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Abstract

Gait optimization is a basic yet challenging prob-
lem for both quadrupedal and bipedal robots. Al-
though techniques for automating the process ex-
ist, most involve local function optimization pro-
cedures that suffer from three key drawbacks. Lo-
cal optimization techniques are naturally plagued
by local optima, make no use of the expensive gait
evaluations once a local step is taken, and do not
explicitly model noise in gait evaluation. These
drawbacks increase the need for a large number
of gait evaluations, making optimization slow, data
inefficient, and manually intensive. We present
a Bayesian approach based on Gaussian process
regression that addresses all three drawbacks. It
uses a global search strategy based on a poste-
rior model inferred from all of the individual noisy
evaluations. We demonstrate the technique on a
quadruped robot, using it to optimize two different
criteria: speed and smoothness. We show in both
cases our technique requires dramatically fewer
gait evaluations than state-of-the-art local gradient
approaches.

1 Introduction
Legged robot platforms offer many advantages over tradi-
tional wheeled robots. In addition to their ability to traverse
a wide variety of terrain, walking robots are basically a re-
quirement for performing useful tasks in our human-centric
world. Despite these advantages, walking is also one of the
fundamental challenges for legged robots.

Optimizing a robot’s gait is not a simple control problem.
An open loop gait consists of a sequence of joint values for
an already high degree of freedom system of leg joints. Sim-
plified parametric representations of leg trajectories can re-
sult in a manageable number of parameters. However, these
parameters will likely have complicated interactions making
manual tuning of gait parameters time-consuming for simple
robots and nearly impossible for the increasing complexity of
humanoid platforms.

Even worse, no single gait will be effective in all circum-
stances. The walking surface is critical and can vary in terms

of friction, softness, and height variation (e.g., compare con-
crete, linoleum, carpet, and grass). Robot platforms them-
selves also vary due to manufacturing imperfections and gen-
eral joint and motor wear. Lastly, even the criterion for de-
termining an effective gait is likely to be situation specific.
Although velocity may seem like the obvious choice, relative
stability of the robot’s sensor hardware can also be important.
Although tailoring a robot’s gait to the environmental, robot,
and task specific circumstances would be ideal, constant man-
ual retuning is impractical. Automatic gait optimization is an
attractive alternative to this laborious manual process.

Although walk learning is not a new idea, existing tech-
niques are based on the common approach of local func-
tion optimization. Hence, existing algorithms also share key
drawbacks including local minima and inefficient use of gait
evaluations. These drawbacks combine to increase the num-
ber of gait evaluations required to find effective parameters.
In this work, we propose a different approach based on Gaus-
sian process regression. Not only does the approach not suf-
fer drawbacks inherent in local methods, but it has the ad-
ditional advantages of providing confidence estimates on the
gait’s performance, which is useful for exploration, and al-
lows for a natural inclusion of prior knowledge. We demon-
strate the effectiveness of the approach on the Sony AIBO
quadruped robot. We show that under two separate criteria
the Gaussian process regression not only finds effective gait
parameters, but also does so with an order of magnitude fewer
evaluations than a local gradient competitor.

We begin in Section 2 by examining some of the recent
approaches to gait optimization. We note the common draw-
backs in these approaches as motivation for our proposed
technique. In Section 3 we present relevant background ma-
terial on Gaussian process regression. We then, in Section 4
describe how we apply Gaussian processes to the problem
of gait optimization. In Section 5 we show results of our
technique applied to two different gait optimization scenar-
ios, demonstrating dramatically more efficient learning than
both simple and state-of-the-art gait optimization techniques.
Finally, we discuss some future extensions of our approach.

2 Motivation
The Sony AIBO, a commercially available quadruped robot,
has spurred recent interest in gait optimization. Its use in
robot soccer within the RoboCup Legged League gives an



immediate application where gait velocity and uncertain com-
petition conditions reward well tuned walks. Since the AIBO
is our evaluation platform as well, we will examine a number
of recent approaches pioneered on this robot.

A common foundation for all of these approaches, includ-
ing ours as well, is the notion of a “walk engine”, or param-
eterized gait generation system. Since the number of degrees
of freedom in legged robots is large, optimizing the angle of
each joint at a finely discretized time scale would involve
searching over a thousand parameters. The walk engine re-
duces the number of parameters by focusing on leg trajecto-
ries that are both physically possible and intuitively plausible.
These parameters usually define properties of each leg’s tra-
jectory such as the “distance the foot is lifted off the ground”
and “the period of the walk”. The space of parameterized
walks obviously has a large impact on the final quality of any
automatic gait optimization, but the optimization problem it-
self is the same regardless of the walk engine. Optimization
in all cases requires finding a point in parameter space, rang-
ing from eight to fifty parameters, that results in an effective
gait. All of the cited work below are based on different walk
engines. Hence, because of the variation in walk engine, sur-
faces, and robots themselves, reported walk speeds are largely
incomparable.1

A second common feature of the approaches is the exper-
imental setup. All of the approaches involve evaluating spe-
cific parameter settings by having the AIBO walk in a struc-
tured arena using the parameters to be evaluated. Local sen-
sor readings on the AIBO–either camera images of visual
landmarks or the IR sensor readings of walls–are then used
to compute a noisy estimate of the gait’s average speed. The
procedure may be replicated and each estimate averaged to
compute a more accurate evaluation.

2.1 Evolutionary Approaches
An evolutionary approach was the first proposed method
for gait optimization on the AIBO. Hornby et al.[1999;
2000] used a fairly standard evolutionary search on an early
prototype AIBO. A population of parameters were main-
tained at each evolutionary generation. A new population was
formed through mutation and crossover of individuals from
the previous generation, replacing parameters in the popula-
tion that evaluated poorly. Their procedure showed slow gait
improvement over 500 generations, requiring approximately
twenty-five robot-hours of learning.

The evolutionary approach was revisited by Chernova and
Veloso[Chernova and Veloso, 2004]. They used similar mu-
tation and crossover operations to generate candidate gaits.
Unlike the work of Hornby, their parametric space of walks
included a measurement of the possibility that the AIBO
could physically perform the gait. This allowed them to throw
out poor gait parameters without requiring an empirical eval-
uation. In addition, they used a “radiation” procedure to dis-
perse clusters of similar parameters in the population, forcing
further search. They demonstrated that the technique learned

1Despite the lack of basis for comparison, the three most recent
techniques discussed below all achieve a similar walk speed in the
range of 0.27–0.29 m/s.

competitive walks using only 4,000 evaluations and a total
running time of approximately five hours distributed across
four robots for a total of twenty robot-hours.

As evaluations are noisy, both approaches must deal with
the possibility that an inaccurate evaluation will cause poor
gait parameters to incorrectly remain in the population. Both
used targeted reevaluation to reduce this possibility, reevalu-
ating either the parameters that remained for multiple gener-
ations or the ones that performed disproportionately well.

2.2 Function Optimization
The second family of approaches that has been explored
involves adapting techniques for multidimensional function
optimization to the gait optimization problem. Kim and
Uther [2003] used Powell’s method[Presset al., 1992],
which performs line search along a chosen search direction
based on the effectiveness of previously chosen search direc-
tions. Kohl and Stone[2004] used a hill climbing approach.
Although the gradient is not known, a set of random pertur-
bations are evaluated empirically, and these evaluations are
used to approximate the gradient. The parameters are then
adjusted by a fixed step size in the direction of this estimated
gradient. Kohl and Stone reported the fastest learning re-
sult in the literature, requiring only three hours distributed
across three robots for a total of nine robot-hours. It is im-
portant to note that the reported experiments for both tech-
niques involved initializing the optimization with a known set
of reasonable parameters. This differs from evolutionary ap-
proaches, which begin with a random initial population.

2.3 Drawbacks
All of the previous approaches share three key drawbacks.
First, they can get stuck at local optima. Kim and Uther re-
ported actual experiences of local optima and Kohl and Stone
noted the importance of starting from good initial parame-
ters, having found considerably poorer performance under
different starting conditions. There are techniques to deal
with local optima, such as random restarts for local func-
tion optimization approaches and radiation for evolutionary
approaches. However, both involve a considerable increase
in the required number of gait evaluations. Furthermore, the
approaches forget previously evaluated gaits once they either
die out of the population or after the gradient step is taken.
Not only is this an inefficient use of expensive gait evalu-
ations, but certain parameter settings may be unnecessarily
reevaluated. Finally, none of the approaches explicitly model
the noise in the evaluation process. Hence they all involve
long evaluations or even repeated evaluations that are aver-
aged to compute a less noisy estimate. In summary, if the
goal is to reduce the total number of robot-hours these draw-
backs severely hurt the usefulness of the approaches. Our
approach addresses these disadvantages and consequently re-
quires considerably fewer gait evaluations.

3 Background
At the core of our proposed method is a Gaussian process re-
gression model that describes our knowledge about the func-
tion we are optimizing. Before discussing its use for gait opti-



mization we give a brief overview of Gaussian processes and
Gaussian process regression.

3.1 Gaussian Processes
A Gaussian process(GP) [Williams, 1999; Rasmussen,
2004; Rasmussen and Williams, 2006] is a collectionF of
random variablesFx1 , Fx2 , ... for which any finite subset of
the variables has a joint multivariate Gaussian distribution.
The variables are indexed by elementsx of a setX . For any fi-
nite length vector of indicesx = [x1, x2, ..., xn]T , we have a
corresponding vectorF x = [Fx1 , Fx2 , ..., Fxn

]T of variables
that has a multivariate Gaussian (ornormal) distribution,

F x ∼ N {µ(x), k(x,x)} , (1)

where the elements ofµ(x) are given by a prior mean func-
tion µ(xi), andk is thekernelfunction. The kernel takes two
indicesxi andxj , and gives the covariance between their cor-
responding variablesFxi andFxj . Given vectors of indices
xi andxj , k returns the matrix of covariances between all
pairs of variables where the first in the pair comes fromFxi

and the second fromFxj
. Note that eachFxi

is marginally
Gaussian, with meanµ(xi) and variancek(xi, xi).

3.2 Gaussian Process Regression
Suppose we have a functionf(x) that we would like to op-
timize. Further, suppose that we cannot observef directly,
but that we can observe a random variableFx that is indexed
by the same domain asf and whoseexpected valueis f , i.e.,
∀x ∈ X , E[Fx] = f(x). In particular, we assume that our
prior belief about the functionf conforms to a Gaussian pro-
cess with prior meanµ and kernelk, as described above. Sup-
pose thatFx is an observation off(x) that has been corrupted
by zero-mean, i.i.d. Gaussian noise, i.e.,Fx = f(x) + ε,
whereε ∼ N (0, σ2

ε ). Hence,f(x) is a hidden variable whose
posterior distribution we can infer after observing samples of
Fx at various locations in the domain. The resulting inference
is called Gaussian process regression.

Letx be the set of observations points andFx be the result-
ing real-valued observations. We want to compute the poste-
rior distribution of some new point̂x ∈ X . The distribution
will be Gaussian with mean and variance,

µ(x̂|x) = µ(x̂) + k(x̂,x)k(x,x)−1 (Fx − µ(x)) (2)

σ2(x̂|x) = k(x̂, x̂)− k(x̂,x)k(x,x)−1k(x, x̂). (3)

Note that the inverse applies to the kernel matrix of observed
domain points, and so can be computed once and used to eval-
uate the posterior at many points in the domain.

Since the problem is to find an optimum of the unknown
function, the final step is to compute the optimum of the re-
sulting posterior meanxR = argmaxx̂∈X µ(x̂|x). This, in
general, cannot be computed in closed form, and requires the
application of some technique for function optimization. Al-
though not optimal, another technique is to simply return the
xi from x with the largest observed valueFxi

. This has the
practical side-effect that the technique will not return a point
that has never been evaluated, adding some protection from
an incorrect prior.

3.3 Observation Selection
Given a Gaussian process model and a set of observations we
have shown how to incorporate the observations to create the
function posterior and then find the expected optimum. The
remaining challenge, then, is to decide for which pointsxi

to receive observations. This is, in fact, a sequential decision
making task, as each observation gives additional information
that can be used when selecting future points.

Optimal Selection. Assume we have a fixed horizon, i.e.,
a limited number of remaining observations, the optimal ac-
tion given our model can theoretically be computed. This re-
quires considering all possible points in the domain, all possi-
ble real-valued outcomes of this function evaluation, and then
taking expectations and maximizations for all possible future
observation sequences out to the the horizon. We then make
the next observation at the point which maximizes theeven-
tual posterior maximum assuming future optimal decisions.
This enumeration for exploration is discussed in our previ-
ous work[Wanget al., 2005], but in domains with significant
size, it is impractical. Instead, we will focus on myopic search
strategies.

Most Probable Improvement. Consider our proposal to
return the domain point with the largest observed value. If we
want to maximize the largest observed value, one approach
would be to search for points that are likely to be better than
our current best observation. LetFx+ be the maximum ob-
served value. Choosexmpi to maximize the posterior proba-
bility P (Fxmpi > Fx+). We call this themost probable im-
provement(MPI) criterion.

Computing the posterior probability of improvement at a
point x̂ in the domain is a simple computation since the pos-
terior distribution ofFx̂ is Gaussian as given in Equations 2
and 3. Finding the pointxmpi then requires a search through
the domain to maximize the probability of improvement. This
is equivalent to maximizing,

φ(x̂) = σ(x̂|x)/(Fx+ − µ(x̂|x)). (4)

This criterion for deciding where to evaluate next was sug-
gested by Mockus[1989]. Fortunately, the posterior mean
and standard deviation in this ratio are continuous and dif-
ferentiable functions, so we can apply function optimization
techniquesin the modelto findxmpi.

4 Gait Optimization
Our proposed approach to gait optimization is basically the
application of the above described Gaussian process opti-
mization procedure. Like previous approaches, we assume
that we already have some parameterized walk engine withk
parameters. In addition, we can empirically take noisy evalu-
ations of a gait’s velocity (or other feature of the gait). Unlike
previous approaches, we model the stochastic velocity func-
tion, f : Rk → R, which maps walk parameters to velocity,
as a Gaussian process. The exact mean and kernel function
of the Gaussian process are chosen based on prior domain
knowledge. We use the most probable improvement selec-
tion rule to decide which parameters to empirically evaluate



based on the previous observations. After some number of
gait evaluations, the parameters that generated the fastest ob-
served walk are returned.

In place of choosing mutation and crossover rates or initial
parameters and step sizes, our approach requires the specifi-
cation of the mean and kernel of the Gaussian process. This
provides a very natural way to encode domain knowledge, if
it exists, or one can just use “generic” priors. We first describe
our walk engine and then detail exactly how priors were cho-
sen for our AIBO experiments.

4.1 Walk Engine
As discussed earlier, a complete joint trajectory for a gait
could have thousands of parameters. All gait optimization
techniques parameterize this walk space using a walk engine.
For this work, we have used Carnegie Mellon University’s
Tekkotsu2 software to control the AIBO, which includes a
walk parameterization (as of release 2.4.1) originating from
the Carnegie Mellon CMPack 2002 robot soccer team. This
is an early version of the CMWalk engine used in the work
by Chernova et al.[2004]. In consultation with a domain
expert, we identified 15 walk parameters along with reason-
able bounds on each parameter to define our domain, i.e.,
X ⊂ R15.

4.2 Priors
Defining the prior for the Gaussian process means defining a
mean functionµ : X → R and kernel functionk : X ×X →
R. We also need to specify the varianceσ2

ε of the noise that is
believed to be added to the observationFx. The priors that we
use have a very simple form. For the mean, we use a constant
functionµ(x) = µf , which means we have no a priori belief
about any specific parameters’ velocities. For the covariance
function, it is hypothesized that, in general, parameter vec-
tors that are close in terms of Euclidean distance are likely
to have similar walk velocities, and therefore a large posi-
tive covariance. Furthermore, we expect that some parame-
ters may have wide-reaching consequences, and so parame-
ters far apart should still have some small positive correlation.
We therefore chose to use the radial basis function kernel,

k(xi, xj) = σ2
f · e−

1
2 (xi−xj)

T S(xi−xj), (5)

whereS is a scaling matrix that has along its diagonal the in-
verse of the range of each dimension, i.e., the distance from
one end to the other of one dimension’s range is scaled to
equal one. We now need to simply choose the constantsσ2

ε ,
µf , andσ2

f . Setting these to appropriate values depends on
the feature of the gait to be optimized. In Section 5, we
present results both for optimizing the gait’s velocity and its
smoothness. So we examine each of these cases in turn.

Prior for Velocity. Gait velocity has been studied relatively
extensively both on the AIBO and with our particular walk
engine. In consulting with our domain expert, we easily
solicited useful prior information. In particular, we chose
µf = 0.15 and σ2

f = 0.066, which correspond to the in-
tuition, “For some random gait parameters, we expect the

2http://www.tekkotsu.org

observed velocity to be 0.15 meters per second and within
about 0.2 meters per second 99% of the time.” For observa-
tion noise, our domain expert was not familiar with our par-
ticular experimental setup. Instead, we computed the sample
variance of a small number of observations of one particu-
lar setting of the walk parameters. This gave us a value of
σ2

ε = 0.01, which seemed to work well in practice.
As an interesting test of the stability of our method with

respect to the model parameters, we also ran the velocity op-
timization with a prior variance parameter ofσ2

f = 0.66 (ten
times larger).

Prior for Smoothness. Since smoothness had not been
evaluated before, we had no domain expert to consult. In-
stead, we took a small number of samples (about 30) and used
sample means and variances to estimate the parameters of the
prior µf = −30, σ2

f = 100, σ2
ε = 2.25. As we will show

in the next section, even this simple uninformed method for
specifying the Gaussian process model can be very effective.

4.3 Implementation Details
In order to compute the most probable improvement point as
described in Section 3.3, we used the generic constrained hill
climber in MATLAB (fmincon ) supplied with the function
and gradient ofφ(x̂) from Equation 4. We used as default
starting points the two best parameters found so far, and 13
drawn uniformly random within the bounded domain for a
total of 15 starting points. In addition, we forced the first
gait evaluation selection by choosing the center point of the
domain. Since the Gaussian process model starts with a uni-
form belief over the domain, all function points are equally
good to the most expected probable rule.

5 Results
We have applied our Gaussian process approach to two gait
optimization tasks on the Sony AIBO ERS-7. We first look
at the standard problem of maximizing walk velocity, and we
also examine the problem of optimizing a gait’s smoothness.
The goal of any gait optimization technique is to find a near-
optimal gait in as few evaluations as possible. Therefore,
we’ll want to compare techniques using this criterion.

Since previous gait learning has not involved the same walk
engine, experimental setup, or robots, comparing directly
with previously reported results can be somewhat problem-
atic. For a more direct comparison, we have implemented the
hill climbing method of Kohl and Stone[2004] as described
in Section 2.2 and applied it in identical circumstances as our
approach. The Kohl and Stone algorithm is the most data effi-
cient technique for the AIBO from the literature, demonstrat-
ing effective walks with only nine robot-hours of training. We
replicated their experimental setup, using 15 random evalua-
tions to approximate the gradient at each “iteration” and using
a step size of 2. The empirical epsilon used in estimating the
gradient was 1/15 of the parameters’ range, which seemed to
be an adequate change in performance. As with the Gaussian
process model, we started the hill climber from the point in
the center of the space.



5.1 Physical Setup

To evaluate each parameter choice, we had the robot walk be-
tween two visual landmarks while focusing the head on the
center of the landmark. The robot determined its distance
from a landmark as it walked toward it based on the land-
mark’s apparent width in the camera’s field of view, and that
change is used to estimate velocity. To determine a gait’s
smoothness, we measured the time-averaged distance from
the center of the landmark to the center of the robot’s field
of view, and negated this. Unstable walks that result in a
large amount of head movement yield negative smoothness
values, since it is difficult for the robot to keep the head and
the camera aimed at the target. More fluid walks allow the
robot to aim the camera more directly at the target, resulting
in a smoothness much nearer to zero.

Each observed measurement is the result of three “traver-
sals” from one landmark to the other. The average time for
three traversals, including time to turn around, was approx-
imately one minute. This was chosen to be consistent with
Kohl and Stone’s hill climbing experiments. We could have
easily only used a single traversal and compensated by in-
creasing the observation variance used in the model.

5.2 Gait Velocity

A graph showing the result of 321 observations is shown in
Figure 1(a). We chose this number of observations a priori
to allow the hill climber 20 “steps” or iterations with 15 test
points for each. Both our Gaussian process technique and the
Kohl and Stone hill climbing technique are shown, as well as
the simple baseline of choosing gaits uniformly at random.
The solid lines represent the maximum achieved walk speed
over the accumulating observations, and the corresponding
isolated markers show the maximum velocity achieved over
the most recent 15 observations.

We found that both the Gaussian process and hill climbing
methods performed appreciably better than random evalua-
tions. The best walk velocity found was 0.285 m/s, which
was found by the Gaussian process with the over-estimated
prior variance,σ2

f = 0.66, although the walk found by the
Gaussian process with the “sensibly” initialized variance is
nearly as fast. Despite having already warned of the difficul-
ties in comparing walk speeds, note that this speed is com-
parable to other learned gaits. More impressively, though, is
the fact this speed was attained after only 120 observations,
which took approximately two robot-hours. This is nearly a
five-fold improvement in the required number of robot-hours3

It is interesting that the best walks found by the two Gaus-
sian process models are in widely separated parts of the space.
The walk found by the sensible setting ofσ2

f = 0.066 has a
low period and shorter stride, with a parameter vector far from
the center of the space. On the other hand, the experiment at
σ2

f = 0.66 found a similarly fast walk near the center of the
space with longer, slower strides that cover a similar distance.

3Although the work of Kohl and Stone used multiple AIBOs in
parallel to reduce their total time to three hours, our approach could
also easily benefit by evaluating multiple sample points simultane-
ously.

Although the results of the hill climbing approach were not
poor, we were somewhat surprised that the performance was
not better. The method tended to take very poor steps once
it reached a value of about 0.230 m/s. There are two natu-
ral explanations. One may simply be local optima, which is
in line with Kohl and Stone’s noted importance of the initial
parameter vector. Alternatively, based on the frequency of
taking poor gradient steps, the step size may have been too
large along certain dimensions. Random restarts and a vari-
able step size for each dimension could mitigate these unim-
pressive results.

5.3 Gait Smoothness
A similar graph for gait smoothness is shown in Figure 1(b).
The Gaussian process optimization found the smoothest walk
of all three methods and did so within the first 20 observa-
tions, or only twenty minutes of robot time. Later improve-
ment was only incremental. In a post-mortem analysis, the
gait smoothness task is apparently much simpler. The impact
of parameters on our measure of smoothness ended up be-
ing quite simple as a wide range of walks with a short period
(below about 310 ms) and a moderate requested walk speed
(between 210 and 240 m/s) resulted in a smooth gait mea-
surement. Scores of such walks were typically greater than
-10. Due to the independence of this pair of parameters from
the rest, it is not unlikely that even random search would find
a smooth gait as choosing parameters in this range will occur
on average every 250 gait evaluations. Our random search
trial did happen to find one such point, giving it a moderate
win over the hill climbing technique. Again, we suspect the
unimpressive hill climbing result to be due to initial condi-
tions and local maxima.

6 Conclusion
We proposed a new approach to gait learning based on Gaus-
sian process optimization. The approach overcomes many
drawbacks of previous techniques, effectively avoiding local
optima, efficiently using all gait evaluations, and explicitly
modelling noisy observations. Even with all of the caveats
associated with comparing gait velocities and training time,
we have demonstrated that the approach is not only effec-
tive in our high dimensional, noisy, non-convex, optimization
problem, but also requires drastically fewer evaluations. This
was also accomplished with a minimum of parameter tun-
ing, demonstrating effective performance when using prior
settings from a domain expert, incorrect settings, and even
data derived settings.

There are three main directions we still feel should be ex-
plored from this point. First, our model is quite simple in
comparison to Gaussian process models in the recent ma-
chine learning literature. Many interesting innovations in-
volving kernel optimization, hyper-parameter models, and di-
mensionality reduction seem well suited to this problem and
are worth investigating. It would also be compelling to build
models that incorporate knowledge from previous gait op-
timization runs with similar robots or surfaces. Second, it
would be interesting to explore how knowledge of an imposed
budget on the number of samples or compute time could be
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Figure 1: Results for (a) gait velocity and (b) gait smoothness. Solid lines represent cumulative maximum, and the small
markers indicate the maximum observation from the last 15 observations.

efficiently incorporated into this approach. Third, because of
the generality of the method, it could also easily be applied in
other application areas. We are currently investigating its use
in the problem of “graph-cut stereo matching”[Kolmogorov,
2004], which has a number of continuous parameters that
must be tuned. Initial reports from our colleagues in vision
are that Gaussian process regression with the most probable
improvement rule is also working very well on this problem.
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