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Abstract
Many learning tasks in adversarial domains tend to be
highly dependent on the opponent. Predefined strate-
gies optimized for play against a specific opponent are
not likely to succeed when employed against another
opponent. Learning a strategy for each new opponent
from scratch, though, is inefficient as one is likely to
encounter the same or similar opponents again. We
call this particular variant of inductive transfer a con-
cept recall problem. We present an extension to Ad-
aBoost called ExpBoost that is especially designed for
such a sequential learning tasks. It automatically bal-
ances between an ensemble of experts each trained on
one known opponent and learning the concept of the
new opponent. We present and compare results of Exp-
Boost and other algorithms on both synthetic data and
in a simulated robot soccer task. ExpBoost can rapidly
adjust to new concepts and achieve performance com-
parable to a classifier trained exclusively on a particular
opponent with far more data.

Introduction
In a career, one often faces a series of jobs (as a grad stu-
dent, postdoc, faculty member), which have similar prop-
erties but are not identical. In a robot (e.g. soccer, rugby,
poker) tournament, one plays a sequence of games against a
sequence of opponents. Heuristics learned by playing with
one opponent are often not directly applicable to the next
opponent. This imposes challenging requirements on ma-
chine learning techniques like being forced to react instantly
to unknown opponents after seeing only a small number of
sample situations. Research in the area of inductive transfer
refers to this problem of retaining and applying the knowl-
edge learned in one or more tasks to efficiently develop an
effective hypothesis for a new task. However we don’t focus
on elaborate ways of knowledge retention and transfer but
simply resort to the predictions of an ensemble of experts.
Another well studied problem domain that deals with such
setups is on-line learning where the target concept can drift
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over time. However, the assumptions in on-line learning are
fairly weak, making the problem incredibly difficult. In this
work, we make stronger assumptions about the data that co-
incide with playing in a tournament consisting of a sequence
of games (of soccer, or chess, or polo) against different op-
ponents. We assume that the game stays the same, thus we
can assume that hypotheses learned for previous opponents
are still useful. The beginning of a new game indicates a par-
ticular time when the concept will change, and thus having
an algorithm that can receive the signal that there is a new
game can be useful. On the other hand, games can be short
and early errors can be catastrophic, so in real tournaments
it is important to quickly learn about your new opponent.

In this paper we present ExpBoost, a technique that aug-
ments AdaBoost with the ability to utilize previously learned
hypotheses. The new method is an intuitive extension to
AdaBoost and it balances between resorting to using pre-
viously learned hypotheses and developing a hypothesis on
the new task, relying on the empiricially and theoretically
well-established techniques in AdaBoost for combining a
set of hypotheses. An empirical evaluation of ExpBoost on
synthetic data shows that ExpBoost can adjust quickly to
new target concepts. Furthermore we present the scenario
of a simulated robot soccer tournament that initiated this re-
search. Applying ExpBoost to the robot learning task clearly
outperforms existing experts and almost achieves the perfor-
mance of an hypothetical optimal classifier that was solely
trained on the current task with far more samples.

The Concept Recall Problem
Research on the concept recall problem was inspired by ex-
periments with teams of agents playing against each other in
a tournament.

A tournament can be considered as a learning scenario
where every new game a learning algorithm sees a sequence
of T labeled examples {(x1, y1) . . . (xT , yT )}. All exam-
ples observed during games against the same opponent be-
long to the same target concept c : x → y. Thus each con-
cept cb ∈ {c1, ..., cB} is represented by samples from games
played against B different opponents. At the beginning of a
new game the learning algorithm is confronted with a po-
tentially different opponent and can only resort to hypothe-
ses hb ∈ Hb = h1, ..., hB built with samples corresponding
to c1, ..., cB . Considering the fact that a learned hypothe-



sis hb is dependent on a specific opponent b and reflects an
individual target concept cb the target concept of a new op-
ponent cB+1 is most likely different from the known target
concepts.

Situations where the target concept changes over time
have been addressed as concept drift in the literature
(see (Schlimmer & Granger 1986)). In this paper we focus
on the ability of a learning algorithm to resort to expert ad-
vice from classifiers trained on previous concepts to predict
the current concept cB+1. In inductive transfer, the entire
structure of each previously learned hypothesis is typically
utilized; to highlight the fact that we are only using the final
hypothesis learned, we call our paradigm concept recall.

We focus on the following objectives:
Increase performance: Any algorithm should perform

better (or at least equally well) on samples from concept
cB+1 than any expert hb available in the ensemble.

Learn rapidly from few samples: The ability of recalling
a concept c1, ..., cB is especially crucial if only a few new
samples from cB+1 are available (for small T ).

Incorporate prior knowledge: It is important that the
learner neither only makes use of a general expert, trained
on all c1, ..., cB together, nor only utilizes data from one cer-
tain batch cb, but combine different, potentially conflicting
concepts in order to improve performance even if the current
opponent is mostly unknown.

Learn the new concept: If a system wants to reliably adapt
to cB+1, it must also be able to learn previously unknown
elements of this concept.

ExpBoost
In this section we introduce a novel algorithm, called
ExpBoost, based on the popular boosting algorithm Ad-
aBoost.M1 by (Freund & Schapire 1995). Boosting is a
method that combines many weak classifiers in a series of
N steps to produce a strong classifier. A weak classifier is a
classifier that, given a set of samples S, returns a hypothesis
that does slightly better than random. In practice, it can be
any learning algorithm, i.e. we do not require it to be able
to handle samples weighted by importance or be able to take
“advice” in the form of previously learned hypotheses. Like
AdaBoost, we have iterations i = 1 . . . N , and we maintain
a distribution Di over the training set, and as the algorithm
proceeds Di has higher weights on the harder samples. The
weak classifier is given a set of training data Si sampled ac-
cording to Di and returns a classifier hB+1

i . At this point,
we deviate from AdaBoost: we compare the performance of
hB+1

i to h1 . . . hB on Dt and define hbest
i to be the hypoth-

esis with lowest error. Then, like AdaBoost, we calculate εi,
the error of hbest

i on Di, and then αi based upon εi. Intu-
itively, αi measures the importance that is assigned to hbest

i .
Next the distribution Di is updated, with the weight on ex-
amples hbest

i classifies incorrectly increased and those hbest
i

classifies correctly decreased. This process is restarted and
run for multiple iterations each time a new example arrives.
The final hypothesis hT

final is a weighted majority vote of
the N weak hypotheses where αi is the weight assigned to
hbest

i . A formal definition of all variables can be found in

the pseudo code for ExpBoost shown below.

Algorithm
ExpBoost is very similar to running AdaBoost.M1 when-
ever a new example arrives. The difference is that not only
classifier hB+1

i trained on distribution Si from cB+1 is eval-
uated in every boosting epoch i, but also all previous experts
trained on data from concepts c1, ..., cB . The classifier with
the lowest error is stored and used for calculating the new
distribution over the training data. This way existing classi-
fiers are incorporated into AdaBoost in an intuitive way.

Pseudocode:
When a new example arrives at time T , given:
• Training samples: (x1, y1), . . . , (xT , yT ) where xt ∈

[−1, 1]m, yt ∈ {−1, 1} representing the target concept
cB+1.

• A pool of experts: HB = {h1, . . . , hB} : x → ŷ trained
on samples from one of the concepts c1, ..., cB each.

• Initialize D1(t) = 1
T

For i ∈ 1, . . . , N :
• Si = sample from (x1, y1) . . . (xT , yT ) drawn according

to Di.
• Train hypothesis hB+1

i : x → ŷ using distribution Si.
• Hi = HB ∪ hB+1

i .
• Find hbest

i ∈ Hi which minimizes error εi according to
Di: εi = min(

∑N
t:h(xt) 6=yt

Di(t)).
• If εi = 0 or εi ≥ 0.5 then stop.
• Calculate αi = 1

2 ln( 1−εi

εi
).

• Store: hbest
i and αi.

• Update D: Di+1(t) = Di(t) exp(−αiyth
best
i (xt))

Zt

Final hypothesis: hT
final(x) = sign(

∑N
i=1 αih

best
i (x)).

Empirical Evaluation and Application
To empirically evaluate the capabilities of ExpBoost we cre-
ated two synthetic datasets that both illustrate the concept
recall problem. We compared the performance of different
learning algorithms including two naive approaches and a
technique that is capable of recalling concepts. Finally we
present the robot learning task in more detail and demon-
strate the performance of ExpBoost on it.

Synthetic data
Algorithms: In both experiments, data from three different
concepts is generated. Two concepts c1 and c2 have been
previously encountered and on each of the two concepts an
expert is trained and added to the ensemble HB = {h1, h2}.
Thus the ensemble that can be used for concept recall is of
size B = 2. The third is the current concept c3 denoted
as cB+1. All algorithms listed below are tested on samples
from the the current concept cB+1:
hb best: The better one of the two experts from the pool of

experts HB if evaluated on test data from the current con-
cept cB+1. This expert is not trained with data from the
current concept cB+1.



hB+1: A classifier trained on the available data sampled
from the current concept cB+1 only.

AdaBoost.M1: AdaBoost.M1 trained on data sampled
from concept cB+1 only and evaluated on the same con-
cept. Thus, AdaBoost.M1 as well as hB+1 have no prior
knowledge of the previous concepts c1 and c2.

WMA+: A modified version of the Weighted Majority Al-
gorithm (WMA) by (Littlestone & Warmuth 1994) that
was adapted to the test scenario. WMA+ incorporates
ideas from the AddExp algorithm by (Kolter & Maloof
2005). WMA keeps a set of weights over an ensemble of
experts and adjusts them according to their performance
on the training data by a factor β. The final predictions
are found by adding all predictions by each expert accord-
ing to their weights. The majority of positive or negative
prediction, respectively, decides for the final outcome. In
addition AddExp is able to add experts on-line and incre-
ment existing experts if new training data is available and
hence has the potential to cope with concept recall. The
adapted WMA+ does not add a new expert every time it
makes a mistake, because we assume that concept drift
occures only if the opponent team is exchanged. Thus,
one expert hB+1 is added for the new concept cB+1 only
at the beginning of each game. WMA+ is trained on data
sampled from concept cB+1 and can actually make use of
both experts in HB and hB+1.

ExpBoost: Like WMA+ ExpBoost only learns from the
new data corresponding to cB+1 and can resort to the en-
semble of experts HB but not to hB+1.
Experiment 1 (separation task):
Task: The first experimental setup demonstrates that Exp-

Boost, as well as AdaBoost, can construct a strong clas-
sifier from boosting weak classifiers. Training examples
were sampled with uniform distribution from x ∈ [−1, 1]2.
The target concept hB+1 of the binary classification task
y ∈ {0, 1} was positive if −0.5 < x1 < 0.5 and false oth-
erwise. All experts in were trained with a decision stump
algorithm, which finds a threshold in one of the dimensions
of the input space that splits the data in two sets and min-
imizes misclassifications. Obviously one decision stump
cannot shatter a set of data points corresponding to this tar-
get concept. The two experts HB were trained each on a
batch of data of size T = 100 with 20% random class noise
and solely sampled from a different half of the space x1 < 0
and x1 > 0, respectively. This concept can be expressed by
one decision stump. The parameter for decreasing weights
of WMA+ was set to β = 0.5 as proposed in (Kolter & Mal-
oof 2005) for AddExp. In order to allow Expboost to build a
strong hT

final from a weak classifier like decision stump the
parameter N was set to 50.

Results: Figure 1 shows the accuracy on a noise free
test set of 1000 samples averaged over 15 runs. After hav-
ing seen only 5 examples ExpBoost can already outper-
form hb best and in the end achieves a far higher accuracy
than hB+1. This establishes that ExpBoost can construct a
strong classifier from training and combining weak classi-
fiers, given enough boosting steps. The same applies to Ad-
aBoost but without the ensemble of experts in HB AdaBoost
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Figure 1: Performance of all experiments on the separation
task with decision stump as the base classifier. The error
bars show the limits for a 95% confidence interval.

needs far more samples to reach the same performance. As
WMA+ can only combine HB and hB+1 it cannot show sig-
nificantly better performance than each of them separately.

Experiment 2 (rotating hyperplane task):
Task: In the second experiment an already strong clas-

sifier, a Support Vector Machine, was used as the base ma-
chine learning algorithm. Thus, all classifiers could poten-
tially reach the same accuracy. But this setup demonstrates
that another strength of ExpBoost is its ability to rapidly
learn from few samples. The input vectors for this task were
uniformly distributed in 18-dimensional space x ∈ [−1, 1]18
which was separated by a hyperplane. Every dimensions had
an associated weight r ∈ [−1, 1]18 to make the hyperplane
rotate around the origin (cmp. (Hulten, Spencer, & Domin-
gos 2001)). A sample is labeled positive if

∑
m(xmrm) ≥ 0

and negative otherwise. The dimension-weights of the hy-
perplane for the first target concept c1 were 1/9 for 1 ≤
m ≤ 9 and 0 otherwise. The weights for the second concept
c2 were 1/9 for 9 ≤ m ≤ 18 and 0 otherwise. Both experts
were trained with 20% random class noise on 200 samples.
The hyperplane-weights of the current concept cB+1 are 1/9
for 7 ≤ m ≤ 9, −1/9 for 10 ≤ m ≤ 15 and 0 otherwise.
The algorithms were trained with an increasing number of
samples 5 ≤ t ≤ 100 from concept cB+1 with 10% random
class noise and all classifiers were evaluated on 5000 noise-
less samples averaged over 100 runs. Again, the parameter
β of WMA+ is set to 0.5. The parameter of Expboost was
set to N = 2 because a SVM already is a strong classifier.

Results: Figure 2 compares all different algorithms on
the rotating hyperplane task. Already after 20 samples Exp-
Boost can outperform the best previously trained classifier
hb best. Not before more than 40 samples were used for
training the current expert hB+1 it can achieve the same per-
formance as ExpBoost. In contrast, WMA+ and AdaBoost
focus their predictions almost instantly on hB+1. These re-
sults confirm that ExpBoost’s strength lies in a rapid recall-
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Figure 2: Performance of all experiments on the rotating
hyperplane problem with a SVM as the base classifier. The
x-axis is logarithmically scaled. The error bars show the
limits for a 95% confidence interval.

ing of available experts while additionally learning cB+1.

Application to Simulated Robot Soccer
As mentioned before the learning task that motivated the re-
search on concept recall comes from the domain of simu-
lated robot soccer. The RoboCup 3D Soccer Simulator by
(Obst & Rollmann 2005) provided the testbed and 5 differ-
ent teams from 5 different universities from the RoboCup
2004 competition were used as the opponents to generate
data representing concepts c1 . . . c5.

Task: The learning task that was explored is an exten-
sion to the pass-evaluation described in (Stone & Veloso
1996). Passes between simulated soccer robots are evalu-
ated to determine which agent will reach the ball next. This
task has the advantage that it occurs very frequently so that
the amount of training data that can be observed during one
game is large. As passes can also be evaluated analytically
and tests showed that knowledge of who received the pass
first does not reveal much about whether the situation im-
proved for this team or not, a two-step look-ahead pass-
evaluation was considered. Thus, a complex heuristic was
constructed that evaluates whether the whole situation has
improved after the pass was played. A combination of three
heuristics evaluating the position, velocity and possesion of
the ball determined the utility of a situations. The utility of
the state after the ball has been kicked for the second time
was compared to the utility of the state before the ball had
been kicked for the first time. If the last kick had improved
the situation for the team the binary label y ∈ {0, 1} is set
to 1 and to 0 otherwise. The expressiveness of the heuristic
was extensively evaluated by a human judge.

After a feature selection step, the initial kick situation
when the pass was made was represented as a 15 dimen-
sional vector x ∈ [−1, 1]15, including information like the
distance to the goal, ball speed, slope of the pass and veloc-
ities and distances of opponents and teammates.

This way a total of 13612 samples were recorded from
games played against 5 different opponents. The average
number of samples per game was 100.12. Thus, the size of
the data set expressing the current concept cB+1 is T ≈ 100
which sets a strict limit on the available data.

Algorithms: As mentioned before data from 5 different
concepts c1, ..., c5 corresponding to 5 different opponents
was available. By turns 4 concepts were used for training the
previous experts h1, ..h4 ∈ HB The one remaining concept
was used as the current concept cB+1 to be learned by the
algorithms. All experts are based on a SVM classifier. Only
T = 50 samples from cB+1 were used for training which
corresponds to the amount of data that on average can be ob-
served during one half of a soccer game. All datasets were
balanced before training and testing to make the amount of
positive labels equal to the amount of negative labels. The
setups used for comparing the performance of ExpBoost are
the following:

hb best: The expert from the pool of previous experts HB

that had the best accuracy on predicting the whole data
from the current concept cB+1. This expert is not trained
with data from the current concept cB+1. The result is
averaged over five runs where each time a different team
was used for the current concept cB+1.

hB+1: One SVM classifier trained on 50 random samples
from concept cB+1 only and evaluated on the remaining
data from the same concept. This procedure was repeated
10 times and the result averaged. Furthermore, this result
is averaged over 5 runs for each of the five opponent teams
and related concepts c1, ..c5;

hb together: We also tested a setup which is traditionally the
most common in simulated robot soccer. One SVM clas-
sifier was trained on all data from 4 teams combined ex-
cept the data used for testing from concept cB+1. This
way all data available before a game is used for training a
single classifier.

ExpBoost: ExpBoost only learns from 50 samples from
the data corresponding to cB+1, can resort to the ensem-
ble of experts HB but not to hoptimal. The weak classifier
hi that ExpBoost trains in every boosting step is based on
the decision stump algorithm.

hoptimal: Like hB+1, one SVM classifier was trained on
samples from concept cB+1 only. But this time all avail-
able data (about 2700 per opponent) was used for training
and evaluated by 10-fold-cross validation. Again, the re-
sult is averaged over 5 runs for each of the five opponent
teams. This classifier demonstrates the best possible clas-
sifier that can be trained. Of course this setup cannot be
applied in the real tournament scenario because a max-
imum of 100 samples can be observed from the current
concept during one game.

Results: Figure 3 compares the outcome of all experi-
ments. The good performance of hb best shows that at least
one of the previous concepts cb is related to the current
opponent’s concept cB+1. In contrast, the performance of
hb together is almost random guessing. Training one clas-
sifier on all previous concepts cb tries to combine concepts
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Figure 3: Comparison of all experiments on the pass-
evaluation problem. All training and test sets are balanced
such that they contain as many positive as negative exam-
ples. The error bars show the standard deviation.

that seem to conflict with each other. Thus, the hypothesis
hb together is not capable of recalling the one concept from
cb that is closest to the current concept cB+1. The impor-
tance of recalling a known concept is also revealed in the
performance of hB+1. Training only with 50 samples from
cB+1 is not enough to achieve good performance in predict-
ing this current concept. To reach a precision of about 65%,
as hoptimal did, more than 1000 samples needed to be used
for training.

But ExpBoost shows that this precision on cB+1 can
almost be achieved with only 50 samples by finding the
best previous concepts and combining them with classifiers
trained on the available 50 samples from the current con-
cept cB+1. At this point it is interesting to analyze which
classifier was picked in each of the N = 10 boosting steps.
In the first 1-5 steps around 1-3 different experts from HB

and in the remaining steps the decision stumps hi trained on
cB+1 were picked. This indicates that ExpBoost focuses on
the best existing classifier first and in the end learns the new
aspects of the current concept.

Summing up, the analysis of the extracted data shows that
the task is highly team dependent. The classical way of
learning demonstrated with hb together does not give any ad-
vantage if the opponent has never been seen before. Thus,
concept recall is crucial if only a small number of samples
are available.

Related Work
Work that is related to concept recall can be found under var-
ious topics. Life-long learning, transfer learning, multitask
learning (see (Caruana 1997)) or meta-learning are just a few

domains that deal with retaining and applying the knowl-
edge learned in one or more tasks to efficiently develop an
effective hypothesis for a new task. For instance (Marx et
al. 2005) use a familiar task for a maximum a posteriori
elaboration on the logistic regression approach to transfer
knowledge to a new task. (Wu & Dietterich 2004) propose
a SVM framework that allows successful learning from few
training samples by using auxiliary data as data points to
constrain the learning process or as candidate support vec-
tors. An example for a multitask learning technique is an
MTL network (see e.g. (Silver & Mercer 2001))that uses a
feed-forward multi-layer network with an output for each
task to be learned. By sharing of the internal representation
the network can combine the knowledge of different tasks.
However, most of those works have sophisticated ways to
store task knowledge (see (Silver & Mercer 1998)) or trans-
fer it to the new task. In our case we restrict the transfer of
concept knowledge to the predictions of experts only.

Another area of related research is on incremental on-
line learning and drifting concepts. For instance (Kivinen
2003) or (Klinkenberg 2004) propose Support Vector Ma-
chines that can cope with concept drift. Handling concept
drift is usually achieved by decreasing the influence of older
samples. (Rüping 2001) does this by incorporating the age
of an support vector in the loss function while (Klinkenberg
& Joachims 2000) use a window on the training samples.
Even though those algorithms can handle concept drift they
have no special capabilities for keeping several potentially
conflicting hypotheses obtained from different concepts.

A different area of research that is more targeted at con-
cept recall is on expert prediction algorithms. Most work on
expert ensembles can be traced back to aggregating strate-
gies ((Vovk 1990)) and the weighted majority algorithm by
(Littlestone & Warmuth 1994). Besides that, there are nu-
merous extensions and related algorithms like Tracking the
Best Expert by (Herbster & Warmuth 1998). All this work
is based on how to minimize the total loss by choosing from
the predictions of a set of experts. As discussed before in
this paper the approach that is most closely related to the
task explored in this paper is presented in (Kolter & Maloof
2005). The proposed algorithm AddExp is especially suited
for incremental learning and concept drift.

Regarding robot soccer machine learning techniques have
been widely used. Work that is related to on-line learning
is for instance: In (Riley & Veloso 2001) the current op-
ponent’s action model is recognized from a set of possible
models. In (Bowling 2003) a system for adapting the own
team to a specific opponent is proposed. An memory based
approach to learn on-line whether to shoot at the goal or to
pass in a 2-on-1 situation is described in (Stone & Veloso
1996). All of this work is not particularly aimed at the con-
cept recall problem, though.

Conclusion
In this paper opponent-adaptive learning from the perspec-
tive of how to recall prior knowledge from previous games
was discussed. We view this as an inductive transfer prob-
lem. We proposed the novel algorithm ExpBoost based on
AdaBoost that is especially targeted at this type of problem.



ExpBoost applies the principles of inductive transfer, which
were developed primarily in the context of neural networks,
to boosting techniques. Boosting is a way of taking weak
hypotheses and combining them to form a strong classifier.
Here we use previously learned hypotheses for related con-
cepts to strengthen the weak classifier. By comparing the
performance of ExpBoost to other algorithms on synthetic
data we show empirically that ExpBoost can build a strong
classifier even if all experts are only weak classifiers. Fur-
ther experiments confirm that ExpBoost is especially suited
for rapidly recalling concepts by showing extraordinary per-
formance on small data sets. This is demonstrated with
a more realistic test environment, the RoboCup 3d-soccer-
simulator. A task based on predicting the utility of a 2-step
look-ahead pass was used for experiments. The analysis of
the results confirmed the relevance of concept recall and il-
lustrate that the traditional approach of machine learning in
adversarial domains is often not suitable for opponent de-
pendent tasks.

Future Work
ExpBoost still has a lot of potential for improvements.
An extension to regression problems reinforcement learn-
ing problems (rather than binary classification) would be
interesting. Furthermore, replacing the learning algorithms
used so far (SVM and Decision Stump) with algorithms that
are suited for incremental and decremental on-line learning
should make ExpBoost more computationally efficient and
could extend its capabilities to incremental on-line learning.
Another direction would be to consider work on dynami-
cally adjusting N , the number of boosting iterations. This
could reduce the danger of overfitting and make ExpBoost
more independent from the learning algorithms used for the
experts.
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