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Abstract

Poker is a challenging problem for artificial in-
telligence, with non-deterministic dynamics, par-
tial observability, and the added difficulty of un-
known adversaries. Modelling all of the uncer-
tainties in this domain is not an easy task. In
this paper we present a Bayesian probabilistic
model for a broad class of poker games, sep-
arating the uncertainty in the game dynamics
from the uncertainty of the opponent’s strategy.
We then describe approaches to two key sub-
problems: (i) inferring a posterior over opponent
strategies given a prior distribution and observa-
tions of their play, and (ii) playing an appropriate
response to that distribution. We demonstrate the
overall approach on a reduced version of poker
using Dirichlet priors and then on the full game
of Texas hold’em using a more informed prior.
We demonstrate methods for playing effective re-
sponses to the opponent, based on the posterior.

1 Introduction

The game of poker presents a serious challenge to artifi-
cial intelligence research. Uncertainty in the game stems
from partial information, unknown opponents, and game
dynamics dictated by a shuffled deck. Add to this the large
space of possible game situations in real poker games such
as Texas hold’em, and the problem becomes very difficult
indeed. Among the more successful approaches to play-
ing poker is the game theoretic approach, approximating
a Nash equilibrium of the game via linear programming
[5, 1]. Even when such approximations are good, Nash
solutions represent a pessimistic viewpoint in which we
face an optimal opponent. Human players, and even the
best computer players, are certainly not optimal, having
idiosyncratic weaknesses that can be exploited to obtain
higher payoffs than the Nash value of the game. Opponent
modelling attempts to capture these weaknesses so they can

be exploited in subsequent play.

Existing approaches to opponent modelling have employed
a variety of approaches including reinforcement learning
[4], neural networks [2], and frequentist statistics [3]. Ad-
ditionally, earlier work on using Bayesian models for poker
[6] attempted to classify the opponent’s hand into one of a
variety of broad hand classes. They did not model uncer-
tainty in the opponent’s strategy, using instead an explicit
strategy representation. The strategy was updated based
on empirical frequencies of play, but they reported little
improvement due to this updating. We present a general
Bayesian probabilistic model for hold ’em poker games,
completely modelling the uncertainty in the game and the
opponent.

We start by describing hold’em style poker games in gen-
eral terms, and then give detailed descriptions of the casino
game Texas hold’em along with a simplified research game
called Leduc hold’em for which game theoretic results are
known. We formally define our probabilistic model and
show how the posterior over opponent strategies can be
computed from observations of play. Using this posterior
to exploit the opponent is non-trivial and we discuss three
different approaches for computing a response. We have
implemented the posterior and response computations in
both Texas and Leduc hold’em, using two different classes
of priors: independent Dirichlet and an informed prior pro-
vided by an expert. We show results on the performance of
these Bayesian methods, demonstrating that they are capa-
ble of quickly learning enough to exploit an opponent.

2 Poker

There are many variants of poker.1 We will focus on hold
’em, particularly the heads-up limit game (i.e., two players
with pre-specified bet and raise amounts). A single hand
consists of a number of rounds. In the first round, play-
ers are dealt a fixed number of private cards. In all rounds,

1A more thorough introduction of the rules of poker can be
found in [2].
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Figure 1: An example decision tree for a single betting
round in poker with a two-bet maximum. Leaf nodes with
open boxes continue to the next round, while closed boxes
end the hand.

some fixed number (possibly zero) of shared, public board
cards are revealed. The dealing and/or revealing of cards is
followed by betting. The betting involves alternating deci-
sions, where each player can either fold (f), call (c), or raise
(r). If a player folds, the hand ends and the other player
wins the pot. If a player calls, they place into the pot an
amount to match what the other player has already placed
in the pot (possibly nothing). If a player raises, they match
the other player’s total and then put in an additional fixed
amount. The players alternate until a player folds, ending
the hand, or a player calls (as long as the call is not the first
action of the round), continuing the hand to the next round.

There is a limit on the number of raises (or bets) per round,
so the betting sequence has a finite length. An example
decision tree for a single round of betting with a two-bet
maximum is shown in Figure 1. Since folding when both
players have equal money in the pot is dominated by the
call action, we do not include this action in the tree. If
neither player folds before the final betting round is over,
a showdown occurs. The players reveal their private cards
and the player who can make the strongest poker hand with
a combination of their private cards and the public board
cards wins the pot.

Many games can be constructed with this simple format
for both analysis (e.g., Kuhn poker [7] and Rhode Island
hold’em [9]) and human play. We focus on the commonly
played variant, Texas hold ’em, along with a simplified and
more tractable game we constructed called Leduc hold ’em.

Texas Hold ’Em. The most common format for hold ’em
is “Texas Hold’em”, which is used to determine the human
world champion and is widely considered the most strate-
gically complex variant. A standard 52-card deck is used.
There are four betting rounds. In the first round, the players
are dealt two private cards. In the second round (or flop),
three board cards are revealed. In the third round (turn)

and fourth round (river), a single board card is revealed.
We use a four-bet maximum, with fixed raise amounts of
10 units in the first two rounds and 20 units in the final two
rounds. Finally, blind bets are used to start the first round.
The first player begins the hand with 5 units in the pot and
the second player with 10 units.

Leduc Hold ’Em. We have also constructed a smaller
version of hold ’em, which seeks to retain the strategic ele-
ments of the large game while keeping the size of the game
tractable. In Leduc hold ’em, the deck consists of two suits
with three cards in each suit. There are two rounds. In the
first round a single private card is dealt to each player. In
the second round a single board card is revealed. There is
a two-bet maximum, with raise amounts of 2 and 4 in the
first and second round, respectively. Both players start the
first round with 1 already in the pot.

Challenges. The challenges introduced by poker are
many. The game involves a number of forms of uncertainty,
including stochastic dynamics from a shuffled deck, imper-
fect information due to the opponent’s private cards, and,
finally, an unknown opponent. These uncertainties are indi-
vidually difficult and together the difficulties only escalate.
A related challenge is the problem of folded hands, which
amount to partial observations of the opponent’s decision-
making contexts. This has created serious problems for
some opponent modelling approaches and our Bayesian ap-
proach will shed some light on the additional challenge that
fold data imposes. A third key challenge is the high vari-
ance of payoffs, also known as luck. This makes it difficult
for a program to even assess its performance over short pe-
riods of time. To aggravate this difficulty, play against hu-
man opponents is necessarily limited. If no more than two
or three hundred hands are to be played in total, opponent
modelling must be effective using only very small amounts
of data. Finally, Texas hold’em is a very large game. It has
on the order of 1018 states [1], which makes even straight-
forward calculations, such as best response, non-trivial.

3 Modelling the Opponent

We will now describe our probabilistic model for poker. In
all of the following discussion, we will assume that Player 1
(P1) is modelling its opponent, Player 2 (P2), and that all
incomplete observations due to folding are from P1’s per-
spective.

3.1 Strategies

In game theoretic terms, a player makes decisions at in-
formation sets. In poker, information sets consist of the
actions taken by all players so far, the public cards revealed
so far, and the player’s own private cards. A behaviour
strategy specifies a distribution over the possible actions



for every information set of that player. Leaving aside the
precise form of these distributions for now, we denote P1’s
complete strategy by α and P2’s by β.

We make the following simplifying assumptions regarding
the player strategies. First, P2’s strategy is stationary. This
is an unrealistic assumption but modelling stationary oppo-
nents in full-scale poker is still an open problem. Even the
most successful approaches make the same assumption or
use simple methods such as decaying histories to accom-
modate opponent drift. However, we believe this frame-
work can be naturally extended to dynamic opponents by
constructing priors that explicitly model changes in op-
ponent strategy. The second assumption is that the play-
ers’ strategies are independent. More formally, P (α, β) =
P (α)P (β). This assumption, implied by the stationarity,
is also unrealistic. Hower, modelling opponents that learn,
and effectively deceiving them, is a difficult task even in
very small games and we defer such efforts until we are
sure of effective stationary opponent modelling. Finally,
we assume the deck is uniformly distributed, i.e., the game
is fair. These assumptions imply that all hands are i.i.d.
given the strategies of the players.

3.2 Hands

The following notation is used for hand information. We
consider a hand, H , with k decisions by each player. Each
hand, as observed by an oracle with perfect information, is
a tuple H = (C, D, R1:k, A1:k, B1:k) where,

• C and D denote P1 and P2’s private cards,

• Ri is the set (possibly empty) of public cards dealt
before either player makes their ith decision, and

• Ai and Bi denote P1 and P2’s ith decisions (fold, call
or raise).

We can model any limit hold’em style poker with these
variables. A hand runs to at most k decisions. The fact
that particular hands may have fewer real decisions (e.g., a
player may call and end the current betting round, or fold
and end the hand) can be handled by padding the decisions
with specific values (e.g., once a player has folded all sub-
sequent decisions by both players are assumed to be folds).
Probabilities in the players’ strategies for these padding de-
cisions are forced to 1. Furthermore, the public cards for a
decision point (Ri) can be the empty set, so that multiple
decisions constituting a single betting round can occur be-
tween revealed public cards. These special cases are quite
straightforward and allow us to model the variable length
hands found in real games with fixed length tuples.

3.3 Probability of Observations

Suppose a hand is fully observed, i.e., a showdown occurs.
The probability of a particular showdown hand Hs occur-
ring given the opponent’s strategy is, 2

P (Hs|β)

= P (C, D, R1:k, A1:k, B1:k|β)

= P (D|C)P (C)
k

∏

i=1

[

P (Bi|D, R1:i, A1:i, B1:i−1, β)
P (Ai|C, R1:i, A1:i−1, B1:i−1)
P (Ri|C, D, R1:i−1)

]

= P (D|C)P (C)

k
∏

i=1

[

αYi,C,Ai
βZi,D,Bi

P (Ri|C, D, R1:i−1)
]

= pshowcards

k
∏

i=1

αYi,C,Ai
βZi,D,Bi

∝

k
∏

i=1

βZi,D,Bi
,

where for notational convenience, we separate the infor-
mation sets for P1 (P2) into its public part Yi (Zi) and its
private part C (D). So,

Yi = (R1:i, A1:i−1, B1:i−1)

Zi = (R1:i, A1:i, B1:i−1).

In addition, αYi,C,Ai
is the probability of taking action Ai

in the information set (Yi, C), dictated by P1’s strategy,
α. A similar interpretation applies to the subscripted β.
pshowcards is a constant that depends only on the number of
cards dealt to players and the number of public cards re-
vealed. This simplification is possible because the deck
has uniform distribution and the number of cards revealed
is the same for all showdowns. Notice that the final unnor-
malized probability depends only on β.

Now consider a hand where either player folds. In this
case, we do not observe P2’s private cards, D. We must
marginalize away this hidden variable by summing over all
possible sets of cards P2 could hold.

2Strictly speaking, this should be P (H|α, β) but we drop the
conditioning on α here and elsewhere to simplify the notation.



The probability of a particular fold hand Hf occurring is,

P (Hf|β)

= P (C, R1:k , A1:k, B1:k|β)

= P (C)
∑

D

P (D|C)
k

∏

i=1

[

P (Bi|D, R1:i, A1:i, B1:i−1, β)
P (Ai|C, R1:i, A1:i−1, B1:i−1)
P (Ri|C, D, R1:i−1)

]

= pfoldcards(Hf)

[

k
∏

i=1

αYi,C,Ai

]

∑

D′

k
∏

i=1

βZi,D′,Bi

∝
∑

D′

k
∏

i=1

βZi,D′,Bi

where D′ are sets of cards that P2 could hold given the
observed C and R (i.e., all sets D that do not intersect with
C ∪R), and pfoldcards(Hf) is a function that depends only on
the number of cards dealt to the players and the number of
public cards revealed before the hand ended. It does not
depend on the specific cards dealt or the players’ strategies.
Again, the unnormalized probability depends only on β.

3.4 Posterior Distribution Over Opponent Strategies

Given a set O = Os ∪Of of observations, where Os are the
observations of hands that led to showdowns and Of are the
observations of hands that led to folds, we wish to compute
the posterior distribution over the space of opponent strate-
gies. A simple application of Bayes’ rule gives us,

P (β|O) =
P (O|β)P (β)

P (O)

=
P (β)

P (O)

∏

Hs∈Os

P (Hs|β)
∏

Hf∈Of

P (Hf|β)

∝ P (β)
∏

Hs∈Os

P (Hs|β)
∏

Hf∈Of

P (Hf|β)

4 Responding to the Opponent

Given a posterior distribution over the opponent’s strategy
space, the question of how to compute an appropriate re-
sponse remains. We present several options with varying
computational burdens. In all cases we compute a response
at the beginning of the hand and play it for the entire hand.

4.1 Bayesian Best Response

The fully Bayesian answer to this question is to compute
the best response to the entire distribution. We will call this
the Bayesian Best Response (BBR). The objective here is
to maximize the expected value over all possible hands and
opponent strategies, given our past observations of hands.

We start with a simple objective,

αBBR = argmax
α

EH|OV (H)

= argmax
α

∑

H∈H

V (H)P (H |O, α)

= argmax
α

∑

H∈H

V (H)

∫

β

P (H |α, β,O)P (β|O)

= argmax
α

∑

H∈H

V (H)

∫

β

P (H |α, β,O)P (O|β)P (β)

= argmax
α

∑

H∈H

V (H)

∫

β

[

P (H |α, β,O)P (β)
∏

Hs∈Os

k
∏

i=1

βZi,D,Bi

∏

Hf∈Of

∑

D′

k
∏

i=1

βZi,D,Bi

]

where H is the set of all possible perfectly observed hands
(in effect, the set of all hands that could be played). Al-
though not immediately obvious from the equation above,
one algorithm for computing Bayesian best response is a
form of Expectimax [8], which we will now describe.

Begin by constructing the tree of possible observations in
the order they would be observed by P1, including P1’s
cards, public cards, P2’s actions, and P1’s actions. At the
bottom of the tree will be an enumeration of P2’s cards for
both showdown and fold outcomes. We can backup values
to the root of the tree while computing the best response
strategy. For a leaf node the value should be the payoff to
P1 multiplied by the probability of P2’s actions reaching
this leaf given the posterior distribution over strategies. For
an internal node, calculate the value from its children based
on the type of node. For a P2 action node or a public card
node, the value is the sum of the children’s values. For a
P1 action node, the value is the maximum of its children’s
values, and the best-response strategy assigns probability
one to the action that leads to the maximal child for that
node’s information set. Repeat until every node has been
assigned a value, which implies that every P1 information
set has been assigned an action. More formally Expectimax
computes the following value for the root of the tree,

∑

R1

max
A1

∑

B1

· · ·
∑

Rk

max
A

k

∑

Bk

∑

D

V (H)

∫

β

k
∏

i=1

βZi,D,Bi
P (O|β)P (β)

This corresponds to Expectimax, with the posterior induc-
ing a probability distribution over actions at P2’s action
nodes.

It now remains to prove that this version of Expectimax



computes the BBR. This will be done by showing that,

max
α

∑

H∈H

V (H)

∫

β

P (H |α, β,O)P (O|β)P (β)

≤
∑

R1

max
A1

∑

B1

· · ·
∑

Rk

max
A

k

∑

Bk

∑

D

V (H)

∫

β

k
∏

i=1

βZi,D,Bi
P (O|β)P (β)

First we rewrite maxα

∑

H as,

max
α(1)

· · ·max
α(k)

∑

R1

∑

A1

∑

B1

· · ·
∑

Rk

∑

A
k

∑

Bk

∑

D

,

where maxα(i) is a max over the set of all parame-
ters in α that govern the ith decision. Then, because
maxx

∑

y f(x, y) ≤
∑

y maxx f(x, y), we get,

max
α(1)

· · ·max
α(k)

∑

R1

∑

A1

∑

B1

· · ·
∑

Rk

∑

A
k

∑

Bk

∑

D

≤ max
α(2)

· · ·max
α(k)

∑

R1

max
α(1)

∑

A1

∑

B1

· · ·
∑

Rk

∑

A
k

∑

Bk

∑

D

≤
∑

R1

max
α(1)

∑

A1

∑

B1

· · ·
∑

Rk

max
α(k)

∑

A
k

∑

Bk

∑

D

Second, we note that,
∫

β

P (H |α, β,O)P (O|β)P (β)

∝

k
∏

i=1

αYi,C,Ai

∫

β

k
∏

i=1

βZi,D,Bi

We can distribute parameters from α to obtain,
∑

R1

max
α(1)

∑

A1

αY1,C,A1

∑

B1

· · ·

∑

Rk

max
α(k)

∑

A
k

αYk,C,Ak

∑

Bk

∑

D

∫

β

k
∏

i=1

βZi,D,Bi
P (O|β)P (β)

=
∑

R1

max
A1

∑

B1

· · ·
∑

Rk

max
A

k

∑

Bk

∑

D

∫

β

k
∏

i=1

βZi,D,Bi
P (O|β)P (β),

which is the Expectimax algorithm. This last step is possi-
ble because parameters in α must sum to one over all pos-
sible actions at a given information set. The maximizing

parameter setting is to take the highest-valued action with
probability 1.

Computing the integral over opponent strategies depends
on the form of the prior but is difficult in any event. For
Dirichlet priors (see Section 5), it is possible to compute
the posterior exactly but the calculation is expensive ex-
cept for small games with relatively few observations. This
makes the exact BBR an ideal goal rather than a practical
approach. For real play, we must consider approximations
to BBR.

One straightforward approach to approximating BBR is to
approximate the integral over opponent strategies by im-
portance sampling using the prior as the proposal distribu-
tion:
∫

β

P (H |α, β,O)P (O|β)P (β) ≈
∑

β̃

P (H |α, β̃,O)P (O|β̃)

where the β̃ are sampled from the prior, β̃ ∼ P (β). More
effective Monte Carlo techniques might be possible, de-
pending on the prior used.

Note that P (O|β̃) need only be computed once for each β̃,
while the much smaller computation P (H |α, β̃,O) must
be computed for every possible hand. The running time
of computing the posterior for a strategy sample scales
linearly in the number of samples used in the approx-
imation and the update is constant time for each hand
played. This tractability facilitates other approximate re-
sponse techniques.

4.2 Max A Posteriori Response

An alternate goal to BBR is to find the max a posteriori
(MAP) strategy of the opponent and compute a best re-
sponse to that strategy. Computing a true MAP strategy for
the opponent is also hard, so it is more practical to approxi-
mate this approach by sampling a set of strategies from the
prior and finding the most probable amongst that set. This
sampled strategy is taken to be an estimate of a MAP strat-
egy and a best response to it is computed and played. MAP
is potentially dangerous for two reasons. First, if the dis-
tribution is multimodal, a best response to any single mode
may be suboptimal. Second, repeatedly playing any single
strategy may never fully explore the opponent’s strategy.

4.3 Thompson’s Response

A potentially more robust alternative to MAP is to sample
a strategy from the posterior distribution and play a best
response to that strategy. As with BBR and MAP, sampling
the posterior directly may be difficult. Again we can use
importance sampling, but in a slightly different way. We
sample a set of opponent strategies from the prior, compute
their posterior probabilities, and then sample one strategy
according to those probabilities.



P (i) =
P (β̃i|H,O)

∑

j P (β̃j |H,O)

This was first proposed by Thompson [10]. Thompson’s
has some probability of playing a best-response to any non-
zero probability opponent strategy and so offers more ro-
bust exploration.

5 Priors

As with all Bayesian approaches, the resulting performance
and efficiency depends on the choice of prior. Obviously
the prior should capture our beliefs about the strategy of
our opponent. The form of the prior also determines the
tractability of (i) computing the posterior, and (ii) respond-
ing with the model. As the two games of hold ’em are con-
siderably different in size, we explore two different priors.

Independent Dirichlet. The game of Leduc hold ’em is
sufficiently small that we can have a fully parameterized
model, with well-defined priors at every information set.
Dirichlet distributions offer a simple prior for multinomi-
als, which is a natural description for action probabilities.
Any strategy (in behavioural form) specifies a multinomial
distribution over legal actions for every information set.
Our prior over strategies, which we will refer to as an in-
dependent Dirichlet prior, consists of independent Dirich-
let distributions for each information set. We are using
Dirichlet(2, 2, 2) distributions, whose mode is the multino-
mial (1/3, 1/3, 1/3) over fold, call, and raise.

Informed. In the Texas hold ’em game, priors with in-
dependent distributions for each information set are both
intractable and ineffective. The size of the game virtually
guarantees that one will never see the same information set
twice. Any useful inference must be across information
sets and the prior must encode how the opponent’s deci-
sions at information sets are likely to be correlated. We
therefore employ an expert defined prior that we will refer
to as an informed prior.

The informed prior is based on a ten dimensional recursive
model. That is, by specifying values for two sets of five
intuitive parameters (one set for each player), a complete
strategy is defined. Table 1 summarizes the expert defined
meaning of these five parameters. From the modelling per-
spective, we can simply consider this expert abstraction to
provide us with a mapping from some low-dimensional pa-
rameter space to the space of all strategies. By defining a
density over this parameter space, the mapping specifies a
resulting density over behaviour strategies, which serves as
our prior. In this paper we use an independent Gaussian
distribution over the parameter space with means and vari-
ances chosen by a domain expert. We omit further details

Table 1: The five parameter types in the informed prior
parameter space. A corresponding set of five are required
to specify the opponent’s model of how we play.

Parameter Description

r0

Fraction of opponent’s strength dis-
tribution that must be exceeded to
raise after $0 bets (i.e., to initiate
betting).

r1

Fraction of opponent’s strength dis-
tribution that must be exceeded to
raise after >$0 bets (i.e., to raise).

b
Fraction of the game-theoretic op-
timal bluff frequency.

f
Fraction of the game-theoretic op-
timal fold frequency.

t Trap or slow-play frequency.

of this model because it is not the intended contribution of
this paper but rather a means to demonstrate our approach
on the large game of Texas hold’em.

6 Experimental Setup

We tested our approach on both Leduc hold’em with the
Dirichlet prior and Texas hold’em with the informed prior.
For the Bayesian methods, we used all three responses
(BBR, MAP, and Thompson’s) on Leduc and the Thomp-
son’s response for Texas (BBR has not been implemented
for Texas and MAP’s behaviour is very similar to Thomp-
son’s, as we will describe below). For all Bayesian meth-
ods, 1000 strategies were sampled from the prior at the be-
ginning of each trial and used throughout the trial.

We have several players for our study. Opti is a Nash (or
minimax) strategy for the game. In the case of Leduc, this
has been computed exactly. We also sampled opponents
from our priors in both Leduc and Texas, which we will
refer to as Priors. In the experiments shown, a new op-
ponent was sampled for each trial (200 hands), so results
are averaged over many samples from the priors. Both Pri-
ors and Opti are static players. Finally, for state-of-the-art
opponent modelling, we used Frequentist, (also known as
Vexbot) described fully in [3] and implemented for Leduc.

All experiments consisted of running two players against
each other for two hundred hands per trial and recording
the bankroll (accumulated winnings/losses) at each hand.
These results were averaged over multiple trials (1000 tri-
als for all Leduc experiments and 280 trials for the Texas
experiments). We present two kinds of plots. The first is
simply average bankroll per number of hands played. A
straight line on such a plot indicates a constant winning
rate. The second is the average winning rate per num-
ber of hands played (i.e., the first derivative of the aver-
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Figure 2: Leduc hold’em: Avg. Bankroll per hands played
for BBR, MAP, Thompson’s, Opti, and Frequentist vs. Pri-
ors.

age bankroll). This allows one to see the effects of learn-
ing more directly, since positive changes in slope indicate
improved exploitation of the opponent. Note that winning
rates for small numbers of hands are very noisy, so it is dif-
ficult to interpret the early results. All results are expressed
in raw pot units (e.g., bets in the first and second rounds of
Leduc are 2 and 4 units respectively).

7 Results

7.1 Leduc Hold’em

Figures 2 and 3 show the average bankroll and average win-
ning rate for Leduc against opponents sampled from the
prior (a new opponent each trial). For such an opponent, we
can compute a best response, which represents the best pos-
sible exploitation of the opponent. In complement, the Opti
strategy shows the most conservative play by assuming that
the opponent plays perfectly and making no attempt to ex-
ploit any possible weakness. This nicely bounds our results
in these plots. Results are given for Best Response, BBR,
MAP, Thompson’s, Opti, and Frequentist.

As we would expect, the Bayesian players do well against
opponents drawn from their prior, with little difference be-
tween the three response types in terms of bankroll. The
winning rates show that MAP and Thompson’s converge
within the first ten hands, whereas BBR is more erratic
and takes longer to converge. The uninformed Frequentist
is clearly behind. The independent Dirichlet prior is very
broad, admitting a wide variety of opponents. It is encour-
aging that the Bayesian approach is able to exploit even this
weak information to achieve a better result. However, it is
unfair to make strong judgements on the basis of these re-
sults since, in general, playing versus its prior is the best
possible scenario for the Bayesian approach.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  20  40  60  80  100  120  140  160  180  200

A
ve

ra
ge

 W
in

ni
ng

 R
at

e

Hands Played

BBR
MAP

Thompson
Freq
Opti

Best Response

Figure 3: Leduc hold’em: Avg. Winning Rate per hands
played for BBR, MAP, Thompson’s, Opti, and Frequentist
vs. Priors.

Figures 4 and 5 show bankroll and winning rate results
for BBR, MAP, Thompson’s, Opti, and Frequentist versus
Opti on Leduc hold’em. Note that, on average, a positive
bankroll again Opti is impossible, although sample vari-
ance allows for it in our experiments. From these plots
we can see that the three Bayesian approaches behave very
similarly. This is due to the fact that the posterior distribu-
tion over our sample of strategies concentrates very rapidly
on a single strategy. Within less than 20 hands, one strat-
egy dominates the rest. This means that the three responses
become very similar (Thompson’s is almost certain to pick
the MAP strategy, and BBR puts most of its weight on the
MAP strategy). Larger sample sizes would mitigate this
effect. The winning rate graphs also show little difference
between the three Bayesian players.

Frequentist performs slightly worse than the Bayes ap-
proaches. The key problem with it is that it can form mod-
els of the opponent that are not consistent with any behav-
ioral strategy (e.g., it can be led to believe that its opponent
can always show a winning hand). Such incorrect beliefs,
untempered by any prior, can lead it to fold with high prob-
ability in certain situations. Once it starts folding, it can
never make the observations required to correct its mis-
taken belief. Opti, of course, breaks even against itself. On
the whole, independent Dirichlet distributions are a poor
prior for the Opti solution, but we see a slight improvement
over the pure frequentist approach.

Our final Leduc results are shown in Figure 6, playing
against the Frequentist opponent. These results are in-
cluded for the sake of interest. Because the Frequentist
opponent is not stationary, it violates the assumptions upon
which the Bayesian (and, indeed, the Frequentist) player
are based. We cannot drawn any real conclusions from
this data. It is interesting, however, that the BBR re-
sponse is substantially worse than MAP or Thompson’s.
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It seems likely that the posterior distribution does not con-
verge quickly against a non-stationary opponent, leading
BBR to respond to several differing strategies simulata-
neously. Because the prior is independent for every infor-
mation set, these various strategies could be giving radi-
cally different advice in many contexts, preventing BBR
from generating a focused response. MAP and Thomp-
son’s necessarily generate more focused responses. We
show winning rates in Figure 7 for the sake of complete-
ness, with the same caveat regarding non-stationarity.

7.2 Texas Hold’em

Figure 8 show bankroll results for Thompson’s, Opti, and
Frequentist versus opponents sampled from the informed
prior for Texas hold’em. Here Thompson’s and Frequentist
give very similar performance, although there is a small
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Figure 7: Leduc hold’em: Avg. Winning Rate per hands
played for BBR, MAP, Thompson’s, and Opti vs. Frequen-
tist.

advantage to Thompson’s late in the run. It is possible that
even with the more informed prior, two hundred hands does
not provide enough information to effectively concentrate
the posterior on good models of the opponent in this larger
game. It may be that priors encoding strong correlations
between many information sets are required to gain a sub-
stantial advantage over the Frequentist approach.

8 Conclusion

This research has presented a Bayesian model for hold’em
style poker, fully modelling both game dynamics and op-
ponent strategies. The posterior distribution has been
described and several approaches for computing appro-
priate responses considered. Opponents in both Texas
hold’em and Leduc hold’em have been played against us-
ing Thompson’s sampling for Texas hold’em, and approx-
imate Bayesian best response, MAP, and Thompson’s for
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Figure 8: Texas hold’em: Avg. Bankroll per hands played
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Leduc hold’em. These results show that, for opponents
drawn from our prior, the posterior captures them rapidly
and the subsequent response is able to exploit the oppo-
nent, even in just 200 hands. On Leduc, the approach
performs favourably compared with state-of-the-art oppo-
nent modelling techniques against prior-drawn opponents
and a Nash equilibrium. Both approaches can play quickly
enough for real-time play against humans.

The next major step in advancing the play of these sys-
tems is constructing better informed priors capable of mod-
elling more challenging opponents. Potential sources for
such priors include approximate game theoretic strategies,
data mined from logged human poker play, and more so-
phisticated modelling by experts. In particular, priors that
are capable of capturing correlations between related infor-
mation sets would allow for generalization of observations
over unobserved portions of the game. Finally, extending
the approach to non-stationary approaches is under active
investigation.
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