trend when delta-bar differs 
from the average delta-bar (µ (a)) by more than a factor f 
times the standard deviation of delta-bar (ƒ*σ (a)). The 
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average and standard deviation of delta-bar for that action 
are computed over the entire set of episodes. Initially, α = 
αmax, because we want a high step-size when the best policy 
is unknown. In the stable case (no trend), α decreases to 
reduce variance so that the estimate of Q does not change 
significantly. However, α does not get smaller than αmin, 
because we want to be able to respond to future changes in 
the environment that may alter the best policy. If we 
identify a trend that is not significant, we do not change α. 
If there is a significant trend, we increase α to learn faster. 
We change α using fixed size steps (αsteps = 20) between 
αmin and αmax, although step-sizes proportional to delta-bar 
would also be reasonable. 

The second change we make to traditional RL 
techniques is to introduce a separate step-size α(a) for each 
action a. This allows the learning algorithm to establish 
separate trends for each action to accommodate situations 
in which a new best action for a particular state replaces an 
old best action for that state, while a different action for a 
different state remains unaffected. For example, when an 
agent in NWN acquires a better range weapon, the agent 
may learn quickly to take a range action in the second step 
of the combat instead of taking a melee action because the 
α(range) value is increased due to trend detection. The 
agent may still correctly take a speed potion in the first 
step of a combat episode because the α(speed) parameter is 
unaffected by the trend affecting α(range). We expect α(a) 
to converge to a small value when the agent has settled on 
a best policy. Otherwise, α(a) will be elevated, so that the 
agent follows the trend and learns fast.  

An elevated α value often indicates a rare action whose 
infrequent use has not yet decayed its step-size from its 
high value at the start of training.  The agent’s memory has 
faded with regards to the effect of this action. When this 
rare action is used, its high α value serves to recall that 
little is known about this action and its current utility is 
judged on its immediate merit. This situation is reminiscent 
of the start of training when no bias has been introduced 
for any action. In fact, as shown in Figure 1, we combine 
action dependent alphas with trend-based alphas in that 
there is a separate delta-bar for each action.  

Our trend approach to the step-size parameter (α) is 
consistent with the WoLF principle of “learn quickly while 
losing, slowly while winning” (Bowling and Veloso 2001). 
We also use this principle in our third change to traditional 
RL techniques. We vary the exploration parameter (ε) in 
fixed steps (εsteps = 15) between εmin and εmax. Initially, ε = 
εmax for substantial exploration at the start. Then, ε 
increases after a loss to explore more, searching for a 
successful policy, and decreases after a win, when the 
agent does not need to explore as much. Exploration is 
necessary to discover the optimal strategy in dynamic 
environments, therefore, we set a lower bound for ε. 

NWN Implementation 
We define each NPC to be an agent in the environment 
(NWN game), controlled by the computer, whereas the PC 
(player character) is controlled by the player. The NPCs 

respond to a set of game events (e.g., OnCombatRoundEnd 
or OnDeath). If an event is triggered and the NPC has a 
script for that event, then that script is executed. 

NWN combat is a zero-sum game (one agent’s losses are 
the opponent’s wins). We define an episode as a fight 
between two NPCs that starts when the NPCs are spawned 
and ends as soon as one or both or the opponents are dead. 
We define a step as a combat round (i.e., a game unit of 
time that lasts six seconds) during which the NPC must 
decide what action to select and then execute the action. 

We define a policy as the agent's behaviour at a given 
time. A policy is a rule that tells the agent what action to 
take for every state of the game. In our case, the policy is 
selected by estimating our Qa using a   

€ 

 
θ  that has one 

feature for each state-action pair. The state space consists 
of five Boolean features: 1) the agent’s HP are lower than 
half of the initial HP and the agent has a potion of heal 
available; 2) the agent has an enhancement potion 
available; 3) the agent has an enhancement potion active; 
4) the distance between the NPCs is within the melee 
range, and 5) a constant. The action space consists of four 
actions: melee, ranged, heal, and speed. Therefore, there 
are 20 features in  

€ 

 
θ , one for each state-action pair. For 

example, if features 1, 3 and 5 are active and a melee 
action is taken, three components of  
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 e  will be updated in 
the step: 1-melee, 3-melee and 5-melee. These updates will 
influence the same components of   

€ 

 
θ  and will affect the 

estimator of Qmelee in future steps. 
When the agent is in a particular game state, the action is 

chosen based on the estimated values of Qa using an ε-
greedy policy. When we exploit (choose the action with the 
maximum estimated Qa for the current state) and there is a 
tie for the maximum value, we randomly select among 
these actions. We explore using a uniformly random 
approach (irrespective of the estimated Qa values).  

We define the score of a single episode as 1 if the agent 
wins the episode and -1 if it loses. The agent’s goal is to 
win a fight consisting of many consecutive episodes. We 
define the immediate reward, r, at the end of each step of 
each episode as: r = 2*[HPs' /(HPs' + HPo') – HPs/(HPs 
+ HPo)], where the subscript s represents the agent (self), 
the subscript o represents the opponent, a prime (') denotes 
a value after the action and a non-prime represents a value 
before the action. Note that the sum of all the immediate 
rewards during an episode amounts to 1 when our agent 
wins and -1 when our agent loses. Moreover, the sum of all 
the rewards throughout the game amounts to the difference 
in episode wins and losses during the game. 

Experiments and Evaluation 
We used Spronck’s NWN combat module to run 
experiments between two competing agents. Each agent 
was scripted with one strategy from a set of seven 
strategies. NWN is the default NWN agent, a rule-based 
probabilistic strategy that suffers from several flaws. For 
example, if an agent starts with a sword equipped, it only 
selects between melee and heal, never from ranged or 
speed. RL0, RL3, and RL5 are traditional Sarsa(λ) dynamic 



learning agents with α = 0.1, ε = 0.01, γ = 1, λ = 0, λ = 0.3, 
and λ = 0.5 respectively. ALeRT is the agent that uses our 
new strategy with action-dependent step-sizes that vary 
based on trends, with the parameters initially set to α = 0.2, 
ε = 0.02, λ = 0 (fixed), and γ = 1. M1 is Spronck’s dynamic 
scripting agent (learning method 1), a rule-based strategy 
inspired by RL, called dynamic scripting, that uses NWN 
version 1.61. OPT is a hand coded optimal strategy, based 
on the available equipment, which we created. 

 Each experiment consisted of 50 trials and each trial 
consisted of either one or two phases of 500 episodes. At 
the start of each phase, the agent was equipped with a 
specific configuration of equipment. We created the phases 
by changing each agent’s equipment configuration at the 
phase boundary. In the first phase, we evaluated how 
quickly and how well an agent was able to learn a winning 
strategy from a starting point of zero knowledge. In the 
second phase, we evaluated how quickly and how well an 
agent could adapt to sudden changes in the environment 
and discover a new strategy. In essence, the agent must 
overcome a bias towards one policy to learn the new 
policy. Each equipment configuration (Melee, Ranged, 
Heal) has an optimal action sequence. For example, the 
melee weapon in the Melee configuration does much more 
damage than the ranged weapon so the optimal strategy 
uses the melee weapon rather than the ranged one. The 
optimal strategy for the Melee configuration is speed, 
followed by repeated melee actions until the episode is 
finished. Similarly, the Heal configuration has a potion that 
heals a greater amount of HP than the healing potions in 
the other two configurations so that the optimal strategy is 
speed, repeated melee actions until the agent’s HP are less 
than half of the initial value, heal, and repeated melee 
actions. We recorded the average number of wins for each 
opponent for each group of 50 episodes. The two 
competing agents had exactly the same equipment 
configuration and game statistics. However, the agents had 
different scripts that controlled their behaviours. In the 
experiments illustrated in Figure 2 and Figure 3, we ran 
only a single-phase experiment. 

Each data point in a graph represents an agent’s winning 
percentage against its opponent after each group of fifty 
episodes. The x-axis indicates the episode and the y-axis 
indicates the average winning percentage for that episode. 
For example, the data point at x=200 is the average 
winning percentage of all of the episodes between episode 
151 and episode 200 over all trials for that experiment. 

Motivation for ALeRT  
Originally, we thought that traditional RL could be used 
for agents in NWN. In fact, RL0 defeated NWN as shown 
in Figure 2. RL agents with other RL parameter values also 
defeated NWN. However, although we tried many 
different parameter values, we could not get RL to 
converge to the optimal strategy against OPT. For 
example, Figure 2 shows that RL0 and RL3 could attain 
only 34% and 38% wins respectively against OPT with the 

Melee configuration after 500 episodes, and 41% and 40% 
wins respectively for Ranged. Experiments with various 
other parameter values did not yield better results. For 
example, RL5 did better than RL0 and RL3 for Melee, but 
did worse for Ranged. It was clear that we had to change 
the Sarsa(λ) algorithm in a more fundamental manner. 

 
Figure 2. Motivation for ALeRT: RL0 and RL3 vs. NWN (upper 

traces) and OPT (lower traces). 

It is important for a learning agent to be able to approach 
the skill level of any agent, even an optimal one. If the 
learning agent is the opponent of a PC that has a near 
optimal strategy, the learning agent should provide a 
challenge. If the learning agent is a companion of the PC 
and their opponents are using excellent strategies, the 
player will be disappointed if the companion agent causes 
the PC’s team to fail. Therefore, we developed the action-
dependent step-sizes in the ALeRT algorithm to overcome 
this limitation. ALeRT and RL defeated NWN, although 
after 500 episodes ALeRT won 70% for Melee and 78% 
for Ranged (Figure 3), while RL0 won 92% and 90% 
(Figure 2). However, ALeRT’s behaviour is more suitable 
for a computer game, where it is not necessary (and usually 
not desirable) for a learning agent to crush either a PC or 
another NPC agent by a large margin. The important point 
is that ALeRT converged to the optimal strategies for 
Melee and Ranged configurations against OPT, while RL0 
and RL3 did not converge. The action-dependent step-sizes 
in ALeRT are responsible for this convergence. 

Figure 3 shows traces of M1 (Spronck’s learning method 
1) versus NWN and M1 versus OPT. M1 defeated NWN 
by a large margin, 94% for Melee and 90% for Ranged. 
These winning rates were more than 20% higher than 
ALeRT’s winning rates, but as stated before, winning by a 
large margin is not usually desirable. M1 converged to the 
optimal strategy against OPT for the Melee configuration. 
However, as shown in Figure 3, M1 converged much more 
slowly than ALeRT. The latter achieved a win rate of 48% 
after the first 100 episodes and did not drop below 46% 
after that. M1 won only 30% at episode 100, 40% at 
episode 200 and did not reach 46% until episode 450. 



 

 
Figure 3. ALeRT and M1 against static opponents – NWN (upper 

traces) and OPT (lower traces). 

M1 did not converge to the optimal strategy against OPT 
in the Ranged configuration. After 500 episodes it only 
attained 40% wins. The Melee configuration was taken 
directly from Spronck’s module (NWN Arena 2008), but 
the Ranged configuration was created for our experiments 
to test adaptability. It is possible that M1 was tuned for the 
Melee configuration and re-tuning may correct this 
problem. Nevertheless, ALeRT converged quickly to the 
Ranged configuration, attaining a 44% win rate by episode 
150 and 46% by episode 450. 

Adaptation in a dynamic environment  
To test the adaptability of agents in combat, we changed 
the equipment configuration at episode 501, and observed 
500 more episodes.  Each agent was required to overcome 
the bias developed over the first phase and learn a different 
strategy for the second phase. NWN is not adaptive, 
therefore, we compared ALeRT and RL0 to M1. We used 
the following combined configurations: Melee-Heal, 
Melee-Ranged, Ranged-Melee, Ranged-Heal, Heal-Melee, 
Heal-Ranged, where the configuration before the dash was 
used in the first phase and the configuration after the dash 
was used in the second phase. The learning algorithms 
were not re-initialized between phases, so agents were 
biased towards their first-phase policy. In the first phase, 
we evaluated how quickly an agent was able to learn a 
winning strategy without prior knowledge. In the second 
phase, we evaluated how quickly an agent could discover a 
new winning strategy after an equipment change. 

We ran 50 trials for each of the Melee-Ranged, Melee-
Heal, Ranged-Melee, Ranged-Heal, Heal-Melee, and Heal-
Ranged configurations. Figure 4, Figure 5 and Figure 6 
illustrate the major advantage of ALeRT over M1. ALeRT 
adapts faster to changes in environment (equipment 
configuration) that affect a policy’s success. ALeRT 
increased its average win rate by 56% (the average over all 
six experiments), 50 episodes after the phase change. By 
episode 1000, ALeRT defeated M1 at an average rate of 
80%. 
 

The features of ALeRT that contribute to this rapid 
learning are the trend-based step-sizes and win-based 
exploration rate modifications to Sarsa(λ). In fact, RL0 
defeated M1 at a slightly higher rate (84%) than ALeRT 
after the phase change, but RL0 won only 42% in the first 
phase (Cutumisu and Szafron 2008). As stated in the 
previous section, RL0 won only 34% and 41% against 
optimal strategies with Melee and Ranged configurations 
respectively, which is not an acceptable strategy. 
Therefore, for added clarity of the graphs, we do not show 
RL0 traces in the graphs. 

Rather than showing six separate graphs, we combined 
the common first phase configurations so that the 
experiments can be shown in three graphs: Melee-
Ranged&Heal, Ranged-Melee&Heal, and Heal-
Melee&Ranged. The data points from two separate 
experiments were combined into one trace in the first 
phase of each graph, therefore each data point represents 
the average winning percentage over 100 trials. Each 
second phase data point represents the average winning 
percentage over 50 trials. 

Figure 4 shows the Melee-Ranged&Heal results. ALeRT 
did almost as well as M1 in the first phase with a 3% 
deficit at episode 450, recovering to a 49.3% win rate at 
episode 500. M1 did very well in the initial Melee 
configuration, perhaps due to manual tuning. Nevertheless, 
ALeRT’s winning rate was very close to 50% throughout 
the first phase and it dominated M1 during the second 
phase. 

 
Figure 4. ALeRT vs. M1 – Melee-Ranged and Melee-Heal. 

In the Ranged-Melee and Ranged-Heal configurations 
(Figure 5), the agents tied in the first phase, while ALeRT 
clearly outperformed M1 in the second phase. One of the 
reasons for the poor performance of M1 is that when it 
cannot decide what action to choose, it selects an attack 
with the currently equipped weapon.  
 In the first phase of the Heal-Melee and Heal-Ranged 
configurations (Figure 6), ALeRT and M1 tied again, but 
ALeRT outperformed M1 during the second phase. In each 
configuration, the major advantage of ALeRT over M1 is 
that ALeRT adapts faster to a change in environment, even 
though it does not always find the optimal strategy. 



 
Figure 5. ALeRT vs. M1 – Ranged-Melee and Ranged-Heal. 

 
Figure 6. ALeRT vs. M1 – Heal-Melee and Heal-Ranged. 

Observations 
ALeRT is based on Sarsa(λ) and the only domain 
knowledge it requires is a value function, a set of actions 
and a state vector. Unmodified Sarsa(λ) does not perform 
well against either an optimal strategy (OPT in Figure 2) or 
against the dynamic reordering rule-based system, M1, in 
the first phase (Cutumisu and Szafron 2008). ALeRT 
overcomes this limitation, using three fundamental 
modifications to traditional RL techniques. ALeRT uses 1) 
action-dependent step-size variation, 2) larger step-size 
increases during trends, and 3) adjustable exploration rates 
based on episode outcomes. While conducting our 
experiments, we made several observations that may 
explain why ALeRT adapts better to change than M1. 

ALeRT achieves a good score even when the opponent 
is not performing optimally and it does not attempt to 
mimic the opponent. Although ALeRT may not find the 
optimal solution, it still finds a good policy that defeats the 
opponent. In the games domain, this is a feature, not a bug, 
as we do not aim to build agents that crush the PC.  

ALeRT works effectively in a variety of situations: short 
episodes (Melee configuration), long episodes (Ranged 
configuration), and time-critical action selection situations, 
such as taking a speed action at the start of an episode and 
a heal action when the agent’s HP are low.  

The ALeRT game state vector is simple (5 binary 
features), so each observation is amortized over a small 
number of states to support fast learning. Although the 

game designer must specify a state vector, “obvious” 
properties such as health, distance, and potion availability 
are familiar to designers. M1 relies on a set of 21 rules; 
discovering and specifying rules could be challenging. 

Although ALeRT may select any valid action during an 
episode, M1 only chooses one type of attack action (ranged 
or melee) per episode in conjunction with speed/heal, but 
never two different attack actions. This restriction proved 
important in the Melee-Heal experiments, where although 
M1 discovered heal in the second phase, it was sometimes 
selecting only ranged attacks and could not switch to melee 
during the same episode. In some trials, this allowed 
ALeRT to win even though it did not discover heal in the 
second phase in that particular trial. Moreover, when M1 
cannot decide what action to choose, it selects an attack 
with the currently equipped weapon (calling the default 
NWN if there is no action available). This is a problem if 
the currently equipped weapon is not the optimal one. 
Conversely, ALeRT always selects an action based on the 
value function. If there is a tie, it randomly selects one of 
the actions with equal value. There is no bias to the 
currently equipped weapon. 

ALeRT uses an ε-greedy action selection policy which 
increases ε to generate more exploration when the agent is 
losing and decreases ε when the agent is winning. We 
experimented with several other ε-greedy strategies, 
including fixed and decaying ε strategies, but they did not 
adapt as quickly when the configuration changed. We also 
tried softmax, but it generated differences between 
estimated values of Q that were too large. The result was 
that the agent could not recover as fast once it selected a 
detrimental action. M1 uses softmax from the Boltzmann 
(Gibbs) distribution. Most importantly, ALeRT’s action-
dependent step-sizes provide a mechanism to recover from 
contiguous blocks of losses. ALeRT’s trend-based step-
size modification is natural, flexible and robust. In addition 
to allowing ALeRT to identify winning trends and 
converge fast on a new policy, it smoothly changes policies 
during a losing trend. M1 appears to use a window of 10 
losses to force a radical change in policy. This approach is 
rigid, especially when the problem domain changes and the 
agent should alter its strategy rapidly. 

Conclusions 
We introduced a new algorithm, ALeRT, which makes 
three fundamental modifications to traditional RL 
techniques. Our algorithm uses action-dependent step-sizes 
based on the idea that if an agent has not had ample 
opportunities to try an action, the agent should use a step-
size for that action that is different than the step-sizes for 
the actions that have been used frequently. Also, each 
action-dependent step-size should vary throughout the 
game (following trends), because the agent may encounter 
situations in which it has to learn a new strategy. 
Moreover, at the end of an episode, the exploration rate is 
increased or decreased according to a loss or a win. We 
demonstrated our changes using the Sarsa(λ) algorithm. 
We showed that variable action-dependent step-sizes are 



successful in learning combat actions in a commercial 
computer game, NWN. ALeRT achieved the same 
performance as M1’s dynamic ordering rule-based 
algorithm when learning from an initial untrained policy. 
Our empirical evaluation also showed that ALeRT adapts 
better than M1 when the environment suddenly changes. 
ALeRT substantially outperformed M1 when learning 
started from a trained policy that did not match the current 
equipment configuration. The ALeRT agent adjusts its 
behaviour dynamically during the game. We used combat 
to evaluate ALeRT because it is easy to assign scores to 
combat as an objective criterion for evaluation. However, 
RL can be applied to learning any action set, based on a 
state vector and a value function, so we intend to deploy 
ALeRT for a variety of NWN behaviours. ALeRT will be 
used to improve the quality of individual episodic NPCs 
and of NPCs that are continuously present in the story. 
Before a story is released, the author will pre-train NPCs 
using the general environment for that story. For example, 
if the PC is intended to start the story at a particular power 
level, the author uses this power level to train the NPCs. 
During the game, when an NPC learns a strategy or adapts 
a strategy, all other NPCs of the same type (e.g., game 
class, game faction) inherit this strategy and can continue 
learning. Each of these vicarious learners jump-starts their 
learning process using the   

€ 
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experienced NPC. Ultimately, these improved adaptive 
behaviours can enhance the appeal of interactive stories, 
maintaining an elevated player interest. 

Future Work 
Next we intend to consider a team of cooperating agents, 
instead of individual agents. For example, we will pit a 
fighter and a sorcerer against another fighter and a 
sorcerer. Spronck’s pre-built arena module will support 
experiments on such cooperating agents and ScriptEase 
supports cooperative behaviours, so generating the scripts 
is possible. We are also interested in discovering the game 
state vector dynamically, instead of requiring the game 
designer to specify it. We could run some scenarios and 
suggest game state options to the designer, based on game 
state changes during the actions being considered.  
 We are currently developing simple mechanisms for the 
game designer to modify RL parameter values. We also 
intend to provide the designer with a difficulty level 
adjustment that indicates a maximum amount that an agent 
is allowed to exploit another agent (usually the PC) and to 
throttle our ALeRT algorithm so that the agent’s value 
function does not exceed this threshold. This can be done 
by increasing exploration or by picking an action other 
than the best action during exploitation. 

We have experimented with a variable lambda that 
automatically adjusts to the modifications in configuration, 
but more experiments are necessary. We expect to learn 
faster in some situation if lambda is a function of the 
number of steps in an episode (e.g., directly proportional). 
For example, on average, in the Melee phase of a Melee-
Ranged experiment there are 3.5 steps per episode and in 

the Ranged phase there are 5.5 steps. Lambda is 
responsible for propagating future rewards quickly to 
earlier actions, therefore, it needs a higher value to 
propagate to the start action in a longer episode. Finally, 
we are developing evaluation mechanisms for measuring 
success in non-combat behaviours. This is a hard problem, 
but without metrics, we will not know if the learning is 
effective or not. 
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